

Implementation of React-Redux in Web

Application

LAB UNIVERSITY OF APPLIED SCIENCES LTD
Degree Bachelor of Business Administration
Degree programme in Business Information
Technology
Autumn 2020
Le Tran Anh Vu
Tran Nguyen Thuy An

 Abstract

Author(s)

Le, Vu

Tran, An

Type of publication

Bachelor’s thesis

Published

Autumn 2020

Number of pages

 46

Title of publication

Implementation of React-redux in web application

Name of Degree

Degree Business Information Technology

Abstract

Recently, JavaScript has become a trend programming language. When Node.js was
released, a massive amount of libraries and packages were developed. JavaScript has
been developed for many environments, such as frontend, backend, and even mobile
applications.

This thesis introduces React.js, a user interface library, and discusses its benefits.
Moreover, the thesis also describes React.js’s existing challenge which is data
management in global. After this the thesis examines one solution for the problem, and
this is to apply the use of Redux. Redux is one of the most popular utilities for React.js
to manage application data.

By using React.js and Redux in an example application, the authors were able to point
out benefits of saving time of development and minimize the effort to maintain code.

Keywords

web development, frontend application, React.js, Node.js, food delivery

CONTENTS

1 INTRODUCTION ... 1

1.1 Thesis objective .. 1

1.2 Research questions .. 2

1.3 Limitations .. 2

1.4 Thesis structure .. 2

2 THEORETICAL FRAMEWORK ... 4

2.1 HTML & CSS .. 4

2.2 JavaScript ... 4

2.3 Node.js ... 5

2.4 Node Package Manager (NPM) .. 6

2.5 React.js .. 6

2.5.1 Terminologies .. 7

2.5.2 Virtual DOM ... 7

2.5.3 Introducing JSX ... 8

2.5.4 States and properties ... 9

2.5.5 React.js component-based architecture ... 9

2.5.6 How React.js works ..11

2.5.7 Comparison with other frontend frameworks ...12

2.6 Redux ..14

2.6.1 Redux libraries ..15

2.6.2 Principles ..16

2.6.3 Basic concept ...17

3 APPLICATION IMPLEMENTATION ..21

3.1 Introduction of the Foode’s application ...21

3.2 Application overview ..21

3.3 Application structure ..23

3.4 Components in React.js ...25

3.5 React.js’s user interface library – React Bootstrap ...26

3.6 Features of the web application ...27

3.6.1 Image lazy loading ..27

3.6.2 Shopping cart – Redux ...29

4 CONCLUSIONS ...36

LIST OF REFERENCES ..37

LIST OF FIGURES

Figure 1. Thesis structure ... 3

Figure 2. JavaScript’s ranking among professional developers (Developer Survey 2020) . 5

Figure 3. Virtual DOM and real DOM (Naukri Engineering 2017) 7

Figure 4. Communication between components use properties and states (Mardan 2017,

81) .. 9

Figure 5. React.js components and pages ...10

Figure 6. Comparison between React, Vue.js and Angular (Wattenberger 2019b)13

Figure 7. State management with and without Redux ..15

Figure 8. One-way dataflow (Abramov and individual contributors. 2020b)17

Figure 9. How Redux works ...18

Figure 10. Restaurant detail wireframe ..31

Figure 11. Cart information dataflow ..32

LIST OF IMAGES

Image 1. JSX syntax ... 8

Image 2. How to apply React.js components to web pages ...11

Image 3. Initial HTML file used in React ...12

Image 4. The example of pure and not pure function ...16

Image 5. Login page ..21

Image 6. Home page ...22

Image 7. Restaurant detail page ..23

Image 8. Checkout page ..23

Image 9. Application structure ..24

Image 10. Component structure ...25

Image 11. Component BubbleButton definition ..26

Image 12. Using BubbleButton in another component ...26

Image 13. React bootstrap documentation ...27

Image 14. Web app without BlurHash ..28

Image 15. Web app applied BlurHash ..28

Image 16. Applying Blurhash component in project ...29

Image 17. Restaurant detail page ..30

Image 18. Declaration of Redux’s store ...32

Image 19. Applying Redux’s store to the project ..33

Image 20. Declaration of Redux’s actions ..34

Image 21. A call-back function contains dispatching the action ..34

Image 22. Declaration of Redux’s reducer ...35

LIST OF TABLES

Table 1. Compare between React, Angular and Vue.js (GitHub 2020a; GitHub 2020b;

GitHub 2020c; NPM 2020a; NPM 2020b; NPM 2020c) ..13

LIST OF ABBREVIATIONS

SEO Search engine optimization

HTTP Hypertext Transfer Protocol

JS JavaScript

XML Extensible Markup Language

UI User interface

DOM The Document Object Model

SPA Single Page Application

CSR Client-side rendering

CMS

NPM

Content management system

Node Package Manager

1

1 INTRODUCTION

JavaScript is one of the main programming languages in computer science (Elliott 2014, 2).

There is a reason why various software developers have chosen JavaScript for web

application. According to Elliott (2014, 2), JavaScript is an event-driven and non-blocking

language. Therefore, it has high performance. Moreover, JavaScript's syntax is easy to read

and understand. It is quite familiar to developers who have experience with C or C++. In

2009, Node.js known as a JavaScript environment, was released. Node.js is built on

Google's V8 JavaScript Engine. It is an important milestone for JavaScript, because many

libraries and frameworks were built based on Node.js.

After Node.js was born, many big technology companies started to research and develop

utilities, packages, libraries, and JavaScript frameworks. JavaScript can be developed

anywhere in development sides. It can be written either in the backend side or in the

frontend side or even in mobile devices. Based on that, Google released its frontend

framework, named Angular.js, in 2010. After that, Facebook also published its open-

sourced named React.js in 2013. After being launched, React.js started a new trend among

frontend developers. It helps React.js manage the website can do more functionalities.

React.js is one of the top frontend libraries (Wattenberger 2019a). Many big companies

apply React.js such as Facebook, Instagram, Firefox, New York Times, PayPal, Netflix, and

Khan Academy (Grov 2015, 5). However, React.js still contains some problems in data

management. To solve those problems, many React.js’s utilities and packages have been

released. One of those is Redux. It helps React.js manages application data more robustly

and predictably.

This thesis studies React.js and Redux. The thesis explores why developers choose

React.js and how it can save time in project development and maintenance. In addition, the

thesis aims to find out the benefits of using Redux.

1.1 Thesis objective

This thesis aims to explore the advantages of using a modern frontend library, Redux-

React.js that can be used to create a user-friendly web applications that offer a good

customer experience. Moreover, the thesis examines how React.js can help reduce the

effort needed to develop and maintain applications.

2

1.2 Research questions

Based on the objective, the thesis has three research questions. The questions help to

examine the benefits of using React.js and Redux in developing web applications.

• Why choose React?

• Why does React.js save time in application development and maintenance?

• What are the benefits of using Redux?

To answer the research questions, the authors will collect the available master’s theses,

books, and official technical documentations. Lastly, the thesis is based on the practical

findings of an application to conclude.

1.3 Limitations

This thesis does not cover search engine optimization (SEO) for React.js applications.

Testing is another step of developing web applications. But this topic is not discussed in this

thesis.

1.4 Thesis structure

The thesis includes four chapters. Chapter 1 is the introduction, which is an overview of the

thesis. This chapter is included the thesis objective, research questions, limitations, and

thesis structure. Chapter 2 presents the theoretical framework of the thesis. This chapter

introduces the technical background and their terminologies used in the thesis. Chapter 3

introduces the example application, which is used to answer the research’s questions. In

this chapter, the application’s features are introduced and analyzed to represent the using

technical frameworks or libraries in chapter 2. The last chapter describes the findings and

the conclusion. The Firgure 1 shows the thesis’s structure.

3

Figure 1. Thesis structure

4

2 THEORETICAL FRAMEWORK

In this chapter, the authors describe the theoretical concepts of technical terms. Those

terms are requisites for building the web application. The authors answer the question: “Why

choose React?” by defining React.js.

2.1 HTML & CSS

According to Mozilla and individual contributors (2020a), HTML (the Hypertext Mark-up

Language) and CSS (Cascading Style Sheets) are two leading technologies for creating

Web pages. HTML plays the role of describing the structuring of the page using mark-up.

HTML elements create the building blocks of HTML pages. For example, image and other

objects such as interactive forms. HTML provides structured documents such as headings,

paragraphs, lists, links, quotes, and other items. CSS is a stylesheet language used to

describe the presentation of HTML or XML documents. It explains how HTML elements

should be displayed on the screen, such as colours, fonts, speech, media. CSS supports

different devices that adapt the presentation, such as computer screens, laptop screens,

tablet screens, or mobile screens. Put simply, HTML constructs a webpage's skeleton,

whereas CSS is used for decorating the webpage.

2.2 JavaScript

JavaScript, called Live Script, was created by Brendan Eich in 1995 during his time at

Netscape. The first version of the language was available in Netscape Navigator 2. Live

Script was renamed as JavaScript three months later. JavaScript was first submitted to

ECMA International in November 1996. The standards process continued for a few years,

with ECMAScript 2 in June 1998, and ECMAScript 3 in December 1999. As of 2012, all

modern browsers have fully supported ECMAScript 5.1, and on July 17, 2015, ECMA

International published the sixth major version of ECMAScript, known as ECMAScript 2015.

The latest version is ECMAScript 2020 or ES9. (Mozilla and individual contributors 2020b.).

JavaScript is a lightweight, interpreted, and compiled programming language with first-class

functions. It is a well-known scripting language for websites and applied in non-browser

environments such as Node.js or Apache Acrobat. JavaScript is a prototype-based, multi-

paradigm scripting language dynamic that supports object-oriented, imperative, and

functional programming styles (Mozilla and individual contributors 2020b).

JavaScript usually runs on the client’s browser like Chrome, Firefox, or Edge. JavaScript

language is easy to learn and widely used for controlling web page events. The number of

5

professional developers using this language is shown in Figure 2 provided by Developer

Survey 2020, with 47,184 responses.

Figure 2. JavaScript’s ranking among professional developers (Developer Survey 2020)

Because of the large number of professional developers who use JavaScript, tools, libraries,

and frameworks have been released (Developer Survey 2020).

2.3 Node.js

According to OpenJS foundation (2020), "Node.js is a cross-platform JavaScript runtime

built on Chrome's V8 JavaScript engine". Node.js allows JavaScript to jump out of the

browser's environment and run anywhere (Satheesh, D' Mello & Krol 2015, 2). Node.js

becomes one of the most choosing technologies for designing small modules, also known

as packages (Casciaro 2020, 69). A Node.js app runs in a single process, without creating

a new thread for every request (OpenJS Foundation 2020). Node.js is the model doing the

set of asynchronous I/O operations preventing the code blocking of JavaScript. When

Node.js is operating in I/O, it will read from the network instead of blocking the thread and

repeat the cycles waiting. Node.js is accessing the database of the file. Then, Node.js

continued replies and calls back the operations without starting the new thread for other

operations. As a result, it can process thousands of events by merely running one server.

In addition, Node.js is picked by millions of frontend developers who use JavaScript for web

6

applications. (OpenJS Foundation 2020). Many Node.js frameworks are used on website.

There are, for example, Express.js, Socket.io, Strapi, Next.js, model toolkits like Angular,

React.js.

2.4 Node Package Manager (NPM)

According to Teixeira (2012, 8), the Node Package Manager (NPM) is a third-party package

repository. NPM provision the public registry where a developer can publish their package

freely for everyone to use. Thereon, NPM also provides a command-line tool for developers

to download third-party open-source packages and apply them instantly. Therefore, it helps

Node.js and JavaScript libraries widely known and used by many developers worldwide.

Node or JavaScript developer could share their package everywhere. It could save time to

solve the same problem by downloading the existing box. Developers install, uninstall, up-

load, and update the package in NPM by command-lines interface (CLI) (Teixeira 2012, 9).

NPM’s CLI must be installed in the host machine before using it.

To install the packages, type this command to the terminal (Teixeira 2012, 10)

npm install <package’s name>

To uninstall the packages, the command is (Teixeira 2012, 11)

npm uninstall <package’s name>

And to update the packages, developers can type (Teixeira 2012, 11)

npm update <package’s name>

2.5 React.js

React.js was initially released in 2013. Jordan Walke, Facebook’s developer, created it. By

2020, the React.js has become one of the most popular JavaScript libraries, and it continued

to developed and maintained by Facebook.

React.js is a JavaScript user interface library. React.js was created to solve the problems

of working on complex user interface projects such as web application, E-commerce, CMS,

and Mobile application. Moreover, React.js provides an option client-side rendering (CSR),

which helps the application render the layout just on the browser. As a result, the browser

can share the workload of the server. Moreover, CSR can increase user experience. Users

do not see the white-blank page when they navigate to another page because the rendering

content is now on the browser.

7

2.5.1 Terminologies

Lightweight DOM (Document Object Model) For Better Performance

When using JavaScript the traditional way, developers need to look at what data changed,

and imperative events make a change to the DOM, then keep it up to date manually. After

that, re-render happens on every page triggering an event. React.js provides a more

optimized and lightweight document object model. It interacts with the virtual DOM, stored

in the memory, instead of connecting directly with the DOM. The image below explains

clearer how React.js works. It calculates the difference between the old and the new virtual

DOM after changing happened. The components with event changed are updated to the

actual DOM. As a result, the site re-render is fast. (Aggarwal 2018, 2.)

Figure 3. Virtual DOM and real DOM (Naukri Engineering 2017)

2.5.2 Virtual DOM

React.js is fast and optimized because it has a virtual DOM. Virtual DOM is used to check

the DOM blocks' change before allowing the browser to repaint the user interface. It is very

suitable for applications, which frequently require changing user interface's logic (Facebook

Open Source 2020a).

React.js is a user interface library to address the problems of large-scale applications and

data sets that change over time (Gackenheimer 2015, 3). When users interact with a

website, the state of user interface changed. The virtual DOM compares the updated

version with the previous one to find the different nodes. Then, the virtual DOM sends those

8

nodes for the DOM. The DOM would change based on what is updated. Instead of loading

the whole page, the application only renders specified parts (Aggarwal 2018, 2).

2.5.3 Introducing JSX

JSX is a syntax extension of JavaScript for function calls and object construction. The JSX

syntax looks like XML/HTML but it is not. JSX helps developers in a great way to write

React.js components. JSX combines syntax between HTML and JavaScript, allowing

developers to write the HTML code and embed JavaScript expression inside (Facebook

Open Source 2020b).

Image 1. JSX syntax

In Image 1 above, from lines 27 to 29, JSX provisions the HTML-JavaScript mixture. So

that the title is a variable and is embedded to "<h1>" tag. And the result shown on the screen

is "hello react."

There are many benefits of using JSX (Mardan 2017, 42):

JSX increases developer experience because of the XML-like syntax that helps to represent

nested declarative structures.

Because it reminds an HTML template, JSX improves the productivity. Using it saves time.

React.js does not require JSX syntax. Developers can choose plain JavaScript for creating

UI's components (which is introduced later). However, React.js encourages developers to

use JSX to experience all the best features and convenience of React.js's developers.

9

2.5.4 States and properties

According to Mardan (2017, 80), the main difference between states and properties is that

states are mutable, but properties are immutable. Moreover, properties have been passed

from their parent component, and it could been become different values by the parents. In

the contract, states need to be defined that have been changed in the components itself.

Therefore, properties are used to determine the interface upon creation and remain the

static, in the contrast, states are set and update by the object. Components access states

and properties as component attribute, but both are used for different purposes (see Figure

4).

Figure 4. Communication between components use properties and states (Mardan 2017,
81)

2.5.5 React.js component-based architecture

One of the advantages of React.js is component-based architecture. A component is vital

for scaling an app in the future and reduce the workload of maintenance.

10

Figure 5. React.js components and pages

To quickly see benefits of React.js, the authors demonstrate a simple static website. It

contains Home, About, and Contact pages. Each page always has the following parts:

Header, Main, Footer. The common parts of a website are Header and Footer (Image 2).

Without React.js, developers need to add the Header and Footer snippets for every page.

This is cumbersome and redundant. With React, developers could reduce the boilerplate

by creating separate components for the Header and Footer. These components can be

used in many places by simply calling the components. Additionally, developers just need

to change the user interfaces of Header and Footer in their components, and they will apply

to all pages. That is the advantage of React.js components. (Mardan 2017, 10.).

11

Image 2. How to apply React.js components to web pages

2.5.6 How React.js works

Initially, in rendering React.js combines the application components and transfers them to

virtual DOM. Then, it renders the virtual DOM to real DOM and lets the browsers do their

job to render and paint the element to user interfaces. Technically, React.js transfers the

JSX syntax from components into a plain JavaScript file. Then the JavaScript file is attached

to an HTML file (see the Image 3).

12

Image 3. Initial HTML file used in React

When the application has an updating, React.js looks up the changed components in virtual

DOM. It decides the most optimized way to update those components to the real DOM.

2.5.7 Comparison with other frontend frameworks

This thesis compares three well-known frameworks: React, Vue, and Angular. According

to Wattenberger (2019b), 21,717 respondents covered five aspects of the experiences or

knew the JavaScript frameworks (see the Figure 6). All respondents who are developers

know all those frameworks. 71.7% of developers stated that React.js is the most favoured

choice, and they are willing to continue working with React.js in the future. Meanwhile, Vue

and Angular got 40.5% and 21.9%, respectively. Angular is voted that developers would not

work with it again, by 35.8%. Around 34.2 % of developers desire to study Vue.js, 12% want

to learn React.js, and 9.7% want to learn Angular.

13

Figure 6. Comparison between React, Vue.js and Angular (Wattenberger 2019b)

Statistics:

The authors have collected statistics in Table 1 above from React, Vue.js, and Angular's

GitHub and the node packager managers from npmjs.com on the 6th of September 2020.

React.js is downloaded approximately four times more often than Angular and Vue.

Besides, React.js's has over 1500 contributors and 453 issues. All those figures in the table

show that React.js is a maturity frontend library supported by a broad community.

Table 1. Compare between React, Angular and Vue.js (GitHub 2020a; GitHub 2020b;
GitHub 2020c; NPM 2020a; NPM 2020b; NPM 2020c)

Attributes React Angular Vue

Initial release May 2013 Sep 2016 Feb 2014

npm download (weekly) 7,996,769 1,838,683 1,899,960

Star Over 155,000 Over 65,600 Over 171,000

Issues 453 Over 2700 329

Contributors 1,500 1,212 371

71.7

40.5

21.9

9.5
3.6 6.8

8.6

6
35.8

2.7
8.3 1

12

43.2

9.7

25.6

14.3

44.9

7.7
19

32.4

37.8 64.8

22.6

0.4

0.2

24.4

9.1

24.7

0

20

40

60

80

100

120

React.js Vue.js Angular Preact Ember Svelte

I've USED it before, and WOULD use it again I've USED it before, and would NOT use it again

I've HEARD of it, and WOULD like to learn it I've HEARD of it, and am NOT interested

I've never heard of it

14

Learning curve:

Vue is the brightest one in learning curve because Vue combines both the robust strength

of Angular and React.js into it. Vue syntax is easy to use.

React.js is the second library that is easy to learn. The official document of React.js is useful

and easy to use. React.js only focuses on V in MVC, so there are fewer terminologies than

in Angular.

The developer must understand the MVC model and other terminologies such as

dependency injection, module, services, and controllers. Angular is strict its file structure so

that developers have a lack of option for structuring their projects.

Summary:

React.js is the most popular and mature frontend library currently. Vue is getting to develop

rapidly, Angular, on the other hand, is a framework. It includes everything for developers,

while React.js and Vue require developers to download more packages for implementation.

Angular is like the full options of the frontend framework and possesses a well-designed

architecture and file structure, developers do not need to download packages.

Answering which is the best choice for frontend applications is hard. React.js and Vue are

the best fit for opinionated applications where developers can freely pick to pick any utilities

and tools to develop. In contrast, Angular is the best for a well-defined application developed

by an experienced team.

2.6 Redux

The more complex the application becomes, the more components are created. Data

management is becoming a problem that developers need to solve. There are some

scenarios where data can be shared between many components in the application. This

issue makes the data harder to manipulate and update the application.

Redux was created to solve this problem. It is one of the hottest libraries in frontend

development currently (Wattenberger, 2019a). The open-source was created by Dan

Abramov and Andrew Clark in June 2015. According to Abramov and the Redux

documentation authors (2020a), Redux helps JavaScript applications manage the data-flow

architecture more efficiently. In other words, it maintains the whole application's state. It

does this with just a single immutable state object. Redux is usually used with libraries such

as React.js, Angular. It is becoming a popular library, thanks to its simplicity and it being

15

lightweight. There are many benefits to use Redux. Firstly, the Store is the place to save

the current state of the application. The Store makes it easier to predict the data outcome.

Secondly, with a predictable data outcome and a strict structure, it reduces the developer's

effort in maintaining the code. Thirdly, combining the developer tools allows developers to

track actions and state changes in real-time. Finally, having tremendous community support

is always a big plus for every developer.

Figure 7. State management with and without Redux

In the figure above, without Redux, data must go a long way to present in other components.

With Redux, if there is a mutation from data, this data is sent out to the store. Therefore,

the subscribing components are notified to show changes in data on the screen. This Redux

mechanism is a single source of truth.

2.6.1 Redux libraries

According to Abramov and the Redux documentation authors (2020a; 2020b), Redux is a

standalone JavaScript library. It is used for many purposes or frameworks. Redux's best

well-known library is React-Redux, which allows developers to manage state in React.js by

using the Redux mechanism. However, Redux does not support React.js but for other

frameworks like jQuery, Ember, Angular, Vue, or even Vanilla JavaScript (pure JavaScript).

16

There are two other popular libraries of Redux, which are the Redux-toolkit and the Redux

Devtool Chrome extension. In this thesis, the authors only focus on the most famous

libraries, that is React-Redux. The authors may call React-Redux as Redux for more

convenience.

2.6.2 Principles

Redux introduces three principles in their product (Abramov and individual contributors.

2020c).

The first principle is “single source of truth”. Redux attempts to store all data in one place

and just one place. Any manipulating actions only access to one place.

The second principle is “the state is read-only”. Because all data is stored in a unique place,

it would be easy to mutate data by mistake. In order to prevent that, the Redux set all data

or state are read-only so that there is no method or strict about mutating data directly.

And the last principle is “changes are made with pure functions”. There is only one way to

update data, which uses pure functions. The pure function is the function that can predict

the return value. Pure functions always return the same output every time it receives the

same parameters. Pure function prevents side effects, which means it only affects the

variables, which are located within pure functions. The image 4 demonstrates how pure

function work. The reason why Redux requires pure functions to mutate data because it

prevents the data is copied shallowly. Consequently, the application can have unexpected

bugs in the future.

Image 4. The example of pure and not pure function

17

2.6.3 Basic concept

Redux keeps the idea of one-way data binding of React, which means that every dataflow

always goes in one direction (Abramov and individual contributors. 2020b).

One-way dataflow:

A simple example of “one-way dataflow” is presented below (Abramov and individual

contributors. 2020b):

Figure 8. One-way dataflow (Abramov and individual contributors. 2020b)

In the Figure 8, the following concepts explain how One-way dataflow works (Abramov and

individual contributors. 2020b). The state presents the data value or application context at

one of the moments. It takes responsibility for controlling data, deciding how data is

updated, and sending the newest amount for view. The view displays the data. It subscribes

to the state for getting newly updated data. It also the terminal for the user can interact with

the application and emit some change for data. The actions are noticed when some events

are emitted from view. It plays the role of “data courier,” dispatch the requests, occurrences,

or changed data to the state. And this process keeps running repeatedly.

Terminology:

For Redux, the process is a bit complicate for manipulating the data in more context and

scenarios.

18

Figure 9. How Redux works

The view is the UI of the web application. It shows the layout and page content such as

buttons, fields, texts. It is where users can interact with the application like request data and

submit the form. In Redux, views Subscribe to the data from Store for always receiving the

newest and reliable data. Besides, it listens to the behaviours of the user. Thus, whenever

interact and take Action with the browser, the View is Dispatching to Reducers.

The action is literally the plain JavaScript object is used to describe the event that happens

in the application. The action usually contains two-part: type and payload. Type is the key,

which is used by Reducer for deciding which data should be updated. In contrast, the

payload is the information of the action (it could be updated data or empty). In the real

scenario, Redux uses another term named Action Creators. Action Creators, as it is named,

is a function that returns an Action. Action creators usually use in an application. It helps

the code more secure and neat due to calling a function that would be easier than writing

the object everywhere. (Abramov and individual contributors. 2020b.)

The reducer is a pure function. It receives the current state, which is stored in the Store,

and action dispatch. Reducer contains logic for deciding the way to update data. However,

to recognize which data should be updated, the reducer must categorize the Type Of Action

(that is why action contains two parts the payload and the type). (Abramov and individual

contributors. 2020b.)

The store is the data storage in Redux. The Store is just the global plain JavaScript object.

It is just the term in Redux, and data is saved in memory so that when the application is

refreshed, the Store is empty. However, when using Redux in single-page applications, the

reload action is not usually happening; therefore, Store can as storage. According to the

image above, the store receives the return of new value from Reducers, saves, and sends

19

newly updated data to Views, which subscribe to new data. (Abramov and individual

contributors. 2020b.)

The dispatch function is used when Views would like to send new Action (event) to the

Reducer (Abramov and individual contributors. 2020b.)

How Redux works:

As introduced above about ”one-way dataflow,” Redux’s dataflow could be known as the

“next level” of such dataflow. Redux separates two main steps of its dataflow (Abramov and

individual contributors. 2020b).

In the initial state, the store invokes the root reducer for the default or initial state (data).

Therefore, all defined reducers are called once when the application runs for the first time.

When the views are rendered, they access the store and receive the initial state from that.

In the update state, it divides into two main scenarios. First, when users create some events,

the views dispatch the actions to content type and payload to the reducer. In there, the

reducer is like the manufacture, receives the current state and new action, and returns the

newly updated state for the store. Second, when the store receives a new state, it notices

all the subscribed views in the application. Those such views get a new state and present

new information to the application. Finally, those steps above keep running until the

application close.

Why use React-Redux:

React-Redux is an official library from Redux, which could be used in React.js application,

as mentioned above in the Redux libraries part. React.js is great for web applications.

However, it still needs some other libraries to go along for developing a better application.

React-Redux is one of the best useful libraries to React. It would help React.js for the three

main purposes.

According to React.js Open Source (2020a), React.js was known as the unopinionated

library. That means developers can do everything they like, such as coding style or file

structures, and added other libraries to develop the application. It is excellent and fast for

the initial state of a project or small project. However, If a team with more than two people

take part in the project, it would be terrible as everyone has their style and libraries. The

project becomes hard to maintain. According to Abramov and the Redux documentation

authors (2020d), Redux encourages the application to follow its best practice coding style.

Besides, Redux’s documentation is useful and well-known. Many people follow the same

20

coding style and understand the Redux concept. Therefore, the application would be easier

for maintaining.

As mentioned above in the concept part, Redux would save React.js from nightmare state

management in the management state. From now, if React.js has any global state or data,

it can delegate this state for Redux. Therefore, the state is well managed and predictable.

In debugging, Redux breaks the logic into small blocks such as action creators, dispatch,

reducers, and stores. That would make the developer can keep track of the dataflow easily

with Redux DevTools.

When should and should not Redux be used:

According to Abramov and the Redux documentation authors (2020b), developers should

use Redux when the application requires one or more global state. And this state could be

used in many application components such as users' login status and picked item list in e-

commerce apps (Abramov and individual contributors. 2020b). Moreover, Redux could be

applied for a medium, or big application requires more than one developer contributes to

the application (Abramov and individual contributors. 2020b).

On the other hand, Redux is not the golden key to everything. React.js itself is excellent.

Developers could build React.js without Redux. Redux was born for supporting React. In all

the cases, developers can remove Redux from the tech list and use React. According to

Abramov and the Redux documentation authors (2020e), developers do not need to use

Redux unless they need it. Besides, in a small application, state or data is present only one

of place or component. The component's structure is not too complicated. Thus, using

Redux is like use the saw for cutting a chicken.

Trade-off:

Redux is great. However, It also contains some trade-off that developers have to concern

to apply.

First, that is the learning curve. Developers must take quite a bit of time to understand the

Redux workflow and its terminologies. In the beginning, Redux is not easy to reach.

Last, Redux setup and workflow are quite complex and are not built for quick coding

(Abramov and individual contributors. 2020e). Developers must define reducer, store,

actions every time they add a new state in Redux. When developers want to remove the

state, they do not only remove a variable in a global object in JavaScript but also remove

all reducers and actions appropriately.

21

3 APPLICATION IMPLEMENTATION

This chapter introduces the application which is used to examine the benefits of React.js

and Redux. It also shows the usage of React.js component, how it is implemented and

reduced a needed effort to develop and maintain applications. Some React.js packages are

introduced, such as React Bootstrap, BlurHash, and Redux.

3.1 Introduction of the Foode’s application

The Foode is a food ordering application developed with React.js and Redux. Users can

register via their information, such as usernames and passwords. Users can also review

the restaurant's list of meals, and they can also select which meal and its quantity on the

restaurant detail page. All the user's orders are stored and presented in the application's

header to check out quickly. Eventually, users must log in (if they did not) and fill in some

necessary information to create their order. An order can have multiple meals, which various

portions.

The application was built for introducing React.js features. Besides, the authors also use

other packages for supporting React. The purpose of this application is to show the

feasibility of React.js and Redux.

3.2 Application overview

This section introduces the application's pages and mentions its main features. It helps the

readers to get an overall picture of this application. As a result, the readers could easily

understand the later chapters.

Image 5. Login page

22

Image 5 shows the login page of the application. Users could log in with their username and

password. Besides, they could also register by clicking on the link “create a new account?”.

The user interface of the register page is similar to the login page.

After logging in successfully, the home page appears and shows the list of meals in

restaurants. The users can use the search bar to narrow the number of meals. This page

does not require a login. The users can navigate straight to the home page as a guest.

The header of the page is consistent between pages. It shows the login status of the users

and the information on their shopping cart.

Image 6. Home page

In Image 7, the restaurant detail page is used to view, and select a particular meal. The

users could increase or decrease the number of portions and leave a message in their

order. On this page, Redux is applied to update the shopping cart data. The “blue button”

in the header is used to indicate the total money. Whenever the users change the number

of portions, the total money that users would pay, which changes properly.

23

Image 7. Restaurant detail page

After users finish selecting meals, users go to this page to check out and make an order.

This page lists all the chosen meals and their quantity, the total amount of money. Besides,

users also can remove meals if they change their minds. The checkout page looks like the

example in Image 8.

Image 8. Checkout page

3.3 Application structure

As the image below, React.js’s folder is structured like this. There are many files and folders

in the project. In the scope of this thesis, some of the main folders are introduced.

24

Image 9. Application structure

The node_modules folder contains all the dependencies (packages) which are used in this

project. In any node’s project, “node_modules” is always in the root directory.

The src folder holds the source code of the project. Initially, React.js read the index.js file in

src folder as the root development file in the application. All the logics and components are

imported into this file. The following sections are explaining some of the core features in

such folders.

Like the node_modules folder, the package.json is another Node.js's file. It describes the

meta-information, such as the name of the project, versions, dependencies. When a

dependency is installed in the project, its information is updated automatically in this file.

This file is like the dependency bookkeeping of the node project. Due to the node_modules'

huge size, all the Node.js's projects do not need to keep the node_modules folder when we

push to Github, but keep the package.json. When developers want to install the packages,

they need to run this command:

npm install

25

3.4 Components in React.js

Each page of a web application has been built based on many components (see the Image

10). Depending on which components the page needs, developers could attach those

components within this page. One of the most common components that web applications

usually use is a button. Buttons could be used in many places in the app. In this part, the

authors use the Bubble Button component to show how convenient React.js components in

the application. And how the component connects and shares dynamic visual

representation and logic.

Image 10. Component structure

26

To reuse it, the authors created the BubbleButton component with various properties (see

the Image 11). Every time the parent's components (page) want to use the BubbleButton

component, they could add the BubbleButton inside their JSX and adjust the button style,

colour, or any of values, based on their need via the properties. For example, on the Home

page, developers modified the margin properties with the number: '20px auto 0', and on the

About page, they could change the margin to: '50px auto 0' (see the Image 12).

Image 11. Component BubbleButton definition

Thanks to components, developers do not need to rewrite the logic everywhere.

Components also help them easily fix and maintain the code by going through one place

(BubbleButton component).

Image 12. Using BubbleButton in another component

3.5 React.js’s user interface library – React Bootstrap

React Bootstrap is the combination of React.js and Bootstrap. There are many Bootstrap

themes from the Bootstrap style sheets that are available. It helps developers save time by

using Bootstrap's components. Instead of creating the Form component themselves, they

can install React-Bootstrap packages that use those components freely.

27

Image 13. React bootstrap documentation

3.6 Features of the web application

This chapter introduces the main features of the application. The authors indicate the

benefits of the Image Loading React component. The authors show how Redux was applied

to the app via the Shopping Cart component.

3.6.1 Image lazy loading

BlurHash is a compact representation of a placeholder for an image (Wolt, 2020). Without

BlurHash, the images's placeholder is blank and grey during waiting for the page completed

loading these images (Image 14). This effect makes the page look weird and ugly or might

confuse the user. Therefore, BlurHash came to solve this problem. Blurhash creates by

Engineer Dag Ågren, working at Wolt. When the app is applied BlurHash, the represent

placeholders are given the short image URL and short “hash” string from the backend. This

short “hash” string plays the role of blurring the pictures during loading; the strings help the

page smoother and increasing experience for the user (Image 15).

28

The image 14 shows the website when it is not applied BlurHash.

Image 14. Web app without BlurHash

The image 15 shows the website when it is applied BlurHash.

Image 15. Web app applied BlurHash

29

To use react-blurhash package, the author created “<BlurhashContrainer />” component

with simple code at Image 16. Then this component could be used everywhere.

Image 16. Applying Blurhash component in project

3.6.2 Shopping cart – Redux

In this section, the authors go through Redux's features. In the application, there are

functions such as Add or Remove items in the Shopping Cart. How the Store, Reduce, and

Action have been applied to the application.

30

Image 17. Restaurant detail page

In the image above, whenever the “+” (plus) or “-” (minus) button is clicked, a new meal is

added to the cart. Besides, the cart information is used in multiple places. First, the header's

cart button uses such information to indicate the total amount of money that the user has

shopped and the number of meals. Second, the right-side block of meal detail also needs

cart information to check whether this meal is picked or not. The simple wireframe below

presents the usage of cart information.

31

Figure 10. Restaurant detail wireframe

To implement this feature with React.js, the developers must apply heavy coupling between

components. The red arrows denote the direction when cart information is updated on the

left side of the image below. When the user clicks the buttons, these click events must go

up to the App component. After that, the App component passes the updated cart

information through many components until it reaches to Cart Button component. There are

a lot of works to do for both developers and React.js. Moreover, it also tights the relationship

between the components (each component which the arrow point to, must implement the

way to pass Cart Information). Therefore, it reduces the dynamic and reusable of the

component in React.js. The most beneficial component is like a Lego’s block that could be

plugged or unplugged. Thus, the solution on the left side of the image below is lengthy and

hard to maintain.

32

Figure 11. Cart information dataflow

That is why React-Redux comes to the rescue. In the right side of the Figure 11, the cart

information is stored in the “store” of Redux. Therefore, when the buttons or any events

would like to change cart information, it dispatches the changing action to Redux and let

Redux updates data. Then, the updated data would be sent to needed components such

as the Cart button in the header. This approach loses the relationship between components,

reduces the number of pass properties between components. Besides, it helps the

application more reliable, highly scalable, and easy to be maintained.

Image 18. Declaration of Redux’s store

Suppose the application would like to use Redux. It must declare a “store”, “actions,” and

“reducers”. In the Image 18, the store is created in line 9. After that, it is imported into the

33

src/index.js file (Image 19, line 5) for attaching to the application root. From now, the store

is life in the global of the application. Therefore, it can be used in any component of the

project.

Image 19. Applying Redux’s store to the project

The action creators are declared in Image 20. they return the action, which contains types

and payloads. The types are the name of the actions, and the payloads are the changed

data. For instance, the "add an item to cart" action contains the "ADD_TO_CART" type and

"item" payload. It is very straightforward to guess the usage of this action is to add new item

to the cart. When developers want to use any action, they are dispatching this action in the

component. To firing the dispatch function in the component, developers can trap the

dispatch function in a particular event such as clicking or typing.

34

Image 20. Declaration of Redux’s actions

The image below is a call-back function located in a button component and trapped to the

clicking event. So that, whenever users click the “add to cart” button on the screen, the

“startOrder” function would be called and then dispatch the “addToCart” action.

Image 21. A call-back function contains dispatching the action

After the action is dispatched, Redux looks up to all of the “reducers” to find the matched

type. Based on the matched type, the reducer would return the new update data. For

example, in the image below, when the ADD_TO_CART action is dispatched, it would return

the update cart in line 11.

35

Image 22. Declaration of Redux’s reducer

When the store's data is updated, it will let the subscribed components know about the

changed data. Therefore, the subscriber component can re-render and show up to date

data on the browser.

36

4 CONCLUSIONS

Web technology is getting more modern every day. Hundreds of technologies were created

to solve existing technical problems and enhance experience for users. So, studying and

choosing the technologies and adequate framework for web applications is necessary. This

chapter concludes the thesis and answers the research questions:

• Why choose React?

• Why does React.js save time in application development and maintenance?

• What are the benefits of using Redux?

React.js library brings benefits for developing web applications. The advantage of React.js

is that developers can share and reuse the components in the app. Besides, they can also

customize the components as they wish via the properties and state features. Moreover,

sharing the components in one source reduces the reduces workload and eases to maintain

the app when needed. React.js is well-like among developers, and it is a library that they

wish to work because the scalability of the project in the future is not difficult. Finally,

React.js has a mature community that developers can easily find out the solution for their

issue from the previous developers.

React-Redux is one of the most popular libraries in React.js application. The benefits of

Redux have been proven in the implementation chapter. When data is shared between

multiple components in the application, it is time to choose React-Redux. React-Redux

helps to manage shared data more logical and reliable. To update data in React-Redux,

developers must declare each Action. Then they decide how to update data in Reducer.

React- Redux also relieves the coupling in components, so the components could be more

reusable and dynamic. However, developers should concern before applying React-Redux

in the project to avoid overkill at the beginning. According to Abramov and the Redux

documentation authors (2020e), React-Redux is not built for a quick way to code, and

developers should use it when they need it.

37

LIST OF REFERENCES

Aggarwal, S. 2018. Modern Web Development Using ReactJS. Retrieved on 3 September

2020. Available at: http://ijrra.net/Vol5issue1/IJRRA-05-01-27.pdf

Abramov, D & the Redux documentation authors. 2020a. Redux FAQ: React Redux.

Retrieved on 3 September 2020. Available at: https://redux.js.org/faq/react-redux#why-

should-i-use-react-redux

Abramov, D and the Redux documentation authors. 2020b. Redux Overview and

Concepts. Retrieved on 3 September 2020. Available at:

https://redux.js.org/tutorials/essentials/part-1-overview-concepts

Abramov, D and the Redux documentation authors. 2020c. Three principles. Retrieved on

3 September 2020. Available at: https://redux.js.org/introduction/three-principles

Abramov, D and the Redux documentation authors. 2020d. Redux Style Guide. Retrieved

on 3 September 2020. Available at: https://redux.js.org/style-guide/style-guide

Abramov, D and the Redux documentation authors. 2020e. When should I use Redux.

Retrieved on 3 September 2020. Available at: https://redux.js.org/faq/general#when-

should-i-use-redux

Chaffey, D., Smith, P 2017. Digital Marketing Excellence: Planning, Optimizing and

Integrating Online Marketing. Taylor & Francis Group.

Chander, A. 2013. The Electronic Silk Road: How the Web Binds the World Together in

Commerce. Yale University Press.

Creswell, J.W. 2003 Research Design Qualitative, Quantitative, and Mixed Methods

Approaches. 2nd Edition. Thousand Oaks: Sage Publications, Inc.

Casciaro, M. 2014. Node.js Design Patterns. Packt Publishing.

Dhandapani, S. 2020. Virtual DOM - the Difference Maker in React JS. Pluralsight LLC.

Retrieved on 3 September 2020. Available at: https://www.pluralsight.com/guides/virtual-

dom-difference-maker-react-js

Developer Survey. 2020. Most Popular Technologies. Stack Overflow. Retrieved on 3

September 2020. Available at:

https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-

markup-languages-professional-developers

http://ijrra.net/Vol5issue1/IJRRA-05-01-27.pdf
https://redux.js.org/introduction/three-principles
https://www.pluralsight.com/guides/virtual-dom-difference-maker-react-js
https://www.pluralsight.com/guides/virtual-dom-difference-maker-react-js
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers

38

Elliott, E. 2014. Programming JavaScript Applications: Robust Web Architecture with

Node, HTML5, and Modern JS Libraries. O'Reilly Media.

Facebook Open Source. 2020a. Virtual DOM and Internals. Facebook Inc. Retrieved on 3

September 2020. Available at: https://reactjs.org/docs/faq-internals.html

Facebook Open Source. 2020b. Introducing JSX. Facebook Inc. Retrieved on 3

September 2020. Available at: https://reactjs.org/docs/introducing-jsx.html

Gackenheimer, C. 2015. Introduction to React. New York.

GitHub. 2020a. Angular. Retrieved on 6 September 2020. Available at:

https://github.com/angular/angular

GitHub. 2020b. React. Retrieved on 6 September 2020. Available at:

https://github.com/facebook/react

GitHub. 2020c. Vue. Retrieved on 6 September 2020. Available at:

https://github.com/vuejs/vue

Grov, M. 2015. Building User Interfaces Using Virtual DOM A comparison against dirty

checking and KVO. Master. University of Oslo.

Mardan, A. 2017.React Quickly: painless web apps with React, JSX, REDUX, and

GraphQL. Shelter Island, NY, Manning Publications.

Mozilla & individual contributors. 2020a. HTML &CSS. Retrieved on 18 July 2020.

Available at: https://developer.mozilla.org/en-US/docs/Web/HTML

Mozilla & individual contributors. 2020b. What is JavaScript?. MDN. Retrieved on 29

August 2020. Available at: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/About_JavaScript

Naukri Engineering. 2017. Virtual Dom. Retrieved on 4 October 2020. Available at:

https://medium.com/naukri-engineering/naukriengineering-virtual-dom-fa8019c626b

NPM. 2020a. React. Retrieved on 6 September 2020. Available at:

https://www.npmjs.com/package/react

NPM. 2020b. Vue. Retrieved on 6 September 2020. Available at:

https://www.npmjs.com/package/vue

NPM. 2020c. Angular. Retrieved on 6 September 2020. Available at:

https://www.npmjs.com/package/@angular/core

https://github.com/angular/angular
https://github.com/vuejs/vue
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.npmjs.com/package/react
https://www.npmjs.com/package/vue
https://www.npmjs.com/package/@angular/core

39

OpenJS Foundation. 2020. Retrieved on 9 September 2020. Available at:

https://nodejs.org/en/

Satheesh, M. & D'mello, B. & Krol, J. 2015. Web Development with MongoDB and

NodeJS. 2nd Edition. Packt Publishing

Teixeira, P. 2012. Professional Node.js: building Javascript based scalable software.

Hoboken, N.J., Wiley.

Wattenberger, A. 2019a. Data layer. State of JavaScript. Retrieved on 9 September 2020.

Available at: https://2019.stateofjs.com/data-layer/

Wattenberger, A. 2019b. Front End Frameworks. State of JavaScript. Retrieved on 3

September 2020. Available at: https://2019.stateofjs.com/front-end-frameworks/

https://2019.stateofjs.com/data-layer/
https://2019.stateofjs.com/front-end-frameworks/

	1 Introduction
	1.1 Thesis objective
	1.2 Research questions
	1.3 Limitations
	1.4 Thesis structure

	2 THEORETICAL FRAMEWORK
	2.1 HTML & CSS
	2.2 JavaScript
	2.3 Node.js
	2.4 Node Package Manager (NPM)
	2.5 React.js
	2.5.1 Terminologies
	2.5.2 Virtual DOM
	2.5.3 Introducing JSX
	2.5.4 States and properties
	2.5.5 React.js component-based architecture
	2.5.6 How React.js works
	2.5.7 Comparison with other frontend frameworks

	2.6 Redux
	2.6.1 Redux libraries
	2.6.2 Principles
	2.6.3 Basic concept

	3 Application implementation
	3.1 Introduction of the Foode’s application
	3.2 Application overview
	3.3 Application structure
	3.4 Components in React.js
	3.5 React.js’s user interface library – React Bootstrap
	3.6 Features of the web application
	3.6.1 Image lazy loading
	3.6.2 Shopping cart – Redux

	4 Conclusions
	LIST OF References

