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Currently, at Metropolia University Applied of Sciences, digital design and implementation 
based on DSP studies have mainly focused on how to write efficient codes according to 
common coding styles rule. However, for its verification process before physical design, ver-
ification with an HDL testbench is the only method which is instructed in university. Advanced 
and high-level verification methods, especially UVM, are still not applied for teaching and 
studies. Apart from that, when it comes to DSP implementation, adaptive filtering ap-
proaches were selected to solve the interesting problem of how to track the statistical varia-
tions of signal and eliminate random noise over time in a nonstationary environment with 
massive datasets and unstructured data types for complex hardware implementation. There-
fore, the Thesis work aimed to design and implement an adaptive FIR filtering noise cancel-
lation module based on LMS algorithm and verify its functional specifications. 
 
In the Thesis work, an adaptive noise cancellation module was developed to be well-pre-
pared for hardware emulation. Module design and verification studied MathWorks workflow 
step by step. Matlab reference code was designed and optimized on algorithm level. Sim-
ulink model which contains the fixed-point implementation was simulated to be compared 
with Matlab algorithm for periodic discrete-time environment before synthesizing into VHDL. 
The Register Transfer Level Design was verified in cosimulation with Simulink model. Be-
sides, UVM based verification was applied to use System Verilog as verification language 
to evaluate the fulfillment of functional requirements and guarantee design accuracy with 
bit-cycle level. 
 
The Thesis presents the design module, which serves the purpose of noise cancellation 
based on adaptive LMS algorithm. The theory and mathematical model of the design module 
are explained. RTL reusability was achieved with the use of modular coding style to create 
instantiated functions. The implementation work was done adhering to Mathworks digital 
design flow. Additionally, no errors or bugs were found from the design module under verifi-
cations. The module passed all required functionality tests. Hardware deployment and the 
related challenges, such as IP core generation to be integrated with a register abstraction 
layer, could be innovated for future development of this Thesis project, since the design 
module was already modified to be modular and reusable to form a scalable architecture 
with generic parameter specifications.  

Keywords Adaptive filter, UVM, finite impulse response, digital design, RTL 



 

 

Contents 

List of Abbreviations 5 

1 Introduction 1 

2 Theory 3 

2.1 Adaptive FIR Filtering 3 

2.2 Least Mean Squares Algorithm 4 

2.3 Adaptive Noise Canceller System 8 

3 Digital Design Flow, Languages and Tools 9 

3.1 Digital Design Flow 9 

3.2 Hardware Design and Verification Languages 11 

3.2.1 VHDL for RTL Design 11 

3.2.2 System Verilog for Verification 11 

3.3 Verification Flow and Universal Verification Methodology 12 

4 Design Specifications and Algorithm to Architecture 17 

4.1 LMS Algorithm for Digital Design and Implementation 17 

4.2 Design Configurations and Constraints 20 

4.2.1 Floating-point Matlab Implementation 20 

4.2.2 Floating-point to Fixed-point Conversion 21 

4.2.3 Coding Style 22 

4.2.4 Verification Requirements 23 

5 Adaptive FIR Filtering Noise Cancellation Module Implementation 24 

5.1 Matlab Analysis and Implementation 24 

5.1.1 Floating-point Matlab Implementation 24 

5.1.2 Fixed-point Matlab Mathematical Testbench 30 

5.2 Simulink Reference Modelling 31 

5.3 Register Transfer Level Design with VHDL 38 

6 Adaptive FIR Filtering Noise Cancellation Module Verification 42 

6.1 HDL Testbench Generation and Simulation with Questa Sim 42 

6.2 Code Coverage 45 

6.3 HDL Cosimulation Verification 47 



 

 

6.4 Functional Verification with Universal Verification Methodology 49 

6.5 System Verilog Assertions 55 

7 Conclusion 60 

References 62 

 

  



 

 

List of Abbreviations 

ASIC Application Specific Integrated Circuit 

AXI Advanced eXtensible Interface 

DPI Direct Programming Interface 

DSP Digital Signal Processing 

DUT Design Under Test 

DUV Design Under Verification 

EDA Electronic Design Automation 

FEC Focused Expression Coverage 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 

HDL Hardware Description Language 

IEEE Institute of Electrical and Electronics Engineers 

IIR Infinite Impulse Response 

IP Intellectual Property 

LMS Least Mean Squares 

RLS Recursive Least Squares 

RTL Register Transfer Level 

SoC System On Chip 



 

 

SV System Verilog 

VHDL Very High Speed Integrated Circuit Hardware Design Language 

UVM Universal Verification Methodology 

 



1 

  

1 Introduction 

For the decades, the tremendous development in digital signal processing area which is 

in relation to growing technologies allows digital design and hardware implementation of 

signal processing to practically implement mathematical computations and complex 

algorithms. If the signal statistics are available to define data properties, fixed algorithms 

could be appropriately selected to be processed easily. Despite that, to track the 

statistical variations of signal over time in a nonstationary environment, its algorithms to 

be determined in advance are no longer efficient. The solution for this challenge is to use 

adaptive filter that automatically adapts to input characteristics change and noise 

cancellation by iterative estimation of configured parameters. Therefore, from this 

motivation, the Thesis work was to implemented to present the overall process of how to 

set up the adaptive noise cancellation module step-by-step from fixed-point conversion, 

reference modeling, RTL design with HDL testbench integration and UVM-based 

verification. 

The goal of the Thesis work was to design, implement and verify an adaptive FIR filtering 

noise cancellation module coded in hardware description language according to the 

predefined design specifications and reference algorithms written by Matlab. The design 

had to be configurable with modular coding style that it can be reused in future university 

studies or innovation projects. Moreover, the design module is bit-exactly verified in UVM 

test bench against the implemented fixed-point Simulink reference model with provided 

configured parameters to confirm that the module is functioning bit-to-bit accurately as 

specified. 

The HDL of choice for the project was Very High Speed Hardware Description Language 

version 1993, Institute of Electrical and Electronics Engineers standard 1076-1993. 

VHDL was chosen for its proven reliability and manufacturability in designing Application 

Specific Integrated Circuits and compatibility with virtually every commercially available 

design and verification tool [19;11,9]. 

The verification language used in the project was System Verilog, IEEE standard 1800-

2005 [20]. SV is a higher-level, more versatile and less verbose language to design com-

plex test environments with. SV and VHDL can also interface with each other to an suf-

ficient degree and passing signals from design language to another is reasonably simple 

to do. SV is also a widespread, standardized, well supported and documented HDL. 
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[11,9] The universal design methodology based test environment was written almost 

completely in SV [21]. 

The mathematical algorithm is constructed to describe adaptive FIR filtering process for 

noise cancellation. Matlab numerical computation based on the configured use case is 

to generate compatible input sources then run its theoretical test to capture output data 

for simulation graphical plots of the compared results. For floating-point to fixed-point 

conversion, Simulink reference model is generated according to the verified Matlab al-

gorithm to be against the register transfer level description of the module during config-

ured sample time simulation run. This model was used for generating reference data 

under DPI-C code format for the UVM testbench which HDL entities were binding during 

parallel test simulation. The output data generated by RTL was compared to the data 

output from the Simulink fixed-point mathematical model simulation. 

The UVM test bench utilized was to verify DUT at bit level for test cycles and the elec-

tronic design automation tools used in verification management are capable of doing not 

only thorough code coverage analysis but also functional assertions. 
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2 Theory 

The theoretical background for the Adaptive FIR Filtering Noise Cancellation module is 

presented in this chapter. The main theoretical concepts behind LMS design and brief 

descriptions of how to operate adaptive noise cancellation  in details are introduced. 

2.1 Adaptive FIR Filtering 

Adaptive filters are digital filters which have a set of coefficients to be changed under 

step adaptations in order to reach to the optimal convergence [4,421]. Adaptive algorithm 

would attempt to track the statistical changes in the input signals, the optimum solution 

is dependent on its inherent convergence rate versus the speed of input data character-

istics [1,23]. The optimization criterion to be considered is the average mean square of 

error difference between filter output and desired signal value. During filter coefficients 

adaptation, the mean square error converges step-by-step to its minimal value. This state 

is said to be the optimal state at which the filter output matches very closely to the desired 

signal. According to the optimized algorithm, the determined transfer function is con-

trolled by variable parameters. It means the adaptive filters self-adjust with recursive 

algorithm to compute updated filter weights. [1,30-31.] 

Normally, when the signals start from some predetermined set of initial conditions to 

know their priori information, it is simple to process with the fixed algorithm after a num-

ber set of iterations. But in a nonstationary environment, it no longer works as desired. 

[1,22-23.] Due to the special nature mentioned above, especially the tracking capability 

for time variation of input data, adaptive filter has been selected for practical use cases 

and has become an important part of DSP applications like channel equalization, echo 

cancellation or adaptive beamforming. The basic function comes down to the adaptive 

filter performing a range of different tasks, namely, system identification, inverse system 

identification, noise cancellation and prediction. [1,37-38.] 

Although both IIR and FIR filters have been considered for adaptive filtering, the FIR filter 

is by far the most practical and widely used. The FIR filter has only adjustable zeros to 

guarantee filter stability without the need of poles adjustments as in adaptive IIR filters. 

That is, adaptive FIR filters are always stable. [7,595.] 
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2.2 Least Mean Squares Algorithm 

The LMS algorithm is a stochastic gradient algorithm that it iterates each tap weight of 

an FIR filter in the direction of the gradient of the squared magnitude of an error signal 

with respect to the tap weight [1,40].  

The LMS Algorithm is based on the FIR filter weights calculation. This algorithm is de-

fined by these equations.  

y(n) = w(n−1)u(n),  (1) 

e(n) = d(n) − y(n),  (2) 

w(n) = w(n−1) + μe(n)u(n)  (3) 

Variable parameters are explained in table 1. 

Table 1. Descriptions of variables from adaptive LMS algorithm 

Variable Description 

n The current time index 

u(n) The vector of buffered input samples at step n 

w(n) The vector of filter weight estimates at step n 

y(n) The filtered output at step n 

e(n) The estimation error at step n 

d(n) The desired response at step n 

μ The adaptation step size 
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The implementation of the LMS algorithm [4,436-437] is concluded by the following 

steps: 

• Initialize w0, w1, … w(N-1) to arbitrary values where N is the FIR filter length. 

• Read d(n), x(n), and perform digital filtering: y(n)=w0.x(n)+⋯+w(N-1).x(n-N+1). 

• Compute the output estimation error: e(n)=d(n)y(n). 

• Update each filter coefficient using the LMS algorithm for k=0, ⋯, N-1: 

w(k)=w(k)+2μe(n)x(n-k).  

The parameter μ is the learning factor or step size that evaluates algorithm stability and 

its rate of convergence. It determines how fast the optimal weights are reached during 

step convergence. Necessary and adequate conditions of this parameter for the stability 

are discussed in detail in chapter 4 section 2. 

For an efficient design and implementation of adaptive FIR filtering noise cancellation 

module under Thesis work objective, Least Mean Squares is the chosen algorithm for 

following reasons with its beneficial characteristics: 

• It is a practical method to calculate a close estimation to optimal filter weights in real 

time. Accuracy is dependent on statistical sample size, since the filter weight values are 

based on the constant adaptive measurements of the input signals. [6,544.] 

• Furthermore, its important characteristic of LMS algorithm is numerical robustness. To 

summarize, under the limited hardware resources, it is required to apply finite-precision 

arithmetic in linear adaptive filtering, the LMS algorithm generally is the preferred choice 

over another algorithm, for instance RLS algorithm [1,515].  

Its computational complexity is simplified by a linear law that offers the ability to deliver 

a satisfactory in the face of unknown disturbance that can arise in practice. To be more 

specific, for an N‐tap filter, the number of operations has been reduced to 2*N multipli-

cations and N additions per each coefficient update. Therefore, it has a relatively simple 

structure in comparison to RLS algorithm and the hardware usage is directly proportional 
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to the number of weights. This is suitable for real‐time applications and is the reason for 

the popularity of the LMS algorithm. [13,21.]  

The LMS adaptive FIR filter architecture is as shown in figure 1 below. For every cycle, 

the adaptive filter automatically evaluates estimation error value for a new set of coeffi-

cients generation and computes the filter output based on applying these updates on the 

input data filtering. 

 

Figure 1. Structure of an adaptive LMS FIR filter 

FIR filter, also referred to as a tapped-delay line filter or transversal filter, consists of 

three basic operations which are storage, multiplication, and addition [1,117]. These op-

erations are described below: 

The storage is represented by a cascade of M - 1 one-sample delays, with the block for 

each such unit labeled z-1. The number of delay elements used in the filter determines 

the finite duration of its impulse response. The number of delay elements, shown as M 

in the figure 1, is commonly referred to as the filter order. The delay elements are each 

identified by the unit-delay operator z-1. In particular, the delay process generates the 

tap inputs which represent the past values of the input. [1,117.] 
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The role of multiplication is that each multiplier in the filter is to multiply each compatible 

tap input by a filter coefficient. It forms respectively the scalar inner products of tap inputs 

and tap weights by using a corresponding set of multipliers. [1,117.] 

At the final step, the adders in the filter is to sum the individual multiplier outputs to pro-

duce an overall response of the filter [1,117]. 

 

Figure 2. Detailed structure of the weight-control mechanism (Reprinted from [1,251]) 

For a specific analysis of adaptive weight-control mechanism, its function is to control 

the incremental adjustments applied to the individual tap weights of the FIR filter by ex-

ploiting information contained in the estimation error e(n). Figure 2 above presents the 

details of the adaptive weight-control mechanism. Specifically, a scalar version of the 

inner product of the estimation error e(n) and the tap input u(n - k) is computed for k = 0, 

1, 2, . . . , M - 2, M - 1. The result obtained defines the correction w(n) k(n) applied to the 

tap weight w(n) k(n) at adaptation cycle n + 1. The scaling factor used in this computation 

is denoted by a positive number called the step-size parameter, which is real-valued 

along with the recursive computation of each tap weight in the LMS algorithm. [1,249.] 
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2.3 Adaptive Noise Canceller System 

Noise cancellation technology is a growing field that aims to cancel or at least minimize 

unwanted signal. In an adaptive noise canceller to be shown in figure 3 below, two input 

signals are applied simultaneously to the adaptive filter. The desired signal d is the con-

taminated signal including the clean original signal s and the noise where they are un-

correlated with each other. The signal x, is the generated noise by measuring corrupted 

signal, specified to be correlated with n. This signal x is the reference input to the can-

celler. The signal x is processed by the digital filter according to the adaptive algorithm 

to self-define filter coefficients to produce an estimate y. An estimate error of the clean 

original signal, e is then obtained by subtracting the digital filter output, y, from the con-

taminated signal d. As a result, it produces the system output e expected to be the best 

estimate of the clean original signal s. Normally in practice, in the adaptive noise cancel-

lation system, the clean original signal s, is the audio speech signal and the reference 

noise, is the signal generated from the Gaussian noise generator. [27;4,440.] 

 

Figure 3. Noise Adaptive Canceller System Algorithm (Reprinted from [4,440]) 

DSP applications from adaptive noise canceller were summarized by Roger Woods [8]: 

There are many applications in adaptive noise cancellation. It can be applied to 
echo cancellation for both echoes caused by hybrids in the telephone networks, 
but also for acoustic echo cancellation in hands-free telephony. Within medical 
applications, noise cancellation can be used to remove contaminating signals from 
electrocardiograms. Adaptive beamforming is another key application and can be 
used for noise cancellation. The function of a typical adaptive beamformer is to 
suppress signals from every direction other than the desired ‘look direction’ by in-
troducing deep nulls in the beam pattern in the direction of the interference. A 
beamformer is a spatial filter that consists of an array of antenna elements with 
adjustable weights. The twin purposes of an adaptive beamformer are to adap-
tively control the weights so as to cancel interfering signals impinging on the array 
from unknown directions and, at the same time, provide protection to a target sig-
nal of interest. [8,30.] 
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3 Digital Design Flow, Languages and Tools 

This chapter introduces the implementation and verification flows, EDA tools, languages 

and methods used to design, implement and verify the Adaptive FIR Filtering Noise Can-

cellation module. Digital design and implementation is presented first before logically 

moving forward onto the verification stage. Firstly, the digital design flow is introduced 

and the brief overview for each fundamental step is discussed. In addition, the hardware 

description language chosen for this project design and verification is mentioned. Lastly, 

the EDA tools required to be used in this project are demonstrated with functional fea-

tures. In the verification sections, the verification flow is presented to show its important 

connections with the digital design flow. With the same description as in digital design 

sections, verification method and language utilized in this project are also mentioned with 

relevant features to be compatible with EDA tools. 

3.1 Digital Design Flow 

The design module is implemented according to Mathworks workflow [26]. The mathe-

matical algorithm and functional specifications are prepared with a set of design con-

straints at the initial design phase. The functional specification outlined the range of ca-

pabilities and features the module should follow. The mathematical algorithm is experi-

mented in detail under floating point implementation then it is converted to fixed-point 

model as a reference modular and configurable code which will be developed to create 

a Simulink golden model. Furthermore, there are Register Transfer Level implementa-

tions of corresponding Simulink components. A typical top-down digital design flow 

shown below in figure 4. The flow also comprises some feedback paths if needed for 

design iterations to be effectively adjusted at design stages. It aims to create module 

compatibilities between design algorithm and RTL implementation. One of the iterative 

feedback loops was in between fixed-point conversion step and algorithm functional 

specifications or between logic design constraints and Simulink reference model imple-

mentation. Fixed-point mathematical algorithm is the reference algorithm which would 

be verified to be in comparison with its floating-point implementation under the allowed 

predefined tolerance limitation. If there is a bad efficiency, based on available limited 

resources, for instance the maximum signal word length, the algorithm functional speci-

fications at the early design phase must be reconfigured. Besides, RTL implementation 
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usually need a few design iterations before the Simulink model can be successfully real-

ized in RTL because some Simulink constructs are not even feasible to implement syn-

thesizable RTL design, leading to necessary adjustments. 

 

Figure 4. Digital logic design and implementation flow (Drawn by using Microsoft Visio) 

Digital design flow consists of system analysis, design and verification of a system ref-

erence model, coding and verifying RTL description of the reference model. 

System analysis is an early design phase, which includes system functional specifica-

tions, architecture specifications, coding the mathematical algorithms of the system. Ar-

chitecture and algorithm choices during the system analysis affect system development 

and may have a great effect on design complexity [12,9]. 

The Simulink reference model to be developed from the mathematical algorithm de-

scribes the behavior of a system. RTL, which is hand-written based on the reference 

Simulink model, use HDL simulator to run the input data through HDL entities that these 
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data will be in comparison with output data generated by Simulink simulation for each bit 

cycle. RTL design codes are used to demonstrate hardware functionality.  

3.2 Hardware Design and Verification Languages 

3.2.1 VHDL for RTL Design 

Very High Speed Integrated Circuit Hardware Design Language was originally devel-

oped by the order of the U.S Department of Defense (DoD) in the early 1980s. The pur-

pose of VHDL was to document the behavior of the ASICs that were supplied to the DoD 

included in the equipment from their subcontractors. The next logical step was to develop 

a simulator capable of reading the created VHDL documents. Since the VHDL docu-

ments contained the exact behavioral model of the ASIC, logic synthesis tools were de-

veloped so that the HDL code could be turned into the definition of the physical imple-

mentation of the circuit. [11,36.] The Adaptive FIR Filtering Noise Cancellation module 

designed was written completely in VHDL. 

3.2.2 System Verilog for Verification 

System Verilog is a hardware design and verification language that is an extension to 

Verilog HDL. The first IEEE standard, 1800-2005, of System Verilog was based on Su-

perlog design language and Open Vera verification language which were donated to the 

System Verilog project by Accellera and Synopsys respectively. In 2009 System Verilog 

was merged with base Verilog creating the SV IEEE 1800-2009 standard. The current 

standard of System Verilog is IEEE 1800-2012. [11,46-47.]  

 Test benches and verifying in general are not bound to the limitations of physical circuit 

design and because of this SV for verification has adopted many techniques from tradi-

tional programming languages such as C/C++, where SV adapted its syntax and Java 

[11,47]. SV for example supports object-oriented programming (OOP) techniques where 

objects are manipulated instead of data [20]. OOP is yet to make a breakthrough in HDLs 

but in test environments it is convenient to consider the different parts of the testbench 

as separate interconnected objects whose properties can be described and altered to 

suit the current verification task at hand. In SV objects are instances of classes which 

can inherit all or part of the properties of the class they are inherited from. OOP is a very 

useful programming paradigm for test bench since the code produced is very flexible, re-

usable and transferable with little extra effort. [11,47.]  
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The verification environment used to verify the design module is written almost com-

pletely in System Verilog with DPI-C generated components and is based on UVM. 

3.3 Verification Flow and Universal Verification Methodology 

The verification flow applied for the Thesis project is shown in figure 5. At the initial de-

sign stage, design specifications are considered with a verification plan for feasibility. 

After this period, verifications are implemented to guarantee the module functional char-

acteristics to be expected. That is, floating-point code and fixed-point mathematical code 

are used to verify the module functional characteristics. If any design error occurs during 

simulation, there would be an inevitable change on algorithm specifications. Simulink 

modeling is used to be as a reference algorithm due to its characteristics for visualization 

and sample-based simulation. That is, the design dataflow can be observed sample by 

sample during the simulation for fast error checking and easy debugging ability to inter-

vene and adjust block properties to achieve model functional correctness. Configured 

diagnostics for the Simulink reference model are observed after simulation experiments 

to check model functionalities. In addition, Simulink components of each subsystem are 

utilized to be converted to DPI-C reference mathematic coding which is run under UVM 

test environment through Direct Programming Interface to generate the reference input 

stimuli and expected output data. These stimuli are driven into RTL DUT and RTL cap-

tured output will be in comparison with the available expected output from DPI-C coding 

parallel simulation. For RTL verification, HDL testbench is coded to verify RTL design in 

the specific use case to meet the functional specifications. Logic simulation is applied by 

utilizing this testbench. Later, to debug whether there is any design misoperation which 

differentiates RTL design from the reference model or not, HDL Cosimulation is used to 

set up mutual connections between Simulink and HDL Simulator. The identical stimuli 

are applied to both Simulink reference model and RTL DUT for parallel simulation then 

their outputs are captured to be compared with design goal which is to achieve the bit-

to-bit zero difference. 



13 

  

 

Figure 5. Digital verification flow and its relation to design flow (Drawn by using Microsoft Visio) 

After passing these verifications, UVM is the higher-level verification method to be ap-

plied with System Verilog programming that engineers could have used for decades due 

to its configurable code features based on Verilog constructs. 

Traditionally, the verification of HDL programs has been done in the same language the 

design was written. A testbench was designed for the design under test (DUT) and test 

stimulus was applied to the inputs of the DUT (HDL program) to check if the module 

functions correctly and the output is what was expected. This method of verification how-

ever is both time consuming and unreliable since every test case must be hand-crafted 

and exhaustively testing a big design is quite a task. Several verification methods were 

developed to tackle this issue and after a long period of vendor specific verification meth-

ods, the Universal Verification Methodology (UVM) was born. UVM is a standardized 
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methodology now supported by all the major simulator vendors. The UVM class library 

brings a lot of automation to the SystemVerilog language such as sequences, data au-

tomation features and macros. With UVM it is possible to create reusable, automated 

and adaptable test environments that accelerate the verification of complex hardware 

designs and make it possible to achieve much better test coverage with reduced effort 

compared to the traditional testbench-design approach. [20;21;11,46.] 

 

Figure 6. Verification Component Environment with UVM library classes (Reprinted from [11,53]) 

Verification components such as sequencers, monitors, drivers and agents are built us-

ing the blocks found from the UVM class library. The UVM classes from the UVM Class 

Library provide the building blocks needed to quickly develop well-constructed and reus-

able verification components and test environments in System Verilog as presented 

above in figure 6. The classes contain verification specific features for easier building of 

verification components. The UVM Class Library also provides utilities for debugging with 

user-controlled messages that can be used, for example, to report failures and the status 
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of every test operation on any level of the testbench, even globally. To be more precise, 

the UVM classes and utilities are divided into categories pertaining to the specific roles 

or functions such as UVM core base class, reporting classes provide a facility for issuing 

reports with consistent formatting and configurable side effects based on design verbos-

ity and severity, factory overrides to manufacture UVM objects and components, phasing 

capability, configuration database, type parameterized data structures, and UVM reusa-

ble and configurable verification components. [21;11,53.] 

Below are the main UVM verification components [11,53-54] explained briefly: 

• Data item: Any input to the DUT network packets, buses, transactions or protocol values 

and attributes. 

• Driver: Emulates the logic driving the DUT. Accepts data input which it can sample and 

feed to DUT. 

• Sequencer: Stimulus generator that feeds the driver. 

• Monitor: A passive entity that samples DUT signals. Monitors collect coverage infor-

mation and perform the checking of the data. 

• Agent: An agent encapsulates drivers, monitors and sequencers to simplify the usage 

of verification components by providing an abstract container which can perform a com-

plex task without independently configuring every component. 

• Environment: Top-level component of verification components and agents has the con-

figuration properties for customization and re-use of the whole component topology with-

out altering the internal components. 



16 

  

 

Figure 7. The UVM Phases (Reprinted from [17,11]) 

The UVM uses phases which are described in detail in figure 7. It allows a consistent 

testbench execution flow during simulation. There are three different groups of phases 

executed in the following order [17,11.]:  

• Build phases: where the testbench is configured and constructed.  

• Run-Time phases: where time is consumed in running the testcase.  

• Clean-up phases: where the results of the testcase are collected and reported. 
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4 Design Specifications and Algorithm to Architecture 

The Adaptive FIR Filtering Noise Cancellation module updates the filter weights based 

on LMS algorithm as FIR filtering procedure. The original input signal source is a com-

plex-valued sinusoidal signal which is stimulated with configured length. The noise 

source is randomly generated then being filtered by FIR filtering process to create the 

corrupted noise. After the addition of the original input and the corrupted noise, the result 

of this procedure is the desired signal source which will be scaled for fixed-point imple-

mentation. 

Before adaptive FIR filtering implementation, through configured tests, adaptation step 

size is selected to optimize the adaptive filtering process. 

The tapped delay noise input and the estimation error output after each adaptive filtering 

procedure are used to calculate the updated filter weights based on adaptation step size. 

4.1 LMS Algorithm for Digital Design and Implementation 

Based on the diagram as in figure 8, LMS algorithm consists of two basic processes that 

continually build mutually: 

• Filtering process: filter output computation includes FIR filter design of noise input 

based on updated weights to get the calculated filtered signal and the subtraction of this 

filtered signal from the desired input signal to obtain the estimation error output. 

• Adaptation process consists of weight update logic, tapped delay input processing, 

weight update controller.  
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Figure 8. Signal-flow graph representation of the LMS algorithm (Reprinted from [1,267]) 

The specified architecture is required to perform a design bit-level architecture for vector-

vector multiplication used for output calculation with finite convolution sum applied algo-

rithm.  

 

Figure 9. Detailed RTL architecture of LMS algorithm (Drawn by using Microsoft Visio) 
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A detailed top-level module architecture is demonstrated in figure 9. It contains two par-

tial designs: filter weights adaptation and filter output computation. The left-side design 

describes how the filter coefficients adapt to the optimal solution. For each valid clock 

cycle, the delayed input is generated from Tapped Delay core. The estimation error reg-

ister will multiply by the fixed step size parameter, then the result will go through trunca-

tion, round and wrap procedures respectively. This result called adaptive correction will 

continue to multiply by the delayed input before rounding and wrapping to get the needed 

offset for weights adaptation. The addition between the weight offset and the weight reg-

ister is to update to create a new set of filter coefficients. Meanwhile, filtering process is 

parallelly operated, which can be seen in detail at the right side of the figure 9. It de-

scribes the filter output computation. To be more specific, for each valid clock cycle, there 

occurs the multiplication between the generated set of filter weights and the delayed 

input to result in the output array with its size as the filter length order. After round and 

wrap, cumulative sum of elements and resize procedures, the final filtered output is used 

for subtraction operation based on noise cancellation algorithm to obtain the estimation 

error register. The Q-format [10,530] to be shown for each signal are configured in ad-

vance, is 1.24.23 that it means the signal is represented in signed binary format, 24 is 

the word length and 23 is the fractional length. In summary, these two design processes 

operate simultaneously and have a mutual impact on each other. 

 

Figure 10. Tap delay processing of RTL Tapped Delay core (Drawn by using Microsoft Visio) 

The Tapped Delay core for the adaptive noise cancellation module is shown in figure 10. 

In the tap processing, each tap is controlled by the valid clock signal. The input from 

each tap is shifted and stored to be combined with the next tap input after one-cycle 

delay operation. The reference noise input is propagated through all taps and automati-

cally replaced by shift arithmetic process. [27.] 
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Figure 11. Weight update control mechanism for RTL (Drawn by using Microsoft Visio) 

Weight update control mechanism is shown in figure 11. For every rising edge of the 

clock signal, the weight update process evaluates the valid signal which enables the 

register operation for signals to be used for mathematical computations.  

4.2 Design Configurations and Constraints 

The LMS algorithm designed for adaptive FIR filtering noise cancellation module is com-

plex in the sense that the input and output data as well as the tap weights are all complex 

valued.  

To be more specific, Matlab implementation, floating-point to fixed-point conversion, cod-

ing style and verification functional requirements are the considered aspects at the early 

design period to specify detailed variable parameters for design compatibility as well as 

its configurability. 

4.2.1 Floating-point Matlab Implementation 

Relevant parameters related to adaptive LMS FIR filtering algorithm is configured as 

below: 

• FIR filter length is 45, which is not only sufficient for coefficient adaptation but also an 

effective tap order number for FIR filtering. 

• Stimulus length is 1000, which is high enough to allow an effective design functional 

characteristics observation. 
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• Scale Factor Adjustment: It is acceptable for accuracy limitation when transitioning from 

a floating point to a fixed‐point representation. The conversion method is to keep a limited 

number of decimal digits. Normally, two to three decimal places method is appropriate 

for digital filter processing. Therefore, the scale factor can easily be obtained by multi-

plying the data values by 100 and divide the calculated values by 100 to recover the 

anticipated value. [13,24-25.] For complex signal, the common scale factor is the maxi-

mum value between the calculated scale factor of real part and the another one of imag-

inary part to guarantee that the output values are in the interval [-1, 1]. 

• Clean original input signals is a complex-valued sinusoidal signal which includes in 

dependent sinewave sequences containing the sine of elements over the domain which 

ranges are proportional to (−π,π) with multiplying constants of 5 and 6 respectively. Their 

step-incremental values are also in the interval [-1, 1] with a determined range which is 

corresponding to the configured stimulus length. Therefore, signal resolution is about 

6.23*10^^-3 (radians). 

• The noise input is generated as a random Gaussian noise sequence to be scaled by 

dividing by the common scale factor. The correlated noise input is generated by using a 

22-th order window-based FIR bandpass filter with passband 0.35π≤ω≤0.65π rad/sam-

ple. The desired input is an addition of the clean sinewave input and the correlated noise 

input after being scaled by dividing by the common scale factor. 

• The necessary condition for the step size parameter u to satisfy the convergence time 

constant is 0 < u << 1 [3,296]. In addition, if u is made too large then the algorithm 

becomes unstable. Therefore, u is determined to be optimal by test experiments using 

Matlab coding with pre-defined conditions. 

4.2.2 Floating-point to Fixed-point Conversion 

Floating point circuits have higher power consumption and lower performance compared 

to fixed point. For the vast majority of DSP applications, fixed point arithmetic is suitable, 

especially FIR filtering algorithm. [9,545-546.] For fixed-point conversion, signal dynamic 

range is mapped into the limited fixed-point precision [2,366]. 

Using finite word lengths prevents us from representing values with infinite precision, 

inaccurate arithmetic results. The level of output roundoff noise in fixed-point implemen-

tations can be reduced by increasing the word length. [5,647.]  
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The value bit width of 24 is chosen to be configured for quantization process due to its 

step resolution of 1/8388608 which works out to 1.192 * 10-7, leads to the significant 

reduction of error percent of signal level. To perform mathematic computations in RTL 

design, Q1.23 format to represent signed values with fraction bits of 23 is used. 

The next finite word-length effect to be considered is data overflow. Round and wrap on 

overflow are the chosen method due to hardware resource accuracy minimization, es-

pecially suitable for configured bit-level design. For addition and multiplication processes 

in RTL coding, the results are always truncated to Q1.23 format to meet the data bit width 

requirements as configured before. 

4.2.3 Coding Style 

MATLAB is generally used for algorithm design of a system for fast simulation and veri-

fication purposes of the behavioral model. To produce rational HDL code, the algorithm 

should be written from the hardware perspective. Algorithm models are often written into 

simulation optimized vector operations that create parallel structures and copies of com-

binational logic blocks in hardware. To create synthesizable MATLAB code, the structure 

must be correct. Register modeling is done through “persistent” variables. The variables 

that are wanted to save their states are defined in MATLAB function as persistent and 

these variables generate registers into RTL. [12,21-23.] 

  

Figure 12. Gated clock method to reduce power consumption (Reprinted from [22,12]) 
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RTL implementation uses gated clock method as described in detail in figure 12 is utilized 

to reduce power consumption in device architectures by effectively shutting down por-

tions of a digital circuit when not being in use [22,12]. 

4.2.4 Verification Requirements  

All-passed verification from simulation-based verification with HDL testbench, bit-accu-

rate parallel verifications with HDL Cosimulation and most importantly, UVM testbench 

that use constrained stimulus generation and functional coverage methodologies is the 

must-meet design goal.  Apart from modular and reusable coding style, specifically for 

the mathematical algorithm, Matlab implemented coding is re-quired to be in separate 

functions which are targeted to a dynamic system.  

In addition, the structural coverage analysis with code coverage result of 100% along 

with all concurrent System Verilog assertions evaluated to be passed are the fundamen-

tal factors to clearly demonstrate design functional correctness. 
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5 Adaptive FIR Filtering Noise Cancellation Module Implementation 

5.1 Matlab Analysis and Implementation  

5.1.1 Floating-point Matlab Implementation 

When the LMS algorithm is operating in a limited-precision environment, the point to note 

is that the step size parameter may be decreased only to a level at which the degrading  

impacts of round-off noises in the tap weights of the finite-precision LMS algorithm be-

come  significant [1,515].  

In addition, as mentioned in section 4.2.1, step size that is too small increases the time 

for filter convergence or that is too large may cause the adaptive filter to diverge [27]. 

Therefore, to be in compliance with the step size condition, the step size u must be 0 < 

u << 1. 

 

Listing 1. Matlab implementation for adaptation step size test selection 

As seen in listing 1, the design configurations are fixed as specified in section 4.2.1 for 

input signals, the pre-defined filter length of 45 taps and the stimulus length of 1000. The 

available Matlab supported system object dsp.LMSFilter is utilized to compute estimation 

error output of the adaptive LMS filter according to the step size parameter which is 

experimentally determined. XY plot is used to show the output signals over time. 

In figure 13, the blue signal is the clean original sinusoidal wave which runs at the same 

time with the filtered output signal which is the red one. The optimal solution is reached 

when the error difference between these two signals is at the minimum value. Therefore, 
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after test experiments with gradual reduction of step size parameter, 0.008 is the best 

choice because it is small enough but efficient to meet the design requirements to get 

the optimal convergence. 

 

Figure 13. MATLAB GUI displaying the result of step size test selection after simulation 

After defining the fixed adaptation step size, other design specifications must be config-

ured independently as shown in listing 2. That means it is easy and convenient to modify 

if there is any change from the design algorithm. Matlab top-level design and Simulink 

reference model import this configuration as a design callback. 

  

Listing 2. Matlab function for initial design configurations 
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The detailed declaration for reference inputs of the Matlab mathematical testbench are 

shown in listing 3. These input declarations are to follow the design specification speci-

fied in section 4.2.1. The two inputs, which are the reference noise and the desired sig-

nal, are both generated in the sense of complex values. Moreover, window-based FIR 

filter design with the usage of dsp.FIRFilter system object is to generate correlated noise 

from original noise input. It uses a Hamming window to design a 22-th order FIR band-

pass filter with passband 0.35π≤ω≤0.65π rad/sample. The correlated input will be added 

to the clean sinewave to form the desired signal. Obviously, the scaling method is applied 

for original noise input and desired signal to adjust their value ranges to be in the interval 

[-1, 1]. 

 

Listing 3. Input declarations for adaptive FIR filtering noise cancellation testbench 

Down to the verification of the Matlab testbench as can be observed in listing 4, it calls 

the main implementation of adaptive LMS FIR filtering noise cancellation for separate 

data paths. Because both of two inputs are complex-valued format, to implement the 

adaptive LMS algorithm, their data paths are divided into real path and imaginary path. 

Each data path is independent to implement the adaptation process before complex-

valued combination only at the final stage to get the final outputs. Therefore, there are 

two separate comparison plots for each data path. 
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Listing 4. Call to the main design implementation from Matlab testbench and graphical plots of 
outputs after test simulation 

The design goal is to implement design code to be configurable and reusable that there 

are modular functions coded for partial designs. Besides, to register the filter coefficients 

for Matlab mathematical algorithm, persistent variable declaration is used as can be seen 

in listing 5. 

   

Listing 5. Persistent variable usage for RTL description of filter weights 

Adaptive LMS FIR filtering noise cancellation implementation is mainly divided into three 

modular functions to be shown in detail in listing 6, listing 7 and listing 8. These functions 

aim to be the design callbacks when the top-level design call them to perform FIR filtering 

and weight update process before output computation at the end of each step adaptation.  
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Listing 6. Tapped delay Matlab function 

As seen in listing 6 above, the noise reference input is delayed at each simulation step 

to form 45 taps which is previously defined as exactly equal to the filter coefficient length. 

The persistent variable u_d is responsible to store the tap input which is in vector form 

for shifting process when the top-level design calls the tapped delay function. 

 

Listing 7. Weight update logic Matlab function 
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The main adaptation procedure is described in listing 7. The weight update logic is im-

plemented step-by-step in a clear coding style, follows the LMS reference algo-rithm. 

The Matlab code is to use reset_weights variable and update_weights variable to set the 

weight update control mechanism. 

  

Listing 8. Cumulative sum of elements Matlab function 

FIR Filtering process is simply described in listing 9. To be more specific, after vector-

vector multiplication between tapped delay input and the filter coefficient set, cumulative 

sum of elements procedure shown in detail in listing 8 is implemented to calculate the 

filtered signal based on the computed filter weights as the input variable. 

 

Listing 9. Filtered output computation procedure from Matlab reference design 

After design steps of Matlab mathematical algorithm mentioned previously, the Matlab 

testbench is run to verify adaptive FIR filtering noise cancellation reference design. The 

plot of outputs for each data path is shown in figure 14.  
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Figure 14. Graphical plot to show Matlab testbench outputs after simulation 

The adaptive FIR filtering noise cancellation is successfully operated. The desired signal 

is the addition of the clean sinewave stimulus and the noise reference input. To be com-

pared with the desired signal, the estimation error signal reached the cleaner version 

due to noise elimination. To be more precise, the estimation error is the result of the 

subtraction the FIR-filtering filtered output signal from the desired signal. 

5.1.2 Fixed-point Matlab Mathematical Testbench 

To implement floating-point to fixed-point conversion, fixed-point mathematics configu-

ration is simply specified in Listing 10 below which is added to every Matlab floating-point 

code.  

 

Listing 10. Matlab fixed-point mathematics configuration 

As listing 10 demonstrated, step_v is exceptional to be configure only for fixed-point step 

size while dat is configured for remaining signals. 
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5.2 Simulink Reference Modelling 

Simulink is a graphical design tool that uses library blocks, MATLAB functions and Sys-

tem Objects to perform indicated tasks and functions. Simulink library contains huge se-

lection of hardware optimized blocks. These blocks are divided into different categories 

to be integrated in SoC development. User-defined MATLAB function blocks and System 

Object blocks can be used to self-define design specific configurations or to reutilize 

available MATLAB mathematical computations. The blocks are built in Simulink model-

ing by referring the Matlab reference algorithm with fixed-point data types. A test bench 

in Simulink is built by driving all input variables into Device Under Test and capturing 

DUT outputs to be verified. The data is imported as streaming data with generic param-

eter configurations. [12,24-25.] 

Simulink Reference Model implementation is based on Matlab fixed-point design algo-

rithm. The top-level model is divided into three main parts shown in figure 15. The data 

flow goes left to right from sequence generation, main adaptive filtering design to model 

checker. Each module subsystem is designed in detail that can be seen in figure 16, 

figure 18, and figure 19.  

 

Figure 15. The top-level design of Simulink Reference Model 
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For a clear explanation, the sequence generator in figure 16 below is to generate the 

fixed-point inputs and the fixed-point expected outputs. The fixed-point inputs are driven 

into Simulink LMS Adaptive Filtering design to generate the corresponding implemented 

outputs which will be compared with the expected outputs. From the leftmost side, the 

pulse_generation function imports the Matlab testbench as mentioned previously in Sec-

tion 5.1.1 to generate the floating-point desired input and noise input which are data sets 

of 1000 complex-valued samples going through Simulink Unbuffer block to form scalar 

sequences during fixed-step simulation before splitting into real path and imaginary path. 

Then, for each path, their inputs will be converted to the fixed-point data with Q-format 

1.23 data type. 

 

 

Figure 16. Sequence generator to generate fixed-point inputs and fixed-point expected out-
puts based on Matlab reference algorithm 
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To create the expected outputs to be compared with Simulink simulated outputs, these 

fixed-point inputs implement the fixed-point Matlab testbench specified in section 5.1.2 

as imported function shown in figure 17 below. Concurrently, for each data path, their 

fixed-point inputs are cross connected to have a new datapack in which the first half 

represents the desired input whereas the last half represents the noise input. 

  

Figure 17. Generation of expected outputs by importing the fixed-point Matlab testbench 

When it comes to the main adaptive LMS FIR filtering noise cancellation design, there 

are two 24-bits datasets extracted from the data packs derived from sequence generator. 

These indicated datasets, which are desired and noise reference, are the fixed-point 

inputs to implement the Matlab fixed-point algorithm. All of operations make the use of 

Simulink supported blocks to process left-to-right to abide by the dataflow as can be seen 

in figure 18. The only exception for not using Simulink block is the coefficient update 

procedure that uses the masked subsystem to call the Matlab fixed-point weight update 

logic function with specified design parameters, guarantees re-configurable data struc-

ture with modification of filter length variable. For more clear explanation, if the filter 

length parameter is changed to the large value for future innovation projects, the Simulink 

data model has to change significantly, especially creating more complicated cross con-

nections in addition to large amounts of feedback paths for filter coefficient register, leads 

to the impossibility to create the functional model. Therefore, the available Matlab fixed-

point weight update logic function is the optimal choice for weight update procedure. 
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Figure 18. Simulink LMS design to implement adaptive noise cancellation process 

 After adaptive noise cancellation implementation, to verify model functional correct-

ness, the checker shown in figure 19 verifies the equivalence checking between the 

golden reference output derived from fixed-point Matlab testbench implementation and 

the another one achieved from Simulink simulation. 
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Figure 19. The checker to compare the implemented outputs with the expected outputs 

 

This checker imports the Matlab lms_checker function demonstrated in listing 11 for the 

response checking of both filtered output and estimation error output. This function eval-

uates the size difference of the two inputs for dimensional comparability. The test result 

must be passed to move onto the next verification that compares the expected signal 

with the implemented signal for every corresponding element. The assertion messages 

will be displayed for compatible test cases during Simulink simulation. 



36 

  

 

Listing 11. Checker function to verify signal equivalence checking 

The final step to verify is to run the Simulink reference model. For detailed waveform 

analysis of the output signals which can be observed in figure 20, the blue signal is the 

sinusoidal wave of estimation error signal whereas the red line indicates the error differ-

ence of zero which is calculated by subtracting the Simulink implemented data from the 

Matlab reference data.  
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Figure 20. Graphical plot to show estimation error output and the zero difference between 
Matlab reference data and Simulink implemented data 

In addition, the messages from lms_checker function for test-passed verification are on 

the Diagnostic Viewer display during Simulink simulation.  

  

Figure 21. Diagnostic viewer of checker function during Simulink simulation 

As figure 21 illustrated, the messages mean the Simulink reference model is designed 

as exactly specified as Matlab reference mathematical algorithm. 
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5.3 Register Transfer Level Design with VHDL 

The final design phase is to create Register Transfer Level descriptions of the Simulink 

attributes. The RTL designs are required to have integrated HDL coding style to validate 

the Simulink reference model. 

All RTL implementations are coded in VHDL according to design specifications and con-

straints mentioned in chapter 4. To be more specific, fixed predefined design parameters 

are configured in LMS_ADAPTIVE_FILTERING_pkg.vhd file as illustrated in listing 12.  

Apart from initial declarations of fixed parameters such as filter coefficient length and 

weight update control logics, the constant w_data_c of 24 is the common data word 

length configuration for all data signals which are design entity in-puts, entity outputs and 

the outputs of different binary arithmetic operations. Besides, w_mult_c of 48 and w_ad-

der_c of 30 are the constants used for multiplication and finite convolution sum. Further-

more, data word length of step size is to obey the specified design specification that its 

fractional length is 30 and its word length is 24. In addition, it is fixed to be an unsigned 

binary of 0.008 which hexadecimal converted result is 83126F.   

 

Listing 12. Data declarations of fixed parameters in HDL package file 

As specified in section 4.2.2 about overflow handling and rounding, round and wrap on 

overflow is the chosen method to be coded as an HDL procedure that can be seen in 

listing 13. Its inputs are based on the following factors: rounding Most Significant Bit, 

rounding Least Significant Bit and wrapping Most Significant Bit. There are two concur-

rent procedures that the rounding procedure uses resize function to truncate input to 
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data with a new specified data width but retain the sign bit as can be seen in line 75 

whereas the wrapping procedure is going through recursive OR operations with the us-

age of for loop as coded from line 80 to line 82 before using different bitwise calculations 

based on the wrapping theory to generate the wrap bit. The result from rounding and 

wrapping procedures is the addition of the rounded variable and the wrap bit. More-over, 

the cumulative sum of elements procedure is also directly coded at the top of the identical 

HDL package file as can be seen from line 45 to line 61. 

 

Listing 13. HDL procedures for overflow handling and cumulative sum computation 

The main RTL coding for adaptive noise cancellation algorithm is separated into three 

partial operations which run simultaneously. RTL coding style uses rising clock edge to 

drive the signal logic and asynchronous reset which will be activated when the reset 

signal is asserted. To be more explicit, tapped delay processing described in listing 14 

is to generate 45-taps noise reference input.  
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Listing 14. HDL procedure to create tapped delay signal from noise input 

In addition, as can be seen in listing 15, adaptive weight update from line 90 to line 99 is 

to utilize mathematical computations based on adaptive LMS FIR filtering theory. For 

every clock cycle, valid signal starts filter coefficient registering.  
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Listing 15. RTL top-down adaptation process  

As coded from line 112 to line 117 in listing 15, FIR filtering of the delayed noise input 

according to the updated filter coefficient set and the tap delay of noise reference is the 

vector-vector multiplication to create a new set of filter weights which then goes through 

the rounding and wrapping procedure. After that, the adaptive filtered output is generated 

by using cusum procedure declared in HDL package file for finite summation of the cal-

culated filter weight. 
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6 Adaptive FIR Filtering Noise Cancellation Module Verification 

The verification techniques used to verify RTL design of Adaptive FIR Filtering Noise 

Cancellation module are explained here and the results of these verifications are also 

presented. RTL design in this Thesis goes through multiple levels of verification. Queta-

Sim as an HDL Simulator empirically checks simulation-based RTL functional character-

istics with assertions and provides the design code coverage analysis. Besides, HDL 

Cosimulation establishes mutual connections between Simulink and QuestaSim for par-

allel simulations to guarantee that RTL design does what Simulink reference modeling 

expects under clock synchronization condition.  Finally, an UVM based bit-exact simula-

tion testbench is used to verify the specific use case. The HDL entities are integrated to 

the UVM environment. The DPI-C mathematical model, which is converted from the Sim-

ulink reference model, is to run to generate input stimulus and the reference output data. 

During UVM test simulation, the generated input stimulus will stimulate RTL entities then 

their output data will be captured to be compared with the DPI-C generated reference 

output data. 

6.1 HDL Testbench Generation and Simulation with Questa Sim 

This first verification to verify RTL design is to generate a HDL test bench to simulate 

HDL design files in QuestaSim simulator. 

This test bench verifies the created HDL DUT against test vectors generated from Sim-

ulink reference model. The input stimulus and expected data, which are generated from 

Simulink simulation, are stored in data files (.dat). In detail, the input data are 

in_sig_packed_re, in_sig_packed_im and the output data are err_sig_impl_re_expected, 

err_sig_impl_im_expected, filt_sig_impl_re_expected, filt_sig_impl_im_expected that 

their data format is hexadecimal number. During HDL simulation, the HDL test bench will 

read the input stimulus derived from the input data files then drive these stimuli to DUT 

input ports as illustrated in listing 16. After that, the HDL testbench captures the actual 

DUT outputs which will be compared with the corresponding expected outputs stored in 

the output data files.  
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Listing 16. RTL entities binding to the HDL testbench 

 As can be seen in listing 17, for real data path, the process statement describes the 

procedure which opens in_sig_packed_re.dat file to read the input stimulus as read_data 

variable then stores it as a raw data for the registering process. Because stimulus cap-

ture is dependent on not only system clock signal but also intrinsic rdEnb variable value, 

there are two concurrent processes that the first one as coded from line 259 to line 266 

is responsible to hold raw data at every rising clock edge to be driven into offset data if 

sequence reading is disabled, whereas the remaining one as coded from line 268 to line 

275 is to immediately achieve raw data as an offset data if there occurs any change of 

raw data. 

 

Listing 17. Sequence generation to drive stimulus to the HDL Design Under Test 
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The HDL testbench is configured that it opens the reference data .dat file then reads the 

captured data as expected outputs. After that, the expected outputs will be compared 

with RTL implemented outputs. As a sample demonstration, the verification of real-val-

ued filtered output is shown in listing 18. Expected filtered output reading procedure is 

coded from line 374 to line 388 and the equivalence checking process is coded from line 

390 to line 402 in which at every valid rising clock edge, there is an assertion to verify 

whether the actual RTL output is equal to the expected output or not. 

 

Listing 18. HDL equivalence checking of actual RTL output and Simulink expected output 
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After HDL compilation, QuestaSim is used to run the configure HDL testbench to verify 

the functional correctness of RTL design. The detailed waveform shown in figure 22 is 

that the test result is passed after a completed simulation. 

 

Figure 22. Detailed waveform of signals from HDL testbench verification by QuestaSim 

For an instance explanation, observing at 199120 ns, all RTL implemented outputs are 

equivalence to the respective reference outputs and their asserted variables for test fail-

ure checking are always zero during test simulation. 

6.2 Code Coverage 

Code coverage is a technique to collect the statistics on the execution of each line of 

HDL code. Its coverage analysis is evaluated using the built-in features of QuestaSim to 

measures how many times certain aspects of the source are exercised while running a 

suite of tests. Code Coverage types are divided into Statements, Branches, FEC Ex-

pressions, FEC Conditions, Finite State Machine and Toggles. [16,41-48]. 
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Figure 23. Code coverage result of the main HDL coding of the design module 

For RTL design of Adaptive LMS FIR Filtering Noise Cancellation module, there are only 

Statements, Branches and Toggle coverages needed for statistics analysis. The 

achieved results are shown in figure 23 and figure 24.  

 

Figure 24. Code coverage result of HDL coding of design package file 

For both real path and imaginary path, code coverage reached 100% as the desired goal 

mentioned in section 4.2.4. Therefore, the verification for code coverage of RTL design 

was considered done. 



47 

  

6.3 HDL Cosimulation Verification 

Co-simulation automatically drives stimulus into an HDL model from Simulink testbench 

and runs a RTL simulator concurrently. Cosimulation compares expected output derived 

from Simulink testbench to the HDL model’s output. HDL Verifier is required to be in-

stalled. Co-simulation compares the models bit-accurately and cycle-accurately. [12,32.] 

Simulink configuration is presented in figure 25 below. 

  

Figure 25. HDL Co-simulation configuration (Reprinted from [12,32]) 

Mathworks reference documentation [23] briefly described the procedure of how to set 

up a communication link between Simulink and HDL simulator through HDL Cosimula-

tion, stating that: 

In co-simulation, it creates a communication link between the HDL simulator and 
Simulink. Such a link enables to verify a model directly against the HDL implemen-
tation, create test signals and testbench for HDL code, use a behavioral model as 
a reference in an HDL simulation, use analysis and visualization features for real-
time insight into an HDL implementation, integrate a new model with the existing 
HDL design. [23.]  

Error is calculated from the differences of Simulink model simulation and RTL simulation. 

Start time alignment is configured for delay balancing between Simulink and RTL simu-

lator. If RTL is written correctly to perform functional characteristics of Simulink model, 

then the error should be zero. The comparison is done on the output ports and it is a 

rapid method to verify HDL design correctness every time the reference algorithm is ad-

justed. [12,32.] 
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Figure 26. Simulink cosimulation model of adaptive FIR filtering noise cancellation  

To be more specific, the Simulink reference model that includes an HDL Cosimulation 

block shown in figure 26 above will run the generated HDL code in QuestaSim HDL 

simulator. This block drives Simulink stimulus into RTL input ports of DUT then captures 

the actual outputs from DUT to compare against Simulink reference outputs of 

LMS_ADAPTIVE_FILTERING subsystem. 
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Figure 27. The comparison plot to show Simulink estimation error output and its RTL output 

The plot presented in figure 27 is to prove the correctness of RTL design against Simulink 

mathematical model. The topmost sinusoidal wave is the achieved estimation error out-

put derived from DUT meanwhile the middle one represents its Simulink simulated out-

put. As can be seen, these sinusoidal waves have the identical characteristics. The bot-

tom line is the error difference being zero over time simulation between DUT output and 

Simulink reference output. Therefore, the design functional characteristics are correctly 

converted from Simulink modeling to RTL design coding. 

6.4 Functional Verification with Universal Verification Methodology 

For this Thesis project, Direct Programming Interface was utilized to create a UVM test 

environment. This environment contains a System Verilog DPI top module which is bind-

ing to RTL design under verification. The UVM test bench basically includes a sequence, 

a scoreboard, and design under verification. As demonstrated in figure 28, the top mod-

ule which comprises clock and reset signals to control system process, instantiates De-

sign Under Verification (DUV) which is connected to verification environment through 

module interface. The UVM environment consists of the scoreboard and the agent which 

includes a sequencer, a monitor and a driver. The detailed process of UVM testbench is 

that the sequence object which defines a set of transactions, is divided into two paths. 

For the first path, the sequencer is responsible for routing the stimulus data from the 

sequence to the driver which will transform each transaction to the desired protocol and 

drives the transaction to the DUV through the virtual interface. After RTL operations of 

DUV, the passive UVM monitor samples implemented output data to send to the score-

board. The remaining path is a direct path in which the scoreboard receives the reference 
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output data from the sequence object then compares this expected data with the imple-

ment data from RTL DUV.  

  

Figure 28. UVM Testbench Architecture (Reprinted from [25]) 

To be more precise, Simulink subsystems are exported as generated C codes which 

describe design implementations to be integrated with UVM environment with a direct 

programming interface (DPI). It means that UVM sequence, DUV, and UVM scoreboard 

are generated from Sequence Generator, LMS Adaptive Filtering design and Checker 

subsystem respectively. These DPI-C codes can be found at subsystem build directories 

that there are subsystem DPI package files for function declarations, the generated Sys-

tem Verilog DPI subsystem, and the DPI-C subsystem wrappers for C descriptions of 

Simulink design operations.  
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UVM hierarchy configuration is briefly demonstrated in lms_pkg.sv file as can be seen in 

figure 29. 

 

Figure 29. UVM Hierarchy as presented in HDL package file 

The functionalities of UVM artifacts as presented in figure 29 are defined below: 

• mw_LMS_FILTERING_sequence_trans.sv – This file includes type definitions of se-

quence items 

• mw_LMS_FILTERING_sequence.sv – This file contains sequence declarations and 

sequencer instantiation. 

• mw_LMS_FILTERING_trans.sv - This file contains a UVM object that defines the input 

transaction type for the scoreboard. 

• mw_LMS_FILTERING_driver.sv - This file includes a pass-through UVM driver by de-

fault.  

• mw_LMS_FILTERING_monitor.sv - This file includes a UVM monitor. The monitor sam-

ples implemented signals from the DUV to the scoreboard.  

• mw_LMS_FILTERING_monitor_input.sv - This file includes a pass-through UVM mon-

itor. The monitor samples expected signals from the driver to the scoreboard. 
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• mw_LMS_FILTERING_agent.sv - This file includes a UVM agent that instantiates se-

quence, driver, and monitor. 

• mw_LMS_FILTERING_scoreboard.sv – This file consists of a UVM scoreboard 

• mw_LMS_FILTERING_environment.sv - This file includes a UVM environment, that 

instantiates an agent and a scoreboard. 

• mw_LMS_FILTERING_test.sv - This file includes a UVM test which is based on the 

specified use case of adaptive LMS filtering design. 

After completing UVM configurations, the System Verilog top design illustrated in listing 

19 is integrated with UVM environment. The UVM interface as coded in mw_LMS_FIL-

TERING_if.sv file is to connect with DPI-C representation of Simulink LMS Adaptive Fil-

tering design subsystem. During UVM simulation, it receives stimulus from UVM driver 

then drives them into the scoreboard through UVM monitor for UVM response checking. 

In addition, the top design utilizes this interface to capture DPI-C implemented output 

signals to be compared with RTL outputs which is delayed for signal compatibility. The 

RTL binding can be seen from line 43 to line 53. 

 

Listing 19. Instantiations of UVM interface, RTL DUV, and Simulink DPI-C representation  
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The equivalence checking between real-valued RTL implemented estimation error and 

its DPI-C representation is demonstrated in listing 20. The signal err_sig_impl_re_de-

layed is the delayed RTL estimation error output whereas err_sig_impl_re_ref is its Sys-

tem Verilog DPI-C generation. The equivalence checking is passed, leads to that 

err_sig_impl_re_testFailure value is always zero.  

 

Listing 20. Top-module equivalence checking in UVM environment written by System Verilog 
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The same coding technique is applied for filtered output at both real path and imaginary 

path. If all of these checking are done without failure during UVM simulation then the 

test-completed message is displayed, otherwise the test-failed message is shown in-

stead. 

 

Figure 30. UVM testbench simulation with test-passed result 

After HDL Design integration with UVM testbench, QuestaSim tool is used to verify UVM 

simulation run. The result shown in figure 30 is to prove the previously specified equiva-

lence checking in addition to UVM test-passed simulation of 200030 ns. 
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Figure 31. Detailed waveform of inspected signals from UVM Testbench simulation 

To analyze UVM test simulation in detail, the signal waveform as seen in figure 31 above 

is to present all needed output signals over time. From a detailed observation at the 

yellow cursor, for instance, at 199120 ns, err_sig_re_expt is Simulink DPI-C expected 

estimation error captured from scoreboard that its value is equal to the value of 

err_sig_impl_re which is RTL implemented estimation error. Their identical value under 

hexadecimal format is 16E049, although their data bit width is different. The same results 

are obtained for filtered output at both data paths.  

6.5 System Verilog Assertions 

An assertion is a statement about a design’s intended behavior which must be verified. 

It is used to validate the behavior of the system defined as properties which are design 

behavioral attributes. Its sole purpose is to ensure consistency between the designer’s 

intention, and what is created. [15,3-4.] 

For this Thesis project, System Verilog assertions were used to verify the correct func-

tionality of signal logic under valid control. Simple tests written were to check that tap 

delay processing and weight update logic worked as expected. The register interface 

writes the configuration and exports the data from the module internal registers to the 
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top-level configuration and data registers [11,80]. This connectivity from RTL design 

module to top level registers to be coded as System Verilog assertions binding shown in 

listing 21 below is to read RTL implemented output data then drive them into assertion 

properties through the binding interface. Concurrent assertions are used at each rising 

edge of the valid system clock to evaluate the behavior of RTL signal logic. 

 

Listing 21. HDL entities binding to System Verilog assertion properties 

To implement modular System Verilog assertions, the coding style used splits assertion 

declarations into two parts as can be seen in listing 22. Sequence expressions are to 

configure the functional tests for equivalence checking under control logic whereas prop-

erties are to specify the trigger conditions of the previous configured sequence expres-

sions. To be more specific, from line 21 to line 25, it means when valid_in is activated, 

weights_sig value assigns to weight_v which will be stored as a temporary variable. At 

the one next clock cycle, this variable will be compared to fil-ter_coeff_sig_1 which is the 

weight update logic. The similar configuration applied to tap delay processing as can be 

seen from line 27 to line 30 that there is a variable assignment from noise_signed to the 

intermediate variable noise_in_v which will be in comparison with the shifted element of 

tap delay register after one delayed clock cycle. For property declarations, from line 33 

to line 47, it describes that at each rising edge of system clock, when valid_in triggers, 

previous configured sequence expressions will be verified. 
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Listing 22. Sequence and property declarations for SystemVerilog concurrent assertions 

 In listing 23, from line 50 to line 62, there are assertions to verify the design properties 

that if the asserted logic behaviors are not as expected then uvm_error actions will be 

activated to stop UVM simulation along with the detailed messages shown on HDL sim-

ulator display. 
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Listing 23. Concurrent assertions and cover properties written by System Verilog 

The assertion results shown in figure 32 are all test-passed for each verified procedure 

under UVM verification.  
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Figure 32. The test-passed results of SV concurrent assertions under UVM verification 

In addition, from line 65 to line 66 in listing 23, cover properties are used to guarantee 

that if the properties do not fail but pass with “cover” then the design does not have a 

bug associated with that properties and the conditions have been exercised [14,35].  
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7 Conclusion 

The Thesis work presented an adaptive FIR filtering noise cancellation module which 

smoothly filtered the corrupted noisy signal to recover the clean original sinusoidal signal. 

The design module implements Least Mean Squared algorithm with filter coefficients 

update stages to create the compatible weights for each adaptive filtering procedure and 

eliminate the uncorrelated noise from the corrupted signal. The main design goals for 

this module were configurability and reusability. These were achieved already in algo-

rithm level with the use of modular coding style to create instantiated functions for partial 

configurations. The configurability was implemented with the use of Matlab command 

line interface which provided an interface to the configured parameters. RTL reusability 

was realized by describing parameters configuration and each used function inside HDL 

package. The implementation work was done adhering to Mathworks digital design flow. 

Verification was likewise done following an ASIC verification flow before physical design 

period. The verification flow included many modern tools and practices such as the use 

of a re-usable UVM test bench for module and system level verification, specific use 

case. The module was verified to produce exactly the same results as the algorithm by 

comparing the fixed-point data the algorithm generated to the data the RTL model output 

during functional verification. The data were compared clock accurately bit-to-bit. Addi-

tionally, no errors or bugs were found from the design module. the module passed all 

required functionality tests and was cleared for RTL hand-off. The complexity of the 

Adaptive FIR Filtering noise cancellation module is quite trivial to dial back and forth as 

the tapped delay process, smoothing filtering stages are all modular. [11,85.] 

The design module serves the purpose of noise cancellation process based on adaptive 

LMS algorithm with allowed configured difference between the original input and corre-

lated filtered output. The relevant theory related adaptive filter was explored. The theory 

and mathematical model of the design module were also explained. The design flow 

followed the familiar top-down model where work is done in subsequent stages. First the 

algorithms were developed to fixed-point models which physically realizable. Then the 

RTL micro-architecture of the module was designed on the basis of the algorithms pro-

vided. The actual HDL was written following the RTL micro-architecture description. Ver-

ification work was started after all functionality was included in the RTL. The verification 
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environment was an UVM test bench which supported many modern verification tech-

niques including test case establishment, code coverage and System Verilog assertions. 

[11,87.]  

Hardware deployment and implementation and the related challenges, such as IP core 

generation to be integrated with a register abstraction layer by using AXI protocols, 

Transaction Level Modeling using SystemC and IP-XACT, could be innovated for future 

development of this Thesis project, since the design module was already modified to be 

modular and reusable, so that it has a scalable architecture with generic parameter spec-

ifications. This gave some valuable insight because RTL design coding style and config-

urations originally targeted to an SoC.  

The aim of this work was to design, implement and verify a fully adaptive FIR filtering 

noise cancellation module following Mathworks digital design flow. This objective was 

successfully reached as the design module met all pre-defined design specifications. 
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