

The Web service development with Re-
act, GraphQL and Apollo

Dmitry Sklyarov

Bachelor's thesis
October 2020
Information and Communications Technology
Degree Programme in Media Engineering

Description

Author(s)
Sklyarov, Dmitry

Type of publication
Bachelor's thesis

Date
October 2020
Language of publication
English

Number of pages
110

Permission for web publi-
cation: x

Title of publication
The Web service development with React, GraphQL and Apollo

Degree programme
Media Engineering

Supervisor
Rantala, Ari

Assigned by
Movya Oy

Abstract

The goal of the project, assigned by Movya Oy, was to develop a Web service that facili-
tates the creation of business proposals and subsequent contracts between the company
and the customer.

An essential aspect of software development was using a modern server, and client tech-
nologies React, GraphQL, and Apollo.

The various stages of developing a web service included database design and manage-
ment, responsive application design building, and implementing access control, pagination,
sorting, filtering large amounts of data, grouping items, editing documents, etc. The thesis
covers both the most critical aspects of developing these features, including the theoreti-
cal part before.

The main result of the thesis was the product itself - the Web service called Moffers. In ad-
dition to this specific result, a lot of useful experience was gained, as well as knowledge of
modern technologies and methods in JavaScript programming.

Keywords/tags (subjects)
Web service, JavaScript, React, GraphQL, Apollo, Ant Design, Mongoose, MongoDB

Miscellaneous (Confidential information)

Kuvailulehti

Tekijä(t)
Sklyarov, Dmitry

Julkaisun laji
Opinnäytetyö, AMK

Päivämäärä
Lokakuu 2020
Julkaisun kieli
Englanti

Sivumäärä
110

Verkkojulkaisulupa
myönnetty: x

Työn nimi
The Web service development with React, GraphQL and Apollo

Tutkinto-ohjelma
Mediatekniikka

Työn ohjaaja(t)
Rantala, Ari

Toimeksiantaja(t)
Movya Oy

Tiivistelmä

Opinnäytetyön toimeksiantajana oli Movya Oy. Opinnäytetyön tavoitteena oli kehittää
verkkopalvelu, joka auttaa myyntitiimiä arvioimaan ja luomaan räätälöityjä tarjouksia no-
peasti.

Oleellinen osa ohjelmistokehitystä oli modernien asiakastekniikoiden kuten React,
GraphQL ja Apollo käyttäminen.

Verkkopalvelun kehittämisen eri vaiheisiin sisältyi mm. tietokannan suunnittelu, pääsynval-
vonta, suurten tietomäärien suodattaminen, kohteiden ryhmittely ja asiakirjojen muokkaa-
minen.

Opinnäytetyö kattaa laajan tietoperustan, kriittisen arvioinnin valituille menetelmille ja
ominaisuuksien kehittämiselle.

Opinnäytetyön päätulos oli itse tuote - verkkopalvelu nimeltä Moffers. Tämän nimenomai-
sen tuloksen lisäksi saatiin paljon hyödyllistä kokemusta sekä tietoa nykyaikaisista teknii-
koista ja menetelmistä JavaScript-ohjelmoinnissa. Toimeksiantaja oli erittäin tyytyväinen
tuloksiin.

Avainsanat (asiasanat)
Web service, JavaScript, React, GraphQL, Apollo, Ant Design, Mongoose, MongoDB

Muut tiedot (salassa pidettävät liitteet)

4

Contents

Terminology ... 11

1 Introduction .. 18

1.1 Client presentation ... 18

1.2 Project and thesis objectives .. 18

2 Web services ... 19

2.1 What are Web services? ... 19

2.2 Difference between Web services and APIs ... 19

3 React ... 20

3.1 DOM and Virtual DOM .. 21

3.2 JSX ... 22

3.3 Rendering elements .. 22

3.4 Components and props ... 23

3.5 State .. 24

3.6 Component lifecycle ... 25

3.7 Event handling .. 26

3.8 Context API ... 26

4 GraphQL .. 27

4.1 Solving REST problems using GraphQL ... 28

4.1.1 Over-fetching ... 28

4.1.2 Under-fetching ... 29

4.1.3 Endpoint management ... 30

4.1.4 Schema definition .. 31

4.1.5 Documentation .. 31

4.1.6 Versioning .. 32

4.2 Queries .. 33

5

4.3 Arguments .. 35

4.4 Operation type and name ... 35

4.5 Variables ... 36

4.6 Aliases ... 37

4.7 Fragments ... 38

4.8 Directives .. 39

4.9 Mutations ... 40

4.10 Subscriptions ... 40

4.11 GraphQL server ... 42

4.11.1 GraphQL server with a database connected 43

4.11.2 GraphQL server that integrates existing systems 43

4.11.3 Hybrid approach ... 44

4.11.4 Server building ... 44

4.11.5 Schema ... 45

4.11.6 Resolvers .. 46

4.12 GraphQL client .. 47

4.12.1 Sending queries to the server .. 47

4.12.2 Integration with UI components .. 48

4.12.3 Data caching ... 48

4.12.4 Build-time schema validation and optimizations 48

5 Apollo ... 49

5.1 Apollo Server ... 49

5.1.1 Stand-alone installation ... 50

5.1.2 Integration installation ... 50

5.1.3 Context ... 51

5.2 Apollo Client .. 52

5.2.1 Apollo Client architecture .. 52

6

5.2.2 Cache layer ... 53

5.2.3 Network layer ... 54

5.2.4 Configure Apollo Client with React .. 55

5.2.5 Data querying ... 56

5.2.6 Updating the cache after a mutation ... 57

6 Project implementation .. 59

6.1 Development environment and tools ... 59

6.2 Setting up the project ... 60

6.2.1 Database .. 61

6.2.2 Server ... 63

6.2.3 Client .. 67

6.2.4 Nodemon ... 68

6.2.5 Concurrently ... 68

6.2.6 Eslint ... 69

6.2.7 Ant Design .. 70

6.3 Data model ... 73

6.4 User management .. 74

6.4.1 User authentication ... 75

6.4.2 User authorization ... 80

6.5 Routing .. 81

6.6 Content presentation and manipulation .. 84

6.6.1 Pagination .. 84

6.6.2 Sorting and filtering .. 87

6.6.3 Apollo cache updating .. 89

6.6.4 Creating a new item ... 90

6.6.5 Deleting an item or editing its data .. 94

6.6.6 Groupable list items ... 95

7

6.6.7 Editable documents ... 99

7 Conclusion .. 102

7.1 Discussion ... 102

7.1.1 Solving REST problems ... 103

7.1.2 Solving UX requirements .. 104

7.2 Results ... 105

References .. 106

Figures

Figure 1. Client and server communication ... 20

Figure 2. Virtual and real DOM comparison .. 21

Figure 3. JSX syntax .. 22

Figure 4. ReactDOM.render() method ... 22

Figure 5. Functional component .. 23

Figure 6. Class component ... 23

Figure 7. Class component initialization and using with state 24

Figure 8. Functional component initialization and using with state 25

Figure 9. Component lifecycle and lifecycle functions .. 25

Figure 10. Handling onClick() event ... 26

Figure 11. Prop drilling .. 26

Figure 12. Context API ... 27

Figure 13. Context creating and using ... 27

Figure 14. GraphQL query with required data ... 29

Figure 15. Server response with required object data .. 29

Figure 16. Single GraphQL query to get multiple objects data 30

Figure 17. Server response with multiple objects data ... 30

Figure 18. Querying data to "/graphql" endpoint in GraphiQL 31

Figure 19. Data types used in GraphQL ... 31

Figure 20. Documentation Explorer in GraphiQL ... 32

8

Figure 21. Using a deprecated directive in GraphQL ... 33

Figure 22. GraphQL query and response data ... 34

Figure 23. GraphQL query and response error .. 34

Figure 24. GraphQL query with an argument .. 35

Figure 25. GraphQL query with the operation type and name 36

Figure 26. GraphQL query using variables ... 37

Figure 27. GraphQL error with the same fields ... 37

Figure 28. GraphQL query with using aliases ... 38

Figure 29. GraphQL query with using fragment .. 39

Figure 30. GraphQL query with an @include directive .. 39

Figure 31. GraphQL mutation .. 40

Figure 32. Scheme for implementing subscriptions in GraphQL 41

Figure 33. A chat app implemented using the GraphQL subscriptions 41

Figure 34. GraphQL general architecture .. 42

Figure 35. GraphQL server with a single database .. 43

Figure 36. GraphQL server integrates systems into a single API 43

Figure 37. A hybrid approach to building architecture with GraphQL server 44

Figure 38. HTTP server built with Express ... 45

Figure 39. GraphQL schema ... 46

Figure 40. GraphQL schema: a graphical representation .. 46

Figure 41. Auth function me() using asynchronous resolver 47

Figure 42. App data flow with Apollo and GraphQL .. 49

Figure 43. Deploying Apollo Server using SDL ... 50

Figure 44. Deploying Apollo Server with Express integration using SDL 51

Figure 45. Context using for passing authentication scope ... 51

Figure 46. Apollo Client architecture ... 52

Figure 47. Apollo Link .. 54

Figure 48. Apollo Client network layer .. 55

Figure 49. Custom network implementation with Apollo Link 55

Figure 50. Creating an Apollo Client instance .. 56

Figure 51. Creating an Apollo Client instance .. 56

Figure 52. Data query using useQuery() hook ... 57

Figure 53. Deleting a user using refetchQueries() object property 58

9

Figure 54. Updating an item using update() function .. 59

Figure 55. The two-level folder structure of the project ... 60

Figure 56. Moffers-cluster collections ... 61

Figure 57. Minimized population script for the documents collection 62

Figure 58. Output after database populating in the terminal 62

Figure 59. Setting up an Express GraphQL server .. 63

Figure 60. Setting up a new GraphQL server with auth using Apollo Server 64

Figure 61. The schema defined .. 65

Figure 62. Queries getUsers(), getUserById() .. 66

Figure 63. User fields type defining implemented with UserType 66

Figure 64. Creating the client using the Create React App tool and NPX utility 67

Figure 65. A message after React successfully installed .. 67

Figure 66. Package.json file in the server directory .. 69

Figure 67. Development dependencies in the package.json file of the client 69

Figure 68. .eslintrc configuration file in the server directory 70

Figure 69. Main scripts of the package.json file on the client 73

Figure 70. Config settings of the config-overrides.js file .. 73

Figure 71. Data model ... 74

Figure 72. User auth logic implemented in the login() function 75

Figure 73. User register logic implemented in the register() function 76

Figure 74. Helper methods of the user's mongoose.Schema 77

Figure 75. Login and register UI ... 77

Figure 76. LoginForm component .. 78

Figure 77. Storing and passing data in the userProvider component 79

Figure 78. Logout: modal window and the implementing function 79

Figure 79. UserAvatar component and getInitial() function logic 80

Figure 80. The user page UI for different roles .. 80

Figure 81. Main routing ... 82

Figure 82. LinkMenu component ... 83

Figure 83. Specific company routing via the sidebar ... 83

Figure 84. Routing with incorrect ID .. 84

Figure 85. Users query before (right) and after (left), making changes 85

Figure 86. Users' page initially loaded ... 86

10

Figure 87. Additional data loading function loadMore() ... 86

Figure 88. Sorting and filtering a table in UI .. 87

Figure 89. Sorting and filtering functions .. 88

Figure 90. The fetchMore() function using .. 88

Figure 91. Using the @connection directive with the users key 89

Figure 92. The Apollo cache updating after loading more users 89

Figure 93. Adding a new user through a modal window form 90

Figure 94. Mutation addUser() .. 91

Figure 95. Adding a new user with updating the cache ... 91

Figure 96. Form for adding a new user .. 92

Figure 97. Password strength and matching check ... 93

Figure 98. If the user already exists in the database ... 93

Figure 99. Details tab ... 94

Figure 99. The confirmation modal window .. 94

Figure 101. Updating UI using the useEffect() hook .. 95

Figure 102. Product and LineItem schemas ... 96

Figure 103. Products tab on the tenders' page ... 96

Figure 104. Products tab on the tenders' page after items added 97

Figure 105. Products tab on the tenders' page after items mixed 97

Figure 106. The DirectoryTree component .. 98

Figure 107. Main onDrop() and secondary loop() functions .. 99

Figure 108. Editable document .. 100

Figure 109. The Editor component .. 100

Figure 110. A document saved in the database .. 101

Figure 111. The updateDocument mutation (left) and defining the Document type

(right) ... 102

11

Terminology

API

Application Programming Interface is a particular interface of a program or applica-

tion (class and procedure libraries), with which one program/application can interact

with another.

Babel

Babel is a tool used to convert modern JavaScript (ES2015) code into a backward-

compatible version in current and older browsers or environments.

CLI

A command-line interface is a text-based interface used for entering commands.

СPQ

Configure, Price, Quote is a system that helps the sales team to estimate and create

customized quotes fast.

CRUD

CRUD is an acronym that stands for four primary functions used when interacting

with databases: create, read, update, and delete.

DOM

Document Object Model is a programming interface that defines HTML elements as

objects, properties of all HTML elements, methods to access all HTML elements, and

events for all HTML elements.

12

Express

Express is a lightweight Node.js web application server framework that provides fea-

tures for building web and mobile applications.

FQL

Facebook Query Language is a query language that allows querying Facebook user

data by using a SQL-style interface.

GIT

Git is an open-source version control system designed for fast and efficient develop-

ment.

GraphiQL

GraphiQL is an IDE for interacting with the GraphQL API that supports syntax

highlighting, code completion, error warnings, and viewing query results.

GraphQL Playground

GraphQL Playground is an in-browser GraphQL IDE based on GraphiQL with several

advanced features such as automatic schema reloading, support for GraphQL Sub-

scriptions, query history, and HTTP headers configuration.

Hook

A hook is a particular function that allows manipulating to React state and lifecycle

from functional components.

13

HOC

A higher-order component is a function that implements one of the more advanced

ways to reuse logic by getting a component and returning a new component.

HTTP

Hypertext Transfer Protocol is an application-level protocol for transferring arbitrary

data based on the "client-server" technology.

HTTPS

Hypertext Transfer Protocol Secure is an extension of the HTTP protocol to support

encryption for increased security.

IDE

Integrated Development Environment is a software system used by programmers to

develop software.

JavaScript

JavaScript is an object-oriented programming language with a prototypal inheritance

that creates dynamically updating content, mainly used in web development.

JSON

JavaScript Object Notation is a JavaScript-based textual data exchange format com-

monly used for transferring data in web applications as one of two structures: a set

of key/value pairs or an ordered set of values.

14

MongoDB

MongoDB is an open-source document-based database management system that

does not require a table schema description and uses JSON-like documents with op-

tional schemas.

Mongoose

Mongoose is an object data modeling library that provides a vast set of functionali-

ties for creating and working with strongly typed schemas conforming to the Mon-

goDB document.

MPA

A multi-page application is a web application that includes more than one page and

requires an entire page to be reloaded even with minor content changes.

MVC

Model-View-Controller is an architectural pattern that separates an application into

three main logical components (Model, View, and Controller) so that each compo-

nent can be modified independently.

Node.js

Node.js is an open-source server environment that executes JavaScript code outside

of a web browser.

NPM

Node Package Manager is a package manager with Node.js, used by JavaScript devel-

opers to exchange tools, install various modules, and manage their dependencies.

15

NPX

NPX is a tool designed to help standardize the NPM package experience, making it

easy to install and manage dependencies located in the registry, as well as using CLI

utilities and other executables.

REST

Representational State Transfer is an HTTP resource-based architectural style/model

whose principles govern HTTP and URLs.

RESTful

RESTful is a term used for REST-based Web services.

SDL

Schema Definition Language is a part of the GraphQL specification, which includes

human-readable syntax for defining a schema and storing it as a string.

SOAP

Simple Object Access Protocol is a structured messaging protocol in a distributed

computing environment used to exchange arbitrary messages in XML format and is

an extension of the XML-RPC protocol.

SPA

A single-page application is a web application or website that uses a single HTML

document as a wrapper for all web pages and organizes user interaction through dy-

namically loaded HTML, CSS, JavaScript, usually through AJAX.

16

SQL

Structured Query Language is a programming language used to access and manage a

relational database.

UI

The user interface is an interface that provides information transfer between a hu-

man user and software and hardware components of a computer system.

URL

Uniform Resource Locator is a standard for representing the address of a resource on

the Internet, including information of protocol, domain name, file subdirectory, and

the requested resource's file name.

UX

User Experience determines the impression a person gets from interacting with a dig-

ital product.

XML

Extensible Markup Language is a format for describing data as a set of tags, nested

tags, and attributes for storing and transmitting data.

XML-RPC

XML Remote Procedure Call is a remote procedure call standard/protocol that uses

XML to encode its messages and HTTP as the transport mechanism.

17

Webpack

Webpack is a module builder that allows compiling JavaScript modules into a single

JavaScript file.

WebSocket

WebSocket is a communication protocol over a TCP connection, designed to ex-

change messages between a browser and a web server in real-time.

Yarn

Yarn is a package manager that is a replacement for package management in web

projects with some features missing from the NPM command-line interface.

18

1 Introduction

1.1 Client presentation

Movya is an awarded digital agency offering digital media services to industrial fore-

runners. Movya produces visualized multilingual content, builds up digital service

concepts, delivers exceptional results for customers, and throws a deep understand-

ing of their needs, customers, and target audience, and then combines it with an in-

sight-driven strategy and creativity with the highest level of execution. Movya, as a

name, is connected to high-quality and cost-efficient productions. (Rautvuori 2019.)

Movya's clients are international industrial companies such as ABB, Airbus, Daikin,

Ensto, JYU, Kemppi, Kone, Metso, Outotec, Paroc, Ruukki, Thermo, Valmet Automo-

tive, Valmet, Valtra, to name a few. Movya gives its customers both a voice for their

innovative products and services, as well as tools for active marketing and sales.

Movya integrates the client's product planning, customer training, digital user and

maintenance guidelines, and marketing into a uniformed competitive, profitable en-

tity. (What we do n.d.)

1.2 Project and thesis objectives

Movya does hundreds of projects every year. It is essential for their business that the

process of creating and managing quotes is simple and efficient. For that purpose,

Movya is developing CPQ (Configure, Price, Quote system). At the time, most existing

CPQ systems were aimed at large companies. Movya is looking for a simple, easy to

use solution and customized for the company's needs.

The project's main objective was to create the system's basic functionalities, which

formed a Web service basis. An essential aspect of software development was the re-

quirement to use a combination of modern server and client-side technologies. All

technologies were selected by the customer and presented in the background re-

search of the work.

19

The main result of the thesis was the product itself - the Web service called Moffers,

which stands for Movya Offers. The purpose of the written part of the thesis work

was to study modern software development and the review of problems occurring in

the process of development and ways of their solution.

2 Web services

2.1 What are Web services?

First of all, Web services is technology. Like any other technology, it has a reasonably

well-defined application environment. If Web services are looked at in the context of

the network protocol stack, it can be seen that, in the classical case, this is nothing

more than another add-on on top of the HTTP protocol. (McIlraith, Son, & Zeng 2001;

Web services in theory and practice for beginners 2019.)

On the other hand, the Internet can be hypothetically divided into several technolog-

ical layers. At least two conceptual types of applications can be distinguished: com-

puting nodes that implement non-trivial functions and applied web resources. Also,

the latter is often related to the services of the former. But the Internet itself is not

homogeneous. There are different applications on different network nodes. They

work on various hardware and software platforms, use different technologies and

languages. Web services were invented to tie it all together and enable some applica-

tions to communicate with others. They provide interfaces for exchanging data be-

tween different applications, used in different languages and distributed across other

nodes. (Richardson & Ruby 2008; Web services in theory and practice for beginners

2019.)

2.2 Difference between Web services and APIs

Both APIs and Web services are communication tools. A particular case of such com-

munication as client-server interaction is shown in Figure 1.

20

Figure 1. Client and server communication

Web services are often confused with APIs. Despite the similarity in purpose, there

are some minor differences between them: while a Web service facilitates communi-

cation between two devices over a network, an API acts as an interface between two

different applications to communicate with each other. The Web service is, as it

were, a particular case of the API: it works over the HTTP protocol (network), sup-

ports JSON data and XML format, is limited to REST, SOAP, and XML-RPC for commu-

nication. (Samer 2017.)

3 React

In recent years, the SPA has become increasingly popular in modern web develop-

ment. Unlike MPA, they allow smoothly and quickly changing web content without

reloading the page, thanks to various JavaScript libraries and frameworks. One of

these libraries is React - an open-source JavaScript library for building user interfaces.

(ReactJS by Example-Building Modern Web Applications with React 2016.)

React was created by Facebook in 2011, and in May 2013, the project's source code

was published on the JSConf US website. (React.js history, 2019.)

React was developed to solve problems related to developing complex user inter-

faces from the View layer in any MVC frameworks. (ReactJS by Example-Building

Modern Web Applications with React 2016.)

21

3.1 DOM and Virtual DOM

The entire structure of a web page is represented using the DOM as HTML elements

that can be manipulated (change, delete or add new ones). JavaScript is used to in-

teract with DOM. However, manipulating HTML elements with JavaScript causes per-

formance degradation, significantly when changing a large number of elements,

which will inevitably affect the user experience. The concept of virtual DOM was cre-

ated to solve the performance problem. Virtual DOM is a lightweight copy of the reg-

ular DOM, and the distinctive feature of React is that this library works with virtual

DOM, and not the regular one. (Čto takoe Reakt. Pervoe priloženie 2017.)

Figure 2. Virtual and real DOM comparison (Hamedani 2018a)

If an application needs information about the state of elements, then virtual DOM is

accessed. If elements of a web page need to be changed, the changes are first made

to the virtual DOM. Then the new state of the virtual DOM is compared with the cur-

rent state. And if these states are different, React finds the minimum amount of ma-

nipulation necessary before updating the real DOM to a new state and performs

them (Figure 2). As a result, this interaction scheme with a web page's elements

works much faster and more efficiently than with the DOM directly. (Aggarwal 2018.)

22

3.2 JSX

JSX is a JavaScript language extension representing a way to describe visual code

through a combination of JavaScript code and HTML markup. Figure 3 shows how JSX

allows any valid JavaScript expression to be included in elements using parentheses.

JSX expressions are transpiled into pure JavaScript, allowing JSX elements, for exam-

ple, inside loops or as variables. (Znakomstvo s JSX n.d.)

Figure 3. JSX syntax

React can be used without JSX, but JSX is the recommended way to create a UI be-

cause it makes it more descriptive and allows React to display more useful error mes-

sages. (Znakomstvo s JSX n.d.)

3.3 Rendering elements

The smallest blocks of a React application are elements. The definition of the sim-

plest element is shown in Figure 3. Elements in React are regular JavaScript objects

that are faster to work with than common elements on a web page. (Rendering èle-

mentov n.d.).

React uses ReactDOM.render() method to render elements. This method takes three

parameters: the element to render, DOM-element to add the element to, the op-

tional callback function (Figure 4). (Rendering èlementov n.d.)

Figure 4. ReactDOM.render() method

23

React elements are immutable. After an element is created, it is not possible to

change its attributes or child elements. And the only way to change the interface de-

fined in an element is to create a new element and pass it to ReactDOM.render()

function. (Rendering èlementov n.d.)

3.4 Components and props

React allows creating elements that embed in a web page. However, this is poorly

suited for creating complex HTML markup. React element objects are difficult to re-

use in similar situations and harder to maintain. React uses components to solve this

problem. Components are easier to update and reuse. Components are similar to Ja-

vaScript functions. They store state through properties and return React elements,

which then appear on the web page. (Komponenty 2017.)

Components can be defined in two equivalent ways: functional and class. A func-

tional component is a regular JavaScript function that receives data as an object

called "props" and returns a React element (Figure 5). (Komponenty i propsy n.d.)

Figure 5. Functional component

The definition of a class component assumes the use of ES6 classes and the render()

method's mandatory use, which returns the generated element in JSX (Figure 6).

(Komponenty i propsy n.d.)

Figure 6. Class component

24

Props represent a collection of values that are associated with a component. These

values allow creating dynamic components that do not depend on hard-coded static

data. (Props 2017.)

3.5 State

React components can have a state. A state is an object that describes the local state

of a component and gives it interactivity. Unlike props (that represent input data)

passed to a component from outside, the state stores objects created directly in the

component, entirely depending on it, and can be changed. (State 2017.)

The only place where the state is set in a class component is in the class constructor.

Figure 7 shows how a component's state is first initialized in the constructor function

and then implemented inside the class component. Updating the local state triggers

reactive rendering by re-rendering the component and its children. (Sostoyanie i

žiznennyj cikl n.d.)

Figure 7. Class component initialization and using with state

In functional components, the state is set using the useState() hook in the function

body at the top level (Figure 8). (Kratkij obzor hukov n.d.)

25

Figure 8. Functional component initialization and using with state

3.6 Component lifecycle

In the working process, the component goes through several lifecycle phases: mount-

ing, updating and unmounting. At each of the phases, a specific function is called in

which it possible to define any actions. The most common lifecycle functions are

shown in bold in Figure 9. (Hamedani 2018b.)

Figure 9. Component lifecycle and lifecycle functions (Hamedani 2018b)

For all class components, the render() function is required. It is launched at the stage

of the initial mounting of the component, as well as during the update. Immediately

after the component is mounted, the componentDidMount() function is run, in which

it is recommended to handle side effects, for example, make API calls. As soon as

26

changes are detected in the DOM structure (as a result of props or state changes),

the componentDidUpdate() function runs. When the component finally exits, it is

time to do the cleanup actions using the componentWillUnmount() function (Hame-

dani 2018b.)

3.7 Event handling

The main differences between event handling in React elements and DOM elements

are that events in React use camelCase syntax, and with JSX, a function is passed as

an event handler instead of a string. Figure 10 shows an example of a handling click

event.

Figure 10. Handling onClick() event

3.8 Context API

React passes data from parent to child components via props from top to bottom. As

the application grows, the component tree becomes layered, and data passing be-

comes cumbersome and painful. This problem of passing data along the component

chain is called "prop drilling" (Figure 11). (Spukas 2019.)

Figure 11. Prop drilling

27

Context API solves the prop drilling problem by passing data to all components with-

out explicitly passing it through each level of the tree (Figure 12). (Kontekst n.d.)

Figure 12. Context API

React provides ready-made interfaces for creating and using context. The context ob-

ject is created using the createContext() function, into which a default value can be

passed if needed. Each context created includes a Provider component that allows

the context to be distributed among its child Consumer components. (Kontekst n.d.)

A short example of creating and using a context using the above functions is shown

in Figure 13

Figure 13. Context creating and using

4 GraphQL

In 2012, because the performance of Facebook's mobile applications that used REST-

ful and FQL was questionable, applications often crashed. The company's engineers

28

decided to improve the way data is passed and created a query language for APIs.

This made describing the capabilities and requirements of data models for client-

server applications possible. In July 2015, programmers released the initial GraphQL

specification and reference implementation of GraphQL in JavaScript called

graphql.js. In September 2016, GraphQL specification passed the technical preview

stage. This meant that it was officially ready for release, although Facebook had used

it for many years. (Bènks & Porsello 2019.)

When GraphQL specification was released, some positioned it as a replacement for

REST. It solves REST architecture's common issues such as over-fetching, under-fetch-

ing, endpoint management, versioning, schema definition, documentation, and sub-

scriptions. (Bènks & Porsello 2019; Newby 2019.)

4.1 Solving REST problems using GraphQL

4.1.1 Over-fetching

With a REST request, there is no easy way to get a specific limited set of fields. The

client always receives all data from the resource. And this can lead to over-fetching,

which means fetching too much data that is often not used. (Bènks & Porsello 2019.)

Using GraphQL, it is possible to "ask for what you need, get exactly that". (The

GraphQL Foundation 2020a.)

This issue can be demonstrated with the following example. Suppose there is a stu-

dent object with fields id, name, email, phone. Web application only needs to get the

id and name fields. GraphQL query shown in Figure 14 will return the required values

only for id and name fields and will not retrieve values for the other fields of the ob-

ject (Figure 15).

29

Figure 14. GraphQL query with required data

Figure 15. Server response with required object data

4.1.2 Under-fetching

Sometimes the opposite problem occurs with REST: to fetch two different resources,

two separate requests have to be sent to the server. (Bènks & Porsello 2019.)

GraphQL allows getting "many resources in a single request" to solve the under-

fetching issue. (The GraphQL Foundation 2020a.)

Suppose there is also an object college, which has attributes: name and location. Ob-

ject student has a relation with the object college. Using REST to get students and

their college data, two separate requests have to be performed to the server, such as

"/api/students" and "/api/colleges" endpoints. However, an application can retrieve

student and college objects data in a single request using GraphQL, shown in Figure

16.

30

Figure 16. Single GraphQL query to get multiple objects data

An example of the result of such a query is shown in Figure 17.

Figure 17. Server response with multiple objects data

4.1.3 Endpoint management

Unlike REST, where new endpoints are created as an application grows (and their

number can quickly get out of hand), in GraphQL, a typical architecture includes one

endpoint (Figure 18). A single endpoint can act as a gateway and manage multiple

data sources, and a single endpoint simplifies data organization. (Bènks & Porsello

2019.)

31

Figure 18. Querying data to "/graphql" endpoint in GraphiQL

4.1.4 Schema definition

"Describe what's possible with a type system". (The GraphQL Foundation 2020a.)

GraphQL is strongly typed, queries are based on fields and their associated data

types. If there is a type mismatch in a GraphQL query, server applications return un-

derstandable and helpful error messages. It helps in debugging and error detection

by client applications. GraphQL also provides client libraries that can help to reduce

explicit data transformation and analysis. (GraphQL – kratkoe rukovodstvo 2019.)

An example of the Student and College data types is shown in Figure 19.

Figure 19. Data types used in GraphQL

4.1.5 Documentation

"Move faster with powerful developer tools". (The GraphQL Foundation 2020a.)

32

GraphQL makes it easy to document APIs without leaving the editor, using a strongly-

typed schema as documentation. Figure 21 shows an example of using the Documen-

tation Explorer in GraphiQL. (The GraphQL Foundation 2020a; Newby 2019.)

Figure 20. Documentation Explorer in GraphiQL

4.1.6 Versioning

"Evolve your API without versions" (The GraphQL Foundation 2020a.)

As an application develops and needs change, API also needs to evolve, changing its

schema. In REST, it is quite normal to offer, in this case, several versions of the same

API, for example, indicated at the endpoint as "/api/v1", "/api/v2". (Losoviz 2020.)

In GraphQL, it is possible to change APIs into deprecated fields at the field level (Fig-

ure 21). Therefore, when accessing a deprecated field, it receives a warning. After

some time, the deprecated field can be excluded from the schema, and then no

more clients will use it. This way, the GraphQL API can evolve without the need for

versioning. (Wieruch 2018.)

33

Figure 21. Using a deprecated directive in GraphQL

4.2 Queries

GraphQL implements ideas developed initially for queries against SQL databases: a

GraphQL query can return related data. It is possible to use GraphQL queries to

change or delete data. No wonder the abbreviation "QL" in their names means the

same thing: query language. Despite this similarity, the GraphQL and SQL query lan-

guages are completely different. They have entirely different syntax and are designed

for completely different environments: SQL queries are sent to the database, and

GraphQL queries are sent to the API. (Bènks & Porsello 2019.)

GraphQL query is a simple string sent in the body of a POST request to a GraphQL

endpoint. This line always looks the same and does not depend on the programming

language used in the project. (Bènks & Porsello 2019.)

All GraphQL queries start at the root query, and what needs to be retrieved during

the query is called a field. A query always has precisely the same shape as a result, so

the client still gets what it expects, and the server knows exactly which fields are be-

ing requested. A query can be made using a shorthand syntax where the operation

type and name are omitted. (The GraphQL Foundation 2020b).

Figure 20 shows an example of a root query in a shorthand syntax that asks for the

field users, inside which a nested field companies is optionally defined.

34

Figure 22. GraphQL query and response data

GraphQL queries always return JSON data. If the query is successful, the JSON docu-

ment displays the data in the data field, in case of an unsuccessful error in the errors

field. (Bènks & Porsello 2019.)

An example of an authorization error is shown in Figure 23.

Figure 23. GraphQL query and response error

35

4.3 Arguments

GraphQL arguments are key-value pairs associated with the operation field and im-

plemented to select data or filter the GraphQL operation results. (Bènks & Porsello

2019.)

Figure 24 shows an example of a query for a specific user using a known id.

Figure 24. GraphQL query with an argument

In GraphQL, it is possible to pass arguments to fields and nested objects. This helps

to avoid multiple round-trip cycles of data, tedious and cumbersome in the REST API.

(Ravichandran 2019.)

4.4 Operation type and name

In real applications, it is useful to use the type and name of the operation when per-

forming it. This makes the code easier to read and more comfortable to debug. (The

GraphQL Foundation 2020b.)

An example of a query includes the keyword "query" as operation type and "users"

as an operation name is shown in Figure 25.

36

Figure 25. GraphQL query with the operation type and name

GraphQL uses the following types of operations: query, mutation, or subscription,

each of which describes what type of operation is being performed. (The GraphQL

Foundation 2020b.)

4.5 Variables

Since the arguments for fields are dynamic in most applications, it is not recom-

mended to pass them directly in the query string. GraphQL offers to extract dynamic

values from a query and pass them as variables. Variables in GraphQL use the "$"

sign. Further, through the ":" sign, the data type of the variable is indicated, and the

"!" sign can optionally be added, which suggests that the variable is required. (The

GraphQL Foundation 2020b.)

Any GraphQL IDE has a "QUERY VARIABLES" window that specifies the values of vari-

ables in JSON format. An example of a query using variables is shown in Figure 26.

37

Figure 26. GraphQL query using variables

4.6 Aliases

In JSON, properties must be unique within a single object. (Osnovy GraphQL 2019.)

Figure 27 shows an example of an error query for an object with different arguments.

Figure 27. GraphQL error with the same fields

When it is needed to query data in the same field with different sets of arguments,

GraphQL provides aliases. (Ravichandran 2019.)

38

An example of using aliases "user1" and "user2" to query users with different ids is

shown in Figure 28.

Figure 28. GraphQL query with using aliases

4.7 Fragments

To duplicate structures of the same type in queries, GraphQL provides a useful con-

cept of fragments. This allows creating multiple fields and including them in multiple

queries. A fragment is specified using the fragment keyword, followed by its name

and type. (Osnovy GraphQL 2019.)

The improved syntax of the previous example using the userDetails fragment is

shown in Figure 29.

39

Figure 29. GraphQL query with using fragment

4.8 Directives

A directive is used in GraphQL in two cases: when required to return some value by

condition (@include) or skip some value (@skip). (Osnovy GraphQL 2019.)

Figure 30 shows an @include directive example: the withCompany variable is de-

clared, responsible for whether the company field should be included in the query.

Figure 30. GraphQL query with an @include directive

40

4.9 Mutations

Mutations in GraphQL perform data changes that affect the original data's state,

such as creating, updating, or deleting. When describing mutations, a syntax is simi-

lar to when forming queries but using a mutation operation type instead of a query.

(Bènks & Porsello 2019.)

Figure 31 shows an example of the addUser mutation that returns the created user's

fields.

Figure 31. GraphQL mutation

4.10 Subscriptions

Subscriptions are a way of passing data from a server to clients who want to receive

real-time updates. Subscriptions, like queries, specify a set of fields to be delivered to

the client. Still, unlike queries, the client does not need to re-send the request - the

result is automatically sent every time a specific event occurs on the server. Another

difference from queries is that subscriptions are stateful and require the mainte-

nance of the GraphQL document, variables, and context for the subscription dura-

tion. For example, in Figure 32, the server remembers the subscription, requested

fields, and so on from the client and uses them to return a response to an event.

(Vardhan 2020.)

41

Figure 32. Scheme for implementing subscriptions in GraphQL (Vardhan 2020)

A classic example of using the subscriptions would be a chat implemented with Web-

Sockets. Figure 33 shows an example of a chat application, in which a message is sent

from the client (right) and received in listening mode using subscriptions on the

server (left).

Figure 33. A chat app implemented using the GraphQL subscriptions

42

4.11 GraphQL server

GraphQL server is required to execute queries. It provides a single endpoint for client

interaction and recognizes the query before responding with the correct data (Figure

34). (Glover 2019; Huder 2019.)

Figure 34. GraphQL general architecture (Huder 2019)

GraphQL service tokenizes the query string and parses the resulting set of tokens to

create an abstract syntax tree. Then there is a validation process with the existing

scheme. In case of an error, the corresponding response is returned to the client. If

the query is valid, the tree can be reduced to a more straightforward form. If query

analyzers are defined, they will be called. At runtime, all resolvers are called to get

the actual data for each field. The resolver function is used to retrieve data for the

corresponding field. This function queries a database or a third-party server. After re-

turning all resolvers' results, the GraphQL server packages the data in the format de-

scribed by the query and sends it back to the client. (Huder 2019.)

Three architectures include GraphQL Service: GraphQL server with a database con-

nected, GraphQL server that integrates existing systems, and a hybrid approach.

43

4.11.1 GraphQL server with a database connected

This type of architecture has a single web server that implements the GraphQL speci-

fication. The server reads the query's payload when it arrives and retrieves the infor-

mation it needs from the database, i.e., resolves the query. It then creates a re-

sponse object and returns it to the client (Figure 35). (Huder 2019; Big Picture

(Architecture) n.d.)

Figure 35. GraphQL server with a single database (Big Picture (Architecture) n.d.)

4.11.2 GraphQL server that integrates existing systems

In this type of architecture, the GraphQL server integrates several existing systems

into a single consistent API (Figure 36). This architecture is relevant when working

with many services with their API (Huder 2019; Big Picture (Architecture) n.d.)

Figure 36. GraphQL server integrates systems into a single API (Big Picture

(Architecture) n.d.)

44

4.11.3 Hybrid approach

By combining the two previous approaches, it is possible to build a GraphQL server

with a connected database and communicate with third-party resources. When this

server receives a query, it decides on the resource that provides the data (Figure 37).

(Huder 2019; Big Picture (Architecture) n.d.)

Figure 37. A hybrid approach to building architecture with GraphQL server (Big

Picture (Architecture) n.d.)

4.11.4 Server building

GraphQL server implementation locally using modern libraries and frameworks does

not require any special skills and can be implemented in a few code lines. Figure 38

shows an example of a GraphQL server built with Express.

45

Figure 38. HTTP server built with Express

Using the graphqlHTTP() function from the express-graphql package, the scheme de-

scribed in a separate file is "attached", and the server is started on port 4000. Thus, a

local path "http://localhost:4000/graphql" is generated for the client, to which que-

ries can be sent.

Every GraphQL server has two main parts that define how it works: schema and reso-

lution functions. (Helfer 2016.)

4.11.5 Schema

GraphQL schema is at the heart of any GraphQL server. It defines the server's API, al-

lowing clients to know what operations can be performed, what queries are allowed

to make, what types of data can be retrieved from the server, and the relationships

between these types. (Helfer 2016; Mbanugo 2019.)

Figure 39 shows the example of schema indicating that the application has three

types – Author, Post, and Query. The third type, Query, is to mark the entry point into

the schema. Every query has to start with one of its fields: getAuthor or getPostsByTi-

tle. Author and Post refer to each other. (Helfer 2016.)

46

Figure 39. GraphQL schema (Helfer 2016)

A graphical representation of this schema is shown in Figure 40.

Figure 40. GraphQL schema: a graphical representation (Helfer 2016)

4.11.6 Resolvers

Schema tells the server what queries are allowed for clients and how the different

types are related, but it does not contain information where the data for each type

comes from. This is what resolvers (or resolve functions) are for. (Helfer 2016.)

47

Regardless of the implementation language, each resolver can take four arguments:

root, args, context, and info. The root argument is an object that is used to pass data

from parent to child resolvers. The args is an object with arguments passed to the

field in the query. The context argument is a mutable object that is created and de-

stroyed between each query. The info argument contains information about the que-

ry's status, including the field name, a path to the field from the root. (Stuart 2018.)

An example of an asynchronous resolver using the context argument to store authen-

tication data is shown in Figure 41.

Figure 41. Auth function me() using asynchronous resolver

4.12 GraphQL client

The GraphQL client's purpose is to send queries to the server (without constructing

HTTP requests). A typical GraphQL client also provides features like data caching, val-

idation, and optimization of queries based on the schema. (Huder 2019; Advanced

Tutorial – Clients n.d.)

4.12.1 Sending queries to the server

One of the benefits of GraphQL is that it allows receiving and updating data declara-

tively. In other words, it provides a higher-level abstraction over the API. GraphQL cli-

ent is responsible for designing, optimizing, and sending the request over the net-

work. The interface component only indicates what data is needed. (Huder 2019;

Advanced Tutorial – Clients n.d.)

48

4.12.2 Integration with UI components

After processing the received data, the GraphQL client is responsible for updating the

UI's necessary part. Depending on the platforms and framework, there are different

approaches to how the process of updating the interface takes place as a whole. For

example, the React library's GraphQL client uses the concept of HOCs and hooks

(Apollo Client version >= 3.0) to obtain the required data and make it available in the

interface component. (Huder 2019; Advanced Tutorial – Clients n.d.; Hooks n.d.)

4.12.3 Data caching

Most applications need to maintain a cache of data that was previously received

from the server. Caching information at the local level is essential to ensure free user

experience and load from the server. Each GraphQL client implements the caching

process differently. There are simple mechanisms, the algorithm of which is to save a

hash table in which the key is the query, and the value is the response from the

server. This method of preservation can perform its function but does not do it effi-

ciently. The main problem with this approach is data duplication, which leads to a

rapid increase in cache size. A more cost-effective approach is based on the pre-nor-

malization of data. This allows getting flat data and a set of individual records with

unique identifiers. With IDs, it is possible to retrieve and modify data quickly. (Huder

2019; Advanced Tutorial – Clients n.d.)

4.12.4 Build-time schema validation and optimizations

Since the schema contains all the information about what the client could potentially

do with the API, it is possible to check and optimize the client's requests during the

project build process. GraphQL client can analyze all GraphQL queries in the project

and compare them with the schema's information. This allows catching most of the

errors during the product development phase. (Huder 2019; Advanced Tutorial –

Clients n.d.)

49

5 Apollo

Apollo is a data graph building platform developed by Meteor Development Group

Inc. The data graph is a communication layer that connects the client side of the ap-

plications to the internal services. (Documentation Home n.d.)

The Apollo platform helps to build, query, and manage a data graph. This is a unified

data layer that enables applications to interact with data from connected data stores

and external APIs. A data graph is positioned between application clients and

backend services, facilitating data flow between them, as shown in Figure 42. (The

Apollo platform n.d.)

Figure 42. App data flow with Apollo and GraphQL (The Apollo platform n.d.)

Apollo data graph uses GraphQL to define and provide the structure of the data flow.

(The Apollo platform n.d.)

5.1 Apollo Server

The data graph needs a service that can handle GraphQL operations from application

clients by interacting with internal data sources to retrieve and modify data. To build

this service, Apollo Platform provides Apollo Server, an extensible open-source JavaS-

cript GraphQL server that is used to define GraphQL schema and resolvers. (The

Apollo platform n.d.)

Web iOS Android

Microservice DatabaseREST API

Client

Server

50

Apollo Server can be used as a stand-alone GraphQL server, an add-on to existing

Node.js application middleware (such as Express), or as a gateway for a federated

data graph. It provides a fairly straightforward setup for fetching data, incremental

implementation to add functionality as needed, universally compatible with any data

source, build tool, and any GraphQL client. (Introduction to Apollo Server n.d.)

5.1.1 Stand-alone installation

Using Apollo Server as a stand-alone in a project requires installing apollo-server and

graphql NPM dependencies and then creating an index.js file as an entry point that

defines the schema and its functionality, i.e., resolvers (Figure 43). (Apollo Server

2020.)

Figure 43. Deploying Apollo Server using SDL (Apollo Server 2020)

5.1.2 Integration installation

Apollo Server integration packages can be paired with specific web frameworks, e.g.,

Express, Koa, Hapi, Fastify, and few others. Each of these connected integrations has

its installation instructions and examples on its package README.md. (Apollo Server

2020.)

51

An example of the most popular Apollo Server and Express integration installed using

the apollo-server-express NPM package is shown in Figure 44.

Figure 44. Deploying Apollo Server with Express integration using SDL

5.1.3 Context

For each request, Apollo Server provides a context as an optional third argument in

its constructor. The context is defined as a function, called on every request, and gets

an object containing the req property representing the request itself (Figure 45).

(Apollo Server 2020.)

Figure 45. Context using for passing authentication scope

52

Context can be especially useful for authentication data transfers, database connec-

tions, and custom fetch functions. (Resolvers n.d.)

5.2 Apollo Client

Apollo Client is an open-source state management library for JavaScript that allows

defining queries directly in UI components, manage local and remote data with

GraphQL, and retrieve, cache, and modify app data automatically when the UI is up-

dated. (The Apollo platform n.d.; Introduction to Apollo Client n.d.)

Apollo Client includes official React support, so all React functionality is available out

of the box with both create-react-app and React Native, including setting up Babel

and other JavaScript tools. There are also community-supported libraries for other

popular libraries and frameworks like Angular, Vue, Svelte, Ember. (View Integrations

n.d.)

5.2.1 Apollo Client architecture

General Apollo Client architecture is shown in Figure 46.

Figure 46. Apollo Client architecture (Huder 2019)

The main components of the Apollo Client are the cache and network layer. Cache in

Apollo Client is implemented to store the results of its queries in the browser, avoid

53

unnecessary network calls, and speed up the application. Depending on the specific

fetch policy settings, a query can be fetching new data from the server or reading it

from the cache. (Corey 2018.)

5.2.2 Cache layer

Apollo Client offers several data fetch policies: cache-first, cache-and-network, net-

work-only, no-cache, and cache-only. (Huder 2019.)

Cache-first is Apollo's default fetch policy. If all data required to complete a query are

in the cache, that data will be returned. Apollo Client requests the server only if the

required data is missing in the cache. This fetch policy aims to minimize the number

of network requests directed from the interface component. (Corey 2018.)

Using cache-and-network fetch policy Apollo Client checks the cache for the data

and, if the data is in the cache, returns it. Regardless of whether any data was found

or not, a request is passed to the server to get the most recent data and update the

cache with it. This fetch policy allows the user to get a quick response and also keep

the cached data consistent with server data through additional network requests.

(Corey 2018.)

With network-only fetch policy, data is not read from the cache. Instead, the Apollo

Client always makes a network request. The cache is updated after the server re-

sponds. This fetch policy solves the problem of data consistency at the expense of in-

stant response to the user. (Corey 2018.)

No-cache fetch policy is similar to the network-only policy but skips the cache updat-

ing step. This may be appropriate if you do not need to store certain information in

the cache. (Corey 2018.)

Cache-only fetch policy is the exact opposite of no-cache, avoiding any network re-

quests. If the requested data is not available in the cache, an error will be thrown.

54

This can be useful if there is a need to display consistent information to the user

while ignoring any server-side changes. (Corey 2018.)

5.2.3 Network layer

The main component for building a network layer in Apollo Client is the Apollo Link.

This library is designed as a powerful way to compose actions around data processing

using GraphQL. Each link is a subset of functionality combined with other links to cre-

ate complex data management flows. At a basic level, Apollo Link is a function that

receives an Operation and returns an Observable, as shown in Figure 47. (Concepts

Overview n.d.)

Figure 47. Apollo Link (Concepts Overview n.d.)

An Operation object contains the information about a query (query), operation name

(operationName) and its variables (variables) being sent with, extension data (exten-

sions) and functions such as getContext(), setContext() and toKey(). The getContext()

returns a request context that can be used by links to determine the actions to take.

The setContext() function takes either a new context object or a function that takes

the previous context and returns a new one. The toKey() function converts the cur-

rent operation to a string used as a unique identifier.

To support different application requirements, each GraphQL response is repre-

sented by an Observable. Observables provide a subscribe method that takes three

callbacks: next(), error(), and complete(). The next() method can be called many times

until either the error() or complete() callback is triggered. This callback structure is

great for working with current and planned GraphQL results, including queries, muta-

tions, subscriptions, and even live queries. (Hauser 2017.)

The network layer algorithm sequentially sends a request to each Apollo Link one by

one, as shown in Figure 48. (Concepts Overview n.d.)

55

Figure 48. Apollo Client network layer (Concepts Overview n.d.)

Apollo Link is based on the request() method, which accepts as an argument the op-

eration being passed through the Apollo Link and optionally a link to the next link in

the chain (forward). (Concepts Overview n.d.) An example implementation of a basic

custom network layer using Apollo Link is shown in Figure 49.

Figure 49. Custom network implementation with Apollo Link

5.2.4 Configure Apollo Client with React

Apollo encapsulates all of the lower-level network logic and provides an interface to

the GraphQL server. The first thing to do when using Apollo is to set up an ApolloCli-

ent instance that needs to know the GraphQL API endpoint to work with network

connections (Figure 50). (Burk n.d.; Get started n.d.)

56

Figure 50. Creating an Apollo Client instance

To connect Apollo Client to React the ApolloProvider component is used. It wraps the

React application and puts the client in a context, allowing access to it. Typically,

ApolloProvider is located at the highest level in the component tree to access

GraphQL data for any component (Figure 51). (Get started n.d.)

Figure 51. Creating an Apollo Client instance

5.2.5 Data querying

Once the ApolloProvider is connected, it is possible to query data using the use-

Query() React hook, which uses the Hooks API to exchange GraphQL data with the UI.

A GraphQL query can be passed to the useQuery() hook using the gql function. When

the component is rendered, and the useQuery() hook runs, a result object is returned

that contains the loading, error, and data properties, which are used to handle the

load state of the application, error in getting data that might occur, and the data it-

self received from the server (Figure 52). (Get started n.d.)

57

Figure 52. Data query using useQuery() hook

5.2.6 Updating the cache after a mutation

For a single entity update mutation, the Apollo Client automatically updates that en-

tity's value in its cache when the mutation returns. To do so, the mutation must re-

turn the id of the modified entity along with the fields that were modified. (Muta-

tions n.d.)

For all other cases, Apollo provides the feature to manage the contents of the cache

manually. This is very convenient, especially after a mutation to update, create, or

delete data has been made. It allows defining exactly how the cache should be up-

dated. (More Mutations and Updating the Store n.d.)

There are two ways to sync cache each time a mutation operation performs: by

refetching matching queries using the refetchQueries object property and modifying

the cache data using the update() helper function. (Krofegha 2020.)

The easiest way to update the cache is by using the refetchQueries object property. It

defines one or more queries that need to be run after a mutation is completed to

refetch the store's parts that may have been affected by the mutation. An example

58

of using this when deleting a user is shown in Figure 53. (Advanced topics on caching

n.d.)

Figure 53. Deleting a user using refetchQueries() object property

Using the update() function is the recommended way to update the cache. It pro-

vides full control over the cache, allowing changes to the data model to be made in

response to a mutation in any way. The useMutation call can include an update()

function if the mutation modifies multiple entities, creates or deletes entities, as the

Apollo Client cache is not automatically updated. (Advanced topics on caching n.d.)

Figure 54 shows an example of defining an update() function in a useMutation call

when adding item:

59

Figure 54. Updating an item using update() function

6 Project implementation

6.1 Development environment and tools

As a development environment, Visual Studio Code was used. It is a cross-platform

lightweight and powerful code editor developed by Microsoft with built-in support

for JavaScript, TypeScript, and Node.js and a rich ecosystem of extensions for other

programming languages and runtimes. (Getting Started 2020.) Visual Studio Code al-

lows developing console and GUI applications, websites, web applications, and ser-

vices. The editor includes a built-in terminal and code debugger, tools for working

with Git, refactoring tools, code navigation, contextual hints, syntax highlighting, op-

tions for customizing custom themes, keyboard shortcuts, and configuration files.

As a project versioning, Git and Tower were used. The Tower is a powerful native Git-

client with a rich feature set, thoughtful design, and handy tools to make it easier to

interact with Git (no command-line required).

60

As the main browser, Chrome was used. With built-in Chrome DevTools set and addi-

tionally installed React Developer Tools and Apollo Client Developer Tools exten-

sions, it allows viewing and changing the DOM model, page styles (CSS), debugging

JavaScript code, viewing messages, running JavaScript in the console, optimizing web

application speed, checking network activity, working with Local Storage, React com-

ponents and Apollo Cache.

For interacting with the GraphQL API and testing its endpoints were used GraphiQL

(at the stage of using Express as a server) and GraphQL Playground (when Apollo

Server installed instead).

6.2 Setting up the project

The project was initialized from scratch and included both client and server sides.

The main (two-level) folder structure of the project is shown in Figure 55.

Figure 55. The two-level folder structure of the project

All technologies for implementing the client-server architecture of the project are

based on JavaScript - the primary programming language currently used by Movya

for all their products.

61

6.2.1 Database

The database cluster creation was carried out in the cloud using the MongoDB Atlas

service, which maximally simplifies working with MongoDB without the need for

complicated configuration procedures and settings. The final collections of docu-

ments used in the project and stored in the MongoDB Atlas moffers-cluster are

shown in Figure 56.

Figure 56. Moffers-cluster collections

All project collections were populated with the data sufficient for testing the main

frontend functions, such as displaying data in various UI-blocks, tables and pagina-

tion. Since collections can vary from complete emptying to significant sizes during

CRUD operations testing, it makes sense to have an automatic mechanism to return

to the initial dataset. For these purposes, a database population script was imple-

mented. For demonstration purposes, the original population script of all the cluster

collections, implemented in the project and containing more than 300 lines of code,

has been minimized. Figure 57 shows the minimized example of this script for creat-

ing the documents collection.

62

Figure 57. Minimized population script for the documents collection

At first, the script initiates a connection to the configured database using mongoose

and config NPM packages. Then before the database population with new data, it de-

letes the old collection. The script is executed in the terminal command line by run-

ning the node populate_db.js command from the server folder in which it is located.

As output in the terminal, the script displays data about the successful deletion of

the collection (Figure 58) and newly populated data optionally (commented out).

Figure 58. Output after database populating in the terminal

63

6.2.2 Server

Initially, a GraphQL server's deployment was done using Express with the express and

express-graphql NPM packages installed, as shown in Figure 59.

Figure 59. Setting up an Express GraphQL server

The simplest way was to run a GraphQL server. (The GraphQL Foundation 2020c.)

However, as the project grew and the requirements for it changed, it was decided to

change the implementation of the server deployment from Express to Apollo Server

due to the need to implement a user authentication system. As mentioned in para-

graph 5.1.3, Apollo Server provides a context as an optional third argument in its

constructor to be used for authentication data transfers. Figure 60 shows the deploy-

ment of the Apollo Server as a GraphQL server implementing a user authentication

system.

64

Figure 60. Setting up a new GraphQL server with auth using Apollo Server

User authentication is based on passing a login token in an HTTP authorization

header. The context() function looks at the request headers, pulls off the authoriza-

tion header, and stores it to a variable. Then it calls a getUser() function with the to-

ken and expects a user to be returned as payload if the token is valid. After that, it re-

turns a context object containing the (potential) user, for all of our resolvers to use.

(Authentication n.d.)

The getUser() function in its implementation uses the jwt.verify() method of the

jsonwebtoken library, which takes the token and the privateKey (the secret key de-

fined in config) as arguments and returns the payload decoded if the signature is

valid. This securely transferring information between parties as a JSON object is com-

pact and self-contained and complies with the RFC 7519 standard. (Introduction to

JSON Web Tokens n.d.)

65

It is easy to see that regardless of how to set up the GraphQL server, the GraphQL

schema is at the heart of its implementations. The schema describes the functionality

available to client applications that connect to the server. To create a GraphQL

schema and build an interface based on it, the project used the graphql module.

Figure 61. The schema defined

As seen in Figure 61, when creating a schema, the query and mutation fields are de-

fined in its constructor, described using the graphqlObjectType class definition. The

point is that it is not enough just to export the schema to the server.js file. When an

application accesses GraphQL, the latter must request all the required data. Thus, it

is necessary to create root types of each type of operation, query, and mutation (op-

tional). (The GraphQL Foundation 2020d.) Inside the root query, all GraphQL queries

implemented in the project are described in the fields field. A particular example of

such queries during server configuration is shown in Figure 62.

66

Figure 62. Queries getUsers(), getUserById()

The getUsers () and getUserById() queries are strongly typed with the UserType (Fig-

ure 63) and using the resolve() function, the find() and findById() mongoose library

methods, return a specific user or all users from the database respectively.

Figure 63. User fields type defining implemented with UserType

67

6.2.3 Client

Client development with React has been deployed using a recommended command-

line tool called Create React App, as shown in Figure 64. It sets up the development

environment to take advantage of the latest JavaScript features, optimizes the pro-

duction application, and provides comfort during development. One of this setup's

benefits is not necessary to install or configure tools like webpack or Babel. They are

preconfigured and hidden, allowing the developer to focus on the code. (Sozdaem

novoe React-priloženie n.d.)

Figure 64. Creating the client using the Create React App tool and NPX utility

This command will install all the dependencies and packages required for the React

project, including react, react-dom, and react-scripts. If the installation is successful,

the terminal displays the following success message (Figure 65).

Figure 65. A message after React successfully installed

The message describes the available commands for running, building, testing, and

ejecting an application. The client is ready to start.

68

6.2.4 Nodemon

When developing Node.js applications, it is necessary to restart the server to see the

changes made in action. This adds an extra step to workflow, which can be elimi-

nated by using nodemon. Nodemon is a CLI utility that wraps a Node.js app, watches

the file system any changes, and automatically restarts the server improving devel-

opment productivity.

Nodemon was installed to the project locally as a development dependency using

yarn install nodemon --save-dev command. After that, the nodemon src/server.js

script was added to the package.json file in the server directory to start the server

with the short command npm server (Figure 66).

6.2.5 Concurrently

After the server and client are configured, it is possible to run them using the yarn

start or npm server commands, written using the react-scripts start and nodemon

src/server.js scripts in the corresponding package.json files. It is needed for such run-

ning to use two separate terminals, which is inconvenient for quick development. In-

stead of opening two terminals and running development servers separately, the

project used the NPM package concurrently and implemented the concurrently \

"npm run server\" \ "npm run client\" script that runs the servers with just one-line

code yarn run dev. This script is also server-side in the package.json file (highlighted

in Figure 66).

69

Figure 66. Package.json file in the server directory

6.2.6 Eslint

As seen in Figure 66, various eslint plugins are additionally installed to the server di-

rectory as development dependencies. Similar packages were also installed on the

client-side (Figure 67).

Figure 67. Development dependencies in the package.json file of the client

ESLint is a linter or static code analysis tool written in Node.js. Since JavaScript, being

an interpreted programming language has no compilation step, and many errors can

70

only be detected at runtime, using ESLint can significantly simplify development. It

brings the code to a more uniform style, helps to find existing errors in the code and

avoid them, can automatically fix many of the found problems and errors, and inte-

grates perfectly with many development tools. ESLint is very flexible and customiza-

ble, and the developer can choose which rules to use or which style to apply. Many

of the available rules are disabled by default, but it is possible to enable them in the

.eslintrc configuration file, global or local to the project. (Begunov 2018.)

As seen in Figure 55, the .eslintrc configuration files were added to both the client

and the server's root directories. The simplest of them from the server folder is

shown in Figure 68.

Figure 68. .eslintrc configuration file in the server directory

6.2.7 Ant Design

In today's world, with tight time constraints, whether it is advisable to spend time

building each React component from scratch always arises. Various component li-

braries have been created to address this issue. Developers either gradually replen-

ish such a library themselves as needed, or use some of the ready-made solutions in

a reasonably large assortment of NPM modules, which should be selected based on

71

popularity and maintenance. However, the design task is often complicated because

there is no such ready-to-use library with React components, agreed with the design-

ers, and tested on real projects at the start of the project. And what if the project has

no design, no designers, no design system? Usually, in such cases, before starting a

project, it is chosen in favor of using ready-made component libraries to minimize

the time spent on writing their own.

Given the popularity of React, its component approach, and the considerable hype

around design systems in recent years, design libraries' choice is quite broad. After

analyzing some of them and completing a small test project, Ant Design was chosen

as the design system for the Moffers project.

According to official documentation, Ant Design is "a design system for enterprise-

level products". (Ant Design n.d.) With its principles, style guides, and a library of

components with an impressive list and functionality, this design system has two de-

manded features that make it stand out among similar libraries: tables and forms.

And these were precisely the complex components that were mainly used in the pro-

ject.

Tables

Built-in pagination. By default, Ant Design pagination is the client-side, but it is possi-

ble to implement server-side pagination.

Filtering and sorting. Out of the box, filtering by a drop-down selector with options is

available. Sorting and filtering algorithms have to be described manually. By default,

tables cannot filter records by the entered line, but it is possible to write your custom

filter described in detail in the documentation.

Selection of lines. If needed to ensure that specific table rows are selected for further

actions by the user, Ant Design tables provide a flexible API.

72

Nesting. If needed to make specific table rows expandable to hide additional infor-

mation, Ant Design tables can do this out of the box.

Cells merging. Cells merging in the header and the rows are different, but in both

cases, it is necessary to know in advance which cells are needed to merge and specify

them explicitly. It complicates the processing of dynamic data somewhat, but in prin-

ciple, does not make it impossible.

Column and heading fixation. A useful feature for rendering large amounts of data.

You can fix both the left and right columns, the table header, and even all together.

Editable cells. The API for tables is generally quite flexible and allows rendering cells

in any way you want. So, the flexibility of editing cells is only a particular case of us-

ing the provided capabilities described in detail in the documentation.

Forms

The Form container component does not do much by itself: hide the asterisks of re-

quired fields, change the relative position of labels and fields, initialize the initial val-

ues, call the onSubmit(), onFinish(), and onFinishFailed() handlers. However, with the

Form.Item component nested inside it, which takes over control of the form ele-

ments, a significant number of useful methods are added to its functionality. In the

created form, you can add validation rules using simple objects, synchronize field val-

ues with the management system, store the default field values separately, and then

be applied by calling just one method.

Connecting Ant Design to React

For React apps built using Create React App utility, Ant Design provides a way to con-

nect the antd library to React and then modify the webpack config for some customi-

zations. (Use in create-react-app n.d.) According to the documentation, the following

things were installed: the antd NPM package, the create-react-app config utilities re-

act-app-rewired, and customize-cra, the babel plugin for importing components on

73

demand babel-plugin-import, and the compiler less-loader to customize the theme.

Next, the package.json scripts and config-overrides.js were modified with these tools,

as shown in Figure 69 and Figure 70.

Figure 69. Main scripts of the package.json file on the client

Figure 70. Config settings of the config-overrides.js file

This sequence of actions allows setting up a React project with Ant Design, avoiding

ejecting the application.

6.3 Data model

Figure 71 shows an abstract data model that describes data types, the project data-

base schemas and standardizes their relationship.

74

Figure 71. Data model

In particular, the figure shows that all schema fields contain the date of creation and

update, the user belongs to a specific company, which may have several addresses,

and so on.

The significant volume of work put on project's implementation does not allow de-

scribing all its functionality within this thesis work. In this connection, the following

sections will present the most significant parts and aspects of the project in a some-

what concise context.

6.4 User management

The web service provides a wide range of resources and access, which depends on

users' access rights when registering through roles. However, before the specific user

role is established, it is necessary to check whether the user is who he claims to be.

Therefore, the project implemented authentication and authorization processes.

75

6.4.1 User authentication

To confirm the registered user's identity, token-based single-factor authentication

was implemented based on checking the user's email credentials and password. Fig-

ure 72 shows the login() function, which implements server-side user authentication.

Figure 72. User auth logic implemented in the login() function

This function takes email, password, and remember (optionally) from the context as

destructured arguments and first checks if the user exists in the database (by the

email). Depending on whether the user is found, the function will either return an

AuthenticationError or check whether the entered password matches. In the end, de-

pending on the password entry's correctness, the user will also receive an error mes-

sage or be allowed to enter the system.

In case the user does not have credentials to enter the system, it is possible to regis-

ter using the register() function. This function is implemented according to the princi-

ple similar to the login() function: first, it is checked whether there is a user with the

same email in the database, then the procedure is carried out to check if the entered

passwords match. If successful, the new user is saved in the database and automati-

cally logged into the system (Figure 73).

76

Figure 73. User register logic implemented in the register() function

The actions for accessing the database connected with finding a user, authenticating

his password, and saving a new user are asynchronous and implemented using the

mongoose and bcryptjs libraries' built-in methods. Additionally, before saving the

user to the database or updating it, helper methods are implemented for hashing the

password and removing the password field from results. Depending on the boolean

value of the optional remember parameter, the user's session duration is deter-

mined. All helper methods are defined in the user model to facilitate interaction with

the database (Figure 74).

77

Figure 74. Helper methods of the user's mongoose.Schema

On the client-side, user authentication and registration are described in the corre-

sponding form components: LoginForm and RegisterForm, the UI shown in Figure 75.

Figure 75. Login and register UI

78

Switching between forms occurs by clicking on the appropriate link located under the

button. The top input is focused by default. Form submit buttons have onFinish()

events that take values from inputs and trigger login and registration mutations, as

shown in Figure 76 for the login example.

Figure 76. LoginForm component

As seen from the figure, LoginForm gets the login() mutation and the loginLoading

boolean argument, which is used to disable the button during a query to the data-

base, from the userContext. All the logic for authentication, registration, and user

logout is implemented using the React Context API. The current user data is provided

to all components of the React application by the userProvider, which using the React

hook useMemo(), calculates the memoized values, and stores it in its state (Figure

77).

79

Figure 77. Storing and passing data in the userProvider component

As shown in Figure 78, user data is displayed in the avatar on the header's right side,

as two capital letters of his first and last name, obtained using the getInitials() script

(Figure 79). By clicking on the avatar, a modal window opens, allowing the user to log

out (Figure 78).

Figure 78. Logout: modal window and the implementing function

The logout() function clears the browser localStorage object and URL, removes all

user data in the provider, and sets the user authentication flag to false.

80

Figure 79. UserAvatar component and getInitial() function logic

6.4.2 User authorization

After the system has successfully authenticated the user's identity, the authorization

process determines whether the authenticated user has access to specific infor-

mation resources and rights to perform certain actions. Any registered user of the

web service has the role: admin, manager, member, or guest (by default). Depending

on the given role, users have different capabilities. Figure 80 shows the user page UI

for two different user types, admin and member.

Figure 80. The user page UI for different roles

81

As seen in the figure, the HS user, unlike the BO user, whose + Add User button is

blocked, can add a user to the table.

6.5 Routing

Routing in a SPA application is used to load certain parts depending on the URL de-

fined in the browser's address bar. React does not include a built-in implementation

of routing; this is the task of special libraries. The project used the most popular solu-

tion for adding routing to a React application - React Router. It helps keep the UI in

sync with the URL by using route components at any nesting level. When the URL

changes, React Router will automatically mount and unmount the required compo-

nents. Since React Router is an external library, it must be installed as an NPM de-

pendency.

After adding the React Router, the App.js app's root React component was wrapped

in a Router component that defines a set of routes and maps the request to the

routes (Figure 81).

82

Figure 81. Main routing

To select a route, a Switch object is defined, which allows choosing the first available

route and using it for processing. Without this object, the Router can use multiple

routes to process the same request if they match the request string. Each route rep-

resents a Route object. It has several attributes. In particular, two attributes were set

here: path and render. The path argument is an address pattern against which the re-

quested URL will be matched. The render argument renders the component respon-

sible for processing the request along the given route.

The LinkMenu component is assembled from Link components used in the routing

system to create links with a given href (Figure 82).

83

Figure 82. LinkMenu component

This is not the only navigation method implemented in the project, but one of the

main ones is through the sidebar (Figure 83).

Figure 83. Specific company routing via the sidebar

84

Requests for all other URLs that do not match the sidebar routes are redirected to

the Dashboard page (the Web Service home page). If it does not find an object by its

identifier, the user will receive a corresponding message (Figure 84)

Figure 84. Routing with incorrect ID

6.6 Content presentation and manipulation

Data presentation is often connected with procedures of pagination, sorting, and

filtering. In a SPA, it is important to avoid, if possible, requesting the same data multi-

ple times. A data caching mechanism solves this issue. Both data manipulation and

presentation affect how the data is cached.

6.6.1 Pagination

The web service works with significant amounts of data, the size of which can reach,

for example, a thousand rows in tables. It doesn't make sense to upload all of this

data to the frontend since the user won't view most of it. Besides, loading and dis-

playing a big block of information takes too long. In this connection, server-side pagi-

nation was implemented in the project, which implies loading data in parts and page-

by-page display, while ensuring faster loading of the initial page.

GraphQL provides various pagination models to enable different client capabilities:

Plurals, Slicing, Pagination and Edges, End-of-list, counts, and Connections, Complete

Connection Model (The GraphQL Foundation 2020e.) The project implemented the

85

last of the above pagination models as the most complex and advanced in functional-

ity.

This model's design allows the client to paginate through the list, ask for information

about the connection itself, ask for information about the edge itself, and change

how backend pagination since the user uses opaque cursors. (The GraphQL Founda-

tion 2020e.)

Unfortunately, GraphQL does not provide a ready-made solution for implementing

the Complete Connection Model of pagination, describing only its pattern in a stand-

ardized way. (GraphQL Cursor Connections Specification n.d.) Implementing such a

solution from scratch is quite tricky. Therefore, a search was done for libraries that

endow the application with cursor-based pagination functionality, as a result of

which the NPM package @limit0/mongoose-graphql-pagination was added to the

project. This library supports Relay style cursor pagination with Mongoose mod-

els/documents and also provides type-ahead (autocomplete) functionality using

MongoDB regex queries. With its help, for example, the getUsers() query has

changed as follows (Figure 85).

Figure 85. Users query before (right) and after (left), making changes

86

On the initial page load, for example, users' page, the React requests the API for an

initial display of the data, with sort and filter parameters reset (Figure 86).

Figure 86. Users' page initially loaded

As a result, the standard pagination with numbered pages provided to the Ant Design

library's client did not find applicability in the project. It may have problems redraw-

ing the component after adding or removing data. The default number of entries for

the users' table is set to 7 in the defaultRows variable. To request additional data, the

UI provides the Load More button, clicking on which increases the first variable by

the value of the defaultRows variable (Figure 87).

Figure 87. Additional data loading function loadMore()

87

6.6.2 Sorting and filtering

An additional advantage of the modified getUsersConnection() query (Figure 85) to

the implemented pagination is to sort and filter the data, using the parameters,

which are optionally passed from the client in the args object.

The data sorting implementation on the UI is implemented using the Ant Design li-

brary tables' standard feature, the data filtering – using the input located above the

table. Figure 88 shows an ascending alphabetical sorting on the Name column while

filtering on the phrase "ba".

Figure 88. Sorting and filtering a table in UI

The table is filtered automatically after the user input a character or phrase. To re-

duce the number of unnecessary requests to the server, filtering is performed after

an input pause of 250 milliseconds. This value is defined in the delay variable. Also,

as seen in the figure, when the amount of requested data fits on one page, the Load

more button disables. The implementation of sorting and filtering data functions is

shown in Figure 85.

88

Figure 89. Sorting and filtering functions

As shown in Figures 87 and 89, the pagination, sorting, and filtering functions in their

implementation use a specific function fetchMore(). This function is provided by the

Apollo Client and included in the result object returned by the useQuery() hook. This

allows executing a GraphQL query and merging the result with the original using

specified variables (Figure 90).

Figure 90. The fetchMore() function using

89

6.6.3 Apollo cache updating

To ensure that the Apollo cache is updated correctly when additional data loads,

sorts, or filters are performed, the query's stable storage key should be specified us-

ing the @connection directive (Figure 91).

Figure 91. Using the @connection directive with the users key

This would result in the accumulated users in every query or more data loading

placed in the cache under the users key, which could later be used for imperative

cache updates (Figure 92).

Figure 92. The Apollo cache updating after loading more users

90

This figure shows the UI and Apollo cache states before loading additional users (in

an inclined plane) and after (horizontally). It can be seen that as a result of the execu-

tion of the loadMore() function, the Apollo cache was updated correctly: the loaded

user records were merged with the previous ones using the cursor IDs.

6.6.4 Creating a new item

New item creation is implemented in the project for all pages and tables in the same

way. The UI has an Add button, which opens a modal window with a form (Figure

93).

Figure 93. Adding a new user through a modal window form

After the form fields are filled correctly, and the submit button is pressed, add muta-

tion is performed (Figure 94).

91

Figure 94. Mutation addUser()

If it is successful, a new item will be rendered on the page, and the UI will be up-

dated. For best performance, adding an item is done with updating the cache using

the update() function (Figure 95).

Figure 95. Adding a new user with updating the cache

92

On the client-side, the form component implements various rules for validating in-

puts (Figure 96), on the server-side, for checking the existence of an item in the data-

base (Figure 97).

Figure 96. Form for adding a new user

The figure shows some methods for validating form field data (Figure 96, left). Role

and company inputs are implemented as a drop-down list with a dataset using the

Select component of the antd library, which loads data only after clicking on the field

(Figure 96, center) using the useLazyQuery() hook (Figure 101). Password validation is

implemented using the zxcvbn library, a password strength estimator inspired by

password crackers (Figure 97). It uses unique algorithms for password strength test-

ing, which do not necessarily depend only on the password length (Figure 96, right).

93

Figure 97. Password strength and matching check

The add mutation will not be sent if all form fields are not filled correctly. The muta-

tion will not return a new item if such an item already exists in the database, and the

user will receive a message about it from the server (Figure 98).

Figure 98. If the user already exists in the database

94

6.6.5 Deleting an item or editing its data

Deleting or editing an item in its implementation is much like creating it. These ac-

tions are mainly carried out through the details tab, which contains the edit form and

the button for deleting an item (Figure 99).

Figure 99. Details tab

After the fields have been edited as required, the data can be saved to the database

by clicking on the Save button. If it is necessary to delete an item using the Delete

button, a modal window for confirming this irreversible operation opens (Figure

100).

Figure 100. The confirmation modal window

95

After successfully changing the item data or deleting the item (saving it to the data-

base), the user will receive a confirm message, implemented on the client using the

useEffect() React hook (Figure 101).

Figure 101. Updating UI using the useEffect() hook

6.6.6 Groupable list items

One of the critical functions implemented in the project was the grouping of product

items. It had a rather complicated and non-trivial implementation, which involved

creating an additional ProductLineItem schema in the product schema on the server-

side (Figures 71, 102).

96

Figure 102. Product and LineItem schemas

Each lineItem can include a workItem, expense, or lineItem, which can also have a

workItem, expense, lineItem, etc. That is, any lineitem implementation is always re-

cursive, which can be seen particularly in these figures.

The groupable list implementation can be clearly demonstrated on the client-side.

Figure 103 shows a particular Sub-ex product, which initially receives data from the

server as a Stim items group and a Rodriguez-Boehm work item. The Stim group in-

cludes two items: a work item Durgan-Auer and an expense Temp.

Figure 103. Products tab on the tenders' page

Using the Add buttons on the right side of the item panel, test data was added as two

groups, three work items, and three expenses (Figure 104).

97

Figure 104. Products tab on the tenders' page after items added

By default, all initially created groups and items are added to the root directory of

the product. After the item or groups are created, it is possible to drag and drop from

the product root directory to any of the groups, including any nesting level, for exam-

ple, in the order shown in Figure 105: Group 1 remained in the product root folder,

the steam group was placed in Group 1, Group 2 is placed in the Stim group, work

items and expenses of Group 1 and Group 2 are swapped.

Figure 105. Products tab on the tenders' page after items mixed

98

The client's implementation of this functionality was done using a hierarchical list

structure component DirectoryTree of the antd library, whose API supports built-in

drag-and-drop capabilities (Figure 106).

Figure 106. The DirectoryTree component

This component receives several properties: draggable, treeData, and onDrop().

Draggable specifies whether this DirectoryTree is draggable. treeData contains the

data needed to create the tree structure. The onDrop() function implements the

main drag-and-drop logic: it finds the dropped object, gap, or object to insert into

and updates the product state to re-render the UI. (Figure 107).

99

Figure 107. Main onDrop() and secondary loop() functions

6.6.7 Editable documents

Editable documents are the last feature of the project that is worth mentioning. The

document is a rich text editor with advanced functionality, particularly adding photos

and videos (Figure 108).

100

Figure 108. Editable document

The text in the picture describes the main features implemented in the editor. They

were built using the low-level draft.js framework, a tool for solving a very narrow

range of text input control and text editing tasks, and the draft-js-plugins-editor li-

brary. The editor is connected to the page using the Editor React component (Figure

109).

Figure 109. The Editor component

101

The main properties declared in the editor are editorState and onChange(). The edi-

torState property defines the editor's current state. As seen from the code, editor-

State is stored in the parent component's state and updated using the onChange()

method through the setEditorState() update function of the useState() React hook.

The onChange() function is a function that is called upon any manipulation in the edi-

tor. Since the editor appears on the page with predefined content already, the cre-

ateWithContent() method is used.

The Save button saves the document content, converted by the convertToRaw()

function, into a formatted JavaScript object in the database. Figure 110 shows the

complex data structure of an object stored in the database.

Figure 110. A document saved in the database

Content is an object with two top-level properties: blocks and entityMap. For this

data to end up in the database as an embedded document it is necessary to define

content data type in GraphQL. Thus, the NPM package graphql-type-json was used,

which provides the JSON value scalar GraphQL type. By defining the content object

102

type as JSON, the data is sent to the server using the updateDocument mutation (Fig-

ure 110).

Figure 111. The updateDocument mutation (left) and defining the Document type

(right)

7 Conclusion

7.1 Discussion

During the last ten years, the JavaScript development industry made considerable

progress, and it keeps emerging fast. This resulted in numerous development tools

(scripts for project bootstrapping like create-react-app and automated code format-

ting like eslint used for this thesis project) and packages (NPM). Tools allow perform-

ing many development and code maintenance tasks, such as scanning code for qual-

ity issues and fixing incorrect formatting, start the project quickly, and skip creating

boilerplate code. The variety of packages covers almost every possible problem or

need that one can imagine.

However, these benefits need to be used with caution. For example, the automated

project setup can sometimes be too complicated for a new developer or contain fea-

tures that are not required for a project. E.g., for the frontend part, the utility create-

react-app was used, which performed some comprehensive setup of configuration.

And then, a similar step had to take place for adding Ant Design to the project. For

this step, another utility updated some project configuration according to the Ant

Design library's needs.

103

JavaScript packages usually are built with many dependencies, which often leads to a

large dependency tree. This makes it pretty difficult to track the quality of all the

packages that a project uses. As a rule of thumb, only the packages with high popu-

larity and good maintenance support were used for this project. This approach allows

building a reliable and robust software with the opportunity to update dependency

packages later when any patches or bug fixes are released.

7.1.1 Solving REST problems

Traditional REST applications are robust and proved themselves with time as reliable

solutions. However, some significant disadvantages can be addressed to improve

both development and performance: over-fetching (as well as under-fetching) of

data and maintenance-heavy endpoints.

Over-fetching and under-fetching are described in detail in the GraphQL section of

the thesis. The GraphQL approach solves these problems very nicely. Having

implemented the data layer with GraphQL allowed building the application that has

an excellent performance. This allows using it on mobile devices as well as with low

network latency. There were many requirements for fetching data in the project, and

implementation-wise it all got down to writing GraphQL queries without any changes

on the server-side. The query language is very flexible and allows fetching data that

has any level of complexity. For example, there was a case with a recursively nested

data structure in the project, and GraphQL allowed to make the implementation

pretty quickly.

The second problem of building endpoints on the server-side for the REST API usually

consists of a developer's responsibility to write many endpoints. If the data model of

a project is complicated, it requires many RESTful endpoints to support it. Thus, the

server side's development is both times consuming and might lead to a large

codebase. Also, it is essential to consider the maintenance aspect of a project. E.g.,

when a new requirement for the data model comes in, it might require changes in

multiple endpoints. This will then require updating tests, documentation, etc. If a

new developer joins a project, it can take a lot of time for onboarding. This problem

104

gets very nicely solved by GraphQL - there is only a single endpoint on the server-side

that has to be deployed. Thus it can be said that this way, the server-side API is

maintenance-free.

Apollo platform is a prevalent and mature open-source implementation of GraphQL

client and server. It was very easy to adapt and even to customize to satisfy the

project's requirements. Even the complex implementation issues of caching have

been solved thanks to the library's high popularity and support of the wide

community of Apollo developers.

7.1.2 Solving UX requirements

Any modern front-end application requires an MVC framework. React (as a "View"

part of MVC) is the most popular solution. All sort of organizations and companies

has adopted it. With this, the JavaScript community got the widest choice of UI

components available out there for web-applications. React is both a performant and

reliable library. It supports all browsers eliminating cross-browser issues for

development completely. It is backed by Facebook and is being developed

continuously. Also, the entry point and the learning curve for new developers is low.

It promotes many development patterns and goes along with the development of

JavaScript (ECMA) programming language.

The project has many UI components that are very interactive and require rapid

updates of data. The VirtualDOM feature of React solved all the potential

performance issues in the browser, even with rendering a lot of data (e.g., infinite

paginated scrolling). There were no performance issues noticed during the testing of

the application with a production set of data.

The design system Ant Design was a great compliment to React. It eliminates the

need for a visual designer for the team. It provides many ready-to-use UI

components (especially tables and forms since they are heavily used in the project).

Both of these components offer very flexible and rich functionality. In the end, all the

UX requirements were solved.

105

7.2 Results

As a result of the work, the primary goals were achieved, the web service was imple-

mented. It satisfies main requirements, such as the modern stack of technologies

that have been used for both the project's backend and frontend parts; most of the

required features were implemented.

Also, one of the critical aspects was the analysis of using design systems to build the

UI. After exploring different options, the Ant Design library was chosen, and a small

proof-of-concept application was built to prove that it can satisfy the requirements.

This design system saved an enormous amount of time and effort. It provided a large

selection of ready-made components, endowed with excellent functionality for im-

plementing the most complicated web service features.

Having had some working experience with the React library previously, I can note

some positive aspects of its use combined with the GraphQL and Apollo, which

worked well together in the project. In particular, these technologies allowed to re-

duce network traffic and increase the applications' speed by specifying the only data

required in each request (preventing over-fetching), obtaining many resources in a

single request (preventing under-fetching), and implementing data caching. The

GraphQL type system provides a living form of self-documenting, which significantly

improves developers' interaction when combined with GraphiQL or GraphQL Play-

ground tools.

106

References

Advanced topics on caching. N.d. Documentation on the Apollographql website. Ac-
cessed 4.9.2020. Retrieved from https://www.apollographql.com/docs/react/cach-
ing/advanced-topics/#updating-after-a-mutation.

Advanced Tutorial – Clients. N.d. Article on the Howtographql website. Accessed
26.8.2020. Retrieved from https://www.howtographql.com/advanced/0-clients/.

Aggarwal, S. 2018. Modern web-development using reactjs. International Journal of
Recent Research Aspects, 5(1), 2349-7688.

Ant Design. N.d. Documentation on the AntDesign website. Accessed 10.9.2020. Re-
trieved from https://ant.design/.

Apollo Server. 2020. Documentation on the Github website. Accessed on 1.9.2020.
Retrieved from https://github.com/apollographql/apollo-server.

Authentication. N.d. Documentation on the Apollographql website. Accessed
9.9.2020. Retrieved from https://www.apollographql.com/docs/apollo-server/secu-
rity/authentication/.

Begunov, A. 2018. ESLint. Znakomstvo. [ESLint. Acquaintance.] Original publication:
ESLint. Знакомство. Article on the Medium website. Accessed on 10.9.2020. Re-
trieved from https://medium.com/@catwithapple/eslint-знакомство-69ffc19edbf8.

Bènks, A., & Porsello, E. 2019. GraphQL: yazyk zaprosov dlya sovremennyh veb-
priloženij. [GraphQL: query language for modern web applications.] Original publica-
tion: GraphQL: язык запросов для современных веб-приложений. Progress Kniga
Ltd.

Big Picture (Architecture). N.d. Article on the Howtographql website. Accessed
26.8.2020. Retrieved from https://www.howtographql.com/basics/3-big-picture/.

Burk, N. N.d. Getting Started. Article on the Howtographql website. Accessed
3.9.2020. Retrieved from https://www.howtographql.com/react-apollo/1-getting-
started/.

Concepts Overview. N.d. Documentation on the Apollographql website. Accessed
2.9.2020. Retrieved from https://www.apollographql.com/docs/link/overview/.

Corey, G. 2018. Understanding Apollo Fetch Policies. Article on the Medium website.
Accessed 1.9.2020. Retrieved from https://medium.com/@galen.corey/understand-
ing-apollo-fetch-policies-705b5ad71980.

Čto takoe Reakt. Pervoe priloženie. 2017. [What is React. First application.] Original
publication: Что такое Реакт. Первое приложение. Article on the Metanit website.
Accessed on 18.8.2020. Retrieved from https://metanit.com/web/react/1.1.php.

107

Documentation Home. N.d. Documentation on the Apollographql website. Accessed
26.8.2020. Retrieved from https://www.apollographql.com/docs/.

Get started. N.d. Documentation on the Apollographql website. Accessed 3.9.2020.
Retrieved from https://www.apollographql.com/docs/react/get-started/.

Getting Started. 2020. Documentation on the Visual Studio Code website. Accessed
8.9.2020. Retrieved from https://code.visualstudio.com/docs.

Glover, R. 2019. GraphQL in Depth: What, Why, and How. Article on the Ponyfoo
website. Accessed 25.8.2020. Retrieved from https://ponyfoo.com/articles/graphql-
in-depth-what-why-and-how.

GraphQL – kratkoe rukovodstvo. 2019. [GraphQL – Quick guide.] Original publication:
GraphQL – Краткое руководство. Manual on the Coderlessons website. Accessed on
20.8.2020. Retrieved from https://coderlessons.com/tutorials/veb-raz-
rabotka/izuchite-graphql/graphql-kratkoe-rukovodstvo.

GraphQL Cursor Connections Specification. N.d. Documentation on the Relay website.
Accessed 15.9.2020. Retrieved from https://relay.dev/graphql/connections.htm.

Hamedani, M. 2018a. React Virtual DOM Explained in Simple English. Article on the
Programmingwithmosh website. Accessed 18.8.2020. Retrieved from https://pro-
grammingwithmosh.com/react/react-virtual-dom-explained/.

Hamedani, M. 2018b. React Lifecycle Methods – A Deep Dive. Article on the Program-
mingwithmosh website. Accessed 18.8.2020. Retrieved from
https://programmingwithmosh.com/javascript/react-lifecycle-methods/.

Hauser, E. 2017. Apollo Link: Creating your custom GraphQL client. Article on the
Apollographql website. Accessed on 2.9.2020. Retrieved from https://www.apol-
lographql.com/blog/apollo-link-creating-your-custom-graphql-client-c865be0ce059/.

Helfer, J. 2016. GraphQL explained. Article on the Apollographql website. Accessed
on 25.8.2020. Retrieved from https://www.apollographql.com/blog/graphql-ex-
plained-5844742f195e/.

Hooks. N.d. Documentation on the Apollographql website. Accessed 27.8.2020. Re-
trieved from https://www.apollographql.com/docs/react/api/react/hooks/.

Huder, K. N. 2019. Modifikovanij sposib kešuvannya danih klientsʹkoj biblioteki
Apollo-Client dlya GraphQL. [Modified method of caching Apollo-Client client library
for GraphQL.] Original publication: Модифікований спосіб кешування даних
клієнтської бібліотеки Apollo-Client для GraphQL. Master's thesis, Igor Sikorskij KPI.

Introduction to Apollo Client. N.d. Documentation on the Apollographql website. Ac-
cessed 27.8.2020. Retrieved from https://www.apollographql.com/docs/react/.

108

Introduction to Apollo Server. N.d. Documentation on the Apollographql website. Ac-
cessed 26.8.2020. Retrieved from https://www.apollographql.com/docs/apollo-
server/.

Introduction to JSON Web Tokens. N.d. Documentation on the JWT website. Accessed
9.9.2020. Retrieved from https://jwt.io/introduction/.

Komponenty. 2017. [Components.] Original publication: Компоненты. Article on the
Metanit website. Accessed on 18.8.2020. Retrieved from https://me-
tanit.com/web/react/2.2.php.

Komponenty i propsy. N.d. [Components and props.] Original publication: Компо-
ненты и пропсы. Documentation on the React website. Accessed 18.8.2020. Re-
trieved from https://ru.reactjs.org/docs/components-and-props.html.

Kontekst. N.d. [Context.] Original publication: Контекст. Documentation on the React
website. Accessed 19.8.2020. Retrieved from
https://ru.reactjs.org/docs/context.html.

Kratkij obzor hukov. N.d. [Hooks at a glance.] Original publication: Краткий обзор
хуков. Documentation on the React website. Accessed 18.8.2020. Retrieved from
https://ru.reactjs.org/docs/hooks-overview.html.

Krofegha, B. 2020. Understanding Client-Side GraphQl With Apollo-Client In React
Apps. Article on the Smashingmagazine website. Accessed 3.9.2020. Retrieved from
https://www.smashingmagazine.com/2020/07/client-side-graphql-apollo-client-re-
act-apps/.

Losoviz, L. 2020. Versioning fields in GraphQL. Article on the LogRocket website. Ac-
cessed on 20.8.2020. Retrieved from https://blog.logrocket.com/versioning-fields-
graphql/.

Mbanugo, P. 2019. GraphQL: Schema, Resolvers, Type System, Schema Language,
and Query Language. Article on the Telerik website. Accessed on 25.8.2020. Re-
trieved from https://www.telerik.com/blogs/graphql-schema-resolvers-type-system-
schema-language-query-language.

McIlraith, S. A., Son, T. C., & Zeng, H. 2001. Semantic Web Services. IEEE intelligent
systems, 16(2), 46-53.

More Mutations and Updating the Store. N.d. Article on the Howtographql website.
Accessed 3.9.2020. Retrieved from https://www.howtographql.com/react-apollo/6-
more-mutations-and-updating-the-store/.

Mutations. N.d. Documentation on the Apollographql website. Accessed 3.9.2020.
Retrieved from https://www.apollographql.com/docs/react/data/mutations/.

109

Newby, C. 2019. A comparison of GraphQL and REST. Article on the ITNEXT website.
Accessed 20.8.2020. Retrieved from https://itnext.io/a-comparison-of-graphql-and-
rest-e125d77fb329.

Osnovy GraphQL. 2019. [GraphQL basics.] Original publication: Основы GraphQL. Ar-
ticle on the Coldfox website. Accessed on 24.8.2020. Retrieved from
http://www.coldfox.ru/article/5c5369b5779576192190cf1c/Основы-GraphQL.

Props. 2017. Article on the Metanit website. Accessed on 18.8.2020. Retrieved from
https://metanit.com/web/react/2.3.php.

Rautvuori M. 2019. Joulukuun tuore tavaramerkki: Tarinasi takana - Movya. Article
on the PRH website. Accessed on 12.8.2020. Retrieved from
https://www.prh.fi/fi/uutislistaus/2019/P_19590.html.

Ravichandran, A. 2019. GraphQL queries explained in simple terms. Article on the
LogRocket website. Accessed on 24.8.2020. Retrieved from
https://blog.logrocket.com/graphql-queries-in-simple-terms/.

React.js history. 2019. Article on the Education-ecosystem website. Accessed on
17.8.2020. Retrieved from https://www.education-
ecosystem.com/guides/programming/react-js/history.

Rendering èlementov. N.d. [Rendering elements.] Original publication: Рендеринг
элементов. Documentation on the React website. Accessed 18.8.2020. Retrieved
from https://ru.reactjs.org/docs/rendering-elements.html.

Resolvers. N.d. Documentation on the Apollographql website. Accessed 1.9.2020. Re-
trieved from https://www.apollographql.com/docs/apollo-server/data/resolvers/.

Richardson, L., & Ruby, S. 2008. RESTful web services. O'Reilly Media, Inc.

Samer, A. 2017. Difference Between API and Web Service. Article on the Medium
website. Accessed on 14.8.2020. Retrieved from https://medium.com/@program-
merasi/difference-between-api-and-web-service-73c873573c9d.

Sostoyanie i žiznennyj cikl. N.d. [State and Lifecycle.] Original publication: Состояние
и жизненный цикл. Documentation on the React website. Accessed 18.8.2020. Re-
trieved from https://ru.reactjs.org/docs/state-and-lifecycle.html.

Sozdaem novoe React-priloženie. N.d. [Create a New React App.] Original publication:
Создаём новое React-приложение. Documentation on the React website. Accessed
9.9.2020. Retrieved from https://ru.reactjs.org/docs/create-a-new-react-app.html.

Spukas, L. 2019. Avoid Prop drilling in React with Context API. Article on the Dev web-
site. Accessed 19.8.2020. Retrieved from https://dev.to/spukas/avoid-prop-drilling-
in-react-with-context-api-1ne5.

110

State. 2017. Article on the Metanit website. Accessed on 18.8.2020. Retrieved from
https://metanit.com/web/react/2.4.php.

Stuart, M. 2018. GraphQL Resolvers: Best Practices. Article on the Medium website.
Accessed on 25.8.2020. Retrieved from https://medium.com/paypal-engineer-
ing/graphql-resolvers-best-practices-cd36fdbcef55.

The Apollo platform. N.d. Documentation on the Apollographql website. Accessed
26.8.2020. Retrieved from https://www.apollographql.com/docs/intro/platform/.

The GraphQL Foundation. 2020a. A query language for your API. Documentation on
the GraphQL website. Accessed 19.8.2020. Retrieved from https://graphql.org/.

The GraphQL Foundation. 2020b. Queries and Mutations. Documentation on the
GraphQL website. Accessed 21.8.2020. Retrieved from
https://graphql.org/learn/queries/.

The GraphQL Foundation. 2020c. Running an Express GraphQL Server. Documenta-
tion on the GraphQL website. Accessed 8.9.2020. Retrieved from
https://graphql.org/graphql-js/running-an-express-graphql-server/.

The GraphQL Foundation. 2020d. Graphql/type. Documentation on the GraphQL
website. Accessed 9.9.2020. Retrieved from https://graphql.org/graphql-js/type/.

The GraphQL Foundation. 2020e. Pagination. Documentation on the GraphQL web-
site. Accessed 15.9.2020. Retrieved from https://graphql.org/learn/pagination/.

Use in create-react-app. N.d. Documentation on the AntDesign website. Accessed
11.9.2020. Retrieved from https://3x.ant.design/docs/react/use-with-create-react-
app.

Vardhan, A. 2020. How GraphQL Subscriptions Work. Article on the Dgraph website.
Accessed on 20.8.2020. Retrieved from https://dgraph.io/blog/post/how-does-
graphql-subscription/.

View Integrations. N.d. Documentation on the Apollographql website. Accessed
27.8.2020. Retrieved from https://www.apollographql.com/docs/react/integra-
tions/integrations/.

Vipul, A. M., & Sonpatki, P. 2016. ReactJS by Example-Building Modern Web
Applications with React. Packt Publishing Ltd.

Web services in theory and practice for beginners. 2008. Article on the Sudonull web-
site. Accessed 14.8.2020. Retrieved from https://sudonull.com/post/202174-Web-
services-in-theory-and-practice-for-beginners.

What we do. N.d. Company presentation on the Movya website. Accessed on
12.4.2020. Retrieved from http://www.movya.fi/en/services.

111

Wieruch, R. 2018. The Road to GraphQL: Your journey to master pragmatic GraphQL
in JavaScript with React. js and Node. js. Robin Wieruch.

Znakomstvo s JSX. N.d. [Introducing JSX.] Original publication: Знакомство с JSX. Doc-
umentation on the React website. Accessed 18.8.2020. Retrieved from https://ru.re-
actjs.org/docs/introducing-jsx.html.

