

Kalle-Eemeli Paananen

DESIGNING A GAME FOR EMERGENT
GAMEPLAY

Developing Gatedelvers

Bachelor’s thesis

Degree programme in Game Design

2020

Author (authors) Degree title

Time

Kalle-Eemeli Paananen Bachelor of Culture
and Arts

November 2020

Thesis title

Designing a game for emergent gameplay
Developing Gatedelvers

43 pages

Commissioned by

Self-commission

Supervisor

Marko Siitonen

Abstract

Emergent gameplay can offer great benefits to a game’s design when used effectively. The
objective of this thesis was to create a design tool for adding emergence to a game and
then use that tool in order to design a game product.

This thesis collected information through literary and game analysis to create a tool that
designers could use to add emergent gameplay to their games. The design tool focuses on
actions the designer can take during the design process to encourage emergence.

A game product was then created with the help of the tool. The game product was named
Gatedelvers and is a dungeon crawler with a focus on combining emergent gameplay with
procedural generation to create gameplay variety. Playtesting was conducted on the game
with generally favorable results, although playtesting was limited due to external
circumstances.

Both the design tool and game product can be considered to be successful, but further
testing and experimentation would be necessary to confirm the tool’s effectiveness.

Keywords

game design, emergent gameplay, thesis

CONTENTS

1 INTRODUCTION .. 5

2 EMERGENT GAMEPLAY ... 5

2.1 Defining emergent gameplay .. 5

2.2 The advantages and disadvantages of designing for emergence 6

3 LITERATURE REVIEW .. 8

3.1 The Art of Game Design: A Book of Lenses ... 8

3.2 Developing the Mechanics of Plusminus .. 9

4 GAME ANALYSIS ... 10

4.1 Spelunky ... 10

4.2 Dwarf Fortress .. 12

5 GUIDELINE SUMMARY ... 14

6 DESIGNING THE FIRST PROTOTYPE ... 17

6.1 Selecting gameplay actions .. 18

6.2 Enemies and traps .. 21

6.3 Objects ... 24

6.4 Items ... 25

6.5 Trinkets ... 28

6.6 Level Generation .. 29

6.7 Boss .. 32

7 EVALUATING THE FIRST PROTOTYPE .. 33

8 DESIGNING THE SECOND PROTOTYPE .. 34

8.1 Level cards ... 34

8.2 Pitfalls ... 35

8.3 Rock Crabs ... 37

8.4 Additional items .. 38

9 EVALUATING THE SECOND PROTOTYPE ... 39

10 CONCLUSION .. 40

REFERENCES .. 42

LIST OF FIGURES

1 INTRODUCTION

The goal of this thesis is to develop the core gameplay of Gatedelvers, a co-

operative dungeon crawler with a focus on designing for emergent gameplay.

The first half of this study includes analysis of existing literature about emergent

gameplay and games that use emergence as a large part of their play

experience, with the goal of aggregating information on how to encourage

emergence in a way that improves player experience into a set of guidelines. The

latter half of the thesis will focus on the process of using the collected information

to design and develop a short, playable demo for Gatedelvers.

2 EMERGENT GAMEPLAY

Emergent gameplay is a common topic in both recent and less recent game

design discussions. Many successful indie titles released during the last decade,

such as Minecraft and Spelunky, rely heavily on emergent gameplay. Larger

game studios such as Ubisoft have also experimented with focusing their games

more on emergent gameplay (McKeand 2016).

2.1 Defining emergent gameplay

The lack of clarity surrounding the definition of “emergent gameplay” can make

addressing the topic difficult. By one definition of the words, emergent gameplay

refers to gameplay situations and options that arise in a game not as the result of

an explicit rule, but the interaction between multiple, simpler rules (Sylvester

2013). However, there is also a relatively widespread alternative interpretation

that requires something to be unintended by the game’s designers in order for it

to qualify as emergent gameplay. The difference between these definitions can

cause confusion and discord in conversations about the topic.

The definition of the word that this study will use ignores designer intent, as

whether something was intended by a game’s designer is very difficult to find out

and has no real effect on the player experience. In addition, when approaching

the matter from the field of game design, requiring emergent gameplay to be

unintentional greatly reduces the term’s usefulness to a game designer. As such,

the definition for “emergent gameplay” used for the rest of this paper will be “A

situation or option in a game that arises not from an explicit game rule but from

an interaction between several simpler rules.”

2.2 The advantages and disadvantages of designing for emergence

One of the major advantages of emergence-focused design is its ability to give

the player a feeling of freedom in how they approach a game. Allowing the player

to create their own plan and solution to achieve an in-game goal has multiple

benefits, both within the player experience and beyond it. Accomplishing a goal

can feel much more rewarding if the player feels that their method of achieving it

was their own, instead of being planned in advance by the game’s designer. The

challenges posed by the game can feel more authentic if they can be completed

in any way that makes sense within the game’s systems, instead of being limited

to specific “correct” solutions.

When emergent gameplay systems are combined with a level of randomness and

instability in the game’s scenarios, either through procedurally generated levels

or scenarios that are randomized in smaller ways, they can give the game a

massive amount of replayability and create gameplay scenarios the developer

never considered. Much of the roguelike genre and games with roguelike

elements rely heavily on this combination to create the variety the genre’s

repeating nature requires to work as an experience. At its best, this kind of design

can result in massive amounts of unique, interesting content from a relatively

small amount of actual game assets and objects by creating novel combinations

of the existing pieces.

As a result of allowing players to create unique plans to achieve their goals and

the non-designed situations emergent games can cause, emergent games have

the potential to create unique player stories during gameplay. While games with

non-emergent, scripted narratives can generally only tell a relatively limited

number of stories, an emergent gameplay system can lead to a massive amount

of different experiences. This can grant emergence-focused games an advantage

in marketing through word of mouth, as people are more likely to share a story of

a game that’s unique to them instead of being a universal experience for

everyone that plays through the game. These games tend to also be a good fit for

video content on platforms such as Youtube and Twitch due to their ability to

generate stories; an extreme example of this is Dwarf Fortress, with Youtube

channels such as Kruggsmash (Welcome to Kruggsmash… 2018) focusing

primarily on telling stories of their fortresses in the game. This can be a great

source of visibility and new players for a game.

A major downside of emergent game design is that in giving the player and game

systems more control over the state of the game, the designer gives away control

over specific parts of the experience. A game that wants to tell a scripted,

coherent narrative has to be careful about giving the player tools that could let

them skip important parts of the story the game is trying to tell. Trying to set up

scripted, emotionally impactful moments in a game with emergent core systems

can also go wrong as a result of the player’s actions interfering with the emotional

impact. For example, placing a barrel in the middle of a conversation between

characters would likely cause the characters to resume their conversation while

ignoring that both of them appear to be talking at a barrel. This could be solved

by having the characters react to the interruption, but due to the massive

possibility space emergent systems can create, accounting for everything is

either impossible or would require unrealistic amounts of work.

Another option for combining emergent gameplay systems and traditional, more

linear storytelling is to simply disable the emergent systems during important

story beats. The Legend of Zelda: Breath of the Wild (2017) opts for this solution;

carrying a Cucco, the game’s equivalent of a chicken, to the climactic final fight

against the game’s primary antagonist simply causes the chicken to disappear in

the cutscene before the fight, and most story beats happen in flashback

cutscenes the player has no control over. While this solution can work to solve

the problems emergent gameplay poses for linear narratives, it can also pull

players out of the experience if their agency over the game systems is abruptly

taken away at unpredictable times.

Games with a focus on emergent gameplay can be very difficult for a game

designer to balance due to the massive possibility space these games present.

An emergent dominant strategy can slip through until the game is released simply

due to the developer not being aware of it; this makes playtesting emergent

games very important. The ability to update the game after release is very useful

for fixing balance issues that arise from emergent strategies players find; this

makes releasing on online stores that make patching games easy, such as

Steam and Epic Games Store, a very beneficial choice from the designer’s

perspective.

3 LITERATURE REVIEW

Before starting new research on how to design games for emergence, it was

important to look into existing research and information on the topic. For this

reason, this section of the thesis will focus on a literature review of existing works

on the topic of designing games for emergence. A literature review is an account

of written material on a topic (Taylor 2001).

3.1 The Art of Game Design: A Book of Lenses

Jesse Schell’s book The Art of Game Design: A Book of Lenses (Schell 2020)

includes information on many topics related to game design, including emergent

gameplay. The book includes a list of traits a game’s design can have that

encourage emergence, similarly to the goal of this thesis’ research-focused part.

As such, it is a natural source to start gathering information from and can be used

as a basis for the design tool.

Two of Schell’s (2020) tips for creating emergence, “Add more verbs” and “Many

subjects” focus on adding more subjects and rules to the game. More subjects

and more ways for these subjects to interact naturally creates more possibility for

interesting interactions, and density of subjects increases how often they are

likely to interact with each other. Schell also recommends allowing player actions

to interact with multiple objects in order to create more interactions without

additional actions the player has to learn. He also highlights the importance of

goals that can be achieved in multiple ways, in order to encourage the player to

experiment with the game’s mechanics.

The last tip offered in the emergent gameplay section of Schell’s book is “Side

effects that change constraints”. As an example of this, Schell uses checkers. In

checkers, the positioning of each piece affects the movement options available to

all others. By having the actions and state of each game object affect all others,

player choices can gain great depth while the basic rules of a game remain

simple.

Another potentially useful topic Schell raises in his book is the idea of gameplay

modes: states of the game during which the actions available to the player

change. While the book mainly approaches this subject from the perspective of

avoiding player confusion regarding control schemes, it might have a lot to do

with the potential for emergence in a game. Games that change their mode when

dealing with different tasks, such as entering a shop, prevent the player from

interacting with those scenarios with the options they have available for the rest

of the game. In order to maximize potential for emergent strategies, it might be

best to avoid major forced input mode changes whenever possible. Spelunky,

further discussed in the Game Analysis section, is a good example of this: many

of the often shared emergent stories of that game are only possible because the

game’s shops operate under the same rules as the rest of the game world,

allowing the player to attempt to attack the shopkeepers.

3.2 Developing the Mechanics of Plusminus

In his thesis, Toikka (2020) discusses the design process of Plusminus, a

physics-based puzzle game with a focus on emergent puzzle-solving. Much of

the thesis is focused on finding a balance between realistic physics and intuitive

simplicity. While realistic magnet physics naturally lead to emergent behavior, the

behavior can be complex and difficult for a player to predict. In order for emergent

gameplay to be meaningful to the player, it is important for the behavior to be

predictable. Emergent behavior with complexity beyond the players capacity to

understand can appear as random, nonsensical events.

Toikka (2020) also mentions the idea of reducing the number of variables in an

object, then using the same variable for multiple purposes in order to simplify the

development process for designers and developers. The example used for this

was having the mass and charge of physical objects in Plusminus be proportional

to the mass of the object instead of manually set. In addition to reducing

developer workload, this ties these traits to a visible feature of the object, making

them more consistent for the player.

4 GAME ANALYSIS

In order to gather more information for the creation of the emergent gameplay

design tool, game analysis was conducted on games that successfully employ

emergent gameplay in their gameplay experience. To gain a thorough

understanding of the games analysed, it is necessary to use a combination of

playing the games and watching playthroughs by other players and reading

related material online (Game Analysis Guidelines 2011).

4.1 Spelunky

Spelunky (2012) is an action-platformer with roguelike elements such as

procedural level generation and permanent character death, with the player

usually getting sent back to the start of the game if their character died. The

game was originally created and released by Derek Yu as freeware in 2008, and

later received a HD remake in 2012. This analysis of the game will focus on the

HD remake.

Spelunky has a strong focus on emergent gameplay, with much of the gameplay

loop focusing on the player attempting to navigate through randomly generated

levels filled with obstacles such as traps and enemies with no designer intent

regarding the correct path through the level. The game starts the player with a

limited amount of ropes and bombs, tools that can be used to change the level

around the player. Bombs can destroy almost any wall or obstacle within the

game, allowing the player to create new routes through the level (Figure 1).

Ropes can be thrown to hang vertically, then climbed in order to reach higher

locations. With these two tools combined, players can skip entire levels worth of

threats by reshaping the environment to create a more favorable route. The

limited amount of bombs and ropes the player has to work with turns them into an

option for dealing with overwhelmingly unfavorable situations: the player usually

has the option of solving an obstacle by the use of these items, but has to decide

whether the obstacle is dangerous or difficult enough to use them for. The game

softens the blow of the most unfair or difficult outcomes of its random generation

by letting the player decide whether to accept the generated challenge or skip it.

The player having those universally available tools with great flexibility of use

leads to many of the emergent gameplay situations the game offers.

Figure 1: Using a bomb to destroy the environment in Spelunky HD (2012). Screenshot by author.

Spelunky is also very consistent in having all of the objects in its game world

follow most of the same rules. Beyond using bombs and rope, the player only has

access to a few actions: moving, jumping, whipping, picking objects up and

throwing. Much of the game’s emergent options revolve around two of these

actions: picking up and throwing. Instead of only allowing the player to pick up

specific objects, nearly everything in the game can be picked up. The player can

pick up items and weapons, but also unconscious enemies, treasure chests,

items in stores they have not paid for yet and non-player characters, such as the

shopkeepers or “damsels”. This leads to a lot of player options a more strictly

limited system would not have allowed. The player can pick up items in a shop

and run out without paying, angering the shopkeeper; or they can knock an

enemy unconscious and carry them to an altar to sacrifice them to Kali in

exchange for powerful items. In multiplayer, players can even pick up other

players and throw them to reach difficult locations.

While picking up and throwing objects is one of the mechanics the philosophy of

consistent effects is most visible in, it applies to almost everything in the game:

traps affect enemies the same way they affect the player, some enemies can pick

up and use items in a way similar to the player and getting knocked unconscious

on a Kali altar will cause the player to sacrifice themselves to Kali. With

everything in the game having not just their specific behaviours but also a host of

generic behaviours that apply to the category of object they belong to, everything

in the game has a massive amount of potential uses, allowing players to

improvise solutions in almost any situation due to everything being potentially

usable in the players favor. A Rock Paper Shotgun article (Wiltshire 2016) looks

into how this leads to many of the emergent stories that arise during Spelunky

gameplay, and features Derek Yu and Spelunky HD programmer Andy Hull

discussing how programming a game like this can lead to emergent gameplay.

This object class inheritance-focused style of programming and designing

gameplay elements has a history in roguelike games. The Berlin Interpretation, a

somewhat controversial interpretation of what makes a game a roguelike created

during the International Roguelike Development Conference 2008, featured both

having enough complexity through interactions between game elements and

monsters being mechanically similar to players as factors that made a game a

roguelike.

4.2 Dwarf Fortress

Dwarf Fortress (2020) (Figure 2) is a genre-mixing colony management freeware

game, at the time of writing still in development by Zach and Tarn Adams. Much

of Dwarf Fortress public media attention has focused on the emergent narratives

it creates, with written stories and popular Youtube series telling stories about

events that happened in playthroughs of the game. The most popular gamemode

has the player attempting to manage a dwarven colony in a randomly generated

fantasy world with a similarly randomly generated history. The game is

notoriously complex, having numerous systems for the inner mental workings on

individual dwarves, world history, political intrigue, physics and economy. This

collection of complex, interlocking systems appears to be what leads to much of

Dwarf Fortresses emergent gameplay and narrative.

Figure 2: Dwarf Fortress Classic 0.47.04 (2020). Screenshot by author.

Much of what allows Dwarf Fortress to have been built to such a high level of

complexity is the game’s approach to graphics: the game world is represented

primarily by colored text symbols. Due to its simple visuals, additional features

need no graphical assets or animation and can be implemented with dramatically

less development costs. In Noclip’s youtube documentary (Dwarf Fortress

creator… 2020) on Dwarf Fortress, developer Tarn Adams discusses how this

ease of development led to the game growing from a smaller side project to the

massive web of systems it is today.

The most notable disadvantage Dwarf Fortress suffers from its complexity-driven,

non-visual approach to creating emergence is its learning curve. Dwarf Fortress

is notoriously difficult for new players to learn, with fan-made mods and entire

books created for the purpose of making the game more approachable to

beginners. The time investment necessary to learn enough of the game’s

systems to be able to play the game without the help of an external tutorial

scares off many players. The actual active playerbase of Dwarf Fortress is hard

to determine, as it is not yet on a platform that allows for finding active player

numbers.

Dwarf Fortress serves as a great example of the extents to which emergence can

be taken in even a single player game. However, its impenetrable learning curve

caused by its overwhelming complexity makes it clear its approach is not

practical for most games. The benefits of adding complexity to a game have to be

weighed against the loss in ease of learning and approachability. Dwarf Fortress

represents an extreme on this spectrum, favoring depth through complexity over

approachability, and the benefits of this design strategy are visible in its

somewhat niche success.

5 GUIDELINE SUMMARY

The information gathered from the game and literature analysis will now be used

to create a design tool for designing for emergent gameplay. The goal of the tool

is to provide a practical, easily understandable aid to adding emergent gameplay

to a game. In order for the tool to be applicable in as many situations as possible

and easy to parse, the information in the tool will take the form of a list of actions

a designer can take to increase the possibility of emergence in their game.

Figure 3: A draft of the emergent game design tool (Paananen 2020)

The medium selected for the design tool was an infographic, as infographics are

easy to share online and allow information to be visually grouped. Figure 3 shows

an early draft of the tool, with suggested actions split into five categories based

on similarities in the way the actions work. This serves two purposes; to make the

information provided in the tool easier to parse, and to help designers apply the

information in ways that best fit their game by highlighting the larger design

patterns that lead to emergence.

Figure 4: The final version of the emergent game design tool (Paananen 2020)

The five-category structure was carried over to the final version of the tool (Figure

4). The first category in the final tool focuses on increasing interactions, as

emergence inherently relies on interaction between multiple subjects or rules to

occur. The second category encourages reducing constraints to allow the player

to interact with the game mechanics in creative ways. The third category, “Add

more subjects”, aims to increase interactions by increasing the number of things

capable of interacting with each other. The fourth category focuses on making the

game system unstable in order to cause interactions and emergence, as the

possibility of interactions does not affect the player experience if those

interactions never happen. The fifth and final category encourages connecting

game mechanics with real life logic the player is already familiar with to

encourage experimentation and help the player intuitively understand the game’s

systems.

6 DESIGNING THE FIRST PROTOTYPE

The rest of this study will be focused on the design, iteration and development of

a game created alongside this study, which will be referred to by the working

name Gatedelvers. Gatedelvers is a dungeon crawler with roguelike elements,

intended to feature meta-progression outside of the bounds of a single run and

an emphasis on collaborative online multiplayer. The part of the game the rest of

this study will focus on is the gameplay within a dungeon, with the meta-

progression systems, multiplayer social design elements and other parts of the

game’s design left out. The primary design goal of Gatedelvers is to create a

game that combines the replayability and depth of roguelikes with social

elements to make a non-competitive multiplayer environment with staying power

similar to competitive multiplayer games. These goals of replayability and depth

combined with the game’s multiplayer nature make it a good candidate for

emergent design, and emergent stories would lend themselves well to the long-

term player acquisition an online game needs to succeed.

The method used for developing Gatedelvers for this section focuses heavily on

rapid iteration. This iterative approach meant that the feature focus of

development shifted multiple times on a daily basis, making chronological

documentation of the development process difficult to parse. To make the

following documentation of the development process as understandable as

possible, it will focus on each feature of the game separately. After creating a

complete prototype, playtesting will be used to collect information. This

information will then be employed to develop an improved version of the

prototype with more content.

The prototype was developed as a one-person project, but some graphical assets

used were taken from previous collaborative projects with the permission of their

creators. This study will primarily focus on gameplay and game system design;

the process of creating the games’ visual or sound assets is not included.

The player objective of a Gatedelvers run, a single playthrough of a dungeon, is

to have the player character collect as much treasure as possible and escape the

dungeon safely. A dungeon consists of multiple floors. In most floors, the player

must find and reach an elevator to move to the next floor. The elevator can

usually be reached through multiple means and only requires the player to stand

on it to activate. This means players are not required to fight the enemies or solve

the traps on a floor in order to proceed, as long as they reach the elevator.

However, every fourth floor of a dungeon is a special boss floor, a level where a

boss enemy has to be defeated in order for the elevator to be accessible. While

the usual goal of reaching the elevator can be achieved while avoiding most

threats and enemies on a level, the knowledge of an upcoming boss level should

push players towards taking risks in earlier floors to acquire equipment to gain an

upper hand in the unavoidable boss fight.

Gatedelvers’ gameplay happens on a grid, with characters and other objects

having clear locations on the grid and only moving in full squares. This is

combined with real-time gameplay. Real-time grid-based gameplay is an unusual

combination but serves as a good testing ground for emergent gameplay for

multiple reasons. First, the clear, segmented nature of positioning on a grid can

make the effects of events less vague. It is easier for players to predict the

outcomes of events when the unit used for distance is measured in large, visible

tiles as opposed to a unit such as centimeters, which can be difficult to gauge

quickly. The unusual gameplay can also push players away from using old habits

drawn from other games to approach Gatedelvers and prevent them from

bringing in a mindset that prevents them from experimenting with the game’s

mechanics. Every object in the game world existing and clearly taking space on a

grid can also help visually clarify which objects are gameplay elements,

encouraging players to interact with them.

6.1 Selecting gameplay actions

For the gameplay to have high potential for emergence while remaining

accessible and elegant, it was important for the actions available for the player to

be flexible but limited in number. The actions chosen to start building this

moveset from were grabbing and throwing. Being able to grab and carry objects

allows the player to re-position most objects in the world, creating massive

potential for emergent strategies by re-arranging the game world into a more

advantageous state, and when combined with the ability to throw picked up

objects, allows players to weaponize the environment against enemies (Figure 5).

By extending this ability to most enemies, players gain the option to pick up

enemies to disable them in exchange for becoming unable to interact with most

other things while their character’s hands are full, and throwing enemies at either

walls or other objects to deal damage and free themselves up to grab something

else. In order to facilitate items with uses beyond throwing at things, a third

primary action was added in the form of using. Use allows for the activation of

held objects that have actions attached, such as swinging a sword or drinking a

potion.

Figure 5: A player character throwing a barrel at a skeleton (Paananen 2020)

While being able to pick up a single object is plenty to create interesting short-

term tactical situations, it does not allow for very diverse long-term strategies or

items as resource management; when players can only carry one object, they are

likely to default to a comfortable, consistently useful weapon or tool such as a

sword and avoid experimenting with other options or grabbing and throwing

objects in order to not lose their preferred object. To help with this, the player has

a small inventory that allows them to store 5 items, with “items” being a subgroup

of objects that are small enough to be carried around and usually have direct

active uses or grant passive benefits by being carried.

The throw action was first designed and developed to allow the player to hold the

throw button to determine how far and fast the held item would be thrown. This

also meant that objects could be dropped on the ground without harming them by

quickly tapping the throw button. Informal playtesting quickly revealed this form of

input to feel rather awkward; players felt that throwing should be quicker and

having to stand still while charging a throw made the action very risky. After some

experimentation, throw was reworked; pressing the throw button now immediately

threw the held object with maximum force. As combining throw and drop into a

single input appeared to be difficult without compromising input intuitiveness, a

separate drop button was added to allow for objects to be unhanded without

causing damage to them or the environment. In order to balance out the new,

nearly instant throwing speed the impact damage of thrown items was halved.

Non-item objects, such as barrels and characters, retained their high original

damage to encourage players to use their environment to their advantage.

The game is programmed with a similar structure as Spelunky, Dwarf Fortress

and many roguelikes, having most game objects inherit from a single parent class

in order to share common functionality such as grid movement, receiving

knockback and damage, interacting with collision and reacting to attempts to be

picked up. This approach combined with the universal utility of the pick up and

throw commands very quickly proved their value in encouraging emergent

strategies: while testing a development build, a level orb intended for allowing

players to power up their characters was found to be a relatively powerful thrown

weapon due to its indestructibility and heavy item status. This created an

unintended strategic choice where the player could choose to delay their

character’s progression a bit in order to use the level orb as a throwing weapon

instead. This strategy appeared to only be worth it if the player had not yet found

a better weapon, making it a situational but interesting strategy.

The possibility of adding an additional button for activating character-specific

abilities was considered. Creating character classes for the player to select from

would allow players to choose a gameplay style they favor before starting a run,

and an effective way to differentiate these classes would be to give each of them

a single unique ability. This idea was left out for the time being, but the input

system was for it was built. The computer-controlled enemies in the game, further

discussed later in this section, had their special active abilities programmed as

this kind of ability. This way any future mechanics that affected character abilities

would by default affect both player characters and enemies similarly, and any

mechanic that allowed a player to take control of an enemy character would

naturally map their inputs to match the controls for player characters.

6.2 Enemies and traps

To create challenge and opposition for the player during gameplay, enemies and

traps were added to the dungeon. These were made to work together; enemies

pose an active threat, chasing down the player after detecting them, while traps

are static obstacles that make the environment dangerous but can be used

against enemies.

The first enemy added to the game was the skeleton. The skeleton is treated by

the game very similarly to the player character; both inherit from the humanoid

class, which includes the player ability to pick up, use and throw objects. While

the skeleton is technically a single enemy, it can be randomly spawned holding

either a sword, a bow or nothing. A skeleton that has a weapon will attempt to

use that weapon’s use effect to attack the player, and an unarmed skeleton will

attempt to chase down and punch the player. The information on how an AI

should use a specific weapon to attack the player is not programmed into the

enemy AI, it is stored within the weapons; this means any future enemies capable

of holding weapons should immediately be able to use any of them. The

skeleton’s three options of attack effectively turn it into three variants of the same

enemy from a gameplay perspective, with unarmed skeleton being the weakest

and sword and bow skeletons being very dangerous at their respective effective

distances. If the player defeats a skeleton that is using a weapon, that weapon

will drop and be available for the player to pick up and use. This makes fighting

skeletons with powerful weapons an appealing option for a player looking to get

better weaponry.

The skeleton is intended to serve as a weak basic humanoid enemy that serves

to introduce the player to the mechanical traits humanoid enemies have, such as

carrying weapons. While the skeleton can use weapons and attacks with equal

power to the player character, making it capable of causing a lot of damage

quickly, it only has 2 health and can be defeated in a single hit from a weapon or

thrown large object. This combination of high damage but low survivability on the

first enemy type in the game is intended to encourage players to think about how

they approach fights: skeletons are very easy to defeat before they get a chance

to harm the player, but running at them without a plan or attempting to fight a

large group at once can be very punishing.

Two variants of the skeleton enemy were also created. The Armored Skeleton

largely functions identically to the regular Skeleton but employs a game mechanic

called armor: the damage of any attack against an armored skeleton is reduced

by 1. The Armored Skeleton retains the Skeleton’s low maximum health of 2,

meaning a single attack of 3 or more damage will defeat it instantly. Thrown small

items or unarmed punches only deal 1 damage, causing them to have no effect

on the armored skeleton; in order to defeat one, the player has to use a proper

weapon or environmental hazards such as traps or large objects. The safest way

to defeat regular skeletons is often quickly throwing some items at them from a

distance; the armored skeleton forces players to use a different approach or

avoid fighting it entirely.

The other added variant was the Chaos Mage, a skeleton that teleports to

random locations near the player and creates explosive spheres to attack. These

spheres can be picked up and thrown by the player before they explode. Chaos

Mage was added to create some enemy variety in the latter levels of the

prototype, and only spawns on floors 3 and 4. Figure 6 shows all of the skeleton

enemy variants featured in the prototype.

Figure 6: A skeleton, armored skeleton and chaos mage near the player character (Paananen
2020)

Two traps were also added to the first version of the game, the first of which was

the spike trap (Figure 7). The spike trap takes the form of a tile-sized plate on the

floor with an array of large, round holes on it. Placing a weight, such as the player

character, on the plate causes spikes to rise out of the holes after a short delay,

damaging anything on top of it. The spike trap is not very threatening on its own,

as the player character moves fast enough to be able to run over it before the

spikes have a chance to damage them. As such, it mainly exists to introduce the

player to traps and recontextualize other traps and enemies around it.

Figure 7: A spike trap activating behind a player character (Paananen 2020)

The other trap added to the first prototype was the arrow trap, which consists of

two parts in the game world. First is the trap itself, a solid block of wall with an

opening that fires an arrow in the direction it is pointing when activated, and the

other is a pressure plate that activates the trap it is assigned to when a weight is

placed on it. Unlike the spike trap, the arrow trap cannot be avoided by running

through it; the arrow is fired immediately on activation. Outside of simply avoiding

the pressure plate, the player has a few options to get past it. They can put a

barrel or similar large object in the line of fire of the trap to block the arrow when it

is fired, or they can place an object onto the pressure plate to activate the trap

before entering its line of fire. The arrow trap is meant to force players to think

about the systems of the game beyond basic combat mechanics, as it is

effectively impossible to get past safely without using external objects to disarm

it. The arrow trap can also be used to the player’s advantage, as throwing an

enemy onto the pressure plate is an easy way to deal at least 2 damage.

6.3 Objects

Barrels and crates were added as environmental objects the player could use to

their advantage while navigating the dungeon. They take up 1 square on the

game grid and can be picked up and thrown at enemies for 2 damage, making

them a very powerful choice for long range damage; however, they are destroyed

in the process regardless of whether they hit an enemy or a wall, making them a

limited resource, and due to being too large to fit in the player characters

inventory, the player can only carry one with them.

After being thrown, barrels start rolling in the direction they were thrown in. This

means they do not lose momentum as they travel, making them more effective as

thrown weapons. Crates do not share this trait, but contain an item that is

revealed when they are destroyed, making them serve as minor objectives for the

player. As crates guarantee a random item, the player will usually want to destroy

any crates they see in hopes of finding something useful.

Figure 8: An explosive barrel exploding and destroying a wall (Paananen 2020)

Explosive barrels, a variant of regular barrels, were also added. Explosive barrels

behave largely identically to regular barrels but cause a large explosion when

destroyed (Figure 8). This explosion can cause heavy damage to characters and

objects and destroys any walls in the blast radius. This means the player can use

any explosive barrels they find to either quickly defeat powerful enemies or to

destroy a wall blocking their way.

6.4 Items

The items a player is carrying effectively determine the actions available to them;

while the player can always pick up and throw nearby objects or enemies, each

item the player is carrying usually offers them another action they can choose to

use in any situation. Creating a large variety of interesting, varied items would

give the game great replay value, as finding different items during a playthrough

would result in the player having different options available to them during

gameplay. However, for the purposes of the first prototype, a small initial amount

of items were created.

The most simple item added to this first prototype was a rock. The rock item does

not do anything, but like all items, it can be thrown at enemies or placed on traps

to trigger them safely. From a design perspective, it serves two purposes. The

existence of the rock encourages players to think about what the use of an item

that does nothing could be, pushing them to experiment with throwing and

triggering traps. In addition, an exception was added to the level generator in

order to always spawn a rock in the first room of the game, in order to prevent

situations where the only way forward required getting past traps that were

impossible to pass without the use of an item. The rock placed in the first room

meant that players would always have an item available for disarming traps, but

its uselessness compared to any other item meant that players would still replace

it at the first opportunity, preventing it from reducing run variety. If players were to

start with a more powerful weapon, they might stick to using that single weapon

instead of experimenting with other items they found; as any item is a direct

upgrade over the rock, this should not be a problem.

Sword was added as the first close range weapon. When used, the wielding

character swings it in a target direction, dealing 2 damage in a small area (Figure

9). Unlike punching, the sword can hit diagonally, effectively giving it greater

range. Bow was added as the ranged alternative. Pressing the use button causes

the holder to start drawing the bow, and releasing the button fires an arrow if the

bow was drawn for long enough (Figure 10). The bow usually deals 1 damage

but timing the release with a flash visual causes the arrow to fly faster and deal 2

damage.

Figure 9: The player character swinging a sword (Paananen 2020)

Figure 10: The player character firing a bow (Paananen 2020)

An issue with weapons that can be used an unlimited number of times is that

after finding a weapon, the player has no use for additional weapons that fulfill

the same role. As an example, a player finding a sword while already carrying

one has no reason to pick up another; the found item has no value to the player.

In addition, players have reduced need to improvise, as they can always use a

weapon to solve combat scenarios after finding one. As this outcome goes

against the design goals of Gatedelvers, some options to change it were

considered. The Legend of Zelda: Breath of the Wild (2017) solved this issue by

giving all weapons limited durability, causing them to break after a number of

uses. This solution helped prevent players from sticking to a single weapon and

pushed players to engage with the game’s many emergence-focused gameplay

systems. However, all weapons having limited durability made finding new

weapons less exciting and encouraged hoarding behavior, with players refusing

to use their best weapons to avoid breaking them.

The solution chosen for Gatedelvers was a gameplay system called

Enchantments. Each time the game creates a weapon, it has a chance of

applying a passive effect called an enchantment to it. The only enchantment

added to the first prototype was Sharpness, which increases a weapon’s damage

by one. Enchantments have a limited amount of charges, which they lose

whenever the enchantment’s effect is activated, such as dealing damage with a

weapon that has Sharpness. In this way, enchantments function similarly to

Breath of the Wild’s durability, but are presented to the player as a positive bonus

effect instead of a negative as the player still gets to keep the weapon once the

enchantment runs out. The system still encourages players to carry around more

weapons in order to have enchanted weapons available when they need them.

The hoarding issue present in more standard durability systems is likely lessened

by Gatedelvers’ run-based nature and small inventory size in combination with

the reduced feeling of loss of having a weapon run out of enchantment charges

instead of breaking.

6.5 Trinkets

In addition to items that are intended for use as weapons or tools, another item

type that grants passive benefits to a character when carried in their inventory

was added. These items were named trinkets. The goal of trinkets was to create

gameplay variety between playthroughs by changing the abilities of the player

character depending on the trinkets they found and create a greater incentive to

look for more items. Due to the nature of active items, collecting more than one of

each has no additional benefit unless the items have enchantments applied, so

the player has no reason to look for more items after finding the two weapon

types. Trinkets grant an advantage as long as the player is carrying them, so the

player will always want to fill up their remaining inventory with them, and

choosing whether to use inventory space for additional trinkets or enchanted

weapons offers an interesting choice for the player.

Figure 11: The in-game tooltip of the Healing Leaf trinket item (Paananen 2020)

The two trinkets added to the first prototype were Healing Leaf (Figure 11) and

Power Glove. When held, Healing Leaf restores 1 health to the carrying character

after each floor. The item has no effect for non-player characters, as they cannot

travel between floors. The Power Glove improves the players throw distance and

how long they can carry enemy characters. Both of these items can only be found

inside crates.

6.6 Level Generation

While the first gameplay prototype and experiments were made in a small,

handcrafted level, the run-based nature and emergent design goals of

Gatedelvers made randomly generated levels an easy choice for dungeons.

Static, handcrafted levels would have players falling into routines on repeat

playthroughs, moving focus away from improvisation towards memorization. In

addition, the grid-based nature of the game world made the development of a

random level generator much easier on the technical end.

In order to get the benefits of randomly generated levels while still having the

generated levels have interesting small scale challenges and a feeling of

intentionality, the approach selected for generating levels was to have each floor

consist of a larger room grid populated by hand-crafted rooms with minor in-room

randomization. After some experimentation, one floor was decided to be a 6 by 6

grid of rooms, with each room taking up 7 by 7 tiles on the gameplay grid, making

a single floor take up a total of 42 by 42 tiles on the gameplay grid. Originally a

room size of 6 by 6 was tried, but due to the rooms outer walls usually taking up

one line of tiles at the edges of each room the amount of space inside a room

ended up often being too small for interesting self-contained rooms, so the size

was increased to the current 7 by 7.

In order to ensure that all floors generated by the level generator are consistently

beatable, the generator starts each floor by placing the entry room from which the

player character starts, then builds a path towards the other end of the room from

a collection of “path rooms”, which are designed to ensure they can always be

traversed without the use of additional tools, although attempting to do so can

pose a high risk to the player character’s health. After the path can no longer

travel further away from the start room due to hitting the edge of the level, the

generator spawns the exit of the floor in an empty room tile adjacent to the final

room of the path. Starting the level generation process like this not only ensures

that the player always has at least one relatively fair route to the floor exit but also

means that the floor entrance and exit points are usually on different sides of the

map, avoiding situations where the exit door is right next to the entrance.

After ensuring every floor is at least possible to clear, the rest of the level

generation can follow less strict structural rules. In each standard floor of a

dungeon in Gatedelvers, the player has two primary goals: To reach the exit

elevator of the floor with minimal damage to their character, as methods for

recovering the health of the player character are sparse, and to collect as much

valuable resources as possible. While the main path through a floor exists to

make the first goal fair, the purpose of the rest of the level is to make the option

presented by the second goal as interesting as possible. There are multiple

potential resources for the player to gain by taking the risk to explore the entirety

of each floor, but the most important one is the an object that will for this study be

referred to as the level orb. The generator spawns exactly one level orb in every

standard floor of a dungeon, and finding and activating the orb allows the player

to select a bonus that their character gains for the rest of the run. This means that

in most situations, the player will want to find the leveling orb before leaving a

floor, as leaving a floor without activating the orb ensures that the player

character will miss out on additional power for the rest of the dungeon run. After

generating the main route through a level, the level generator goes through every

potential doorway in the path rooms and attempts to place a room on the other

side of that doorway, with these rooms selected from a large pool of highly varied

rooms. It repeats this process once, also attempting to place rooms past potential

doorways in the newly added rooms during the repeat. However, instead of using

a random room, one of the doorways selected for this repeat will always have an

empty room with the leveling orb placed behind it. This method of placing the orb

ensures that it is usually placed more than one room away from the main path

that leads from the entrance to a floor to the exit, encouraging the player to

explore and see the majority of the level before leaving. After placing all rooms,

every room that has a potential doorway leading to a location that already has a

room in it will check if that room allows for a doorway there, and if so, has a 50%

chance of creating one. This turns the navigable structure of the level from a

single path with multiple dead end branches into a more interconnected whole by

connecting the branching paths to each other at random locations. An example

level created by the level generation algorithm (Figure 12) has a combination of

dead ends and connecting paths.

Figure 12: A level created by Gatedelvers' level generation algorithm (Paananen 2020)

The two primary player goals in the forms of the elevator and the leveling orb in

combination with a somewhat interconnected floor structure filled with various

threats makes the act of navigating levels a constant series of small choices

about which path to take and larger choices such as whether to leave safely after

finding the elevator or to explore more of the floor to find the leveling orb. Rooms

often also recontextualize each other through the ways they connect; a room

filled with enemies becomes much less threatening if the player approaches it

from a room filled with explosive barrels they can use to their advantage, and a

trap room can become much more threatening if a barrel-launching trap in an

adjacent room is constantly hurtling barrels through it from a doorway.

6.7 Boss

The fifth floor of the prototype dungeon was made by hand instead of using the

level generation algorithm and includes an entrance path and a single large room

with a boss the player has to defeat to beat the prototype. The boss is called

Yorick and is a variant of the Skeleton enemy, with drastically increased health

and unique attack patterns. Yorick will punch nearby players exactly like a

standard unarmed skeleton, but also periodically creates clusters of the bombs

Chaos Mages use near the player, causes barrels to roll from the sides of the

room or summons more enemies to assist him. These attacks mainly consist of

reused assets and objects from other parts of the game, as Yorick was created

with minimal development time in order to get playtest information on how

bossfights in Gatedelvers play out in practice. Defeating Yorick causes the game

to announce the player’s victory.

7 EVALUATING THE FIRST PROTOTYPE

With the first prototype complete and playable, informal playtesting was

conducted to collect information for the next development cycle. Due to the

COVID-19 pandemic preventing in person playtesting sessions at the time of

writing, playtesting was done by having players livestream their gameplay

through Discord. An effort was made to avoid giving the player additional

instructions during the playtesting sessions, but due to the lacking in-game

tutorialization at the time some external help was occasionally needed.

Players picked up on the game’s real-time grid-based gameplay quickly,

alleviating worries about the unusual movement controls. The decision to start

players without weapons seemed to work as intended, with players quickly

resorting to improvised weaponry and stealthy approaches. This seems to have

led to players experimenting more with the game’s mechanics in general. Players

quickly started using items to set off traps and explosive barrels to destroy walls

in their way.

In addition to planned emergent gameplay, multiple positive instances of

unintentional emergent gameplay arose; players started using spike traps to trap

enemies in dead ends by using the enemy AI’s trap avoidance to their advantage,

and one playtester built a defensive wall out of barrels. Players also started

intentionally activating arrow traps in such a way that the arrows fired hit enemies

around corners.

The playtesting results were exceptionally positive. In spite of the game having

no sound effects and generally lacking in polish at this stage, most players

wanted to keep playing until they beat the game.

8 DESIGNING THE SECOND PROTOTYPE

As most of the gameplay mechanics introduced in the first prototype performed

well in playtesting, the second prototype focused primarily on adding more

gameplay content and improving on what was already in the game.

8.1 Level cards

In the first prototype, the three powerup options available to the player when

activating a levelling orb were always the same. In the second prototype, each of

the three choices available in the level up screen (Figure 13) represents one of

three decks of powerup cards the player character had assigned to them. When

levelling up, each of these 3 decks is shuffled, then the topmost card on the deck

is offered as one of the options. Selecting a card removes it from the deck and

each deck only has one copy of each card. Each of the three decks is focused on

a specific playstyle and has an associated color. The red deck grants advantages

to aggressive, straightforward gameplay by granting increased character

survivability, the green deck offers mobility and ranged benefits, and the yellow

deck grants item-related utility. This deck-based system means every powerup

can only be gained once and its random nature encourages experimenting with

different strategies, as the player cannot pick the same options every time.

Figure 13: Powerup selection UI with placeholder graphics (Paananen 2020)

This deck system also sets up a future progression and customization system for

the game in the future. The player could be allowed to customize their decks

before starting a dungeon run, and different character classes could have

different combinations of deck colors available to them. A character with multiple

decks of the same color could get two copies of the same powerup card, giving

these characters a unique advantage in exchange for a loss in flexibility.

8.2 Pitfalls

While the traps introduced in the first prototype worked well to create areas that

were difficult or interesting to traverse, there was no trap that served the simple

purpose of making an area inaccessible by default. With much of the game’s core

mechanics built around characters and objects being launched through the air,

either through explosions or being thrown, pitfalls became a natural choice for an

environmental hazard with natural interactions with the existing game mechanics.

Pitfalls (Figure 14) are section of the play grid with no floor present, and any

object affected by gravity that comes to a halt above one falls into it. The

outcome of falling into a pitfall went through a few iterations. A prominent idea

was that falling into a pitfall would cause the falling object to drop into the floor

below the current one; this way the player could escape into the next floor in

exchange for receiving falling damage, or throw enemies into a pit to delay

having to deal with them. However, this solution caused issues when combined

with the instanced nature of floors and the multiplayer plans for the game. A

player falling into a pitfall in a multiplayer game would cause that player to move

onto the next floor before the rest of their teammates, which would require the

server machine hosting the game to have to host two floors simultaneously.

Alternatively, the player could only land on the next floor after the rest of the

players had moved on as well, but this would cause a waiting period for the fallen

player. The frustration of this waiting period would likely be amplified if the

player’s character died immediately after landing on the next floor, taking them

out of the game again. Due to the combination of player experience problems

and technical complexity, this design was scrapped.

Figure 14: A pitfall between two characters (Paananen 2020)

The version of the pitfall effect that was eventually added to the second prototype

had any objects that fell into the pitfall fall back onto a random location on the

floor the pitfall was on. While falling onto the floor you were already on is

nonsensical from a spatial perspective, this solution was much better for the flow

of the game and drastically simpler to execute. Due to the falling damage, pitfalls

were dangerous and usually something the player wanted to avoid, but in an

emergency, they could still be used as a final option for escaping. This can also

create comedic situations, such as when the player throws an enemy into a pitfall

and the fallen enemy lands back right next to the player.

8.3 Rock Crabs

The Skeleton enemy and its variants are dangerous enemies but quite fragile,

making the best option for dealing with them usually an ambush or direct attack.

In order to create variety on the strategies enemies should be approached with,

Rock Crabs (Figure 15) and Boulder Crabs were created. Rock Crabs are

enemies that disguise themselves as boulders, but if a player walks onto a tile in

a cardinal direction from them within their vision range, launch themselves at the

player, inflicting heavy knockback and damage.

Figure 15: A rock crab tackling a player into a wall (Paananen 2020)

Rock Crabs are designed to not be worth the effort to defeat. They have 2 armor,

making most attacks completely ineffective against them, and they only drop low-

value rocks when defeated. In addition, their extremely predictable attack

patterns make them largely unthreatening as long as the player is aware of them

and their location. As such, the best option for dealing with Rock Crabs is usually

evasion, making them something of a mix between an enemy and a trap from a

gameplay perspective.

8.4 Additional items

Two new items focused on interacting with the environment were added to

increase the options available to the player for traversing the dungeon floors.

Dynamite can be used to deal massive area damage or destroy walls, allowing

the player to create a new path through the level. The dynamite explosion is

identical to the explosion caused by the explosive barrel.

Figure 16: A player character using the grappling hook across a pitfall (Paananen 2020)

The other added item was the Grappling Hook, which could be used to either pull

the using character to a wall (Figure 16) or to pull objects or enemies to the

player. The Grappling Hook’s controlled flight on demand allows players to get

past pitfalls if there is a wall to latch onto and a floor to land on behind them. It

can also be used to pull out treasure from otherwise inaccessible locations and

interacts with all objects in the game, providing the item with a variety of creative

uses.

9 EVALUATING THE SECOND PROTOTYPE

Playtesting for the second prototype was again done by observing first time

players playing the game through a livestream. Four players with past experience

playing various genres were watched play the game for about an hour each.

During the playtesting sessions, any in-game events related to emergent

gameplay or the game’s learning curve were written down into a document

(Figure 17) to be evaluated later.

Figure 17: Notes taken during a playtesting session (Paananen 2020)

The strengths of the first prototype remained visible in the second prototype’s

playtests, with players quickly learning the game’s mechanics without external

help by experimenting with the basic actions. The goal of increasing interesting

emergent situations by adding more objects with interactions between each other

in rooms was successful, with interesting chain reactions and unique situations

arising very consistently during playtests. A side effect of this approach was

increased difficulty: player fragility combined with many dangerous moving pieces

led to most playthroughs ending in abrupt character death. None of the players

partaking in the playtest beat the prototype, however, players seemed to find the

complicated ways they died entertaining. Regardless, difficulty should be toned

down for future development.

The most common problem to arise during playtesting was that the grid

movement system could be unclear during combat situations and the outcomes

of situations such as multiple characters moving to the same tile simultaneously

were hard to predict. The movement system should likely go through a few more

design iterations to find a good compromise between position clarity and

intuitiveness.

From the results of the playtest, the prototype appears to have achieved its

design goals. Despite the relatively small amount of designed content, the game

generated a large number of unique situations. Each player developed a unique

approach to progressing through the game, favoring different options to get past

obstacles. With the addition of further content, the game should be able to

expand on this base of player expression and replayability. The game appears to

have potential for commercial development.

10 CONCLUSION

The goal of this thesis was to gather and aggregate information on how to design

a game to encourage emergent gameplay, create a design tool that designers

could use to increase emergent gameplay in their games, and use that tool to

create a game that uses emergent gameplay to improve the player experience.

To collect information for the creation of the tool, literary and game analysis was

conducted. The information from these was then collected and formatted into a

tool that offered a collection of actions a designer could take in order to increase

emergent gameplay in their game. The tool was then used to design and develop

two Gatedelvers prototypes.

Gatedelvers was developed with the goal of creating a game with high

replayability and gameplay depth with the combined use of procedural level

generation and emergent gameplay. The core gameplay and content were

designed with the help of the tool to encourage emergence. A prototype was

created and subsequently playtested, with the information from the playtesting

used to create a second prototype. Playtesting was then performed on the

second prototype. While the reliability of the playtesting results was likely

hindered by the limited scale and method, the playtesting results were positive.

The Gatedelvers prototypes mostly achieved their design goals, with different

players having unique experiences, creating their own strategies, and

encountering unique situations after more than an hour of play even with a very

limited amount of gameplay content.

The effectiveness of the design tool is difficult to gauge, but it proved effective for

the development of Gatedelvers. In order to determine how well and consistently

the design tool achieves its purpose, it would need to be used by more

developers on multiple different projects, with the results of this use evaluated.

While both the Gatedelvers game product and the design tool would require

further testing to determine their success more confidently, in the constraints of

the results from the limited testing conducted, this thesis can be considered a

success.

REFERENCES

The Legend of Zelda: Breath of the Wild (standard edition). 2017. Nintendo
Switch [Game]. Nintendo: Kyoto.

Dwarf Fortress (0.47.04). 2020. Microsoft Windows [Game]. Bay 12 Games.

Dwarf Fortress Creator Explains its Complexity & Origins | Noclip. 2020. Noclip.
Video documentary. Available:
https://www.youtube.com/watch?v=VAhHkJQ3KgY [Accessed 25.9.2020.]

Game Analysis Guidelines. 2011. Massachusetts Institute of Technology. PDF
file. Available: https://ocw.mit.edu/courses/comparative-media-studies-
writing/cms-300-introduction-to-videogame-studies-fall-2011/assignments/game-
analysis/MITCMS_300F11_GameAnaGuide.pdf [Accessed 14.10.2020]

McKeand, K. 2016. Assassin’s Creed 2017 to focus on emergent gameplay,
which Ubi call “the anecdote factory”. Article. PCGamesN. Available:
https://www.pcgamesn.com/ubisoft-emergent-gameplay-the-anecdote-factory
[Accessed 5.10.2020.]

Schell, J., 2020. The Art of Game Design: A Book of Lenses. Boca Raton: CRC
Press.

Spelunky (HD remake). 2012. Microsoft Windows [Game]. Mossmouth, LLC.

Sylvester, T. 2013. Designing Games: A Guide to Engineering Experiences.
Sebastopol: O’Reilly Media.

Taylor, D. 2001. The Literature Review: A Few Tips On Conducting It. Article.
University of Toronto. Available: https://advice.writing.utoronto.ca/types-of-
writing/literature-review/ [Accessed 14.10.2020]

Toikka, J. 2019. Developing the Mechanics of Plusminus: Designing for
Emergence and Control in a Physics-Based Game. PDF file. Available:
http://urn.fi/URN:NBN:fi:aalto-201908254911 [Accessed 28.9.2020.]

Welcome to Kruggsmash Plays Dwarf Fortress!. 2018. Kruggsmash. Video clip.
Available at: https://www.youtube.com/watch?v=yq2cQUpqb3A [Accessed
25.9.2020]

Wiltshire, A. 2016. How Spelunky Creates Amazing Unexpected Situations.
Article. RockPaperShotgun. Available:
https://www.rockpapershotgun.com/2016/03/04/making-of-spelunky/ [Accessed
14.10.2020.]

https://www.youtube.com/watch?v=VAhHkJQ3KgY
https://ocw.mit.edu/courses/comparative-media-studies-writing/cms-300-introduction-to-videogame-studies-fall-2011/assignments/game-analysis/MITCMS_300F11_GameAnaGuide.pdf
https://ocw.mit.edu/courses/comparative-media-studies-writing/cms-300-introduction-to-videogame-studies-fall-2011/assignments/game-analysis/MITCMS_300F11_GameAnaGuide.pdf
https://ocw.mit.edu/courses/comparative-media-studies-writing/cms-300-introduction-to-videogame-studies-fall-2011/assignments/game-analysis/MITCMS_300F11_GameAnaGuide.pdf
https://www.pcgamesn.com/ubisoft-emergent-gameplay-the-anecdote-factory
https://advice.writing.utoronto.ca/types-of-writing/literature-review/
https://advice.writing.utoronto.ca/types-of-writing/literature-review/
http://urn.fi/URN:NBN:fi:aalto-201908254911
https://www.youtube.com/watch?v=yq2cQUpqb3A
https://www.rockpapershotgun.com/2016/03/04/making-of-spelunky/

LIST OF FIGURES

Figure 1: Using a bomb to destroy the environment in Spelunky HD (2012).

Screenshot by author. ... 11

Figure 2: Dwarf Fortress Classic 0.47.04 (2020). Screenshot by author. 13

Figure 3: A draft of the emergent game design tool (Paananen 2020) 15

Figure 4: The final version of the emergent game design tool (Paananen 2020) 16

Figure 5: A player character throwing a barrel at a skeleton (Paananen 2020) ... 19

Figure 6: A skeleton, armored skeleton and chaos mage near the player

character (Paananen 2020) ... 23

Figure 7: A spike trap activating behind a player character (Paananen 2020) 23

Figure 8: An explosive barrel exploding and destroying a wall (Paananen 2020)25

Figure 9: The player character swinging a sword (Paananen 2020) 26

Figure 10: The player character firing a bow (Paananen 2020) 27

Figure 11: The in-game tooltip of the Healing Leaf trinket item (Paananen 2020)

 .. 29

Figure 12: A level created by Gatedelvers' level generation algorithm (Paananen

2020) ... 32

Figure 13: Powerup selection UI with placeholder graphics (Paananen 2020).... 35

Figure 14: A pitfall between two characters (Paananen 2020) 36

Figure 15: A rock crab tackling a player into a wall (Paananen 2020) 37

Figure 16: A player character using the grappling hook across a pitfall (Paananen

2020) ... 38

Figure 17: Notes taken during a playtesting session (Paananen 2020) 39

