

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

11 November 2020

Jani Knaappila

Measuring Structural Software Quality

 Abstract

Author
Title

Number of Pages
Date

Jani Knaappila
Measuring Structural Software Quality

42 pages
11 November 2020

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Ville Jääskeläinen, Principal Lecturer

The purpose of this thesis is to research a way to measure quality attributes of software
and find metrics that can then be used to improve the quality of software.

Software quality can be understood in different ways by different people. Therefore, soft-
ware quality is first described from a standards point of view. Two categories for software
quality metrics are identified and further investigated. Product-related quality metrics are
metrics that are measured from a static code, a technic, which is known as static code
analysis. Another category is then the process related metrics. Process related metrics
measure how people develop software. Multiple studies have shown that metrics measur-
ing how software is developed, are more accurate of predicting faults than static code
analysis.

Three metrics were chosen to be measured: Code ownership, Code Churn and Code
Complexity. It is described in detail how those are calculated in practice. Further, an aggre-
gate metric is introduced to give a single number as a quality indicator. The framework
where the solution needs to operate is defined, including software source code structure,
software repository environment and issue tracking software. The software solution is then
defined and was developed to measure these metrics.

This proof of concept solution was then used to measure metrics from a set of software
components in a software repository. Results were then analysed and explained. One soft-
ware component was chosen to be more closely examined, and from there several files
with the highest value for an aggregate metric were analysed even in more detail.

Finally, the solution was evaluated by comparing predictions against real issues. Results
were inconclusive but provide similar results as previous studies. These results are en-
couraging. There are several threats to validity issues, but this can be engaged with when
this proof of concept is further developed.

Keywords software quality, code ownership, code churn,
code complexity

Contents

Abstract
List of Abbreviations

1 Introduction 1

2 Software Quality 3

2.1 ISO/IEC 25010 3

2.2 Quality Attributes 5

2.3 Product-Related Metrics 5

2.4 Process-Related Metrics 11

2.5 Faults and Failures 16

3 Method and Material 17

3.1 Design Process 17

3.2 Quality Metrics 18

3.2.1 Code Ownership 18
3.2.2 Code Churn 19
3.2.3 Code Complexity 20

3.3 Aggregated Metric 20

3.4 Software Components 22

3.5 Software Repository and Restrictions 24

3.6 Evaluation Method 25

4 Solution Development 26

4.1 Requirements 26

4.2 Architecture 26

4.2.1 High-level Overview 27
4.2.2 Measurement Application Design 28

4.3 The Reasoning for the Design Decisions 32

5 Results and Analysis 33

5.1 Quality Metric Results 33

5.2 Detail Analysis of Component B 36

6 Evaluation and Conclusions 39

6.1 Threats to Validity 40

6.2 Conclusions 41

References

List of Abbreviations

CSV Comma Separated Values

IoT Internet of Things

SQuaRE The series of standards ISO/IEC 25000, also known as SQuaRE (Systems

and Software Quality Requirements and Evaluation)

SW Software

UML Unified Modelling Language
VCS Version Control System

1

1 Introduction

Quality of software generally has three aspects: functional quality, process quality, and

structural quality [1]. The user of the software experiences the functional quality of soft-

ware, how well the software satisfies the user needs. Process quality is the quality of the

software development process, how well the software team follows processes and can

deliver their promises. Furthermore, structural quality is the degree of how well the soft-

ware is designed, and this is experienced first-hand by the development team.

Process quality is measured by process or quality management, was the software deliv-

ered on time with the functionality committed to, and how it can be improved next time.

Functional quality is measured by how well the software does what it is required to do;

measuring this is the responsibility of software quality assurance. Structural quality, on

the other hand, is not easy to measure, and it is sometimes even totally neglected, de-

spite it being subject of study since the 1970s.

The goal of this thesis is to improve the software quality at Silicon Labs. Silicon Labs is

a semiconductor company, which provides integrated circuits and software for the Inter-

net of Things (IoT) devices. The quality of IoT devices is paramount as they are

standalone devices that need to operate for years without interrupts. Thus, many re-

sources have been put on improving quality. Functional quality is improved by increasing

functional testing and process quality is improved by following standards and improving

processes. Structural quality can be divided into two parts: Quality of software product

and quality of the software development process. The quality of software products is

improved by applying existing measurement tools, and to detect possible quality issues

from software code, and then correct those. However, these tools do not capture the

software development process quality; thus, there is a need for a tool to measure how

well was the software designed.

The research question aims to capture that need:
How to measure the structural quality attributes of software components in such a

manner that it can be used to improve the quality?

The outcome of this thesis is a proof of concept solution, showing how software devel-

opment process quality could be improved by measuring specific metrics. To limit the

scope of the thesis, the solution is using generally available off-the-shelf components

2

and methods. Although the literature shows that there exist measurement metrics using

advanced methods such as AI, ML and Fuzzy logic, these were excluded from this proof

of concept. However, the proof of concept can be later to be extended to include these

methods.

There exist similar kind of studies, where the aim was to build a tool to measure software

quality [2] [3] [4]. Nevertheless, those concentrate only on software product quality.

This thesis is divided into several sections. First, the current state of the art is examined,

related studies are listed, and quality attributes which they have introduced are ex-

plained. Difference between product and process-related metrics is explained.

Next chapter describes a set of quality attributes that are chosen to be measure, and

how they are measured. This chapter also describes the environment where this solution

needs to operate.

Solution development chapter provides the requirements and how those requirements

are fulfilled in architectural design. This chapter also explains the technical implementa-

tion of measured the metrics and how data is accessed and provided for others.

The solution is then used to analyse the Silicon Labs software repository. Several com-

ponents are selected for investigation. Results are shown and discussed in detail, and

what can be seen from the results. One component is selected to be investigated even

further to find out if there is something to be improved.

The last chapter discusses what has been found out, how they are validated, and what

are threats to validity. Moreover, what improvement and future work are planned for this

proof of concept solution.

3

2 Software Quality

Software Quality is a concept, which is understood differently by different people [1]. It is

sometimes understood that software without defects or bugs is of good quality. Counting

number of bugs is quite an oversimplification, as software quality is more than that, as

will be explained further in this chapter.

David Chappell defines three different quality aspects for software; they are functional

quality, structural quality, and process quality [1]. He defines these that functional quality

tells how well the software meets the defined requirements of the system, and structural

quality means how well the software code is structured. Moreover, process quality means

how well the software development team develops the software, for example, staying in

allocated time and budget.

These functional and structural qualities can also be defined as functional and non-func-

tional qualities. Keshavarz et al. define a functional requirement as fundamental actions

that must take place and non-functional requirements as qualitative requirements of the

system [5]. Thus, functional and non-functional qualities then fulfil these requirements.

Len Bass and Paul Clements argue against separating system qualities to functional and

non-functional categories [6, p. 66]. They give an example of engine control; how can

functional quality be correctly implemented if the non-functional quality of timing behav-

iour is not also considered.

2.1 ISO/IEC 25010

ISO/IEC 25010 “Systems and software Quality Requirements and Evaluation (SQuaRE)

– System and software quality models” is a standard defining the quality models for com-

puter systems and software products. Its definition for software quality is the following:

“the degree to which a software product satisfies stated and implied needs when used

under specified conditions”. It also defines two quality models: “quality in use” and “prod-

uct quality”- models. Product quality model is relevant for the topic of this thesis and is

displayed in Figure 1. [7]

4

Figure 1. ISO/IEC 25010 Product Quality Model. [4]

The product quality is categorised into eight characteristics. The first characteristic

“Functional Suitability” defines the degree to which the product or system provides func-

tions that meet stated and implied needs. Performance efficiency characteristic covers

the resource usage of the software. Compatibility characteristic is about the interopera-

bility of the system with other systems. Usability characteristic is the machine-human

interface aspect of quality and general usability of the system. Reliability characteristic

defines how the system performs specified functions under specific conditions for a spe-

cific time. Security characteristic covers data protection and access to data. Maintaina-

bility characteristic is about modifiability of the system. And portability characteristic de-

fines the efficiency with which a system can be moved from one environment to another.

[7]

Functional testing of the system aims to cover all these quality characteristics of the

system. It is relatively easy to automate the testing of functional completeness of the

system; does it do what it is required to do. Also, performance efficiency is easy to auto-

mate; Does the system do what is required to do in the time provided. But there are

quality characteristics of the system that are not easy to automate and thus easily

skipped in the testing of the system. For example, maintainability characteristic of the

system has a human component and cannot be automated.

The maintainability characteristic is defined by the ISO/IEC 25010 as “degree of effec-

tiveness and efficiency with which a product or system can be modified by the intended

5

maintainers”. Maintainer in this context means the developers who are developing soft-

ware and adapting it to changing requirements.

2.2 Quality Attributes

The quality attribute is defined by ISO/IEC 25010 as “Inherent property or characteristic

of an entity that can be distinguished quantitatively or qualitatively by human or auto-

mated means” [7].

Like mentioned before, some of the quality characteristics or attributes are not easy to

measure automatically. These two different kinds of quality attributes can be categorised

either as product-related or process-related attributes. Graves et al. define product-re-

lated as something that is taken as a snapshot of the software and process as something

that is a change in the software [8]. Henderson-Sellers further discusses this categorisa-

tion in the book “Object-Oriented Metrics: Measures of Complexity” [9].

A product-related metric is measured from source code itself. Different methods for

measurement for product related metrics and history of measurement is described in the

next section.

Process related metrics are then measured from changes in the source code. These

metrics can be understood to measure how source code was implemented. Process re-

lated metrics are the most important metrics for this thesis and are further discussed in

a later chapter.

2.3 Product-Related Metrics

One way to find metrics for software quality is analysing the source code of the software.

This method is called a static code analysis, and it uses another software to analyse the

software source code. Static code analysis has a long history, and the first static analys-

ing tools were used to indicate the correctness of software source code against the re-

quired standard [10].

6

Cyclomatic Complexity

Metrics to measure software quality attributes is continually being researched [11]. One

of the first ones was Cyclomatic Complexity developed by McCabe in 1976 [12]. Cy-

clomatic complexity, as the name suggests, gives metrics about the complexity of the

source code or how many individual paths there are through the software.

A simple example of cyclomatic complexity is shown in Figure 2. This example shows

how a single branch in software creates two distinct paths in the software. One path is

taken when the comparison is true and another one when it is false, giving, in this case,

a cyclomatic complexity of 2.

Figure 2. A simple function where there are two distinct paths through the function, giving cy-

clomatic complexity of 2

Watson et al. claim that if cyclomatic complexity metric is too high, the software will be

more prone to errors, harder to understand, harder to test and harder to modify [13, p.

15]. This is disputed by Oram et al., they argue that lines of codes are linearly related to

cyclomatic complexity and questions, even the validity of measuring it. Instead, they sug-

gest that a simple number of lines of codes should be considered [14, p. 140].

However, cyclomatic complexity continues to be a popular metric and is well understood

by stakeholders in the software development organization [15].

Halstead Complexity Metric

int abs(int a){
 if(a<0){
 a=-a;
 }
 return a;
}

a<0

a=-a

a<0

7

Halstead complexity metric [16] measures the computational complexity of the software

by counting the number of operators and operands in the software. Figure 3 shows the

same example as before, with lists of unique operators and operands.

int abs(int a){

 if(a<0){

 a=-a;

 }

 return a;

}

Unique operators:
abs, int, if, (), {}, <, -, =,;

Unique operands:
a, 0

Figure 3. Same simple function with operators and operands listed

From this example number of unique and total operators and operands are calculated.

These are then used as parameters for Halstead complexity metrics. These parameters

and metrics are shown in Table 1. Halstead metrics contain different kind of metrics from

program length to even the time required to program. Halstead complexity metric is the

first metric that tries to predict the number of faults in the software.

8

Table 1. Halstead complexity metrics example

	𝜂! = 8	 Number of unique operators

𝜂" = 2 Number of unique operands

𝑁! = 12 Total number of operators

𝑁" = 5 Total number of operands

𝜂 = 𝜂! + 𝜂" = 10 Program vocabulary

𝑁 = 𝑁! + 𝑁" = 17 Program Length

𝑁, = 𝜂! log" 𝜂! + 𝜂" log" 𝜂" = 26 Calculated estimated program length

𝑉 = 𝑁! + 𝑁" ≈ 56.47 Volume

𝐷 =
𝜂!
2
𝑁"
𝜂"
= 10 Difficulty

𝑉 = 𝐷𝑉 ≈ 564.73 Effort

𝑇 =
𝐸
18 ≈ 31.37𝑠 The time required to program (s)

𝑇 =
𝐸
!
"

3000 ≈ 0.02
Number of delivered bugs

Information Flow Metric

The software can also be measured by looking at how information flows through the

software. This information flow metric was developed by Henry and Kafura [17]. It

measures the fan-in and fan-out of the functions. Fan-in is defined as how many are

calling the function under measurement and fan-out then how many other functions are

called from the function under measurement; this is shown in Figure 4.

9

Figure 4. Call graph for A. Giving fan-in of two and fan-out of three for A

Henry and Kafura then defined a complexity value for a procedure, shown in Formula

(1). This is calculated from previously mentioned fan-in and fan-out metrics.

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑉𝑎𝑙𝑢𝑒	𝑓𝑜𝑟	𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 = 𝐿𝑒𝑛𝑔𝑡ℎ ∗ (𝑓𝑎𝑛-𝑖𝑛 ∗ 𝑓𝑎𝑛-𝑜𝑢𝑡)! (1)

They mention that fan-in and fan-out are weighted based on the belief that complexity is

nonlinear. And the power of two takes into account the programmer interaction needed,

as explained by Brooks [18]. They argue that high complexity value shows stress point

in software as it has virtually multiple dependencies to other systems.

Function Point Metric

Albrecht et al. introduced a function point metric [19] in 1983, shown in Formula (2). It

considers five parameters of the software: inputs, outputs, logic files, interface files and

inquiries generated by the software. This aims to capture the size of the software from a

business perspective.

 Legend

 Function

Call

b

c

d

e

f

A

10

 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑃𝑜𝑖𝑛𝑡𝑠 =	

4 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑝𝑢𝑡𝑠 +	

5 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑢𝑡𝑝𝑢𝑡𝑠 +	

4 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑞𝑢𝑖𝑟𝑖𝑒𝑠 +

7 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒	𝑓𝑖𝑙𝑒𝑠 +	

10 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑓𝑖𝑙𝑒𝑠

(2)

They claim that these metrics are useful as these can be measured at an early stage of

the development process, and they are easier to understand by the user or customer

than previous metrics. It is also explained that the function points metric measures the

work needed and can then be utilised during project estimations.

Maintainability Index

There is now many different kind of metrics, but to understand the general maintainability

of the system Oman and Hagemeister presented software maintainability as a hierarchy

[20], where source code is just one part of the maintainability of the software. Their hier-

archy is shown in Figure 5.

Figure 5. A Software Maintainability Hierarchy [20].

They also developed a derived metric, which uses different metrics to calculate a com-

pound metric. It uses previously mentioned metrics such as cyclomatic complexity and

Halstead complexity to give a single number for maintainability of the software, the main-

tainability index.

Khoshgoftaar et al. takes this even further and used principal component analysis and

discriminant analysis to predict fault-prone software modules [21]. They did not try to

11

predict failures; instead, they classified software modules into two categories, is a mod-

ule fault-prone or not. This then helps management to allocate resources on modules

that cause most of the problems during testing and maintenance.

They later even applied artificial intelligence to predict failures in software [22]. Results

of this study show that neural network models are better in prediction than regression

models, and they recommend considering the neural networks for fault prediction. How-

ever, they also say that neural networks may not work in all situations or environments.

Using static code analysis to find metrics for software quality attributes is a well-known

industry standard, and there exist products to do that. One such product is SonarQube

[23], it measures several metrics, including cyclomatic complexity and Halstead com-

plexity.

Product-related metrics can also be used to improve the functional testing of the soft-

ware. Cyclomatic complexity can help software unit testing. Watson and McCabe state

“Specifically, the minimum number of tests required to satisfy the structured testing cri-

terion is exactly the cyclomatic complexity” [13, p. 33].

2.4 Process-Related Metrics

In the previous chapter, the mentioned metrics analyse the characteristics of the source

code to measure quality attributes of the software. However, software is more than just

executable code. Oman and Hagemeister also used values such as the number of com-

ments in the source code, formatting of the code and even quality of supporting docu-

mentation [20]. Etzkorn et al. analysed identifier naming (e.g. variables and functions) as

a predictor for faults [24]. Binstock has mentioned how the size of the codebase of unit

tests compared to the size of project codebase can be used as a metric [25]. These are

characteristics of the software that do not affect the execution of software. Nevertheless,

they do affect the people developing software.

These people-related influences on software were already observed by Conway in 1968

[26]. Conway demonstrated that there is a very close relationship between the software

architecture and the organisation designing it. They explained that if there are two or

more software modules, then the designers of these modules need to discuss and agree

12

on the interfaces between them (Figure 6). Thus, organisational structure or communi-

cation structure will show up in the design of the system, as shown in Figure 7.

Organizations which design systems (in the broad sense used here) are con-
strained to produce designs which are copies of the communication structures of

these organizations.

 - Melvin E. Conway [26]

Figure 6. Designers of modules need to agree on how modules communicate with each other.

Figure 7. The organisation will naturally build a design which is a copy of its organisation structure

 Conway also discussed why large systems disintegrate. They mention how designing is

a different kind of work compared to manual labour. Conventional management solves

problems by assigning more people to projects. However, on design work, more people

cause an exponential amount of communication paths, which directly affects the archi-

tecture of the system.

Brooks in his book “The Mythical Man-month” [18] then extends Conway’s work. He con-

tends that conceptual integrity is the most crucial consideration in the system design. He

states that it is better to have one set of design ideas and rather omit features, than to

.c .c

API

.c

.c .c

.c .c .c

13

have many, maybe well designed, but uncoordinated ideas. Brooks also proposes de-

signing software as “surgical teams”, where one person is doing the majority of design,

and other team members are then doing supportive work.

Khoshgoftaar et al. had already noticed that changes in the software affect quality [22].

The research was done to understand better what the effects of software changes into

quality are. They commented about the nonlinearity relation between changes and com-

plexity metrics:

Given the nonlinear nature of neural networks, this suggests there is some form of

nonlinearity describing the relationship between software complexity metrics and

gross change.

 - Khoshgoftaar et al. [22]

Gall et al. used version control data to detect which software components are coupled

together [27]. They discussed the problems associated with product-related metrics that

it only reveals syntactic dependencies between modules.

Such measures do not reveal all dependencies (e.g. dynamic relations). In fact,
some dependencies are not written down either in documentation or in the code.

The software engineer just “knows” that to make a change of a certain type, he or

she has to change a certain set of modules.

 - Gall et al. [27]

Their paper describes how they used software release history to detect software cou-

pling. If two or more components are changed together, then they are logically coupled

together. This can be then used to detect structural shortcomings in software and can be

used to predict failures.

A similar study was done by Zimmerman et al. [28]. They used data mining to analyse

change history. From changes in source code, they tried to predict the further changes

required, find couplings not shown by static analysis and to prevent errors due to incom-

plete changes. The conclusion was that this method is better on stable software, but on

new software, it is not very accurate, which is not surprising, as it would have to predict

new functions.

14

Graves et al. found that numbers of lines of code or other code related metrics are not

helpful predicting future faults once the amount of changes into the code is taken into

account [8]. They built several models, which used change management data of software

to predict new faults in software. Their best model, called the weighted time damp model

used change-data but also weighted it based on the age of change.

They explained that in large and long-lived software systems, the process related metric

is more useful than product-related metric. Especially the number of changes in the soft-

ware. They noticed that complexity metrics to be not any more useful predictors than

lines of code: “We found that nearly all of the complexity measures were virtually per-

fectly predictable from lines of code” – Graves et al. [8]. Their correlation matrix is shown

in Table 2.

Table 2. Correlations of complexity metrics

 1 2 3 4 5 6 7 8 9 10 11 12
1 Lines Of Code 1 .97 .88 .88 .91 .99 .98 .92 .97 .85 .72 .35

2 McCabe V(G)1 .97 1 .88 .90 .88 .95 .95 .89 .93 .86 .76 .29

3 Functions .88 .88 1 .82 .89 .85 .84 .91 .84 .76 .65 .29

4 Breaks .88 .90 .82 1 .83 .86 .85 .85 .85 .78 .67 .27

5 Unique Operators .91 .88 .89 .83 1 .89 .87 1.00 .94 .65 .47 .48

6 Total Operands .99 .95 .85 .86 .89 1 1.00 .90 .98 .85 .72 .31

7 Program Volume .98 .95 .84 .85 .87 1.00 1 .88 .97 .87 .74 .28

8 Expected Length .92 .89 .91 .85 1.00 .90 .88 1 .94 .69 .53 .42

9 Variable Count .97 .93 .84 .85 .94 .98 .97 .94 1 .77 .60 .38

10 MaxSpan .85 .86 .76 .78 .65 .85 .87 .69 .77 1 .92 -.10

11 MeanSpan .72 .76 .65 .67 .47 .72 .74 .53 .60 .92 1 -.25

12 Prog Level .35 .29 .29 .27 .48 .31 .28 .42 .38 -.10 -.25 1

Bell et al. has also stated that the importance of changes in predictions are so high that

even simple changed/not-changed variable can predict failures [29].

Schröter et al. found that the highest correlation with pre-release failures of software was

the number of changes from the previous version among the measured metrics [30].

15

Nevertheless, they also commented that it is not surprising as those changes also con-

tained the fix for the failure. On the other hand, the post-release failures had almost no

correlation with process metrics.

In these studies, it has been found that changes in the codebase and other developer

activities affect the quality of software. A possible explanation for this is provided by Na-

gappan et al. when they demonstrated empirically that organisational structure affects

the quality of software [31]. They used organisational structure and compared it to

changes in software to predict faults in software. They found that organisational structure

is a better predictor for faults in software than any other metric; their results are listed in

Table 3.

Table 3. Nagappan et al. model accuracy [31]

Model Precision Recall
Organisational Structure 86.2% 84.0%

Code Churn 78.6% 79.9%

Code Complexity 79.3% 66.0%

Dependencies 74.4% 69.9%

Code Coverage 83.8% 54.4%

Pre-Release Bugs 73.8% 62.9%

Conway had already 40 years earlier explained how organizational structure affects the
architecture of the system [26]. Nagappan et al. now demonstrated that if there is a
mismatch between the organisational structure and the software structure it affects the
quality of software.

Several studies then examined how other social aspects affect the quality of the soft-

ware. Meneely et al. performed an empirical analysis on the Linux code base and found

a correlation between the number of developers and the quality of code [32]. Bird et al.

examined the relationship between ownership and software quality [33]. They found that

high levels of ownership are correlated with fewer defects. Madeyski and Jureczko made

an empirical study about the process metrics, to find out which metrics improve defect

prediction metrics [34].

16

Tornhill discusses in his book “Software Design X-Rays” [35] heavily about process met-

rics. They explain why ownership of code is necessary and how a lack of ownership

causes diffusion of responsibility. Diffusion of responsibility is a phenomenon where a

person is less likely to take responsibility when others are present. More developers

there are, the less individual developer takes responsibility. Tornhill is also the author of

CodeScene [36] application which measures some of the process metrics.

2.5 Faults and Failures

Faults and failures are mentioned in previously mentioned studies [8] [21] [22] [29] as

something that is being predicted by quality metrics. However, these studies do not

clearly define what is meant by their usage of faults or failures. This confusion is also

mentioned by Hatton [37], and he defines fault as some inconsistency in code that may

cause failure.

Basili et al. studied the cause of faults, and they found that half of the faults are caused

by requirements being incorrect or misinterpreted, or functional specification being incor-

rect or misinterpreted [38].

All companies with a software development process need to track their failures. These

failures are reported by a user of the software and may contain failures that are caused

by something else than pure software fault either directly or indirectly, although for the

user it might manifest the same way. For example, error in documentation may be re-

ported as a software fault because the software does not match the documentation. Al-

ternatively, like the previously mentioned misinterpreted specification causes the soft-

ware not to match the expectations.

Schröter et al. described how version control data can be correlated with the bug data-

base [30]. The number of bugs in this database can then be used as a target variable

when predicting faults. However, this requires strict software development processes,

where each developer would record the corresponding fault into the change.

17

3 Method and Material

This chapter explains the design process used to create the solution. The solution is a

computer program capable of analysing software code and giving results for a set of

quality metrics. Quality metrics being measured are listed and explained in further sec-

tions. Furthermore, the software environment used in the company and mandated re-

strictions are described. Finally, the evaluation method of the solution is described.

3.1 Design Process

The design process of this thesis follows the design science research process model

[39]. The design process is presented in Figure 8.

Figure 8. The Design Process.

Awareness of the problem came from interviewing of people at Silicon Labs, these were

Director of software development, design managers and lead software architect. During

these interviews, it came clear what is the problem, and it became a proposal for this

thesis.

To tackle this problem a suggestion step was started, which created a tentative design.

This tentative design was demonstrated, and it was accepted that this is a promising way

to solve the problem.

Awareness
of Problem

Suggestion

Development

Evaluation

Conclusion

Proposal

Tentative Design

Artefact

Performance Measures

Results

Process steps Outputs

18

The tentative design was further specified during the development phase. During this

phase, a proof of concept was built. This created the artefact.

Evaluation of the artefact was done during the evaluation phase. The evaluation was

done by observing the actual metrics of software development and comparing them

against actual failures found in the software. The conclusion of the thesis discusses the

results and further development possibilities.

3.2 Quality Metrics

The initial set of quality metrics are intentionally kept small. Three top quality metrics

from Table 3 are selected to be measured; these three metrics are quality metrics which

are easy to measure but still provide useful information. The system is designed to be

extensible; thus, more quality metrics can be added later. Following quality metrics are

selected for measurement for this proof of concept:

3.2.1 Code Ownership

Code ownership is the degree of how much a single developer contributes to the soft-

ware. There are different ways to define it. Bird et al. calls it a Proportion of Ownership

and defines it as a number of commits done by a developer compared to the total number

of commits [33], as shown in Formula (3).

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛	𝑜𝑓	𝑂𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 =

𝑛𝑐(𝑎")
𝑁𝐶

𝑛𝑐(𝑎") is the number of commits from a devel-

oper	𝑎"

𝑁𝐶 is the total number of commits

(3)

This defines ownership per each developer, to get a single value, these values need to

be aggregated. D’Ambros et al. introduced a fractal value, which summarizes the contri-

bution of each developer compared to all contributions [40]. This is shown in Formula

(4).

19

𝐹𝑟𝑎𝑐𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒 = 1 − L M

𝑛𝑐(𝑎")
𝑁𝐶

N
!

#!∈%

	

𝐴 is the set of developers

𝑛𝑐(𝑎") is the number of commits from the devel-

oper 𝑎"

𝑁𝐶 is the total number of commits

(4)

This Fractal value is zero if a single developer has written all software, and it gets closer

to one more there are developers working on software. This value tells how diffused

software development is.

3.2.2 Code Churn

Code Churn is the number of changes in codebase over time. The term was introduced

by Nagappan et al. in their article “Use of Relative Code Churn Measures to Predict

System Defect Density” [41], but similar metric was already used previously by Graves

et al. in their article “Predicting fault incidence using software change history” [8]. Code

Churn is calculated as the relation of added and changed files compared to total files, as

shown in Formula (5).

 𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛 =
𝐿𝑂𝐶&'()*+,
𝐿𝑂𝐶-.-#/

𝐿𝑂𝐶&'()*+, = 𝐿𝑂𝐶"*0+)-+, + 𝐿𝑂𝐶)+1.2+, 	

𝐿𝑂𝐶-.-#/ is the total number of lines of code

(5)

𝐿𝑂𝐶-.-#/ is measured from full source listing. However, if Code Churn is measured from

the changes in software, then it is questionable that should Code Churn also include

code that was made before the change. Instead, Code Churn is normalised over the

change, as shown in Formula (6).

20

 𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛 =
𝐿𝑂𝐶&'()*+, − 𝜇

𝜎

𝐿𝑂𝐶&'()*+, = 𝐿𝑂𝐶"*0+)-+, + 𝐿𝑂𝐶)+1.2+, 	

𝜇 is the mean of the 𝐿𝑂𝐶&'()*+,

𝜎 is the standard deviation of the 𝐿𝑂𝐶&'()*+,

(6)

3.2.3 Code Complexity

Code Complexity can be understood in different ways, as discussed in section 2.3. How-

ever, in the context of this work, it means precisely the comprehension complexity or

how hard it is the developer to understand the code. Oram et al. argue that syntactic

complexity metrics do not provide enough information to capture the effort needed to

comprehend the code or at least not more than simple lines of code can provide [14].

The same conclusion was done by Graves et al. [8]

This reasoning allows comprehension complexity to be measured simply from lines of

code. As this is measured over a change, only those lines that are added to the software

are counted. This is then also normalised as shown in Formula (7).

𝐶𝑜𝑑𝑒	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =

(𝐿𝑂𝐶#,,+,) − 𝜇
𝜎

𝐿𝑂𝐶#,,+, = 𝐿𝑂𝐶"*0+)-+, − 𝐿𝑂𝐶)+1.2+,

𝜇 is the mean of the (𝐿𝑂𝐶#,,+,)

𝜎 is the standard deviation of the (𝐿𝑂𝐶#,,+,)

(7)

3.3 Aggregated Metric

Aggregated Metric or derived metric is a single metric that is calculated from other met-

rics. The purpose is to map other metrics to an easily understandable value, that can tell

some truth from the software. This has been done multiple times before, as explained in

chapter 2.3.

21

On some previous works, these metrics were handled as they were correlated with each

other. Halstead used simply a sum of metrics [16] and Oman et al. used weighted arith-

metic mean [20]. Khoshgoftaar et al. mentioned non-correlation between metrics [21],

but these were then handled as distinct metrics and not aggregated.

In this work, it was found out that these metrics do not correlate with each other. This is

discussed in section 5.1. This means that calculating the aggregated metric is not a sim-

ple linear problem.

If each metric alone indicates a possible lack of quality from a certain point of view, the

aggregated metric could then be defined to be a value where all metrics indicate some-

thing at the same time, as shown in Formula (8). This metric can then be used to sort

data.

 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑	𝑀𝑒𝑡𝑟𝑖𝑐 = 𝐹𝑟𝑎𝑐𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒	𝐴𝑁𝐷	𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛	𝐴𝑁𝐷	𝐶𝑜𝑑𝑒	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	 (8)

Nonlinearity suggests that machine learning algorithms could be applied to solve this.

This was done previously by Madeyski et al. They built a model using machine learning

and used it to predict faults in software [42]. Machine learning algorithms require a feed-

back signal [43], and this is problematic as there is no such information readily available

in this case. Another option is to think of this problem as solvable by probability theory,

and there exist tools to solve nonlinear problems in probability theory [44].

A more straightforward solution is found in another branch of mathematics called fuzzy

mathematics, which includes fuzzy logic. According to Ross, fuzzy systems have a high

potential to be applied to a complex system [45]. The fuzzy model has been used before

by Singh et al. [46] to build a model to predict software maintainability. However, in this

prototype there is an elementary rule as was shown in Formula (8), thus fuzzy logic, in

this case, can be applied directly.

In fuzzy logic, variables vary in range from 0 to 1. 0 meaning not probable and closer to

one variable goes more probably true it is. Fractal Value metric fits this requisite, but

Code Churn and Code Complexity metric need to be clamped to this range. Instead of

using a simple clipping, a sigmoid function will be applied to get a smoother curve. The

hyperbolic tangent function has suitable properties for smoothing values. It translates

any input value into range -1 to 1, as can be seen in Figure 9.

22

Figure 9. A plot of hyperbolic tangent

AND operation in fuzzy logic is defined to be minimum of two values. Inserting this into

Formula (8), it becomes Formula (9) and then it is easy to calculate.

 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑	𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑚𝑖𝑛(𝐹𝑟𝑎𝑐𝑡𝑎𝑙	𝑉𝑎𝑙𝑢𝑒, 𝐶𝑜𝑑𝑒	𝐶ℎ𝑢𝑟𝑛, 𝐶𝑜𝑑𝑒	𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)	 (9)

3.4 Software Components

As mentioned before, Silicon Labs embedded software consists of components. These

software components contain source code, libraries and other files necessary for using

the functionality of the component.

These components can depend on other components, which means that including one

component into the software project may also cause the inclusion of other components.

This is illustrated in Figure 10. Component A depends on component B and C, and com-

ponent C also depends on component D. Thus, including component A into the project,

will also include components B, C and D.

23

Figure 10. Example of component dependencies.

Each component is defined by its YAML-file. These files describe the requirements com-

ponents have toward other components. In addition, software repository has a single

metadata file, which lists the locations of all these component metadata files in the re-

pository. Using this repository metadata file, it is then possible to iterate through all these

component metadata files and construct the entire hierarchy of software components in

the software repository.

Silicon Labs software development organisation is defined in such a way that there is a

clear division of responsibilities and work between different teams. Each team is respon-

sible for its own set of components. Components are generally never developed by mul-

tiple teams.

Silicon Labs is a multinational company, and development teams are located around the

globe. They have different cultural backgrounds, and the projects they are working are

different. Thus, the code they produce is not necessarily comparable with each other. So

even if there is a dependency between components, this dependency is not taken into

account in this work. This work concentrates measuring individual teams, thus metrics

from components are analysed individually, and they should not be merged or analysed

against each other.

It is vital to not mix-up software component and software module terms between each

other. These terms have had different meaning depending on who defines them. Also,

their meaning has historically been changed over the years [47, pp. 29-31]. On this thesis

software module is defined as a unit of implementation with the specified interface. This

A

B C

D

Legend

 Component

Dependency

24

follows the definition by Parnas [48], where the module definition is based on information

hiding.

A component is then a logical structure which provides functionality to end product by

providing a composition of software modules.

3.5 Software Repository and Restrictions

All software source code and metafiles are stored in a version control system (VCS).

VCS stores current and previous states of software source code. Additionally, it tracks

changes on all files and has records of the date and author of changes. VCS used at

Silicon Labs and in this work is the Git version control system.

Every component is available in a single Git repository called super. In this Git repository,

each change is recorded as a commit. This commit also has information about the pre-

vious commit, thus commits creates a chain of changes. Every commit in this chain

uniquely represents the full state of the repository at that point of time. Commit also rec-

ords metadata such as author and date of the change and optional developer written

description of the purpose of a commit, see Figure 11. Each commit can then be used to

recreate the state of the software at that point in time. To track changes over time re-

quires tracking changes from all commits during that period.

Figure 11. Each commit links to the previous commit and contains delta from it. They also contain

metadata about the commit itself.

3 2 1 0

Developer 1
2020-01-12 15:00
BG-7359 update …

Developer 2
2020-02-24 8:15
BG-4603 add ev...

Developer 3
2020-05-10 12:00
BG-8037 fix …

Developer 1
2020-07-30 14:30
BG-2750 LE Power …

Legend

 Commit

Link

25

Issues related to software development are recorded in Jira software. Each issue is cat-

egorised to be a bug, feature, task, or some other category. For this work, we are only

interested in bugs in the software project. There is no direct coupling with the Git version

control system and Jira issue tracking software. Instead, they are coupled by adding Jira

issue tag into Git commit description, which then identifies the Jira issue this commit is

related to. Example of how these issue numbers are recorded can be seen in Figure 10.

Although all embedded software is written in plain C, all the internal development tools

must be written in Python programming language. This is mandated by a companywide

coding standard.

3.6 Evaluation Method

As is with previous studies, the results of metrics are validated by comparing them

against recorded faults of the software.

This is achieved by analysing metrics for each file in a component against faults detected

in a file. Git commits naturally record which files are changed. This enables measuring

and calculating metrics per file trivial. Git commits also record a description of the com-

mit. If that description is appropriately filled, then it has a recording of which Jira issue it

references, this can then be used to measure how many bugs a file has.

26

4 Solution Development

The solution is developed as a proof of concept to understand better the problem state-

ment and what is needed to measure the quality attributes.

The programming language used is Python 3.0.

4.1 Requirements

Requirements for the solution is divided roughly between two categories, the first cate-

gory is requirements needed to implement the needed functionality and the second cat-

egory is the non-functionalities to improve the quality of software.

The needed functionality is to measure a set of quality metrics from changes in software

components over time. There are three quality attributes selected to be measured: Code

Ownership, Code Churn, and Code Complexity. The source code to be measured is

stored in a software repository. Results must then be made available into a separate

database. Records in result database must contain measured quality metric, what was

used to compute it and when it was computed.

Apart from the functionalities mentioned in the previous section is the ability to extend

the solution. As this solution is a proof of concept, it is expected to be modified later and

continued to be worked on. Related to the easiness to modify and extend is the ability to

quickly start to work on the solution and apply it into use. To put this into a formal context

and how these are defined in ISO 25010 [7]: The explicitly stated non-functionalities are

the maintainability characteristic and its sub characteristics modularity and modifiability.

Another one is portability characteristic’s sub-characteristic installability.

4.2 Architecture

The solution is designed to be modular to enable easy modifiability and extensibility. It

also leverages existing commonly available solutions and software to make it easy to

install and use. In the next sections, the architecture of a solution is explained in detail.

Architecture description follows the layout described by Clements et al. in their book

“Documenting Software Architectures” [47].

First, a high-level overview of the solution is provided. This puts software in a general

context. Next, each module of a system is explained, including the measurement appli-

cation. Measurement application is explained in detail and how it is structured. Following

27

that each component of the measurement application is explained, and their design de-

cisions justified.

4.2.1 High-level Overview

The solution consists of several software modules and databases. Modules, databases,

dataflow and how different actors are related to the solution is illustrated in Figure 12.

The aim is to have simple dataflow through the system and for each software module to

have a clear purpose.

Figure 12. Primary view of the solution

Developers are actors who access the software repository while they develop software.

Software repository stores not only the software code but also metadata as explained

Measurement
Application

Results

User interface

Software
Repository

Legend

Actor

Database

SW Module

Dataflow

Developers

Auditor

28

before in chapter 3.5. Measurement Application SW module then access this software

repository and retrieves metadata about the software and calculates software metrics

based on the metadata. Software metric results are then stored on a different database.

An auditor is an actor who is interested in software quality metrics. They use some user

interface to access the results database and get quality metrics about the software under

construction.

Software repository used with this solution is the Git version control system.

4.2.2 Measurement Application Design

Measurement application is designed to be modular, meaning that there is no tight cou-

pling between different software modules. This is done to enable better modifiability. The

structure of the application is illustrated in Figure 13.

Figure 13. Module view of measurement application

Results

Software
Repository

Legend

Database

SW Module

Database
Access

Repository
Access

Measurement
Calculations

Database
Access

Main

Function Call

29

Application external interface is only through database accesses, one database is for

input and another one for output.

The application consists of four software modules, each having a specific task. These

modules are analysed further below.

Repository Access

The repository access module is responsible for accessing the software repository. It first

builds a structural view of the whole system. It is done by reading the file containing a

list of all components in the system. These component metafiles are then read, which in

turn defines all the modules and files for the component. With this information, the struc-

tural view of the system can be built, the UML diagram for this is shown in Figure 14.

Figure 14. The data model for system structure

Repository access module uses external Git program to analyse files. Git is a command-

line application and also provides results of the analysis in text form. The results are then

parsed to get them into a valid form for further processing. Following command is used

to execute external Git command:

Git log --numstat --format=%ae,%at --since=2019-01-01
 --until=2019-12-31 example.c

This command asks Git to provide a commit log for file example.c. The –numstat de-

fines Git to output added and removed files in a format which is easier to parse. --for-

mat=%ae,%at configures Git to also outputs author email and timestamp of a change.

Finally --since and --until defines the time period where the commits are needed.

Following is an example of what Git would output:

38 10 example.c

File

name:string

0..*
Component

name:string

0..*
Module

name:string

30

A@silabs.com,1574332766

25 9 example.c
B@silabs.com,1574252587

In this example, there are two commits from authors A and B. Author B has added 25

lines and removed 9. Author A has added 38 lines and removed 10. This kind of log is

straightforward to parse.

This Git command is run on every source file in every module in every component. From

these logs for each file, the Repository Access module extends the data model by adding

information about authors into each file. Updated UML diagram is shown in Figure 15.

Figure 15. The data model for files in the repository. Attributes are not a full list, but only given as
an example.

Essentially this data structure is a tree-like structure, which simplifies data processing.

Tree-like structure enables efficient parallel execution on calculations.

During this phase the data is cleansed. Any data that has proportionally massive

changes in any of the values are removed. These are usually either auto-generated code

or some other anomaly in the data.

File

name:string

Author

email:string
added:number
removed:number

0..*
Component

name:string

0..*
Module

name:string

0..*

31

Measurement Calculations
Measurement calculations are done for every file and then propagated upwards for every

module and every component. Measurements for each quality attribute are computed as

explained previously in paragraph 3.2.

This then further extends the original data model with measurement attributes for com-

ponents, modules and files.

Figure 16. Data model after calculations

Data model after calculations is shown in Figure 16. The model does not contain any

data about authors anymore.

Database Access
Database access then pushes this measurement data into the database. In this proof of

concept, a CSV (Comma-separated values) file is used as a database. CSV file is a

simple format where each line is a single entry. Data model after calculations is in nor-

malized form and data needs to be denormalised for CSV.

Denormalisation in this case means removing the hierarchy from the data model. Each

entry for each file it also records the module and component, which the file is part of.

Denormalised data model is shown in Table 4.

Table 4. Denormalised data

Component Module File Ownership Churn Complexity

… … … … … …

… … … … … …

This CSV file can then be easily imported into any application and to be visualized.

File

name:string
ownership: number
churn:number
complexity:number

0..*
Component

name:string
ownership: number
churn:number
complexity:number

0..*
Module

name:string
ownership: number
churn:number
complexity:number

32

4.3 The Reasoning for the Design Decisions

Reasons for each design decision is based on the requirements. Solution’s architecture

is modular, and each module can be individually replaced without affecting the rest of

the system.

Repository access module uses external Git application instead of accessing Git data-

base using Python library. The reason is to have it easier to be installed without depend-

ency on other Python libraries.

Measurement calculations module calculates measurement for only three attributes, but

this can be easily extended to cover more metrics as there are no dependencies with

other modules.

Similarly, the database access module is very primitive implementation, but there is no

reason why it could not be changed access to some other database. The current imple-

mentation is the bare minimum for this proof of concept.

33

5 Results and Analysis

Results were achieved by measuring files from three different components. These com-

ponents were selected based on the following criteria: Large and mature enough that

there is enough data to process. Enough of developers working on a component to pro-

vide large enough sample size. Distinct enough that there is no dependency between

them. Three components were selected: B, Z and W. These components are different

communication protocol stacks.

The metrics for files in these components were then measured in three different periods.

2018, 2019 and full history. These then give nine sets of data.

5.1 Quality Metric Results

Pearson correlation coefficients for components B, Z and W were measured during sev-

eral periods; results are listed in Table 5. From these results, it can be seen that there is

no linear correlation between metrics, except in some cases between Code Churn and

Code Complexity. Reason for this can be seen from Formula (6) and Formula (7). They

are calculated from the same base value, differing only by how much code is deleted.

Thus, a high correlation between them means that substantially more code is being

added than deleted.

Table 5. Pearson correlation coefficients for metrics from components B, Z and W

Component Period Diffusion -
Complexity

Diffusion –
Churn

Churn –
Complexity

B
2018 0.09 0.04 0.7
2019 0.15 0.11 0.54
Full 0.04 0.03 0.53

Z
2018 0.33 0.10 0.47
2019 0.10 -0.01 0.72
Full 0.16 0.20 0.82

W
2018 0.22 0.04 0.46
2019 0.16 0.17 0.63
Full 0.08 0.11 0.79

Pearson rank correlations for metrics were calculated similarly; results are
shown in Table 6. These show similar kind of results as with Pearson correla-
tion. Thus, there is no linear relation, nor they are monotonously related.

34

Table 6. Spearman rank correlations for metrics from components B, Z and W

Component Period Diffusion -
Complexity

Diffusion –
Churn

Churn –
Complexity

B
2018 0.02 -0.13 0.60
2019 0.05 -0.02 0.50
Full -0.01 -0.07 0.62

Z
2018 0.24 -0.35 -0.09
2019 -0.09 -0.28 0.45
Full 0.00 -0.04 0.78

W
2018 0.19 -0.35 0.30
2019 0.18 -0.10 0.32
Full 0.04 0.10 0.79

Another way to look at these metrics is to observe the scatter plots. Component B scatter

plots for the full period is shown in Figure 17. It can be observed that there is no mean-

ingful relation between diffusion and churn. But complexity and churn show some relation

as mentioned before.

Figure 17. Scatter plots for metrics from Component B over full development time.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
hu

rn

Diffusion

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
hu

rn

Complexity

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
om

pl
ex

ity

Diffusion

35

A similar observation can be seen from scatter plots for component Z, as seen in Figure

18. There is again a clear correlation between complexity and churn. Another observa-

tion for component Z is that the codebase is heavily diffused, this tells that lot of devel-

opers has been developing different parts of the component, and there is no clear own-

ership.

Figure 18. Scatter plots for metrics from Component Z over full development time

Scatter plots for component W is shown in Figure 19. These results are closer to com-

ponent B than Z. Component W has several files where diffusion is 0, meaning that the

file is developed by a single person. This kind of behaviour is also present in component

B. Again, it is visible how churn and complexity are correlated.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
hu

rn

Diffusion

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
hu

rn

Complexity

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
om

pl
ex

ity

Diffusion

36

Figure 19. Scatter plots for metrics from Component W over full development time

These results, especially scatter plots show a difference between these components.

Even when they are all protocol stacks, with over ten years of development and multiple

developers they show different results. They are developed by different teams, which

have different cultural backgrounds. This may be one of the reasons that there is a dif-

ference between the components.

5.2 Detail Analysis of Component B

Component B has 728 files, developed by 23 people over the past ten years. Metrics for

all files over the full history of component B is shown in Figure 20, the files on the x-axis

are sorted based on aggregate value. Closer to one the aggregate value goes, the more

probable it is that there is something that needs closer inspection.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
hu

rn

Diffusion

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
hu

rn

Complexity

0

0.2

0.4

0.6

0.8

1

0 0.5 1

C
om

pl
ex

ity

Diffusion

37

Figure 20. Metrics for each file in component B during the past ten years.

Ten files with highest aggregate values are listed in Table 7. The table also lists the

category where each file belongs to. API category is the application programming inter-

face, containing functions providing access to the component. Core category is the cat-

egory containing the main functionality of the component. And Utility category is support-

ing functions, like memory management.

Table 7. Files with the highest aggregation values in Component B

File Category Developers Diffu-
sion

Complexity Churn Aggregate

1 API 17 0.85 0.99 0.99 0.85
2 Core 11 0.83 0.98 0.92 0.83
3 Core 11 0.82 0.99 0.99 0.82
4 Core 23 0.85 0.82 0.97 0.82
5 Core 20 0.82 0.98 0.99 0.82
6 Utility 16 0.82 0.99 0.96 0.82
7 API 15 0.81 0.81 0.98 0.81
8 Core 12 0.79 0.99 0.95 0.79
9 Utility 13 0.77 0.76 0.76 0.76
10 Core 10 0.78 0.72 0.73 0.73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

…
3

%
…

6
%

…
8

%
…

11
 %

…
14

 %
…

17
 %

…
19

 %
…

22
 %

…
25

 %
…

28
 %

…
30

 %
…

33
 %

…
36

 %
…

39
 %

…
41

 %
…

44
 %

…
47

 %
…

50
 %

…
52

 %
…

55
 %

…
58

 %
…

61
 %

…
63

 %
…

66
 %

…
69

 %
…

72
 %

…
74

 %
…

77
 %

…
80

 %
…

83
 %

…
85

 %
…

88
 %

…
91

 %
…

94
 %

…
96

 %
…

99
 %

…

Diffusion Complexity Churn Aggregate

38

These files are considered to be the most critical files for the quality of the software. They

have the highest diffusion as a lot of developers have been working on them. They have

the highest churn, as a lot of lines of code has been added and removed. Moreover, they

have the highest complexity as a lot of code has been added to them. All indicators point

to the fact they are considered problematic, making them have the highest aggregate

value.

After discussing these results with design managers for component B, there is some

reasoning why these files are not as bad as they look like. One metric which is not meas-

ured is code coverage. Core files have been extensively unit tested and have good code

coverage. But, files in the API category have not been extensively unit tested. Instead,

they are tested during part of functionality testing by the quality assurance team. Code

coverage should then also be possible to be obtained for these files.

Utility files provide generic functionality. Due to this nature, they are depended on by

multiple other files. This also causes a lot of changes on these files. There is also an

evident lack of ownership for these files, and because of this, they are not heavily unit

tested.

39

6 Evaluation and Conclusions

The quality metrics are used to predict the lack of quality in software. The lack of quality

further manifests itself as a shortcoming of expectations in the functionality of the soft-

ware. These shortcomings are reported as bugs and recorded in the issue tracking soft-

ware.

To evaluate the solution, the results from quality metrics can be compared with the found

bugs. This is achieved by using issue tracking software and version control software to

calculate how many bugs each source file in a component has. As each commit has a

recording of which issue it is related, and each issue can be classified to be a bug. Then

it follows that each commit can also be classified to be a bug related commit, or more

precisely a bug fix. If a commit is not a bug fix, then it is a new feature introduced into

the software. Example of this shown in Table 8, these are the same files as in Table 7.

Table 8. Files with bugs and features added

File Bugs Features Diffusion Complexity Churn Aggregate
1 4 21 0.85 0.99 0.99 0.85
2 13 3 0.83 0.98 0.92 0.83
3 16 1 0.82 0.99 0.99 0.82
4 20 25 0.85 0.82 0.97 0.82
5 19 23 0.82 0.98 0.99 0.82
6 3 1 0.82 0.99 0.96 0.82
7 20 25 0.81 0.81 0.98 0.81
8 6 10 0.79 0.99 0.95 0.79
9 0 1 0.77 0.76 0.76 0.76
10 10 15 0.78 0.72 0.73 0.73

This information of bugs for each file can now be correlated with measured metrics. Two

methods are used. Pearson correlation coefficient measures the linear relationship be-

tween variables, and Spearman’s rank correlation coefficient assesses the monotonic

relationship between variables. These relationships are shown in Table 9.

Table 9. Pearson and Spearman correlations for bugs

 Features Diffusion Complexity Churn Aggregate
Pearson 0.77 0.29 0.29 0.39 0.35

Spearman 0.51 0.40 0.013 0.07 0.25

40

From these results, it can be seen that the highest correlation with bugs is the new fea-

tures; this is true for both linear and monotonic correlation. This is quite obvious as new

features create new source code that then may contain bugs.

Churn is the best metric for linear correlation with bugs. This has already been found out

previously as was explained in section 2.4, but in this case, it is not much better than

complexity or diffusion. For monotonic correlation, the best predictor is diffusion. Inter-

estingly complexity or churn is not significantly related at all.

The aggregate metric is the second-best metric in both correlation cases. This is under-

standable as it also takes into account other metrics, which then averages results.

6.1 Threats to Validity

There are several threats to validity. This is a proof of concept work, and these threats

need to be taken into account when improving on this work.

It is understood that different teams develop differently, and this is already taken into

account, as was explained in section 3.4. However, it may still be that development inside

one team is still subdivided into distinct sub-teams with different cultural and historical

backgrounds. And this may affect the way they develop code.

Source code used in this case is not necessarily only code used for the end application.

Some of it is source code used for applications during development, such as test appli-

cations or software development tools. Any work done on those does not reflect directly

to the outside of the development team. This means none of it will show up in issue

tracking software. This would then skew the validation of the data. Even if failures on

those applications do not directly affect the quality of the software provided for custom-

ers, it would be good to improve the quality of those applications too.

A related issue with source code is that some of the code may be auto-generated, and

this will then heavily skew the results. It is bad practice to add auto-generated code into

a version control system, but in practice, it happens. An effort was made to remove some

of the prominent cases, for example, where a single commit contained thousands of re-

moved and added lines.

41

Commits into Git repository depend on the way developer works. Some people like to

make all changes into one commit, and some people make multiple small commits re-

lated to a single issue. Some people document meticulously what the commit contains,

and some then put just one-line comment. And even if the company’s coding guideline

requires that each commit must have the issue tagged, only about 15% of all commits

had that added. This is one of the primary reasons for the errors when doing a correlation

with metrics with the actual bugs as not all the commit recorded if they were bugfixes or

anything else at all.

This proof of concept does not take time information into account. Newer changes have

the same effect as later ones. There have been some attempts before to take into ac-

count, Graves et al. [8] dampened older changes, making their effect on prediction less

influential.

6.2 Conclusions

The purpose of this thesis was to gain an understanding of how software quality could

be improved by measuring it. During this work, several things were found out about soft-

ware quality.

Software quality means how well software fulfils the requirements. In practice, meaning

that does the software does what it is supposed to do. Not only functionally, but how well

it fulfils the expectations. Functionality can be tested easily, but fulfilling the expectations

is much harder as it is a more subjective topic.

During the literary review, it was found that half of the bugs are caused by incorrect

requirements or misinterpreted specification. It implies that software cannot be made

perfect just by improving software development. Also, the process affecting the develop-

ment needs to improve for providing better requirements toward software development.

It is economically more feasible to detect bugs early; thus, it is attractive to measure

source code and detect failures from source code, instead of compiling and running the

software and find them later in development. Static code analysis tools are used to meas-

ure source code and other metrics related to the product itself. These metrics are called

product-related metrics. Another category is then process-related metrics; these metrics

42

measures how source code was developed. This, in practice, means how software was

changed over time.

There is evidence showing that process-related metrics are more important in predicting

failures in software than product-related metrics. Indeed, it is also established that a sim-

ple number of lines is as good in predicting faults in software as any other more compli-

cated static code analysis metric.

The most important metric predicting software quality is how well organization structure

matches the software structure. Measuring this is not easy, but it can be taken into con-

sideration when planning organization structure. In fact, this is one of the aspects affect-

ing the planning of teams at Silicon Labs. That teams interfaces match the software

component interfaces.

Proof of concept solution used git change history to measure quality metrics from the

software. It proves that Git can be used to harvest information from software develop-

ment. Although it also means that git commits need to be tagged with proper issues.

There is now ongoing discussion to mandate this, and then force the inclusion of tags

into Git commits by automatically validating them.

Proof of concept was applied to the software repository; results are inconclusive but en-

couraging. One interesting finding was that bugs seem to be caused by features. Alt-

hough this sound obvious but it could be used to direct software quality assurance re-

sources to verify new features, instead of verifying old features.

This proof of concept solution is promising and could be further improved by taking into

account the threats to validity.

References

[1] D. Chappell, “THE THREE ASPECTS OF SOFTWARE QUALITY:

FUNCTIONAL, STRUCTURAL, AND PROCESS,” 2018. [Online].
[Accessed 19 10 2018].

[2] M. Immonen, Tieto Software Product Quality Analysis system. Master’s
thesis., Degree Programme in Information Technology. Tampere
University of Applied Sciences., 2009.

[3] T. Moisio, Further Development of Tieto Software Product Quality
Analysis System. Master's thesis, Degree Programme in Information
Technology. Tampere University of Applied Sciences., 2012.

[4] J. Viljanen, Measuring software maintainability. Master's Thesis, Degree
Programme in Computer Science and Engineering. Aalto University,
2015.

[5] G. Keshavarz, N. Modiri and M. Pedram, “Metric for Early Measurement
of Software Complexity,” International journal on computer science and
engineering, vol. 3, no. 6, pp. 2482-2490, 2011.

[6] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice,
3rd ed., Addison-Wesley, 2013.

[7] ISO/IEC 25010: Systems and software Quality Requirements and
Evaluation (SQuaRE) -- System and software quality models, Geneva,
Switzerland: International Organization for Standardization, 2011.

[8] T. L. Graves, A. F. Karr, J. S. Marron and H. Siy, “Predicting fault
incidence using software change history,” IEEE Transactions on Software
Engineering, vol. 26, no. 7, pp. 653-661, 2000.

[9] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity,
Prentice Hall, 1995.

[10] B. A. Wichmann, A. A. Canning, D. L. Clutterbuck, L. A. Winsbarrow, N. J.
Ward and D. W. R. Marsh, “Industrial perspective on static analysis,”
Software Engineering Journal, pp. 69-75, 1995.

[11] S. Montagud, S. Abrahão and E. Insfran, “A systematic review of quality
attributes and measures for software product lines,” Software Quality
Journa, vol. 20, no. 3-4, pp. 425-486, 2012.

[12] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, pp. 308-320, 1976.

[13] A. H. Watson and T. J. McCabe, “Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric,” Computer
Systems Laboratory National Institute of Standards and Technolog,
Gaithersburg, 1996.

[14] A. Oram and G. Wilson, Making Software: What Really Works, and Why
We Believe It, O’Reilly Media Inc, 2011.

[15] C. Ebert and J. Cain, “Cyclomatic Complexity,” IEEE Software, vol. 33,
pp. 27-29, 2016.

[16] M. H. Halstead, Elements of Software Science, Amsterdam: Elsevier,
1977.

[17] S. Henry and D. Kafura, “Software Structure Metrics Based on
Information Flow,” IEEE Transactions on Software Engineerin, Vols. SE-
7, no. 5, pp. 510-518, 1982.

[18] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,
ADDISON-WESLEY PUBLISHING COMPANY, 1975.

[19] A. J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of
Code, And Development Effort Prediction: A Software Science
Validation,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
Vols. SE-9, no. 6, pp. 639-647, 1983.

[20] P. Oman and J. Hagemeister, “Metrics for assessing a software system's
maintainability,” Proceedings Conference on Software Maintenance, pp.
337-344, 1992.

[21] T. M. Khoshgoftaar, E. B. Allen, R. Halstead and G. P. Trio, “Detection of
Fault-Prone Software Modules During a Spiral Life Cycle,” Proceedings of
International Conference on Software Maintenance, pp. 69-76, 1996.

[22] T. M. Khoshgoftaar and R. M. Szabo, “Improving Code Churn Predictions
During the System Test and Maintenance Phases,” International
Conference on Software Maintenance, pp. 58-67, 1996.

[23] “SonarQube,” [Online]. Available: https://www.sonarqube.org/. [Accessed
8 January 2020].

[24] L. H. Etzkorn, S. Gholston and W. E. Hughes, “A Semantic Entropy
Metric,” Journal of Software Maintenance, vol. 14, no. 4, pp. 293-310,
2002.

[25] A. Binstock, “Deciding on Metrics,” Software Development Times, no.
171, p. 37, 2007.

[26] M. E. Conway, “How do committees invent?,” Datamation magazine, pp.
28-31, 1968.

[27] H. Gall, K. Hajek and M. Jazayeri, “Detection of Logical Coupling Based
on Product Release History,” International Conference on Software
Maintenance, pp. 190-198, 1998.

[28] T. Zimmermann, P. Weißgerber, S. Diehl and A. Zeller, “Mining Version
Histories to Guide Software Changes,” in In Proceedings of the 26th
International Conference on Software Engineering (ICSE ’04). IEEE
Computer Society, USA, 2004.

[29] R. M. Bell, T. J. Ostrand and E. J. Weyuker, “Does Measuring Code
Change Improve Fault Prediction?,” in Proceedings of the 7th
International Conference on Predictive Models in Software Engineering,
PROMISE 2011, Alberta, Canada, 2011.

[30] A. Schröter, T. Zimmermann, R. Premraj and A. Zeller, “If your bug
database could talk...,” in IN PROCEEDINGS OF THE 5TH
INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING, VOLUME II: SHORT PAPERS AND POSTERS, 2006.

[31] N. Nagappan, B. Murphy and V. Basili, “The influence of organizational
structure on software quality,” ACM/IEEE International Conference on
Software Engineering, vol. 30, pp. 521-530, 2008.

[32] A. Meneely and L. Williams, “Secure Open Source Collaboration: An
Empirical Study of Linus' Law,” in Proceedings of the 16th ACM
conference on Computer and communications security, New York, USA,
2009.

[33] C. Bird, N. Nagappan, B. Murphy, H. Gall and P. Devanbu, “Don’t Touch
My Code! Examining the Effects of Ownership on Software Quality,” in
Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on foundations of software engineering, Szeged,
Hungary, 2011.

[34] L. Madeyski and M. Jureczko, “Which process metrics can significantly
improve defect prediction models? An empirical study,” Software Quality
Journal, vol. 23, pp. 393-422, 2015.

[35] A. Tornhill, Software Design X-Rays, Pragmatic Bookshelf, 2018.
[36] Empear, “CodeScene,” [Online]. Available: https://codescene.io/.

[Accessed 20 3 2020].
[37] L. Hatton, “Reexamining the Fault Density– Component Size Connection,”

IEEE Software, vol. 14, no. 2, pp. 89-97, 1997.
[38] R. V. Basili and T. B. Perricone, “Software errors and complexity: an

empirical investigation,” ACM, vol. 27, no. 1, pp. 42-52, 1984.
[39] V. Vaishnavi, W. Kuechler and S. Petter, “Design Science Research in

Information Systems,” 2017. [Online]. Available:
http://www.desrist.org/design-research-in-information-systems/.

[40] M. D'Ambros, M. Lanza and H. Gall, “Fractal Figures: Visualizing
Development Effort for CVS Entities,” 3rd IEEE International Workshop on
Visualizing Software for Understanding and Analysis, pp. 1-6, 2005.

[41] N. Nagappan and T. Ball, “Use of relative code churn measures to predict
system defect density,” in 27th International Conference on Software
Engineering, 2005. ICSE, Saint Louis, MO, USA, 2995.

[42] M. Jurezcko and L. Madeyski, “Which process metrics can significantly
improve defect prediction models? An empirical study,” Software Quality
Journal, vol. 23, p. 393–422, 2015.

[43] F. Chollet, Deep Learning with Python, Manning Publications, 2017.
[44] G. Taraldsen, “Nonlinear probability. A theory with incompatible stochastic

variables,” arXiv, 2017.
[45] T. J. Ross, Fuzzy Logic with Engineering Applications, 4th Edition, Wiley,

2016.
[46] Y. Singh, P. K. Bhatia and O. Sangwan, “Predicting software maintenance

using fuzzy model,” SIGSOFT Softw. Eng. Notes, vol. 34, no. 4, pp. 1-6,
2009.

[47] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord and J. Stafford, Documenting Software Architectures,
Addison-Wesley Professional, 2010.

[48] D. Parnas, “Information Distribution Aspects of Design Methodology,”
IFIPS Congress, pp. 339-334, 1971.

