

Jingyu Liu

TEXT SEARCH WEB APPLICATION

Technology and Communication

2020

ACKNOWLEDGEMENTS

I would like to express my gratitude to VAMK University of Applied Science and

Wärtsilä, particularly Nishant Redekar and Vesa Mustonen. They gave me a chance

to learn through working with Robotic Process Automation (RPA) team and pro-

vided me with the Optical character recognition (OCR) Validation dissertation pro-

ject. All the members of the RPA team are well-versed and amicable. With their

help, I accomplished some achievement in Wärtsilä and my experience in software

development has been enhanced by training in Wärtsilä.

I must thank my undergraduate student mentor, Dr. Moghadampour Ghodrat, for

his tireless education and guidance. I am grateful for his four years of teaching

which brings me much knowledge about software and many technologies of server

designing. I also extend my appreciation to Mr. Timo Kankaanpää who passed his

knowledge of Django and Python to me. The Django is the project framework lan-

guage of my thesis project.

Finally, thanks to all the people who helped me.

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Program in Information Technology

ABSTRACT
Author Jingyu Liu

Title Text Search Web Application

Year 2020

Language English

Pages 63

Name of Supervisor Moghadampour Ghodrat

This project provides a solution for Wärtsilä to store the documents including con-

tracts and proposals as well as extract the texts from them.

Text Search Web Application project was built in the Django framework and

Pytesseract Python module. This thesis project was made in four main parts. The

first part is the Django framework. Django is an open-source web framework based

on Python language. It lightens the workload of designing database-driven web-

sites. The second is MongoDB which is a Not Only Structured Query Language

(NoSQL) database. With the help of MongoDB, the scanned files can be stored in

a file storage system locally that will reduce the stereo matching time and the infor-

mation storage significantly. The third is Asynchronous JavaScript and XML

(AJAX), a set of web development techniques. AJAX helps project POST data from

web forms to the backend server when Django was not able to complete this. The

last is the Pytesseract Python module. Pytesseract is an optical character recognition

command library developed for Python. It retrieves the text data from image files.

It is a wrapper for Google’s Tesseract-OCR Engine and in this thesis, it deploys

words extracting and fetching positions in files as a simple module.

The web application was implemented with client-server model web architecture.

The web application allows users to register their accounts for storing the docu-

ments.

Keywords Wärtsilä, Django, OCR, Pytesseract, Python

CONTENTS

ABSTRACT

1 INTRODUCTION .. 10

2 WÄRTSILÄ OYJ ABP .. 11

2.1 Strategy ... 12

2.2 Wärtsilä Marine Business ... 12

2.3 Wärtsilä Energy Business ... 13

2.4 RPA Team in Wärtsilä .. 13

3 RELEVANT TECHNOLOGIES .. 14

3.1 Python ... 14

3.2 Django ... 15

3.2.1 Features of Django .. 15

3.2.2 Architecture of Django .. 17

3.2.3 Model .. 18

3.2.4 View .. 19

3.2.5 Controller .. 20

3.2.6 Core Modules of Django ... 20

3.3 OpenCV .. 21

3.4 Deep Learning OCR Engine ... 21

3.5 Tesseract OCR .. 23

3.6 Training Tesseract ... 24

3.7 JavaScript .. 24

3.7.1 Dropzone.js ... 25

3.7.2 Maphilight.js ... 25

3.8 AJAX .. 26

3.9 MongoDB ... 26

3.9.1 Comparison between SQL and NoSQL 27

3.10 Docker ... 29

4 APPLICATION DESCRIPTION ... 30

4.1 Quality Function Deployment... 30

4.2 Use-case Diagram ... 31

4.3 Class Diagram ... 32

4.4 Sequence Diagram .. 34

4.5 Component Diagram ... 38

5 DATABASE AND GUI DESIGN ... 39

5.1 Database Design.. 39

5.2 GUI design .. 40

6 IMPLEMENTATION .. 44

6.1 Dockerize the Project .. 44

6.1.1 Dockerfile .. 44

6.1.2 Docker-compose.yml .. 45

6.2 Classes in Django Framework .. 46

6.3 Media and Static files and Template Folder ... 48

6.4 Tesseract ... 48

6.4.1 Installation ... 48

6.4.2 Image pre-processing .. 49

6.4.3 Applying the Tesseract .. 50

6.5 Initializing the Dropzone.js ... 52

7 TESTING ... 54

7.1 Registration Page .. 54

7.2 Login page .. 56

7.3 Create Directory Project page ... 57

7.4 File Listing page ... 58

7.5 Validation page ... 59

8 SUMMARY ... 60

9 CONCLUSIONS .. 61

9.1 Future work ... 61

REFERENCES .. 62

LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BSD the Berkeley Software Distribution

GPL GNU General Public License

GUI Graphical User Interface

GW Gigawatt

Html Hypertext Markup Language

iOS iPhone Operating System

LSTMs "Long Short-term Memory" Units

MB Megabyte

NoSQL Not Only Structured Query Language

OCR Optical Character Recognition

OOP Object-oriented Programming

OpenCV Open source Computer Vision

PDF Portable Document Format

px pixel

R&D Research and Development

RPA Robotic Process Automation

tiff Tagged Image File Format

UI User Interface

URL Uniform Resource Locator

URLconf Uniform Resource Locator dispatcher

VM Virtual Machine

LIST OF FIGURES, TABLES, AND CODES

FIGURES

Figure 1. Wärtsilä’s strategy. /1/ .. 12

Figure 2. Rapid Application Development Methodology. /6/ 15

Figure 3. Screenshot from stackshare.io. /8/ .. 16

Figure 4. MVC Pattern Diagram. /17/ .. 17

Figure 5. Django MVT Pattern. /9/ .. 19

Figure 6. Optical Character Recognition process. /18/ .. 22

Figure 7. Tesseract OCR engine architecture. /4/ .. 23

Figure 8. Mahilight.js usage in OCR validation. ... 26

Figure 9. Comparison between Container and VM. /15/ 29

Figure 10. Use-case Diagram. .. 32

Figure 11. Four core classes. .. 33

Figure 12. User class and related classes. .. 34

Figure 13. Register sequence. .. 35

Figure 14. Login sequence. .. 36

Figure 15. Create a Directory Project sequence. .. 36

Figure 16. Uploading documents sequence. .. 37

Figure 17. Get metadata sequence. .. 37

Figure 18. Component Diagram. .. 38

Figure 19. Application database structure. ... 40

Figure 20. The home web page. ... 41

Figure 21. The register web page. .. 41

Figure 22. The login web page. .. 42

Figure 23. The directory project creating a web page. ... 42

Figure 24. The OCR files listing web page. ... 43

Figure 25. The validation web page. .. 43

Figure 26. Project Django Structure. ... 47

Figure 27. Tesseract result with the EAST model. .. 50

Figure 28. Tesseract execution time with the EAST model. 50

Figure 29. Tesseract result without the EAST model. ... 51

Figure 30. Tesseract execution time without the EAST model. 51

Figure 31. Test Register page with empty field. .. 54

Figure 32. Test Register page passwords do not match. 55

Figure 33. Test Register page successfully register. .. 56

Figure 34. Test Login page with empty field. .. 56

Figure 35. Test Login page successfully login. ... 57

Figure 36. Test Create Directory Project page. .. 57

Figure 37. Test File Listing page shows all. .. 58

Figure 38. Test File Listing page shows the searching result. 59

Figure 39. Test Validation page. .. 59

TABLES

Table 1. Wärtsilä Key Figure in Five Years. /2/ .. 11

Table 2. Comparison between SQL and NoSQL. /14/ ... 27

Table 3. Corresponding terminology and concepts between MongoDB and

MySQL. /14/ ... 28

Table 4. Quality Function Deployment table. .. 31

CODES

Code 1. Example of models.py. .. 18

Code 2. Example of views.py. .. 19

Code 3. Dropzone.js is established in forms page. ... 25

Code 4. jQuery function for invoking Maphilight.js. ... 25

Code 5. The script of the Dockerfile. ... 44

Code 6. The script of the Docker-compose.yml file... 46

Code 7. Invoke the Tesseract. ... 48

Code 8. Install the Tesseract libraries for Ubuntu. ... 48

Code 9 Install the Tesseract libraries for Mac. ... 49

Code 10 OpenCV pre-processes the images... 49

Code 11. Get texts result. ... 51

Code 12. Process texts result. ... 52

Code 13. Dropzone.js was initialized. .. 53

10

1 INTRODUCTION

Wärtsilä is a Finnish company, which provides power sources services and manu-

factures marines’ engines. With the continuous evolution of Artificial Intelligence,

more companies have their automation projects and teams. As one of the world-

leading company, Wärtsilä has made some achievements in automation fields for

five years. However, it has been a relatively empty state in terms of automatic doc-

ument storage and processing. Wärtsilä stores thousands of documents every year

manually.

Under the circumstances, Wärtsilä needs a solution to store documents ordered au-

tomatically so they can extract texts from these documents. The application should

be easy to use and easy to deploy. There should not be unfriendly user interfaces or

functions. The constructor of the database of the application needs to be simple.

The best approach is to implement a web application to help Wärtsilä storing doc-

uments in order. The web application should keep the metadata of the documents.

The documents need to be saved under many specific locations. The locations seem

like directories for the operation system. The directories make the documents stor-

age system more organized. Every document will be converted to an image format.

In the image format, the documents can provide a preview for users to select corre-

sponding files. It also allows the application to capture text information better from

the documents. If there is an error in word recognition, the application allows users

to edit the misrecognized field.

This application aims to create a web application for searching text from the docu-

ments of Wärtsilä. This web application has the functions of storing image and PDF

format files and the function of extracting the text data from these files. The project

should allow users to register accounts and permit users to upload files, delete files,

and search files.

11

2 WÄRTSILÄ OYJ ABP

Wärtsilä is specialized in providing the world’s leading products, lifelong services,

and design solutions in the marine power and energy market. The main market of

Wärtsilä is manufacturing and serving power sources and other equipment of ma-

rine and energy. The core products in the Energy field of Wärtsilä are gas power,

multi-fuel power, liquid fuel power, and biofuel power. For the technology in the

Marine field, Wärtsilä provides the services covering from the cruise, ferries to

fishing vessels, offshore, and yachts. One out of every three marines sailing on the

global ocean is powered by Wärtsilä, and one out of every two ships was serviced

by Wärtsilä.

Wärtsilä sales and service networks are covered in over 200 locations in more than

80 countries all over the world. Wärtsilä regards developing long-term relationships

with its global suppliers as important. Therefore, Wärtsilä cooperates with approx-

imately 1,250 direct global suppliers. There are approximately 19,000 employees

from 140 nationalities working for Wärtsilä. /1/ The net sales are approximately

5,170 billion Euros in 2019.

Table 1. Wärtsilä Key Figure in Five Years. /2/

Five years in figures, MEUR

 2019 2018 2017 2016 2015

Net sales 5 170 5 174 4 911 4 801 5 029

of which outside Finland, % 98.5 98.9 97.4 97.5 97.8

Exports from Finland 1 933 2 145 1 953 1 804 1 936

Personnel on average 19 110 18 899 17 866 18 332 18 565

of which in Finland 3 868 3 766 3 521 3 482 3 580

Order book 5 878 6 166 5 100 4 696 4 882

12

2.1 Strategy

As the global ecology deteriorates further, the leader in global energy companies,

Wärtsilä realizes quickly that clean and flexible energy is important. Efficient and

safe transportation is also important. Customers are also concerned about this. To

achieve these, Wärtsilä made a corresponding strategy, which was Smart Energy

and Smart Marine. /1/

Figure 1. Wärtsilä’s strategy. /1/

2.2 Wärtsilä Marine Business

Wärtsilä is now focusing on creating a Smart Marine Ecosystem. There are two

aspects Wärtsilä decided to pay effort on, one is the maritime industry using only

the cleanest available fuels. The other is on-board power production which opti-

mizes and designs the routes to avoid navigation malfunctions and nautical traffic

accidents causing time waiting.

13

Wärtsilä has a great impact on the world in the marine field. There are more than

50,000 vessels operated with Wärtsilä products and more installed. Nearly half of

the vessels on the global oceans are serviced by Wärtsilä.

2.3 Wärtsilä Energy Business

Wärtsilä is gradually moving towards the use of one hundred percent renewable

energy. Wärtsilä also helps their customers to unlock the value of energy transfor-

mation. The products of Wärtsilä in the energy field are flexible power plants, en-

ergy management, and storage system, also including lifecycle services. Wärtsilä

has 72 GW of installed power plant capacity in 180 countries.

2.4 RPA Team in Wärtsilä

The Robotic Process Automation was set up in 2016 by Vesa Mustonen. He is the

Project Manager in the Wärtsilä RPA team. The goal of the team is to raise the

digital transformation to the general staff level and empower all businesses and

functions in Wärtsilä to the next phase of automation. /3/

Now, including Mr. Mustonen, there are eight experts in the IM Process Automa-

tion team. They contribute to the team in their respective fields of expertise. They

help each other and share experience to work together to achieve the team’s goals

and values.

14

3 RELEVANT TECHNOLOGIES

This web application was developed with the Django web framework and the OCR

functions were invoked with Pytesseract and OpenCV. In addition, the web appli-

cation involved involved in some JavaScript libraries including Dropzone.js and

Maphilight.js. Data transferred between the front and back ends of the web appli-

cation was also applied to Ajax. The MongoDB was used to store data in this ap-

plication. Finally, the whole web application was implemented by Docker.

3.1 Python

Python is an elegant and robust programming language. It inherites the power and

versatility of traditional compiled languages. It is also easy to use like scripting

languages and interpreted languages.

Python was developed by Guido van Rossum during Christmas in 1989. To pass

the Christmas boredom, he created Python, a newly interpreted scripting language.

The name of Python was from the popular comedy serial “Monty Python” on the

BBC at the time. The first public release of Python was released in 1991. It is purely

free software. The source code and interpreter (CPython) follow the GNU General

Public License (GPL). /19/

Python is a fully object-oriented programming (OOP) language. Functions, mod-

ules, numbers, strings, and all built-in types are all objects in Python. Python class

supports advanced OOP concepts including polymorphism, operator overloading,

and multiple inheritances. Besides, Python’s unique concise syntax and types make

OOP very easy to use.

Python is designed to be extensible. Not all features and functions of Python are

integrated into the core of the language. Python provides a wealth of APIs and tools

so that developers can easily use C or C++ languages to write extension modules.

Python also provides a very complete basic code base, including regular expres-

sions, networking, multithreading, GUI, and database. In addition to the built-in

libraries, Python has many third-part libraries for developers to use directly. /19/

15

3.2 Django

Django is an open-source large and complete web application framework, written

in python language. Django adopts the MVC pattern, in some features, Django is

also said called to be under the MTV pattern. It is maintained by the Django Soft-

ware Foundation, an independent organization established as a non-profit.

Django was originally developed to manage the websites under the Lawrence Jour-

nal-World newspaper. The developers were Adrian Holovaty and Simon Willison.

They began using Python to build the program which was a Content Management

System software. It was released under the BSD license in July 2005. This frame-

work was named after Django Reinhardt, a Belgian gypsy jazz guitarist.

3.2.1 Features of Django

Django is an open-source framework for backend web application based on Python.

There are five main features of Django which are fastness, the abundance of pack-

ages, security, scalability, and versatility.

One of Django’s main features is to simplify the workload for developers. The phi-

losophy is rapid development, which means that developers can execute multiple

iterations at once without having to start the entire schedule from scratch. And

Django provides developers the reuse of existing code and focuses on unique code

implementation. /6/

Figure 2. Rapid Application Development Methodology. /6/

16

Another important feature of Django is that Django includes several extra pack-

ages for handling common Web development tasks. Django prepares the extra

packages for developers.

Security is also a high priority for Django. It helps developers avoid many common

security issues with its out-of-the-box security systems. Among the problems are

clickjacking, cross-site scripting, and SQL injection. Its user authentication system

offers a safe way to manage user account and passwords. /7/

For the scalable of Django, it uses “shared-nothing” architectures, which means

developers can add hardware at any level. Django scales to meet the heaviest traffic

demands quickly.

Django has reached many fields from the content management system to social net-

works to scientific computing platforms. Django occupies a place on the Internet.

It does not only serve developers but is also famous in many companies. Figure 3,

shows there are 2042 companies reportedly using Django in their tech stacks.

Figure 3. Screenshot from stackshare.io. /8/

17

3.2.2 Architecture of Django

Django architecture is based on the Model View Controller (MVC) pattern. The

Django MVC architecture addresses many of the problems that existed in tradi-

tional Web Development approaches.

The MVC is a kind of framework model. It does not introduce new features but is

used to guide developers to improve the application architecture. It separates the

application model and views for getting better development and maintenance effi-

ciency. In the MVC pattern, the application is divided into Model, View, and Con-

troller, three parts. The Model includes the business processing layer and data per-

sistence layer. The View is used to visualize the outputting data. The Controller is

responsible for adjusting the model and view. It needs to be chosen which model to

handle the related business based on the user’s request and which view responds

for the user for the final presentation form.

Figure 4. MVC Pattern Diagram. /17/

This difference between components helps the developer to focus on the eb appli-

cation and each function will be better testing, debugging, and scalability experi-

ence. /9/

18

3.2.3 Model

The Model is one component of the web application that connects the site interface

and database. One model in Django corresponds to a table in the database. In

Django, the Model is represented in the form of classes and contains some basic

fields with some behaviors of the data.

from Django.db import models

from datetime import datetime

class DirProject(models.Model):

 name = models.CharField(max_length=50)

 creator_id = models.IntegerField(default=0)

 date = models.DateField(default=datetime.now, blank=True)

 description = models.TextField()

 def __str__(self):

 return self.name

Code 1. Example of models.py.

The Django model uses an object-relational mapping (ORM) layer to implement

the mapping between the objects and the database. It hides the details of data ac-

cessing and interacts with the database without writing SQL statements.

The Model is the component that contains Business Logic within Django architec-

ture. /9/ It follows the MVC pattern closely, however, in the Django framework,

inner URLconf works as the controller. It receives the request from the user and

forwards the request. Django is more concerned about Model, Template, and

Views, so, it is also called the Django MTV pattern.

The process of the Django MTV pattern is as follows: the Django framework re-

ceives the user’s request and parameters, then, the URL is matched with a regular

expression and forwards it to the corresponding View for handling. The View calls

the Model for processing the data and uses the Template for returning the UI to the

browser.

19

Figure 5. Django MVT Pattern. /9/

3.2.4 View

The View is the component, which contains the UI logic in the Django architecture.

It is callable and it takes a request and returns a response to the front end. This can

be more than a function, and Django provides some classes for developers to use as

views. These allow developers to structure views and reuse code by using inher-

itance and mixing for tasks, as well as some generic views. The views only need to

be designed to own a reusable view structure to suit all cases needed. /10/

Code 2 is from views.py of account class. It shows how to get a request from users

and send responses back.

def login(request):

 if request.method == 'POST':

 username = request.POST['username']

 password = request.POST['password']

 user = auth.authenticate(username=username, password=password)

 if user is not None:

 auth.login(request, user)

 messages.success(request,'Hello!{0}.'.fomat(username))

 return redirect('dashboard')

 else:

 messages.error(request, 'Invalid credentials')

 return redirect('login')

 else:

 return render(request, 'accounts/login.html')

Code 2. Example of views.py.

20

3.2.5 Controller

The controller is the component that works as a selector. It processes request and

response and process the interaction between Model and View.

3.2.6 Core Modules of Django

• Urls.py

The urls.py is an URL entry, which is associated with a function (or generic classes)

in the corresponding views.py. The parameters in URL patterns are written in reg-

ular expressions.

• Views.py

The views.py processes user requests from related urls.py and renders templates

into a web page by sending the response back. It shows the web corresponding to

user interaction.

• Models.py

The models.py does the operations corresponding to the database. It inserts or reads

the data from the database.

• Forms.py

The forms.py is a form, which the user submits the form data from the browser. It

can authenticate the submitted data and generate the input fields automatically.

• Templates Folder

The functions in views.py render the Html files in the templates folder to get web

pages with dynamic content. It also can be used as a cache to increase the speed.

• Admin.py

The admin.py is enabled in the default project template used by the “startproject”

command. It uses several lines of codes to achieve backstage management.

21

• Settings.py

The settings.py is a configuration file. It configures the project such as DEBUG on

or off, static file location, and language changing.

3.3 OpenCV

OpenCV (Open Source Computer Vision) is a group of functions bound together

as a library and it focuses on real-time computer vision. OpenCV provides more

than two thousand five hundred algorithms for many areas of OpenCV’s applica-

tion. OpenCV also contains some machine learning library for supporting these ar-

eas.

Computer Vision is an important part of OpenCV, it works like the human eyes and

brain. Eyes send signals about what they see, and the brain recognizes the objects,

motions, and colors. Computer Vision wants to achieve this by computers and other

electronic equipment fetch information from digital images and videos. The OCR

engine is one of the applications using Computer Vision to extract data.

The main application areas of OpenCV are image processing, video analysis, face

recognition, and object detection. Although they are related to Computer Vision,

there are still needed libraries for real-time applications. This is the intention of

OpenCV.

Nowadays, OpenCV is widely used in many personal or commercial areas. For ro-

botics, it can enable robots to interact with human and avoid obstacles. For medi-

cine, it helps to detect cells or tumors, builds three-dimension models of organs and

vison-guide robotic arms for sugaring. For security, it helps drivers avoid sudden

accidents and protect property by face recognition.

3.4 Deep Learning OCR Engine

Optical character recognition is a way of transforming two-dimensional words on

images or papers into plain text. The words can contain computer printed fonts or

handwriting text. With OCR, several subprocesses are possible to be achieved. For

22

example, there are text localization, character segmentation, and character recogni-

tion. These subprocesses above can vary, but these were roughly the steps needed

to implement automatic character recognition in OCR software. The OCR software

has a primary purpose which is to identify and capture all unique words using dif-

ferent languages from literal characters. /18/

Conventional OCR systems always face the problem that trouble reading a few

fonts and page formats. And conventional OCR has never had a marginal impact

on the total number of documents that need to be converted to digital form. /4/

Figure 6. Optical Character Recognition process. /18/

The next-generation OCR engine uses the latest research in the field of deep learn-

ing to well solve the problems. By using a combination of deep learning models

and available large data sets, the engine can achieve the most advanced accuracy

for the tasks. It is also possible to generate synthetic data with different fonts using

generated adversarial networks. /4/ When the text is geometrically distorted in un-

constrained environments, the OCR engine could use deep learning modules, such

as OpenCV to overcome the problems. Because of the various use cases of deep

learning-based OCR, for example, the technology still has great potential.

23

3.5 Tesseract OCR

LSTMs are the most powerful type of artificial neural network for recognizing and

learning data sequences. However, when there are too many states in a sequence,

the speed is not so fast. So, the long-term training is better. Tesseract is developed

from Python’s OCRopus model. CLSTM is a branch of LSMT in C++ and an im-

plementation of the LSTM recursive neural network model in C++ that use the

Eigen library for numerical calculation. /4/ In addition, Tesseract also has Android

and iOS wrappers which makes it useful for the smartphone application.

Tesseract features traditional step-by-step pipeline architecture illustrated in Figure

7. There are six steps, in the beginning, the image is processed with adaptive thresh-

olding and converted into an image in binary format. Then connected component

analysis was processed to give a character outline. The following steps for finding

characters and combining characters into words from the outlines are completed. In

the end, two-pass word recognition is done by clustering and classification. The

Tesseract always consults with both the language dictionary and user-defined dic-

tionary for deciding the result of word recognition.

Figure 7. Tesseract OCR engine architecture. /4/

24

3.6 Training Tesseract

In the training part, Tesseract needs a tiff or a pdf file of a text written in the same

language for being recognized. Every character in the learning text has four differ-

ent feature vectors extracted by Tesseract. Each character is constructed into a

model by using the clustering technique. These models are used in the classification

phase for being chosen which character should be recognized.

There are several different features that can be tested including font of the text, size

of the characters, and content of texts for pretesting the training texts. These three

problems are done with tests. In the first method, the training text is written in a

font composed of high-quality images of individual characters. In the second

method, the font of the training text is like the font of the images. In the third

method, the character sizes are from sixteen px to forty-eight px. Regarding the

content of the training text, two different methods are tested. /5/

3.7 JavaScript

JavaScript was created by a Netscape engineer named Brendan Eich in 1995. In

early 1996, JavaScript was first applied to the Netscape two browsers. Netscape

changed its name from the original LiveScript to JavaScript because of the rise of

Sun Microsystem’s Java language. /11/

Unlike most programming languages, JavaScript has no concept of input or output.

It is a scripting language that operates under the host environment. Browsers are

the most common hosting environment, but JavaScript interpreters are also in-

cluded in many other programs. It includes Adobe Acrobat, Adobe Photoshop, Ya-

hoo!’s Widget engine, NoSQL database, server-side environments like Node.js, and

embedded computers.

JavaScript is a multi-paradigm dynamic language that contains types, operators,

standard built-in objects, and methods. The syntax comes from Java and C lan-

guage. There are many common grammatical features between JavaScript with Java

and C. JavaScript supports object-oriented programming through prototype rather

25

than classes. JavaScript also supports functional programming. Functions can also

be stored in variables and passed like other objects.

3.7.1 Dropzone.js

Dropzone.js is an opensource in JavaScript library. It supports AJAX asynchronous

upload function.

There are two ways to achieve files uploading by Dropzone. One is using the form,

another is using div. Code 3 was from the thesis project. It shows that the Dropzone

is used in the form. This method is easier than using div. The Dropzone will search

all the class attributes from form elements that contained “dropzone”. By adding

dropzone functions into these forms automatically, the forms upload the dropped

files to the action destination.

<form action={% url 'createnew' %} method="post" class="dropzone"

id="myDropzone" enctype="multipart/form-data">{% csrf_token %}

 <div class="form-group">

 <div class="col-lg-10">

 <div class="fallback">

 <input name="file" type="file" multiple />

 </div>

 </div>

 </div>

</form>

Code 3. Dropzone.js is established in forms page.

3.7.2 Maphilight.js

Maphilight.js is a jQuery plugin that adds visual highlights to image maps. In this

thesis project, the Maphilight was used for showing corresponding positions of

recognition texts. It provides a single jQuery function:

$(‘.Foo’).Maphilight()

Code 4. jQuery function for invoking Maphilight.js.

26

Figure 8 shows how the Mahilight.js was used on the Validation page. The left side

in Figure 8 is a screenshot of the code written.

Figure 8. Mahilight.js usage in OCR validation.

3.8 AJAX

Asynchronous JavaScript and XML (AJAX) is not a programming language but a

new method of using existing standards. AJAX is the art of exchanging data with

the server and updating part of the web page without reloading the retired page.

Ajax is a technology for creating fast and dynamic web pages. Through a small

amount of data exchange with the server in the backend, AJAX can enable the web

page to be updated asynchronously. /12/ Many famous applications are using AJAX

including Google Maps, Sina website, and YouTube.

3.9 MongoDB

MongoDB is a scalable, high-performance NoSQL database. It is written in C++

language, designed to provide a data storage solution for web applications. There

are several main features of MongoDB, the first is supporting dynamic query and a

full index. Users can easily query the embedded objects and arrays in the document.

The second is set-oriented storage. MongoDB is easy to store object-type data, in-

cluding document embedded objects and arrays. The third is efficient data storage.

27

It supports binary data and large objects including photos and videos. It also sup-

ports cloud-level scalability for automatic sharing and supports horizontal database

clusters. /13/

3.9.1 Comparison between SQL and NoSQL

The Comparison table below shows the difference between the SQL database and

the NoSQL database.

The differences are separated into six parts. They compare the types, data storage

model, pattern, scalability, consistency, and query function between the SQL data-

base and the NoSQL database.

Table 2. Comparison between SQL and NoSQL. /14/

 SQL Database NoSQL Database

Types
All types support the SQL

standard

Many types including docu-

ment storage, key-value stor-

age, and column database

Examples MySQL, SQL Server, Oracle MongoDB, HBase, Cassandra

Data storage

model

The data is stored in rows

and columns of the table,

each of which has a specific

type. Tables are usually

created according to stand-

ardized principles

Use joins to retrieve data from

multiple tables. The data

model depends on the data-

base type. NoSQL's data

model is flexible, but the SQL

database is not.

Pattern

Fixed structure and mode.

So, any changes to the pat-

tern involve modifying the

database

Dynamic mode. It can adapt to

new data types or structures

by expanding or modifying the

current pattern. New fields

can be added dynamically.

28

Scalability

The vertical expansion

method is used in SQL. This

means that as the load in-

creases, the larger and

more expensive servers

need to be established.

The horizontal expansion

method is used in NoSQL. This

means that the data load can

be distributed to multiple in-

expensive servers.

Consistency Strong consistency.

Depends on the product.

Some products provide strong

consistency, while some not.

Query function
Can be used through a sim-

plified GUI interface.

Require programming exper-

tise and knowledge for quir-

ing. Unlike UI, it focuses on

functions and programming

interfaces.

Comparison Table 3 shows the conceptual difference between the MongoDB data-

base and the MySQL database.

Table 3. Corresponding terminology and concepts between MongoDB and

MySQL. /14/

MongoDB MySQL

Database Database

Collection table

Document row

Field Column/Field

Index Index

Lookup, embedded docu-

ments
table joins

primary key primary key

29

3.10 Docker

Docker is the world’s leading software container platform. Docker uses the Go lan-

guage to develop and implement. It is based on the Linux kernel’s cgroup,

namespace, and UnionFS technologies. It encapsulates and isolated processes,

which is a virtualization technology at the operating system level. Because its iso-

lated process is independent of the host and other isolated processes, Docker is also

called a container. Docker can automate repetitive tasks, including setting up and

configuring a development environment. Users are allowed to create and use con-

tainers and put their applications in the containers easily. Containers can also be

used for version management, copying, sharing, and modification. /15/

The traditional virtual machine technology virtualizes a set of hardware, run a com-

plete operating system on the host, and then executes the required application pro-

cesses on the system, while the application process in the container runs directly on

the host’s kernel. There is no kernel inside the container and there is no hardware

virtualization. Therefore, containers are lighter than traditional virtual machines.

Figure 9. Comparison between Container and VM. /15/

30

4 APPLICATION DESCRIPTION

The idea of the application is to provide a solution for Wärtsilä to store documents

easily and recognize text. All the documents are stored in the host. Information on

users extracted words and metadata are stored in MongoDB. The whole project is

under the Django web framework. It involves the Tesseract for words recognition

and extraction.

In the application, users have to register for using the application. Then users need

to create a project directory for storing the files. There is a “create” button on the

home page for linking to the directory creating page. After uploading files (PDF

and image type files allowed), users can go through all the files by searching form

on the home page or forwarding to the OCR Files Listing page. Clicking the files

name link under the previous files, users can get all the words and positions from

the validation page from the selected document.

4.1 Quality Function Deployment

There are eleven functions in this thesis project. Four of them are under the highest

priority. The web application uploads documents to the server, converts uploaded

documents to image format for text recognition, extracts texts from documents, and

edits misrecognition texts. These four functions constitute the core backbone of the

entire web application. There are two “should have” functions which are deleting

the documents from the server and locating the extracted texts from text recognized

files. These functions provide a better user experience for users. And the rest five

functions are nice to have. They provide the users with a complete web application

experience and users can use the application intelligently.

31

Table 4. Quality Function Deployment table.

Priority Functions

Must have

Upload Documents

Convert Documents to Image Format

Extract Texts from Documents

Edit Misrecognition Texts

Should have
Delete Documents

Locate Texts Coordinates

Nice to have

Registration and Login

User Dashboard

Search Documents

Copy All Texts to Clipboard

Training the Tesseract Models

4.2 Use-case Diagram

As the diagram shows, there are five core functions in this project. The first one is

the register function. The users can register one account by providing a unique

username, password, and some other personal information. Then the users can log

in to the web application with the account they created. Users can create one or

more project directories with or without uploading some documents. However, us-

ers have to upload some documents before obtaining all text information from files.

When users get the texture data from documents, they can get texts locations in the

files. They can edit the misrecognition parts of the texts and copy all the texts to the

clipboard for further usage. The application also allows the users to upload new

documents in an existing project directory or delete uploaded documents. The ap-

plication provides searching with some options for users to search for documents

under their accounts.

32

Figure 10. Use-case Diagram.

4.3 Class Diagram

This project contains four main models, which are DirProject, Ocrfiles, Validation,

and OcrConvertedImage. The DirProject is used to separate uploaded files in the

file storage system. It avoids the duplicated file name in the server file storage sys-

tem. Ocrfiles contains three information of files including file name, file extension,

and file size. It has one to one relationship with OcrConvertedImage and Validation.

Files are converted to image type and inserted into the OcrConvertedImage model.

Validation is used to store the extracted data from files by the Tesseract.

DirProject contains an id of users, which means that one project directory belongs

to only one user. Ocrfiles has a relation with DirProject by holding a foreign key to

DirProject. In this case, there are multiple OCR files in one project directory. One

OCR file also has many related OcrConvertedImage tables and Validation tables.

33

Figure 11. Four core classes.

The User class in this project is Django’s native-defined user class. The User class

contains eleven-member variables including id, password, username, and email.

This project uses some variables for users to create accounts. The User class inherits

the AbstractUser class. This class is also native-defined in the Django framework.

The user class has a relationship with the group class. The group class provides

permission for users that users can be an administrator and a normal user. The users

do not have to join any groups, but they are given certain permission by the Per-

mission class directory. The LogEntry class containes user logs.

34

Figure 12. User class and related classes.

4.4 Sequence Diagram

There are four sequences for users handling their accounts when they use the web

application. If users do not own accounts, they have to register one before using

any functions in this web application. The register function will check the empty of

username and password and check whether the username has been taken.

35

Figure 13. Register sequence.

After successfully registering, users will automatically login to the account. If users

have one account, they can simply login into the account. After logging in, users

can modify their Project Directories or logout.

36

Figure 14. Login sequence.

When have users logged into their accounts, they can create a Project Directory if

they do not have. They can upload some documents when they create the Project

Directory or later. If the users have a Project Directory, they can search the docu-

ments by giving file name, file type, and selecting which Project Directory the doc-

uments belong to. Users can also get files list on the listing page.

Figure 15. Create a Directory Project sequence.

37

In the uploading documents sequence, users can pick one or multiple documents

from local machines by dropping the documents or selecting from the popup win-

dow. The application will check the format of documents and rename duplicate files

with time. After uploading the documents successfully, the application jumps to the

listing page for showing the preview of uploaded documents.

Figure 16. Uploading documents sequence.

When users find the documents and try to extract the text data from the documents,

they can click the link button. The data will be presented on the validation web page.

Users can edit the misrecognition texts and copy all the texts to the clipboard by

clicking one button.

Figure 17. Get metadata sequence.

38

4.5 Component Diagram

The component diagram shows that all the data including account, Directory Project,

and files information are saved in MongoDB. And the connection between models

and databases is provided by the Django framework. The files are saved in Direc-

tory Project and extracted texts are received from converted image files. Image files

are processed by the OpenCV and texts are extracted by the Tesseract.

Figure 18. Component Diagram.

39

5 DATABASE AND GUI DESIGN

The database is deployed in MongoDB, which is a NoSQL database. There is no

direct relationship between tables. The tables are connected by foreign keys. The

GUI is designed by using Bootstrap mainly to arrange the page layout.

5.1 Database Design

The project uses the Django framework, which migrates the models to database

tables automatically. The table of Directory Project named DirProjects contains an

auto-increment integer field for ID and integer field for the user’s ID who creates

the Directory Project. There is a character field for name, a text field for description,

and a date field for creation date.

The table of OCR files named Ocrfiles contains an ID and a foreign key for the

Directory Project table. One Directory Project has multiple OCR files. The table

also contains file extension, file name, file size, upload date, file storage, and stor-

age URL.

The table of OCR converts image files named OcrConvertedImage contains an ID

and a foreign key for OCR files. It ensures that one OCR file only has one OCR

converted image file related. The table also contains the image file name, page num-

ber image storage, and storage URL. Text Region image storage is used for the

validation page. After the Tesseract extracting the texts from images, the project

will crop the image without the non-text area.

The table of validation texts named Validation contains an ID and a foreign key for

OCR files. One OCR file has multiple validation texts. The table also contains cor-

rection rate, text start X, text end X, text start Y, text end Y coordinates, and text

content, page number.

40

Figure 19. Application database structure.

5.2 GUI design

The main page of the project is shown with three search fields and one button for

creating a new Directory Project. Users can search by file name, file type, and what

Directory Project the files are in.

41

Figure 20. The home web page.

The register page requires the users to provide their first name, last name, username,

email, and password. The web application will ensure the password field and con-

firm the password field was the same.

Figure 21. The register web page.

The login page contains the username and password fields. It checks none of these

fields are empty and that they match each other.

42

Figure 22. The login web page.

After login to the account, users can create a new project directory for storing and

recognizing the files by clicking the create button on the home page or search for

needed files.

Figure 23. The directory project creating a web page.

After storing files inside the directory, users can preview the files on the OCR files

listing page as shown in Figure 24.

43

Figure 24. The OCR files listing web page.

Selecting a file for OCR takes place by clicking the name of the files under image

previews. On the invalidation page, users can get all the texts from files and related

positions.

Figure 25. The validation web page.

44

6 IMPLEMENTATION

The project was executed under the Docker structure. Docker provides container

technology that assists to package up the whole project. The project is divided into

two parts. One is the Django framework based on Python. Another one is how the

Tesseract extracts the metadata from raw image files.

6.1 Dockerize the Project

Two files were used when the web application was deployed by Docker. The Dock-

erfile provided the implementation base environment and installed the needed pack-

ages and libraries. The Docker-compose file defined and executed containers for

the web application.

6.1.1 Dockerfile

The Dockerfile consists of lines of command statements and supports comment

lines starting with the symbol “#”. In general, the Dockerfile is divided into four

parts including basic image information, maintainer information, image operation

commands, and container execution commands.

FROM python:3

ENV PYTHONUNBUFFERED 1

RUN mkdir /Ocr

WORKDIR /Ocr/

RUN apt update && apt install tesseract-ocr -y && apt install libtesseract-

dev -y

COPY requirements.txt /Ocr/

RUN pip install -r requirements.txt

COPY . /Ocr/

Code 5. The script of the Dockerfile.

The script shows that Python in version three is the basic image for the project.

Then “PYTHONUNBUFFERED” was set as one in the container environment var-

iable. This meant forcing stdin, stdout, and stderr to be unbuffered. /16/ After this,

Docker created a folder for storing the whole project and set it as a working folder.

45

Then needed the Tesseract libraries were installed and required modules of Python

from the “requirements.txt” file were downloaded.

6.1.2 Docker-compose.yml

Docker-Compose is an orchestration service of Docker. It is a tool for defining and

executing complex applications on Docker. Dockerfile allows users to manage a

single application container while Docker-Compose allows users to define a set of

related application containers in a template (YAML format).

In this thesis, five services are defined in the Docker-Compose file. The first is

mongo for MongoDB. It establishes the MongoDB server on port 27017 and creates

a root user for users to use the database. The second is mongo-express, which is a

web UI for users checking the MongoDB database. The service is located on port

8081. The third is the web for the whole project on port 8000. The fourth is the

migration for migrating the Django models to MongoDB. The last is make_migra-

tions which makes migrations inside the Django project for preparing migrating

models structures to the database.

version: '3'

services:

 mongo:

 image: mongo:latest

 container_name: mongodb

 restart: always

 environment:

 MONGO_INITDB_DATABASE: ocr_db

 MONGO_INITDB_USERNAME: test

 MONGO_INITDB_PASSWORD: test

 MONGO_INITDB_ROOT_USERNAME: root

 MONGO_INITDB_ROOT_PASSWORD: root

 volumes:

 # - ./init-mongo.sh:/docker-entrypoint-initdb.d/init-mongo.sh

- ./mongo-init.js:/docker-entrypoint-initdb.d/mongo-init-js:ro

 ports:

 - 27017:27017

 mongo-express:

 image: mongo-express

 restart: always

 ports:

 - 8081:8081

 environment:

 ME_CONFIG_MONGODB_ADMINUSERNAME: root

 ME_CONFIG_MONGODB_ADMINPASSWORD: root

 web:

 image: app

 restart: always

46

 command: python manage.py runserver 0.0.0.0:8000

 volumes:

 - .:/Ocr

 ports:

 - 8000:8000

 depends_on:

 - migration

 migration:

 build: .

 image: app

 command: python manage.py migrate

 volumes:

 - .:/Ocr

 depends_on:

 - make_migrations

 make_migrations:

 build: .

 image: app

 command: python manage.py makemigrations

 volumes:

 - .:/Ocr

 depends_on:

 - mongo

Code 6. The script of the Docker-compose.yml file.

Code 6 shows that all the other containers have a relationship with the main con-

tainer Mongo. The make_migrations will execute after the Mongo has run fully, the

migration will execute after the make_migrations has run fully, the Mongo-express

will execute after the migration has run fully. The volumes attribute allows the

Docker to transfer the content of the files from the virtual machine to the local di-

rectory.

6.2 Classes in Django Framework

Figure 26 shows the base structure of all the project files. The accounts, dirprojects,

ocrfiles, pages, and validations are classes for Django. The accounts class contains

functions of login, logout, register, and dashboard. It authenticates the users through

all the processes inside the web page and provides a dashboard for users to check

and process the project directories.

The dirprojects class contains models for the project directory. It also processes the

function of creating a new project directory.

47

The ocrfiles class contains two models which, are OCR files and converted OCR

files. The OCR files model fetches the information of related project directory and

basic data of uploaded files including file name, file type, file size, and file storage

location. The converted OCR files model is used for images that are converted from

OCR raw files.

The tesseract can only recognize the text from image type files. When uploaded

files are saved in the file system provided by Django, the application converts the

files into PNG type by PyMuPDF library. In order not to disorganize the validations

class, the image type files will be saved directly in the converted OCR file model.

The pages class only contains home page views and URLs. It provides several

choices of file types and directory project for searching.

The validations class contains models of OCR words data and web page for valida-

tion. It uses the Tesseract to extract information from image files and write the data

into MongoDB form validation model.

Figure 26. Project Django Structure.

48

6.3 Media and Static files and Template Folder

In Figure 25, the media folder and static folder are cropped inside green blocks. The

static folder is for loading needed JavaScript and CSS files. It also stores images,

gifs, videos, and other types of files that were used in web pages. While the media

folder collects the needed files to be stored in the database. It is a file storage system

under the Django structure. The files inside media folders served on a web project.

The template folder contains all the HTML files for the web application. After com-

pleting the settings.py file and urls.py file, the Django will search the HTML tem-

plates from the template folder.

6.4 Tesseract

6.4.1 Installation

Before using the pytesseract, it needs to be installed in the Tesseract libraries. For

Windows system, the Tesseract can be download from GitHub URL and the Tes-

seract can be invoked using Code 7. Set the Tesseract path in the script before call-

ing image_to_string.

pytesseract.pytesseract.tesseract_cmd

= os.path.abspath(os.getcwd())+r'\Tesseract-OCR\tesseract.exe'

Code 7. Invoke the Tesseract.

For Ubuntu, it only needs to install tesseract-ocr and libtesseract-dev libraries by

prompting the following command. However, in Ubuntu, there is no need to set the

Tesseract path in the script (the same as in macOS) Code 8.

sudo apt-get install tesseract-ocr

sudo apt-get install libtesseract-dev

Code 8. Install the Tesseract libraries for Ubuntu.

49

For macOS, the Tesseract libraries also needed to be installed. Code 9 shows how

to use HomeBrew to install the Tesseract.

brew install tesseract.

Code 9 Install the Tesseract libraries for Mac.

After setting the path for the Tesseract some Python packages still need to be in-

stalled including pytesseract, OpenCV-python, and pillow.

6.4.2 Image pre-processing

After the Tesseract was installed, it was ready to go with Python. However, before

using the Tesseract extracting the information from images, the images needed to

be processed for better results.

In this web application, the image was converted into gray scale and applied thresh-

olding for getting only binarization. The files were saved into a temporary directory.

image path

img_path = os.path.abspath(os.getcwd()) + r'\test1.PNG'

preprocess = "thresh"

load the input image and grab the image deimensions

image = cv2.imread(img_path)

convert image to grayscale

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Check to see if we should apply thresholding to preprocess the image

if preprocess == "thresh":

gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY |

cv2.THRESH_OTSU)[1]

check to see if median blurring should be done to remove noise

elif preprocess == "blur":

 gray = cv2.medianBlur(gray, 3)

temp_path = os.path.abspath(os.getcwd()) + r'\temp'

if not os.path.exists(temp_path):

 os.makedirs(temp_path)

write the grayscale image to disk as a temporary file so we can

apply OCR to it

filename = os.path.abspath(os.getcwd()) + r"\temp\{}.png".for-

mat(os.getpid())

cv2.imwrite(filename, gray)

img_gray = cv2.imread(filename)

Code 10 OpenCV pre-processes the images.

50

6.4.3 Applying the Tesseract

When all prework was done, the image could be recognized. The Frozen EAST

Text Detection model was used before. It is a deep learning model for extracting

the words from the image and scaling for the words. However, the correction rate

did not achieve the desired results, and it took a long time for detecting the positions

of the text.

Figure 27 shows the result of the Tesseract recognition with the EAST model and

Figure 28 shows the execution time when using the EAST model.

Figure 27. Tesseract result with the EAST model.

Figure 28. Tesseract execution time with the EAST model.

Figure 29 shows the result of the Tesseract recognition without the EAST model

and Figure 30 shows the execution time with only Tesseract libraries.

51

Figure 29. Tesseract result without the EAST model.

Figure 30. Tesseract execution time without the EAST model.

When using the EAST model, some spaces were not recognized correctly while the

Tesseract accomplished it well. The EAST model took seven times of execution

time than raw Tesseract. This comparison proved that the Tesseract was much more

powerful than the EAST model when extracting the texts from the image.

For using the Tesseract, the image_to_data function was used in this project. It de-

tects the texts in the image and converts all the data into a string. The data contains

box boundaries, confidences, and text value. It also provides language selecting.

The default is English.

res = pytesseract.image_to_data(img_gray,output_type=Output.DICT)

Code 11. Get texts result.

In Code 11, the img_gray is the pre-processing image, and output_type was chosen

as a string. The metadata of text can be easily fetched as the following scripts. The

output data was saved in the results variable and will be saved into the database.

52

In Code 12, the text variable got what text was and variables x, y, w, and h got what

the text x coordinate, y coordinate, text width, and text height. The data was added

to result in sets.

text = res['text'][i]

(x, y, w, h) = (res['left'][i], res['top'][i], res['width'][i],

res['height'][i])

results.append(((x, y, x + w, y + h), text))

Code 12. Process texts result.

6.5 Initializing the Dropzone.js

There were several setting options in Dropzone. In this project, six options were

defined with specific values. The files uploading field is clickable and it allows the

files under five megabits. The accepted file formats are image and PDF format. And

it can only upload a maximum of thirty files at a time. The script also shows that

the button whose id is “button”. This button is selected as the upload selector. It

presents remove buttons under ever uploaded files. The Dropzone send all files

name with content to the Django framework. After all the files are uploaded suc-

cessfully, the project posts the web application to a successful page.

Dropzone.options.myDropzone = {

 clickable: true, // The filed can be clicked for selecting

files from drives

 maxFilesize: 5, // The maximum file size, unit in MB

 addRemoveLinks: true, // If will add a delete link for files

 acceptedFiles: ".png,.jpg,.jpeg,.pdf", // Indicate the file

types allowed to upload

 dictDefaultMessage: 'Upload your files here', // Message

shows in uploading field

 uploadMultiple: true, // Indicate dropzone allows upload mul-

tiple files at once

parallelUploads: 30, // How many files will be uploaded par-

allel rocessing

// Function binding

 init:function(){

 var self = this;

 // upload selector to match your button

 $("#button").click(function (e) {

 e.preventDefault();

 e.stopPropagation();

 self.processQueue();

 });

 // config the remove links buttons

53

 self.options.addRemoveLinks = true;

 self.options.dictRemoveFile = "Delete";

 //New file added

 self.on("addedfile", function (file) {

 console.log('new file added ', file);

 });

 // Processing

 self.on("processing",function(){

 self.options.autoProcessQueue = true;

 });

 // Send file starts

 self.on("sending", function (file, xhr, formData) {

 console.log('upload started', file);

 $('.meter').show();

 var data = $('#frmTarget').serializeArray();

 $.each(data, function(key, el) {

 formData.append(el.name, el.value);

 });

 });

 // File upload Progress

 self.on("totaluploadprogress", function (progress) {

 console.log("progress ", progress);

 // Progress will present as percentage.

 $('.roller').width(progress + '%');

 });

 // After file upload complete, there is 999ms delay.

 self.on("queuecomplete", function (progress) {

 $('.meter').delay(999).slideUp(999);

 });

 // On removing file

 self.on("removedfile", function (file) {

 console.log(file);

 });

// When all the uploading process completing,

// project will go to another page.

 self.on("success", function(file, responseText){

 if (self.getUploadingFiles().length === 0 && self.getQueued-

Files().length === 0) {

 window.location.replace(responseText.url);

 }

 });

 },

 }

Code 13. Dropzone.js was initialized.

54

7 TESTING

This project is separated into five parts, which are the five pages of this project.

These five pages are the register page, login page, create Directory Project page,

file listing page, and validation page.

7.1 Registration Page

The register page allowed the users to create their accounts and the accounts infor-

mation was saved into the MongoDB. The project ensured all the information fields

be not empty by JavaScript as shown in Figure 31.

Figure 31. Test Register page with empty field.

The register page also would check that the password and confirm password was

matched. The password would be posted by form request and be checked at the

backend.

55

Figure 32. Test Register page passwords do not match.

After checking the passwords, if the passwords do not match, the project would

send back an error message to users. The project would also guarantee the username

and email unused.

When the account was successfully registered, the project would jump to the login

page and pop-up success prompt.

56

Figure 33. Test Register page successfully register.

7.2 Login page

The login page would also check all the fields not empty. The JavaScript guaranteed

the fields at the front end as shown in Figure 34.

Figure 34. Test Login page with empty field.

The project ensured the password and username be matched. It was achieved by the

Django “auth” package. The package authenticated the account by transferring the

username and password and check whether they were matched.

57

When the user successfully logged in, the project would jump to the dashboard page

of this user.

Figure 35. Test Login page successfully login.

7.3 Create Directory Project page

After logging in to the account, the user could create a Directory Project on the page

shows in Figure 36. The user would be required to provide the Directory Project

name and one or more files.

Figure 36. Test Create Directory Project page.

58

7.4 File Listing page

On the file listing page, all files in one Directory Project were shown as preview

mode. Users also could search the files by giving the file name and file type.

All files in one Directory Project were listing as in Figure 37.

Figure 37. Test File Listing page shows all.

The page listed selected files by giving the file name in Figure 38.

59

Figure 38. Test File Listing page shows the searching result.

7.5 Validation page

The validation page would be reached after the user clicks one file which needed to

be OCR. The project cropped the file with only a text area and listed all texts on the

right side of the file. The user could edit wrong scanned words and copy all the

texts into the clipboard.

Figure 39. Test Validation page.

60

8 SUMMARY

During the project, several problems were discovered. The first was that when users

uploaded documents with the same file name, the program would only save the last

document to the MongoDB. For solving this issue, the project renamed the dupli-

cated document’s file name by adding date and time automatically. The second was

that the Dropzone setting codes could not be recognized in HTML files. For solving

this problem, the setting codes were placed in the Dropzone source JavaScript file.

The third problem was on the validation page. The recognized files were equally

scaled. In this case, the original text coordinates were not correct which were ex-

tracted from full-size files. For solving this case, the project invoked the scaling

ratio as parameters and recalculated the coordinates.

At present, some enterprises and personnel have already given some good solutions

for Text Search Web Application. It includes Google Translate (Scanning files or

taking pictures), Huawei mobile full-screen text recognition, and UiPath OCR. It

helps themselves and their users much. There is no need to type all the texts from

files, documents, and only a receipt. OCR technology is strong and powerful to face

most cases; however, it still needs to be improved when the quality of the pictures

is not satisfied.

In this project, the Django web framework and the Tesseract are introduced, and

the whole process of building the Django web application. Besides, Python, JavaS-

cript, MongoDB, and Docker are also introduced in this project. Many fields need

to be improved or established in this thesis. At the same time, to make the Text

Search Web Application project handier, it needs more knowledge from OCR tech-

nology and machine learning.

The web application allows users to upload multiple same documents. The applica-

tion will rename the documents in the same content and file name. The accuracy of

text recognition is very high even though the quality of the document is poor, or the

background is dark. The project will crop the documents and shows only text fields

to users which gives a better result for presenting the text searching of documents.

61

9 CONCLUSIONS

The project was implemented on the Wartsila Azure portal. The text searching func-

tions, and files storage functions were well deployed. Users could upload multiple

documents into one or more Project Directories and extract all the texts from the

files. But the project still needed re-train the texts OCR models to achieve feedback

functions. Which means that users could modify the wrong OCR fields.

The most challenging part of this project was manipulating the parameters of the

Tesseract and OpenCV. It took much time for processing the image files well in-

cluding grayscale the files, noise removal, sharpen kernel and thresholding.

9.1 Future work

In the future, the application needs to be unified with the front-end UI styles. And

in this project, the recognized text can be manually fixed by users however it is only

saved into the database rather than sent to the Tesseract for parameter optimization.

It needs the Tesseract trained models being retrained once when users correct the

wrong recognized fields. And need to enable users to outline the missing part of

recognized texts in the pictures. Besides, the tesseract model should also provide

the correct rate for separative words.

Besides, the purpose of the project is to create an application for Wärtsilä to auto-

matically extract text information from thousands of documents. However, the ap-

plication still needs users to upload the files and check the files one by one. It should

complete these works automatically with only “one button” stuff.

62

REFERENCES

/1/ Wärtsilä annual report. Accessed May 19, 2020. “https://wartsila-re-

ports.studio.crasman.fi/file/dl/i/xrJERg/h3GfJgVK1kaXWKlix-

TYG0A/Wartsila_Annual_Report_2019.pdf”.

/2/ Wärtsilä. 2015. “Financial-information”. Accessed May 10, 2020. “wart-

sila.com/investors/financial-information”.

/3/ Mustone Vesa. 2020. “A new era of Process Automation Experts –

Wärstilä’s Citizen Developers”. Accessed May 10, 2020.

“https://www.wartsila.com/about/wartsila-185/view/a-new-era-of-pro-

cess-automation-experts-wartsilas-citizen-developers”.

/4/ Tesseract. 2019. “A comprehensive guide to OCR with Tesseract,

OpenCV and Python”. Accessed May 04, 2020. "https://nanon-

ets.com/blog/ocr-with-tesseract/#introduction".

/5/ Gjoreski, Martin & Zajkovski, Gorjan & Bogatinov, Aleksandar & Mad-

jarov, Gjorgji & Gjorgjevikj, Dejan & Gjoreski, Hristijan. 2014. Optical

character recognition is applied to receipts printed in the Macedonian lan-

guage. 10.13140/2.1.1632.4489.

/6/ Djangostars. 2016. “Why we use Django framework”. Accessed May 07,

2020. “https://www.djangostarts.com/blog/why-we-use-django-frame-

work”.

/7/ Djangoproject. 2015. “Django overview”. Accessed May 07, 2020.

“https://www.djangoproject.com/start/overview/”.

/8/ Stackshare. 2014. “Django - Reviews, Pros & Cons Companies using

Django” Accessed May 13, 2020. “https://stackshare.io/django”.

/9/ Data Flair. 2019. “Django architecture – 3 major components of MVC

pattern”. Accessed May 7, 2020. “https://data-flair.training/blogs/django-

architecture”.

/10/ Django project. 2020. “Documentation, Class-based views”. Accessed

May 10, 2020. “https://docs.djangoproject.com/en/3.0/topics/class-based-

views/”.

/11/ Wikipedia. 2004. “JavaScript Wikipedia”. Accessed May 13, 2020.

“https://en.wikipedia.org/wiki/JavaScript”.

/12/ Wikipedia. 2005. “Ajax (programming) Wikipedia”. Accessed May 13,

2020. “https://en.wikipedia.org/wiki/Ajax_(programming)”.

63

/13/ Wikipedia. 2009. “MongoDB Wikipedia”. Accessed May 13, 2020.

“en.wikipedia.org/wiki/MongoDB”.

/14/ MongoDB docs. 2017. “Terminology and Concepts”. Accessed May 13,

2020. “https://docs.mongodb.com/manual/reference/sql-comparison/”.

/15/ Andy_Lee. 2018. “Concepts of Docker Article”. Accessed May 13, 2020.

“http://dockone.io/article/6051”.

/16/ Docs of Python. 2012. “Command line and environment”. Accessed May

13, 2020. “https://docs.python.org/2/using/cmdline.html#cmdoption-u”.

/17/ Zhihu. 2018. “Python—Django framework design ideas”. Accessed Au-

gust 24, 2020. “https://zhuanlan.zhihu.com/p/43833483”.

/18/ XpertUp. 2020. “Document Scanner and OCR Overview”. Accessed Au-

gust 24, 2020. “https://www.xpertup.com/downloads/document-scanner-

and-ocr/”.

/19/ RUNOOB. 2015. “Python Synopsis”. Accessed September 10, 2020.

“https://www.runoob.com/python/python-intro.html”.

https://zhuanlan.zhihu.com/p/43833483
https://www.xpertup.com/downloads/document-scanner-and-ocr/
https://www.xpertup.com/downloads/document-scanner-and-ocr/

