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The purpose of this thesis is to research a way to measure quality attributes of software 
and find metrics that can then be used to improve the quality of software.  
  
Software quality can be understood in different ways by different people. Therefore, soft-
ware quality is first described from a standards point of view. Two categories for software 
quality metrics are identified and further investigated. Product-related quality metrics are 
metrics that are measured from a static code, a technic, which is known as static code 
analysis. Another category is then the process related metrics. Process related metrics 
measure how people develop software. Multiple studies have shown that metrics measur-
ing how software is developed, are more accurate of predicting faults than static code 
analysis.  
  
Three metrics were chosen to be measured: Code ownership, Code Churn and Code 
Complexity. It is described in detail how those are calculated in practice. Further, an aggre-
gate metric is introduced to give a single number as a quality indicator. The framework 
where the solution needs to operate is defined, including software source code structure, 
software repository environment and issue tracking software. The software solution is then 
defined and was developed to measure these metrics. 
  
This proof of concept solution was then used to measure metrics from a set of software 
components in a software repository. Results were then analysed and explained. One soft-
ware component was chosen to be more closely examined, and from there several files 
with the highest value for an aggregate metric were analysed even in more detail. 
  
Finally, the solution was evaluated by comparing predictions against real issues. Results 
were inconclusive but provide similar results as previous studies. These results are en-
couraging. There are several threats to validity issues, but this can be engaged with when 
this proof of concept is further developed.  
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1 Introduction 

Quality of software generally has three aspects: functional quality, process quality, and 

structural quality [1]. The user of the software experiences the functional quality of soft-

ware, how well the software satisfies the user needs. Process quality is the quality of the 

software development process, how well the software team follows processes and can 

deliver their promises. Furthermore, structural quality is the degree of how well the soft-

ware is designed, and this is experienced first-hand by the development team. 

 

Process quality is measured by process or quality management, was the software deliv-

ered on time with the functionality committed to, and how it can be improved next time. 

Functional quality is measured by how well the software does what it is required to do; 

measuring this is the responsibility of software quality assurance. Structural quality, on 

the other hand, is not easy to measure, and it is sometimes even totally neglected, de-

spite it being subject of study since the 1970s. 

 

The goal of this thesis is to improve the software quality at Silicon Labs. Silicon Labs is 

a semiconductor company, which provides integrated circuits and software for the Inter-

net of Things (IoT) devices. The quality of IoT devices is paramount as they are 

standalone devices that need to operate for years without interrupts. Thus, many re-

sources have been put on improving quality. Functional quality is improved by increasing 

functional testing and process quality is improved by following standards and improving 

processes. Structural quality can be divided into two parts: Quality of software product 

and quality of the software development process. The quality of software products is 

improved by applying existing measurement tools, and to detect possible quality issues 

from software code, and then correct those. However, these tools do not capture the 

software development process quality; thus, there is a need for a tool to measure how 

well was the software designed. 

 

The research question aims to capture that need: 
How to measure the structural quality attributes of software components in such a 

manner that it can be used to improve the quality? 

 

The outcome of this thesis is a proof of concept solution, showing how software devel-

opment process quality could be improved by measuring specific metrics. To limit the 

scope of the thesis, the solution is using generally available off-the-shelf components 
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and methods. Although the literature shows that there exist measurement metrics using 

advanced methods such as AI, ML and Fuzzy logic, these were excluded from this proof 

of concept. However, the proof of concept can be later to be extended to include these 

methods. 

 

There exist similar kind of studies, where the aim was to build a tool to measure software 

quality [2] [3] [4]. Nevertheless, those concentrate only on software product quality. 

 

This thesis is divided into several sections. First, the current state of the art is examined, 

related studies are listed, and quality attributes which they have introduced are ex-

plained. Difference between product and process-related metrics is explained. 

 

Next chapter describes a set of quality attributes that are chosen to be measure, and 

how they are measured. This chapter also describes the environment where this solution 

needs to operate. 

 

Solution development chapter provides the requirements and how those requirements 

are fulfilled in architectural design. This chapter also explains the technical implementa-

tion of measured the metrics and how data is accessed and provided for others. 

 

The solution is then used to analyse the Silicon Labs software repository. Several com-

ponents are selected for investigation. Results are shown and discussed in detail, and 

what can be seen from the results. One component is selected to be investigated even 

further to find out if there is something to be improved. 

 

The last chapter discusses what has been found out, how they are validated, and what 

are threats to validity. Moreover, what improvement and future work are planned for this 

proof of concept solution. 
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2 Software Quality 

Software Quality is a concept, which is understood differently by different people [1]. It is 

sometimes understood that software without defects or bugs is of good quality. Counting 

number of bugs is quite an oversimplification, as software quality is more than that, as 

will be explained further in this chapter. 

 

David Chappell defines three different quality aspects for software; they are functional 

quality, structural quality, and process quality [1]. He defines these that functional quality 

tells how well the software meets the defined requirements of the system, and structural 

quality means how well the software code is structured. Moreover, process quality means 

how well the software development team develops the software, for example, staying in 

allocated time and budget. 

 

These functional and structural qualities can also be defined as functional and non-func-

tional qualities. Keshavarz et al. define a functional requirement as fundamental actions 

that must take place and non-functional requirements as qualitative requirements of the 

system [5]. Thus, functional and non-functional qualities then fulfil these requirements. 

 

Len Bass and Paul Clements argue against separating system qualities to functional and 

non-functional categories [6, p. 66]. They give an example of engine control; how can 

functional quality be correctly implemented if the non-functional quality of timing behav-

iour is not also considered. 

2.1 ISO/IEC 25010 

ISO/IEC 25010 “Systems and software Quality Requirements and Evaluation (SQuaRE) 

– System and software quality models” is a standard defining the quality models for com-

puter systems and software products. Its definition for software quality is the following: 

“the degree to which a software product satisfies stated and implied needs when used 

under specified conditions”. It also defines two quality models: “quality in use” and “prod-

uct quality”- models. Product quality model is relevant for the topic of this thesis and is 

displayed in Figure 1. [7] 
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Figure 1. ISO/IEC 25010 Product Quality Model. [4] 

The product quality is categorised into eight characteristics. The first characteristic 

“Functional Suitability” defines the degree to which the product or system provides func-

tions that meet stated and implied needs. Performance efficiency characteristic covers 

the resource usage of the software. Compatibility characteristic is about the interopera-

bility of the system with other systems. Usability characteristic is the machine-human 

interface aspect of quality and general usability of the system. Reliability characteristic 

defines how the system performs specified functions under specific conditions for a spe-

cific time. Security characteristic covers data protection and access to data. Maintaina-

bility characteristic is about modifiability of the system. And portability characteristic de-

fines the efficiency with which a system can be moved from one environment to another. 

[7] 

 

Functional testing of the system aims to cover all these quality characteristics of the 

system. It is relatively easy to automate the testing of functional completeness of the 

system; does it do what it is required to do. Also, performance efficiency is easy to auto-

mate; Does the system do what is required to do in the time provided. But there are 

quality characteristics of the system that are not easy to automate and thus easily 

skipped in the testing of the system. For example, maintainability characteristic of the 

system has a human component and cannot be automated. 

 

The maintainability characteristic is defined by the ISO/IEC 25010 as “degree of effec-

tiveness and efficiency with which a product or system can be modified by the intended 
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maintainers”. Maintainer in this context means the developers who are developing soft-

ware and adapting it to changing requirements. 

 

2.2 Quality Attributes 

 

The quality attribute is defined by ISO/IEC 25010 as “Inherent property or characteristic 

of an entity that can be distinguished quantitatively or qualitatively by human or auto-

mated means” [7]. 

 

Like mentioned before, some of the quality characteristics or attributes are not easy to 

measure automatically. These two different kinds of quality attributes can be categorised 

either as product-related or process-related attributes. Graves et al. define product-re-

lated as something that is taken as a snapshot of the software and process as something 

that is a change in the software [8]. Henderson-Sellers further discusses this categorisa-

tion in the book “Object-Oriented Metrics: Measures of Complexity” [9]. 

 

A product-related metric is measured from source code itself. Different methods for 

measurement for product related metrics and history of measurement is described in the 

next section. 

 

Process related metrics are then measured from changes in the source code. These 

metrics can be understood to measure how source code was implemented. Process re-

lated metrics are the most important metrics for this thesis and are further discussed in 

a later chapter. 

 

2.3 Product-Related Metrics 

 

One way to find metrics for software quality is analysing the source code of the software. 

This method is called a static code analysis, and it uses another software to analyse the 

software source code. Static code analysis has a long history, and the first static analys-

ing tools were used to indicate the correctness of software source code against the re-

quired standard [10]. 
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Cyclomatic Complexity 
 
Metrics to measure software quality attributes is continually being researched [11]. One 

of the first ones was Cyclomatic Complexity developed by McCabe in 1976 [12]. Cy-

clomatic complexity, as the name suggests, gives metrics about the complexity of the 

source code or how many individual paths there are through the software. 

 

A simple example of cyclomatic complexity is shown in Figure 2. This example shows 

how a single branch in software creates two distinct paths in the software. One path is 

taken when the comparison is true and another one when it is false, giving, in this case, 

a cyclomatic complexity of 2. 

 

 

Figure 2. A simple function where there are two distinct paths through the function, giving cy-

clomatic complexity of 2 

Watson et al. claim that if cyclomatic complexity metric is too high, the software will be 

more prone to errors, harder to understand, harder to test and harder to modify [13, p. 

15]. This is disputed by Oram et al., they argue that lines of codes are linearly related to 

cyclomatic complexity and questions, even the validity of measuring it. Instead, they sug-

gest that a simple number of lines of codes should be considered [14, p. 140]. 

 

However, cyclomatic complexity continues to be a popular metric and is well understood 

by stakeholders in the software development organization [15]. 

 

Halstead Complexity Metric 
 

int abs(int a){ 
    if(a<0){ 
        a=-a; 
    } 
    return a; 
}  

a<0 

a=-a 

a<0 
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Halstead complexity metric [16] measures the computational complexity of the software 

by counting the number of operators and operands in the software. Figure 3 shows the 

same example as before, with lists of unique operators and operands. 

 

int abs(int a){ 

 if(a<0){ 

 a=-a; 

 } 

 return a; 

} 

Unique operators: 
abs, int, if, (), {}, <, -, =,; 

Unique operands: 
a, 0 

 

Figure 3. Same simple function with operators and operands listed 

From this example number of unique and total operators and operands are calculated. 

These are then used as parameters for Halstead complexity metrics. These parameters 

and metrics are shown in Table 1. Halstead metrics contain different kind of metrics from 

program length to even the time required to program. Halstead complexity metric is the 

first metric that tries to predict the number of faults in the software. 
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Table 1. Halstead complexity metrics example 

	𝜂! = 8	 Number of unique operators 

𝜂" = 2 Number of unique operands 

𝑁! = 12 Total number of operators 

𝑁" = 5 Total number of operands 

𝜂 = 𝜂! + 𝜂" = 10 Program vocabulary 

𝑁 = 𝑁! + 𝑁" = 17 Program Length 

𝑁, = 𝜂! log" 𝜂! + 𝜂" log" 𝜂" = 26 Calculated estimated program length 

𝑉 = 𝑁! + 𝑁" ≈ 56.47 Volume 

𝐷 =
𝜂!
2
𝑁"
𝜂"
= 10 Difficulty 

𝑉 = 𝐷𝑉 ≈ 564.73 Effort 

𝑇 =
𝐸
18 ≈ 31.37𝑠 The time required to program (s) 

𝑇 =
𝐸
!
"

3000 ≈ 0.02 
Number of delivered bugs 

 

Information Flow Metric 
 

The software can also be measured by looking at how information flows through the 

software. This information flow metric was developed by Henry and Kafura [17]. It 

measures the fan-in and fan-out of the functions. Fan-in is defined as how many are 

calling the function under measurement and fan-out then how many other functions are 

called from the function under measurement; this is shown in Figure 4. 
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Figure 4. Call graph for A. Giving fan-in of two and fan-out of three for A 

 

 

Henry and Kafura then defined a complexity value for a procedure, shown in Formula 

(1). This is calculated from previously mentioned fan-in and fan-out metrics. 

 

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑉𝑎𝑙𝑢𝑒	𝑓𝑜𝑟	𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 = 𝐿𝑒𝑛𝑔𝑡ℎ ∗ (𝑓𝑎𝑛-𝑖𝑛 ∗ 𝑓𝑎𝑛-𝑜𝑢𝑡)! (1) 

 

They mention that fan-in and fan-out are weighted based on the belief that complexity is 

nonlinear. And the power of two takes into account the programmer interaction needed, 

as explained by Brooks [18]. They argue that high complexity value shows stress point 

in software as it has virtually multiple dependencies to other systems. 

 

Function Point Metric 
 

Albrecht et al. introduced a function point metric [19] in 1983, shown in Formula (2). It 

considers five parameters of the software: inputs, outputs, logic files, interface files and 

inquiries generated by the software. This aims to capture the size of the software from a 

business perspective. 

 

 Legend 

 Function 

Call 

b 

c 

d 

e 

f 

A 
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 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑃𝑜𝑖𝑛𝑡𝑠 =	

4 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡𝑠 +	

5 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑢𝑡𝑝𝑢𝑡𝑠 +	

4 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑞𝑢𝑖𝑟𝑖𝑒𝑠 + 

7 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒	𝑓𝑖𝑙𝑒𝑠 +	

10 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑓𝑖𝑙𝑒𝑠 

(2) 

 

They claim that these metrics are useful as these can be measured at an early stage of 

the development process, and they are easier to understand by the user or customer 

than previous metrics. It is also explained that the function points metric measures the 

work needed and can then be utilised during project estimations. 

 

Maintainability Index 
 

There is now many different kind of metrics, but to understand the general maintainability 

of the system Oman and Hagemeister presented software maintainability as a hierarchy 

[20], where source code is just one part of the maintainability of the software. Their hier-

archy is shown in Figure 5. 

 

 

Figure 5. A Software Maintainability Hierarchy [20]. 

 

They also developed a derived metric, which uses different metrics to calculate a com-

pound metric. It uses previously mentioned metrics such as cyclomatic complexity and 

Halstead complexity to give a single number for maintainability of the software, the main-

tainability index. 

 

Khoshgoftaar et al. takes this even further and used principal component analysis and 

discriminant analysis to predict fault-prone software modules [21]. They did not try to 
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predict failures; instead, they classified software modules into two categories, is a mod-

ule fault-prone or not. This then helps management to allocate resources on modules 

that cause most of the problems during testing and maintenance. 

 

They later even applied artificial intelligence to predict failures in software [22]. Results 

of this study show that neural network models are better in prediction than regression 

models, and they recommend considering the neural networks for fault prediction. How-

ever, they also say that neural networks may not work in all situations or environments. 

 

Using static code analysis to find metrics for software quality attributes is a well-known 

industry standard, and there exist products to do that. One such product is SonarQube 

[23], it measures several metrics, including cyclomatic complexity and Halstead com-

plexity. 

 

Product-related metrics can also be used to improve the functional testing of the soft-

ware. Cyclomatic complexity can help software unit testing. Watson and McCabe state 

“Specifically, the minimum number of tests required to satisfy the structured testing cri-

terion is exactly the cyclomatic complexity” [13, p. 33]. 

2.4 Process-Related Metrics 

 

In the previous chapter, the mentioned metrics analyse the characteristics of the source 

code to measure quality attributes of the software. However, software is more than just 

executable code. Oman and Hagemeister also used values such as the number of com-

ments in the source code, formatting of the code and even quality of supporting docu-

mentation [20]. Etzkorn et al. analysed identifier naming (e.g. variables and functions) as 

a predictor for faults [24]. Binstock has mentioned how the size of the codebase of unit 

tests compared to the size of project codebase can be used as a metric [25]. These are 

characteristics of the software that do not affect the execution of software. Nevertheless, 

they do affect the people developing software. 

 

These people-related influences on software were already observed by Conway in 1968 

[26]. Conway demonstrated that there is a very close relationship between the software 

architecture and the organisation designing it. They explained that if there are two or 

more software modules, then the designers of these modules need to discuss and agree 
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on the interfaces between them (Figure 6). Thus, organisational structure or communi-

cation structure will show up in the design of the system, as shown in Figure 7. 

 
Organizations which design systems (in the broad sense used here) are con-
strained to produce designs which are copies of the communication structures of 

these organizations. 

 - Melvin E. Conway [26] 

 

 

Figure 6. Designers of modules need to agree on how modules communicate with each other. 

 

 

Figure 7. The organisation will naturally build a design which is a copy of its organisation structure 

 Conway also discussed why large systems disintegrate. They mention how designing is 

a different kind of work compared to manual labour. Conventional management solves 

problems by assigning more people to projects. However, on design work, more people 

cause an exponential amount of communication paths, which directly affects the archi-

tecture of the system. 

 

Brooks in his book “The Mythical Man-month” [18] then extends Conway’s work. He con-

tends that conceptual integrity is the most crucial consideration in the system design. He 

states that it is better to have one set of design ideas and rather omit features, than to 

 

.c .c 

API 

 

.c 

.c .c 

.c .c .c 
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have many, maybe well designed, but uncoordinated ideas. Brooks also proposes de-

signing software as “surgical teams”, where one person is doing the majority of design, 

and other team members are then doing supportive work. 

 

Khoshgoftaar et al. had already noticed that changes in the software affect quality [22]. 

The research was done to understand better what the effects of software changes into 

quality are. They commented about the nonlinearity relation between changes and com-

plexity metrics: 

 
Given the nonlinear nature of neural networks, this suggests there is some form of 

nonlinearity describing the relationship between software complexity metrics and 

gross change. 

 - Khoshgoftaar et al. [22] 
 

 

Gall et al. used version control data to detect which software components are coupled 

together [27]. They discussed the problems associated with product-related metrics that 

it only reveals syntactic dependencies between modules. 

 
Such measures do not reveal all dependencies (e.g. dynamic relations). In fact, 
some dependencies are not written down either in documentation or in the code. 

The software engineer just “knows” that to make a change of a certain type, he or 

she has to change a certain set of modules. 

 - Gall et al. [27] 

 

Their paper describes how they used software release history to detect software cou-

pling. If two or more components are changed together, then they are logically coupled 

together. This can be then used to detect structural shortcomings in software and can be 

used to predict failures. 

 

A similar study was done by Zimmerman et al. [28]. They used data mining to analyse 

change history. From changes in source code, they tried to predict the further changes 

required, find couplings not shown by static analysis and to prevent errors due to incom-

plete changes. The conclusion was that this method is better on stable software, but on 

new software, it is not very accurate, which is not surprising, as it would have to predict 

new functions. 
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Graves et al. found that numbers of lines of code or other code related metrics are not 

helpful predicting future faults once the amount of changes into the code is taken into 

account [8]. They built several models, which used change management data of software 

to predict new faults in software. Their best model, called the weighted time damp model 

used change-data but also weighted it based on the age of change. 

 

They explained that in large and long-lived software systems, the process related metric 

is more useful than product-related metric. Especially the number of changes in the soft-

ware. They noticed that complexity metrics to be not any more useful predictors than 

lines of code: “We found that nearly all of the complexity measures were virtually per-

fectly predictable from lines of code” – Graves et al. [8]. Their correlation matrix is shown 

in Table 2. 

Table 2. Correlations of complexity metrics 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 Lines Of Code 1 .97 .88 .88 .91 .99 .98 .92 .97 .85 .72 .35 

2 McCabe V(G)1 .97 1 .88 .90 .88 .95 .95 .89 .93 .86 .76 .29 

3 Functions .88 .88 1 .82 .89 .85 .84 .91 .84 .76 .65 .29 

4 Breaks .88 .90 .82 1 .83 .86 .85 .85 .85 .78 .67 .27 

5 Unique Operators .91 .88 .89 .83 1 .89 .87 1.00 .94 .65 .47 .48 

6 Total Operands .99 .95 .85 .86 .89 1 1.00 .90 .98 .85 .72 .31 

7 Program Volume .98 .95 .84 .85 .87 1.00 1 .88 .97 .87 .74 .28 

8 Expected Length .92 .89 .91 .85 1.00 .90 .88 1 .94 .69 .53 .42 

9 Variable Count .97 .93 .84 .85 .94 .98 .97 .94 1 .77 .60 .38 

10 MaxSpan .85 .86 .76 .78 .65 .85 .87 .69 .77 1 .92 -.10 

11 MeanSpan .72 .76 .65 .67 .47 .72 .74 .53 .60 .92 1 -.25 

12 Prog Level .35 .29 .29 .27 .48 .31 .28 .42 .38 -.10 -.25 1 

 

 

Bell et al. has also stated that the importance of changes in predictions are so high that 

even simple changed/not-changed variable can predict failures [29]. 

 

Schröter et al. found that the highest correlation with pre-release failures of software was 

the number of changes from the previous version among the measured metrics [30]. 
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Nevertheless, they also commented that it is not surprising as those changes also con-

tained the fix for the failure. On the other hand, the post-release failures had almost no 

correlation with process metrics. 

 

In these studies, it has been found that changes in the codebase and other developer 

activities affect the quality of software. A possible explanation for this is provided by Na-

gappan et al. when they demonstrated empirically that organisational structure affects 

the quality of software [31]. They used organisational structure and compared it to 

changes in software to predict faults in software. They found that organisational structure 

is a better predictor for faults in software than any other metric; their results are listed in 

Table 3. 

Table 3. Nagappan et al. model accuracy [31] 

Model  Precision  Recall  
Organisational Structure  86.2% 84.0% 

Code Churn 78.6% 79.9% 

Code Complexity 79.3% 66.0% 

Dependencies 74.4% 69.9% 

Code Coverage 83.8% 54.4% 

Pre-Release Bugs 73.8% 62.9% 

 

Conway had already 40 years earlier explained how organizational structure affects the 
architecture of the system [26]. Nagappan et al. now demonstrated that if there is a 
mismatch between the organisational structure and the software structure it affects the 
quality of software. 
 

Several studies then examined how other social aspects affect the quality of the soft-

ware. Meneely et al. performed an empirical analysis on the Linux code base and found 

a correlation between the number of developers and the quality of code [32]. Bird et al. 

examined the relationship between ownership and software quality [33]. They found that 

high levels of ownership are correlated with fewer defects. Madeyski and Jureczko made 

an empirical study about the process metrics, to find out which metrics improve defect 

prediction metrics [34]. 
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Tornhill discusses in his book “Software Design X-Rays” [35] heavily about process met-

rics. They explain why ownership of code is necessary and how a lack of ownership 

causes diffusion of responsibility. Diffusion of responsibility is a phenomenon where a 

person is less likely to take responsibility when others are present. More developers 

there are, the less individual developer takes responsibility. Tornhill is also the author of 

CodeScene [36] application which measures some of the process metrics. 

2.5 Faults and Failures 

Faults and failures are mentioned in previously mentioned studies [8] [21] [22] [29] as 

something that is being predicted by quality metrics. However, these studies do not 

clearly define what is meant by their usage of faults or failures. This confusion is also 

mentioned by Hatton [37], and he defines fault as some inconsistency in code that may 

cause failure. 

 

Basili et al. studied the cause of faults, and they found that half of the faults are caused 

by requirements being incorrect or misinterpreted, or functional specification being incor-

rect or misinterpreted [38]. 

 

All companies with a software development process need to track their failures. These 

failures are reported by a user of the software and may contain failures that are caused 

by something else than pure software fault either directly or indirectly, although for the 

user it might manifest the same way. For example, error in documentation may be re-

ported as a software fault because the software does not match the documentation. Al-

ternatively, like the previously mentioned misinterpreted specification causes the soft-

ware not to match the expectations. 

 

Schröter et al. described how version control data can be correlated with the bug data-

base [30]. The number of bugs in this database can then be used as a target variable 

when predicting faults. However, this requires strict software development processes, 

where each developer would record the corresponding fault into the change. 
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3 Method and Material 

This chapter explains the design process used to create the solution. The solution is a 

computer program capable of analysing software code and giving results for a set of 

quality metrics. Quality metrics being measured are listed and explained in further sec-

tions. Furthermore, the software environment used in the company and mandated re-

strictions are described. Finally, the evaluation method of the solution is described. 

3.1 Design Process 

The design process of this thesis follows the design science research process model 

[39]. The design process is presented in Figure 8. 

 

Figure 8. The Design Process. 

Awareness of the problem came from interviewing of people at Silicon Labs, these were 

Director of software development, design managers and lead software architect. During 

these interviews, it came clear what is the problem, and it became a proposal for this 

thesis. 

 

To tackle this problem a suggestion step was started, which created a tentative design. 

This tentative design was demonstrated, and it was accepted that this is a promising way 

to solve the problem. 

Awareness 
of Problem 

Suggestion 

Development 

Evaluation 

Conclusion 

Proposal 
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Artefact 

Performance Measures 

Results 

Process steps Outputs 
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The tentative design was further specified during the development phase. During this 

phase, a proof of concept was built. This created the artefact. 

 

Evaluation of the artefact was done during the evaluation phase. The evaluation was 

done by observing the actual metrics of software development and comparing them 

against actual failures found in the software. The conclusion of the thesis discusses the 

results and further development possibilities. 

 

3.2 Quality Metrics 

The initial set of quality metrics are intentionally kept small. Three top quality metrics 

from Table 3 are selected to be measured; these three metrics are quality metrics which 

are easy to measure but still provide useful information. The system is designed to be 

extensible; thus, more quality metrics can be added later. Following quality metrics are 

selected for measurement for this proof of concept: 

 

3.2.1 Code Ownership 

Code ownership is the degree of how much a single developer contributes to the soft-

ware. There are different ways to define it. Bird et al. calls it a Proportion of Ownership 

and defines it as a number of commits done by a developer compared to the total number 

of commits [33], as shown in Formula (3). 

 

 
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 =

𝑛𝑐(𝑎")
𝑁𝐶

 

𝑛𝑐(𝑎") is the number of commits from a devel-

oper	𝑎" 

𝑁𝐶 is the total number of commits 

(3) 

 

This defines ownership per each developer, to get a single value, these values need to 

be aggregated. D’Ambros et al. introduced a fractal value, which summarizes the contri-

bution of each developer compared to all contributions [40]. This is shown in Formula 

(4). 
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𝐹𝑟𝑎𝑐𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒 = 1 − L M

𝑛𝑐(𝑎")
𝑁𝐶

N
!

#!∈%

	

𝐴 is the set of developers 

𝑛𝑐(𝑎") is the number of commits from the devel-

oper 𝑎" 

𝑁𝐶 is the total number of commits 

(4) 

 

This Fractal value is zero if a single developer has written all software, and it gets closer 

to one more there are developers working on software. This value tells how diffused 

software development is. 

 

3.2.2 Code Churn 

Code Churn is the number of changes in codebase over time. The term was introduced 

by Nagappan et al. in their article “Use of Relative Code Churn Measures to Predict 

System Defect Density” [41], but similar metric was already used previously by Graves 

et al. in their article “Predicting fault incidence using software change history” [8]. Code 

Churn is calculated as the relation of added and changed files compared to total files, as 

shown in Formula (5). 

 

 𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛 =
𝐿𝑂𝐶&'()*+,
𝐿𝑂𝐶-.-#/

 

𝐿𝑂𝐶&'()*+, = 𝐿𝑂𝐶"*0+)-+, + 𝐿𝑂𝐶)+1.2+, 	

 

𝐿𝑂𝐶-.-#/ is the total number of lines of code 

(5) 

 

𝐿𝑂𝐶-.-#/ is measured from full source listing. However, if Code Churn is measured from 

the changes in software, then it is questionable that should Code Churn also include 

code that was made before the change. Instead, Code Churn is normalised over the 

change, as shown in Formula (6). 
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 𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛 =
𝐿𝑂𝐶&'()*+, − 𝜇

𝜎
 

𝐿𝑂𝐶&'()*+, = 𝐿𝑂𝐶"*0+)-+, + 𝐿𝑂𝐶)+1.2+, 	

 

𝜇 is the mean of the 𝐿𝑂𝐶&'()*+, 

𝜎 is the standard deviation of the 𝐿𝑂𝐶&'()*+, 

(6) 

 

3.2.3 Code Complexity 

Code Complexity can be understood in different ways, as discussed in section 2.3. How-

ever, in the context of this work, it means precisely the comprehension complexity or 

how hard it is the developer to understand the code. Oram et al. argue that syntactic 

complexity metrics do not provide enough information to capture the effort needed to 

comprehend the code or at least not more than simple lines of code can provide [14]. 

The same conclusion was done by Graves et al. [8] 

 

This reasoning allows comprehension complexity to be measured simply from lines of 

code. As this is measured over a change, only those lines that are added to the software 

are counted. This is then also normalised as shown in Formula (7). 

 

 

 
𝐶𝑜𝑑𝑒	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =

(𝐿𝑂𝐶#,,+,) − 𝜇
𝜎

 

𝐿𝑂𝐶#,,+, = 𝐿𝑂𝐶"*0+)-+, − 𝐿𝑂𝐶)+1.2+, 

 

𝜇 is the mean of the (𝐿𝑂𝐶#,,+,) 

𝜎 is the standard deviation of the (𝐿𝑂𝐶#,,+,) 

(7) 

3.3 Aggregated Metric 

Aggregated Metric or derived metric is a single metric that is calculated from other met-

rics. The purpose is to map other metrics to an easily understandable value, that can tell 

some truth from the software. This has been done multiple times before, as explained in 

chapter 2.3. 
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On some previous works, these metrics were handled as they were correlated with each 

other. Halstead used simply a sum of metrics [16] and Oman et al. used weighted arith-

metic mean [20]. Khoshgoftaar et al. mentioned non-correlation between metrics [21], 

but these were then handled as distinct metrics and not aggregated. 

 

In this work, it was found out that these metrics do not correlate with each other. This is 

discussed in section 5.1. This means that calculating the aggregated metric is not a sim-

ple linear problem. 

 

If each metric alone indicates a possible lack of quality from a certain point of view, the 

aggregated metric could then be defined to be a value where all metrics indicate some-

thing at the same time, as shown in Formula (8). This metric can then be used to sort 

data. 

 

 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑	𝑀𝑒𝑡𝑟𝑖𝑐 = 𝐹𝑟𝑎𝑐𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒	𝐴𝑁𝐷	𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛	𝐴𝑁𝐷	𝐶𝑜𝑑𝑒	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	 (8) 

 

Nonlinearity suggests that machine learning algorithms could be applied to solve this. 

This was done previously by Madeyski et al. They built a model using machine learning 

and used it to predict faults in software [42]. Machine learning algorithms require a feed-

back signal [43], and this is problematic as there is no such information readily available 

in this case. Another option is to think of this problem as solvable by probability theory, 

and there exist tools to solve nonlinear problems in probability theory [44]. 

 

A more straightforward solution is found in another branch of mathematics called fuzzy 

mathematics, which includes fuzzy logic. According to Ross, fuzzy systems have a high 

potential to be applied to a complex system [45]. The fuzzy model has been used before 

by Singh et al. [46] to build a model to predict software maintainability. However, in this 

prototype there is an elementary rule as was shown in Formula (8), thus fuzzy logic, in 

this case, can be applied directly. 

 

In fuzzy logic, variables vary in range from 0 to 1. 0 meaning not probable and closer to 

one variable goes more probably true it is. Fractal Value metric fits this requisite, but 

Code Churn and Code Complexity metric need to be clamped to this range. Instead of 

using a simple clipping, a sigmoid function will be applied to get a smoother curve. The 

hyperbolic tangent function has suitable properties for smoothing values. It translates 

any input value into range -1 to 1, as can be seen in Figure 9. 
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Figure 9. A plot of hyperbolic tangent 

 

AND operation in fuzzy logic is defined to be minimum of two values. Inserting this into 

Formula (8), it becomes Formula (9) and then it is easy to calculate. 

 

 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑	𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑚𝑖𝑛(𝐹𝑟𝑎𝑐𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒, 𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛, 𝐶𝑜𝑑𝑒	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)	 (9) 

 

3.4 Software Components 

As mentioned before, Silicon Labs embedded software consists of components. These 

software components contain source code, libraries and other files necessary for using 

the functionality of the component. 

 

These components can depend on other components, which means that including one 

component into the software project may also cause the inclusion of other components. 

This is illustrated in Figure 10. Component A depends on component B and C, and com-

ponent C also depends on component D. Thus, including component A into the project, 

will also include components B, C and D. 
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Figure 10. Example of component dependencies. 

Each component is defined by its YAML-file. These files describe the requirements com-

ponents have toward other components. In addition, software repository has a single 

metadata file, which lists the locations of all these component metadata files in the re-

pository. Using this repository metadata file, it is then possible to iterate through all these 

component metadata files and construct the entire hierarchy of software components in 

the software repository. 

 

Silicon Labs software development organisation is defined in such a way that there is a 

clear division of responsibilities and work between different teams. Each team is respon-

sible for its own set of components. Components are generally never developed by mul-

tiple teams. 

 

Silicon Labs is a multinational company, and development teams are located around the 

globe. They have different cultural backgrounds, and the projects they are working are 

different. Thus, the code they produce is not necessarily comparable with each other. So 

even if there is a dependency between components, this dependency is not taken into 

account in this work. This work concentrates measuring individual teams, thus metrics 

from components are analysed individually, and they should not be merged or analysed 

against each other. 

 

It is vital to not mix-up software component and software module terms between each 

other. These terms have had different meaning depending on who defines them. Also, 

their meaning has historically been changed over the years [47, pp. 29-31]. On this thesis 

software module is defined as a unit of implementation with the specified interface. This 
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follows the definition by Parnas [48], where the module definition is based on information 

hiding. 

 

A component is then a logical structure which provides functionality to end product by 

providing a composition of software modules. 

3.5 Software Repository and Restrictions 

 
All software source code and metafiles are stored in a version control system (VCS). 

VCS stores current and previous states of software source code. Additionally, it tracks 

changes on all files and has records of the date and author of changes. VCS used at 

Silicon Labs and in this work is the Git version control system. 

 

Every component is available in a single Git repository called super. In this Git repository, 

each change is recorded as a commit. This commit also has information about the pre-

vious commit, thus commits creates a chain of changes. Every commit in this chain 

uniquely represents the full state of the repository at that point of time. Commit also rec-

ords metadata such as author and date of the change and optional developer written 

description of the purpose of a commit, see Figure 11. Each commit can then be used to 

recreate the state of the software at that point in time. To track changes over time re-

quires tracking changes from all commits during that period. 

 

Figure 11. Each commit links to the previous commit and contains delta from it. They also contain 

metadata about the commit itself. 

3 2 1 0 

Developer 1 
2020-01-12 15:00 
BG-7359 update … 

Developer 2 
2020-02-24 8:15 
BG-4603 add ev... 

Developer 3 
2020-05-10 12:00 
BG-8037 fix … 

Developer 1 
2020-07-30 14:30 
BG-2750 LE Power … 

Legend 

 Commit 

Link 
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Issues related to software development are recorded in Jira software. Each issue is cat-

egorised to be a bug, feature, task, or some other category. For this work, we are only 

interested in bugs in the software project. There is no direct coupling with the Git version 

control system and Jira issue tracking software. Instead, they are coupled by adding Jira 

issue tag into Git commit description, which then identifies the Jira issue this commit is 

related to. Example of how these issue numbers are recorded can be seen in Figure 10. 

 

Although all embedded software is written in plain C, all the internal development tools 

must be written in Python programming language. This is mandated by a companywide 

coding standard. 

3.6 Evaluation Method 

As is with previous studies, the results of metrics are validated by comparing them 

against recorded faults of the software. 

 

This is achieved by analysing metrics for each file in a component against faults detected 

in a file. Git commits naturally record which files are changed. This enables measuring 

and calculating metrics per file trivial. Git commits also record a description of the com-

mit. If that description is appropriately filled, then it has a recording of which Jira issue it 

references, this can then be used to measure how many bugs a file has. 
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4 Solution Development 

The solution is developed as a proof of concept to understand better the problem state-

ment and what is needed to measure the quality attributes. 

 

The programming language used is Python 3.0. 

4.1 Requirements 

Requirements for the solution is divided roughly between two categories, the first cate-

gory is requirements needed to implement the needed functionality and the second cat-

egory is the non-functionalities to improve the quality of software. 

 

The needed functionality is to measure a set of quality metrics from changes in software 

components over time. There are three quality attributes selected to be measured: Code 

Ownership, Code Churn, and Code Complexity. The source code to be measured is 

stored in a software repository. Results must then be made available into a separate 

database. Records in result database must contain measured quality metric, what was 

used to compute it and when it was computed. 

 

Apart from the functionalities mentioned in the previous section is the ability to extend 

the solution. As this solution is a proof of concept, it is expected to be modified later and 

continued to be worked on. Related to the easiness to modify and extend is the ability to 

quickly start to work on the solution and apply it into use. To put this into a formal context 

and how these are defined in ISO 25010 [7]: The explicitly stated non-functionalities are 

the maintainability characteristic and its sub characteristics modularity and modifiability. 

Another one is portability characteristic’s sub-characteristic installability. 

4.2 Architecture 

The solution is designed to be modular to enable easy modifiability and extensibility. It 

also leverages existing commonly available solutions and software to make it easy to 

install and use. In the next sections, the architecture of a solution is explained in detail. 

Architecture description follows the layout described by Clements et al. in their book 

“Documenting Software Architectures” [47]. 

 

First, a high-level overview of the solution is provided. This puts software in a general 

context. Next, each module of a system is explained, including the measurement appli-

cation. Measurement application is explained in detail and how it is structured. Following 
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that each component of the measurement application is explained, and their design de-

cisions justified. 

4.2.1 High-level Overview 

The solution consists of several software modules and databases. Modules, databases, 

dataflow and how different actors are related to the solution is illustrated in Figure 12. 

The aim is to have simple dataflow through the system and for each software module to 

have a clear purpose. 

 

 

Figure 12. Primary view of the solution 

Developers are actors who access the software repository while they develop software. 

Software repository stores not only the software code but also metadata as explained 
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before in chapter 3.5. Measurement Application SW module then access this software 

repository and retrieves metadata about the software and calculates software metrics 

based on the metadata. Software metric results are then stored on a different database. 

 

An auditor is an actor who is interested in software quality metrics. They use some user 

interface to access the results database and get quality metrics about the software under 

construction. 

 

Software repository used with this solution is the Git version control system. 

4.2.2 Measurement Application Design 

Measurement application is designed to be modular, meaning that there is no tight cou-

pling between different software modules. This is done to enable better modifiability. The 

structure of the application is illustrated in Figure 13. 

 

Figure 13. Module view of measurement application 
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Application external interface is only through database accesses, one database is for 

input and another one for output. 

 

The application consists of four software modules, each having a specific task. These 

modules are analysed further below. 

 

Repository Access 
 

The repository access module is responsible for accessing the software repository. It first 

builds a structural view of the whole system. It is done by reading the file containing a 

list of all components in the system. These component metafiles are then read, which in 

turn defines all the modules and files for the component. With this information, the struc-

tural view of the system can be built, the UML diagram for this is shown in Figure 14. 

 

Figure 14. The data model for system structure 

Repository access module uses external Git program to analyse files. Git is a command-

line application and also provides results of the analysis in text form. The results are then 

parsed to get them into a valid form for further processing. Following command is used 

to execute external Git command: 

 
Git log --numstat --format=%ae,%at --since=2019-01-01 
 --until=2019-12-31 example.c 

This command asks Git to provide a commit log for file example.c. The –numstat de-

fines Git to output added and removed files in a format which is easier to parse. --for-

mat=%ae,%at configures Git to also outputs author email and timestamp of a change. 

Finally --since and --until defines the time period where the commits are needed. 

 

Following is an example of what Git would output: 

 
38 10 example.c 

File 

name:string 

0..* 
Component 

name:string 

0..* 
Module 

name:string 



30 

 

A@silabs.com,1574332766 
 
25 9 example.c 
B@silabs.com,1574252587 
 

In this example, there are two commits from authors A and B. Author B has added 25 

lines and removed 9. Author A has added 38 lines and removed 10. This kind of log is 

straightforward to parse. 

 

This Git command is run on every source file in every module in every component. From 

these logs for each file, the Repository Access module extends the data model by adding 

information about authors into each file. Updated UML diagram is shown in Figure 15. 

 

 

Figure 15. The data model for files in the repository. Attributes are not a full list, but only given as 
an example. 

Essentially this data structure is a tree-like structure, which simplifies data processing. 

Tree-like structure enables efficient parallel execution on calculations. 

 

During this phase the data is cleansed. Any data that has proportionally massive 

changes in any of the values are removed. These are usually either auto-generated code 

or some other anomaly in the data. 

 
 

File 

name:string 

Author 

email:string 
added:number 
removed:number 

0..* 
Component 

name:string 

0..* 
Module 

name:string 

0..* 
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Measurement Calculations 
Measurement calculations are done for every file and then propagated upwards for every 

module and every component. Measurements for each quality attribute are computed as 

explained previously in paragraph 3.2. 

 

This then further extends the original data model with measurement attributes for com-

ponents, modules and files. 

 

Figure 16. Data model after calculations 

Data model after calculations is shown in Figure 16. The model does not contain any 

data about authors anymore. 

Database Access 
Database access then pushes this measurement data into the database. In this proof of 

concept, a CSV (Comma-separated values) file is used as a database. CSV file is a 

simple format where each line is a single entry. Data model after calculations is in nor-

malized form and data needs to be denormalised for CSV. 

 

Denormalisation in this case means removing the hierarchy from the data model. Each 

entry for each file it also records the module and component, which the file is part of. 

Denormalised data model is shown in Table 4. 

Table 4. Denormalised data 

Component Module File  Ownership Churn Complexity 

… … … … … … 

… … … … … … 

 

This CSV file can then be easily imported into any application and to be visualized. 
 

File 

name:string 
ownership: number 
churn:number 
complexity:number 
 

0..* 
Component 

name:string 
ownership: number 
churn:number 
complexity:number 

0..* 
Module 

name:string 
ownership: number 
churn:number 
complexity:number 
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4.3 The Reasoning for the Design Decisions 

Reasons for each design decision is based on the requirements. Solution’s architecture 

is modular, and each module can be individually replaced without affecting the rest of 

the system. 

 

Repository access module uses external Git application instead of accessing Git data-

base using Python library. The reason is to have it easier to be installed without depend-

ency on other Python libraries. 

 

Measurement calculations module calculates measurement for only three attributes, but 

this can be easily extended to cover more metrics as there are no dependencies with 

other modules. 

 

Similarly, the database access module is very primitive implementation, but there is no 

reason why it could not be changed access to some other database. The current imple-

mentation is the bare minimum for this proof of concept. 
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5 Results and Analysis 

Results were achieved by measuring files from three different components. These com-

ponents were selected based on the following criteria: Large and mature enough that 

there is enough data to process. Enough of developers working on a component to pro-

vide large enough sample size. Distinct enough that there is no dependency between 

them. Three components were selected: B, Z and W. These components are different 

communication protocol stacks. 

 

The metrics for files in these components were then measured in three different periods. 

2018, 2019 and full history. These then give nine sets of data. 

5.1 Quality Metric Results 

Pearson correlation coefficients for components B, Z and W were measured during sev-

eral periods; results are listed in Table 5. From these results, it can be seen that there is 

no linear correlation between metrics, except in some cases between Code Churn and 

Code Complexity. Reason for this can be seen from Formula (6) and Formula (7). They 

are calculated from the same base value, differing only by how much code is deleted. 

Thus, a high correlation between them means that substantially more code is being 

added than deleted. 

Table 5. Pearson correlation coefficients for metrics from components B, Z and W 

Component Period Diffusion - 
Complexity 

Diffusion – 
Churn 

Churn – 
Complexity 

B 
2018 0.09 0.04 0.7 
2019 0.15 0.11 0.54 
Full 0.04 0.03 0.53 

Z 
2018 0.33 0.10 0.47 
2019 0.10 -0.01 0.72 
Full 0.16 0.20 0.82 

W 
2018 0.22 0.04 0.46 
2019 0.16 0.17 0.63 
Full 0.08 0.11 0.79 

 

Pearson rank correlations for metrics were calculated similarly; results are 
shown in Table 6. These show similar kind of results as with Pearson correla-
tion. Thus, there is no linear relation, nor they are monotonously related. 
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Table 6. Spearman rank correlations for metrics from components B, Z and W 

Component Period Diffusion - 
Complexity 

Diffusion – 
Churn 

Churn – 
Complexity 

B 
2018 0.02 -0.13 0.60 
2019 0.05 -0.02 0.50 
Full -0.01 -0.07 0.62 

Z 
2018 0.24 -0.35 -0.09 
2019 -0.09 -0.28 0.45 
Full 0.00 -0.04 0.78 

W 
2018 0.19 -0.35 0.30 
2019 0.18 -0.10 0.32 
Full 0.04 0.10 0.79 

 

Another way to look at these metrics is to observe the scatter plots. Component B scatter 

plots for the full period is shown in Figure 17. It can be observed that there is no mean-

ingful relation between diffusion and churn. But complexity and churn show some relation 

as mentioned before. 

 

  

 

 

Figure 17. Scatter plots for metrics from Component B over full development time. 
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A similar observation can be seen from scatter plots for component Z, as seen in Figure 

18. There is again a clear correlation between complexity and churn. Another observa-

tion for component Z is that the codebase is heavily diffused, this tells that lot of devel-

opers has been developing different parts of the component, and there is no clear own-

ership. 

 

  

 

 

Figure 18. Scatter plots for metrics from Component Z over full development time 

Scatter plots for component W is shown in Figure 19. These results are closer to com-

ponent B than Z. Component W has several files where diffusion is 0, meaning that the 

file is developed by a single person. This kind of behaviour is also present in component 

B. Again, it is visible how churn and complexity are correlated. 
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Figure 19. Scatter plots for metrics from Component W over full development time 

These results, especially scatter plots show a difference between these components. 

Even when they are all protocol stacks, with over ten years of development and multiple 

developers they show different results. They are developed by different teams, which 

have different cultural backgrounds. This may be one of the reasons that there is a dif-

ference between the components. 

5.2 Detail Analysis of Component B 

 

Component B has 728 files, developed by 23 people over the past ten years. Metrics for 

all files over the full history of component B is shown in Figure 20, the files on the x-axis 

are sorted based on aggregate value. Closer to one the aggregate value goes, the more 

probable it is that there is something that needs closer inspection. 
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Figure 20. Metrics for each file in component B during the past ten years. 

Ten files with highest aggregate values are listed in Table 7. The table also lists the 

category where each file belongs to. API category is the application programming inter-

face, containing functions providing access to the component. Core category is the cat-

egory containing the main functionality of the component. And Utility category is support-

ing functions, like memory management. 

Table 7. Files with the highest aggregation values in Component B 

File  Category Developers Diffu-
sion 

Complexity Churn Aggregate 

1 API 17 0.85 0.99 0.99 0.85 
2 Core 11 0.83 0.98 0.92 0.83 
3 Core 11 0.82 0.99 0.99 0.82 
4 Core 23 0.85 0.82 0.97 0.82 
5 Core 20 0.82 0.98 0.99 0.82 
6 Utility 16 0.82 0.99 0.96 0.82 
7 API 15 0.81 0.81 0.98 0.81 
8 Core 12 0.79 0.99 0.95 0.79 
9 Utility 13 0.77 0.76 0.76 0.76 
10 Core 10 0.78 0.72 0.73 0.73 
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These files are considered to be the most critical files for the quality of the software. They 

have the highest diffusion as a lot of developers have been working on them. They have 

the highest churn, as a lot of lines of code has been added and removed. Moreover, they 

have the highest complexity as a lot of code has been added to them. All indicators point 

to the fact they are considered problematic, making them have the highest aggregate 

value. 

 

After discussing these results with design managers for component B, there is some 

reasoning why these files are not as bad as they look like. One metric which is not meas-

ured is code coverage. Core files have been extensively unit tested and have good code 

coverage. But, files in the API category have not been extensively unit tested. Instead, 

they are tested during part of functionality testing by the quality assurance team. Code 

coverage should then also be possible to be obtained for these files. 

 

Utility files provide generic functionality. Due to this nature, they are depended on by 

multiple other files. This also causes a lot of changes on these files. There is also an 

evident lack of ownership for these files, and because of this, they are not heavily unit 

tested. 
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6 Evaluation and Conclusions 

The quality metrics are used to predict the lack of quality in software. The lack of quality 

further manifests itself as a shortcoming of expectations in the functionality of the soft-

ware. These shortcomings are reported as bugs and recorded in the issue tracking soft-

ware. 

 

To evaluate the solution, the results from quality metrics can be compared with the found 

bugs. This is achieved by using issue tracking software and version control software to 

calculate how many bugs each source file in a component has. As each commit has a 

recording of which issue it is related, and each issue can be classified to be a bug. Then 

it follows that each commit can also be classified to be a bug related commit, or more 

precisely a bug fix. If a commit is not a bug fix, then it is a new feature introduced into 

the software. Example of this shown in Table 8, these are the same files as in Table 7. 

Table 8. Files with bugs and features added 

File  Bugs Features Diffusion Complexity Churn Aggregate 
1 4 21 0.85 0.99 0.99 0.85 
2 13 3 0.83 0.98 0.92 0.83 
3 16 1 0.82 0.99 0.99 0.82 
4 20 25 0.85 0.82 0.97 0.82 
5 19 23 0.82 0.98 0.99 0.82 
6 3 1 0.82 0.99 0.96 0.82 
7 20 25 0.81 0.81 0.98 0.81 
8 6 10 0.79 0.99 0.95 0.79 
9 0 1 0.77 0.76 0.76 0.76 
10 10 15 0.78 0.72 0.73 0.73 

 

This information of bugs for each file can now be correlated with measured metrics. Two 

methods are used. Pearson correlation coefficient measures the linear relationship be-

tween variables, and Spearman’s rank correlation coefficient assesses the monotonic 

relationship between variables. These relationships are shown in Table 9. 

Table 9. Pearson and Spearman correlations for bugs 

 Features Diffusion Complexity Churn Aggregate 
Pearson 0.77 0.29 0.29 0.39 0.35 

Spearman 0.51 0.40 0.013 0.07 0.25 
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From these results, it can be seen that the highest correlation with bugs is the new fea-

tures; this is true for both linear and monotonic correlation. This is quite obvious as new 

features create new source code that then may contain bugs.  

 

Churn is the best metric for linear correlation with bugs. This has already been found out 

previously as was explained in section 2.4, but in this case, it is not much better than 

complexity or diffusion. For monotonic correlation, the best predictor is diffusion. Inter-

estingly complexity or churn is not significantly related at all. 

 

The aggregate metric is the second-best metric in both correlation cases. This is under-

standable as it also takes into account other metrics, which then averages results. 

 

6.1 Threats to Validity 

 

There are several threats to validity. This is a proof of concept work, and these threats 

need to be taken into account when improving on this work. 

 

It is understood that different teams develop differently, and this is already taken into 

account, as was explained in section 3.4. However, it may still be that development inside 

one team is still subdivided into distinct sub-teams with different cultural and historical 

backgrounds. And this may affect the way they develop code. 

 

Source code used in this case is not necessarily only code used for the end application. 

Some of it is source code used for applications during development, such as test appli-

cations or software development tools. Any work done on those does not reflect directly 

to the outside of the development team. This means none of it will show up in issue 

tracking software. This would then skew the validation of the data. Even if failures on 

those applications do not directly affect the quality of the software provided for custom-

ers, it would be good to improve the quality of those applications too. 

 

A related issue with source code is that some of the code may be auto-generated, and 

this will then heavily skew the results. It is bad practice to add auto-generated code into 

a version control system, but in practice, it happens. An effort was made to remove some 

of the prominent cases, for example, where a single commit contained thousands of re-

moved and added lines. 
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Commits into Git repository depend on the way developer works. Some people like to 

make all changes into one commit, and some people make multiple small commits re-

lated to a single issue. Some people document meticulously what the commit contains, 

and some then put just one-line comment. And even if the company’s coding guideline 

requires that each commit must have the issue tagged, only about 15% of all commits 

had that added. This is one of the primary reasons for the errors when doing a correlation 

with metrics with the actual bugs as not all the commit recorded if they were bugfixes or 

anything else at all. 

 

This proof of concept does not take time information into account. Newer changes have 

the same effect as later ones. There have been some attempts before to take into ac-

count, Graves et al. [8] dampened older changes, making their effect on prediction less 

influential.  

6.2 Conclusions 

The purpose of this thesis was to gain an understanding of how software quality could 

be improved by measuring it. During this work, several things were found out about soft-

ware quality. 

 

Software quality means how well software fulfils the requirements. In practice, meaning 

that does the software does what it is supposed to do. Not only functionally, but how well 

it fulfils the expectations. Functionality can be tested easily, but fulfilling the expectations 

is much harder as it is a more subjective topic. 

 

During the literary review, it was found that half of the bugs are caused by incorrect 

requirements or misinterpreted specification. It implies that software cannot be made 

perfect just by improving software development. Also, the process affecting the develop-

ment needs to improve for providing better requirements toward software development. 

 

It is economically more feasible to detect bugs early; thus, it is attractive to measure 

source code and detect failures from source code, instead of compiling and running the 

software and find them later in development. Static code analysis tools are used to meas-

ure source code and other metrics related to the product itself. These metrics are called 

product-related metrics. Another category is then process-related metrics; these metrics 
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measures how source code was developed. This, in practice, means how software was 

changed over time. 

 

There is evidence showing that process-related metrics are more important in predicting 

failures in software than product-related metrics. Indeed, it is also established that a sim-

ple number of lines is as good in predicting faults in software as any other more compli-

cated static code analysis metric. 

 

The most important metric predicting software quality is how well organization structure 

matches the software structure. Measuring this is not easy, but it can be taken into con-

sideration when planning organization structure. In fact, this is one of the aspects affect-

ing the planning of teams at Silicon Labs. That teams interfaces match the software 

component interfaces. 

 

Proof of concept solution used git change history to measure quality metrics from the 

software. It proves that Git can be used to harvest information from software develop-

ment. Although it also means that git commits need to be tagged with proper issues. 

There is now ongoing discussion to mandate this, and then force the inclusion of tags 

into Git commits by automatically validating them. 

 

Proof of concept was applied to the software repository; results are inconclusive but en-

couraging. One interesting finding was that bugs seem to be caused by features. Alt-

hough this sound obvious but it could be used to direct software quality assurance re-

sources to verify new features, instead of verifying old features. 

 

This proof of concept solution is promising and could be further improved by taking into 

account the threats to validity. 
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