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There has been a tremendous increase in the use of gestures in human-computer interaction 
technology, where the most common approach is vision-based systems. However, a tactile 
sensing device around the wrist can give more information about a hand's static gestures 
than only motion tracking. The sensors can detect the pressure distribution on a surface 
between the sensor and the wrist. Hence, the thesis aimed to design and create a tactile 
sensing wristband prototype for a real-time hand gesture recognition system. 

An in-depth analysis of current gesture recognition systems was conducted, from which a 
suitable architecture and machine learning algorithm was identified. After carefully selecting 
the appropriate components and techniques for the wristband, the final prototype was 
designed, constructed, and tested to obtain its performance. The main focus lies in the 
classification of the pressure values into gestures with the Support Vector Machine 
algorithms. The sensor values were scaled with a Min-Max normalization and then used as 
input for the Support Vector Machine, which included a radial base function kernel.  

The result showed that all ten static gestures were clearly distinguished. The classification 
accuracy for the static gestures in the experiment was 98.0%. The result obtained shows 
that the wrist-based gesture recognition prototype adhered to the requirements presented 
in this thesis. 
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Eleiden käyttö ihmisen ja tietokoneen välisessä vuorovaikutuksen teknologiassa on 
yleistynyt huomattavasti. Tätä teknologiaa lähestytään yleisimmin näköhavaintoon 
perustuvilla järjestelmillä. Käden staattisista eleistä saataisiin kuitenkin tarkempaa tietoa 
kosketusantureilla varustetulla laitteella ranteen ympärillä kuin pelkällä liikkeen seurannalla. 
Kyseiset anturit havaitsevat paineen jakautumisen anturin ja ranteen pintojen välillä. Näin 
ollen, opinnäytetyön tavoitteena oli kosketusta tunnistavan rannekkeen prototyyppi 
reaaliaikaisen suunnittelu sekä toteutus eleiden tunnistamisjärjestelmää varten. 

Nykyisiä eleiden tunnistusjärjestelmiä analysointiin perusteellisesti sopivan arkkitehtuurin ja 
koneoppimisalgoritmin valitsemiseksi. Rannekkeeseen valittiin huolellisen arvioinnin ja 
suunnittelun perusteella sopivat komponentit ja tekniikat, minkä jälkeen lopullinen 
prototyyppi suunniteltiin, toteutettiin ja testattiin sen suorituskykyominaisuuksien 
saavuttamiseksi. Rannekkeen sensorien arvot luokiteltiin eleiksi tukivektorikone-algoritmia 
käyttämällä. Itse tukivektorikone muodostettiin radiaaliin perustuvan funktion kernelillä ja 
sen syöttötietoina toimivat sensorien arvot, jotka skaalattiin Min-Max -normalisointia 
käyttämällä. 
 
Tulos osoitti, että kaikki kymmenen staattista elettä pystyttiin erottamaan selkeästi. Testin 
luokitustarkkuus staattisille eleille oli 98,0 %. Tulos osoittaa rannetietoon perustuvan 
eleentunnistusprototyypin olevan tämän opinnäytetyön kriteereiden mukainen. 
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1 Introduction 

Interacting with hands allows advanced ways in both human-to-human and human-to-

computer communication. Consequently, a hand gesture recognition (HGR) method is 

used more widely in technology nowadays. It provides a natural and intuitive contact-

free input mechanism for smart devices. Another advantage is its feasibility, which lowers 

the disparity between intention and actual control. Hence, there has been a tremendous 

increase in the use of gestures in the field of human-computer interfaces (HCI). 

Applications as augmented reality [1], virtual reality (VR) [2], and sign language [3] have 

all taken advantage of different hand gesture recognition methods due to their broad 

positive impact.  

In comparison to other HCI devices, one of the main advantages of HGR is that direct 

physical manipulation techniques, such as keyboards, can be eliminated. This method 

increases the intuitiveness of any interface. Furthermore, gesture recognition enables an 

accurate operating system, especially in human-robot interaction. A robot can be 

commanded and controlled remotely to perform a specific task by transmitting 

information from the gestures. A remote control can be necessary, for example, when 

human presence is not possible due to safety reasons. One situation can be facilities 

with excessive quantities of radioactive radiation that are dangerous for humans [4].  

The gestures can be identified in multiple ways creating a wide-ranging effect field of the 

HGR devices. In a human-robot collaboration system, the interaction should be natural. 

For this purpose, the device attached to the controller's body should be unnoticeable. 

Ideally, the device is wireless, accurate, small, and compact. However, in terms of the 

development of a wearable HGR device, the design's accuracy and cost are two of the 

major problems. In addition, the accurate devices incline to be high-priced. Therefore, 

this work focuses on finding out if it is possible to create a cost-efficient and accurate 

HGR device with fewer sensors than usual.  



2 
 
 
 

  
 

 
 

1.1 Project Objectives 

This project includes extensive background research and analysis of the already existing 

devices and methods, and continuous comparison to achieve the device's highest 

possible accuracy with affordable designing methods and fewer sensors.  

This thesis takes advantage of the tactile sensing method for creating a wearable HCI 

gesture recognition device. Its approach lies in five pressure sensors that are improved 

to sense a hand's fine movements. The device is placed around the wrist, which is a 

natural location for wearable devices. The aim of this thesis is to have a precise wristband 

with fewer sensors to recognize the differences in static hand positions. In the testing 

stage, the data is treated with chosen machine learning algorithms to determine whether 

the above objectives are met or not. In addition to the discussion, the results include a 

risk analysis to describe the different factors affecting the wristband and its outcome. 

2 Technical Review 

As a result of the development of HCI technology, gesture recognition has become a 

trending topic. This section focuses on the most common techniques and methods for 

which the gestures are applied. 

2.1 Categorization of Gesture Recognition Applications 

Two of the most utilized methods in gesture recognition devices are the vision and the 

sensor approaches. The former method is based on visual technologies, for instance, 

cameras, while the latter perceives the gestures from contact sensors along the arm or 

around the wrist. Thus, the sensor-based HGR systems are usually wearable devices. 

However, there is a wide range of different types of sensors, which means that there are 

also many different HGR applications, such as Electromyography (EMG) [5], force-

sensitive resistors (FSRs) [6], and gyro sensors [7]. The signals acquired from the 

sensors provide a broader recognition range than cameras. Therefore, only the most 
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common method is discussed in chapter 2.1.2 and 2.1.3, and later, in chapter 2.3, other 

commonly used sensor methods are summarized together with machine learning 

algorithms. 

2.1.1 Vision-Based Devices 

The vision-based devices for gesture recognition have a touchless user interface (TUI). 

The gesture recognition occurs in a scene by decoding explicitly with different image 

processing algorithms. For the scene itself, the TUI method needs environmental 

cameras, which require a lot of space. Thus, these devices are bulky and may not be 

suitable for wearing or portable use in general. The additional problem is that cameras 

are fragile and susceptible to fluctuations in ambient illumination, disturbing image 

processing. Furthermore, cameras have less precise sensors than contact devices, 

leading to risk-off privacy issues. The more expensive camera the device is using, the 

higher the required resolution is. [3;8.] 

Despite the listed disadvantages, these devices are easy to set up and use. Therefore, 

there are several vision-based devices on the market, where the most common one is a 

Leap Motion controller by Ultraleap [9]. The Leap Motion's primary function is to track 

hand movements in real-time in three-dimensional space (3D). 

2.1.2 Electromyography-Based Devices 

The most widely used sensor approach for HGR is the Electromyography signal 

measurement. As mentioned in chapter 2.1, this chapter focuses mainly on introducing 

this type of signal measurement. 

The working principle is place electrodes on the skin to measure the electrical potentials 

in contracting muscles [3]. The data is then analyzed and processed to detect which 

muscles are active. The advantage of EMG is the cause-and-effect technique related to 

muscle activation. However, the device is typically located on the forearm where the 

majority of the hand's muscles are, decreasing the practicality. The electrodes also 
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generate a lot of noise when the user sweats or moves a limb, which usually leads to a 

low signal-to-noise ratio [10]. 

The most well-known EMG device for gesture recognition is a Myo Gesture Control 

Armband produced by Thalmic Labs Co [11]. It provides an easy to use system at a low 

price point. The device is designed with eight EMG electrodes that are placed around 

the forearm to detect the forearm movements in the 3D space. It is used especially for 

prosthetics, although it suffers from a noisy signal and its weak intensity. Nevertheless, 

sales of the Myo bracelet ended in 2018, and there are no longer any similar low-cost 

gesture recognition products on the market. However, the CTRL-Labs company obtained 

several patents from Myo and developed a new CTRL-kit prototype that has a good 

accuracy in gesture recognition performance [12]. Since this product is still in 

development, it cannot yet be purchased at a reasonable price.  

2.2 Tactile Sensing Applications 

Tactile sensing technology is a new technique that consists of measuring a direct 

physical contact between two objects and provides an exact mapping. It is a combination 

of pressure and force sensing techniques, making the full complexity of the contact 

pressure profile possible. In tactile technology, two mostly used sensors are capacitive 

and resistive ones [13]. The first one is used to measure the resistance of a conductive 

material, and the capacitor measures its ability to store electrical charge. Also, the MEMS 

barometers can be modified to suit the tactile applications [14]. This approach is low-

priced compared to the typical tactile array sensors.  

The tactile sensors have good robustness and stability compared to other pressure or 

force sensors. They are mostly used in human-robot interaction to classify different types 

of touch [15]. The comparison of the measurement profiles between the pressure, force, 

and tactile sensor is illustrated in figure 1. 
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Figure 1. The measurement profiles of the pressure, force, and tactile sensors [13]. 

Another popular sensor designer in the robotics field is a company called RightHand 

Robotics, Inc. One of their product lines consist of TakkTile sensors that are low-cost 

and sensitive, but what makes them interesting is that they are based on the modified 

barometers [16]. The TakkTile sensors are suitable for flexible design due to their small 

size. In addition, they perform well in devices that require repeatability and temperature 

stability. However, the company has announced on their website [16] that their products 

are no longer available. 

2.3 Machine Learning Algorithms in Hand Gesture Recognition 

There is no exact distribution of what is and what is not machine learning (ML). In 

general, however, it can be defined as a computer science area, which intends to make 

computers learn and analyze data to make predictions and work independently. Most of 

the ML applications are used for data analyzing and processing, as well as gesture 

recognition. The computer's main task in ML is first to learn how to perform a task by 

studying a training set of samples and then perform the same task with the new data it 

has not seen yet. [17.] 
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Machine learning offers a variety of useful methods to train the system for gesture 

classifications. These systems use self-learning algorithms that allow them to generate 

more accurate predictions every time. This method improves the performance of the 

system after each training set. To understand how to use different ML algorithms, 

advanced mathematics and engineering skills are required. In this chapter, the most 

common algorithms and applications in hand gesture recognition are described.  

In the field of HGR, the most common approaches in wearable devices apply to the 

forearm and wristband. Jiang et al. [18] created a wristband for real-time gesture 

recognition from surface and air gestures. For obtaining the data, the device uses the 

surface EMG sensors and an inertial measurement unit (IMU). The signal combinations 

were collected and analyzed by Linear Discriminant Analysis (LDA). Liang et al. [19] 

created a calibration method for their wrist-worn device based on the Support Vector 

Machine (SVM) algorithm. Likewise, Buyn and Lee [20] used SVM algorithms for HGR 

in their tactile sensor array that was integrated with a smartwatch. Ahsan et al. [21] 

utilized the Artificial Neural Network (ANN) to classify the EMG signals. Shull et al. [22] 

applied three machine learning algorithms: LDA, SVM, and the K Nearest Neighbors 

(KNN) to their wristband with the modified pressure sensors. Xiao et al. [23] developed 

an armband with eight FSR sensors and created a pattern recognition method with the 

Extreme Learning Machine (ELM). Zhang et al. [24] developed a framework for 

continuous gesture recognition for their wristband with four force-sensitive resistors. 

Benatti et al. [25] designed a prosthetic hand application based on an armband with four 

EMG sensors. They used the SVM algorithm as well. 
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Table 1. Comparison of gesture recognition studies based on wearable devices. 

Study Sensor(s) Application ML Algorithm Accuracy 

Jiang et al. [18] 4xsEMG & 4xIMU Wrist LDA 92.6%* 

Liang et al. [19] 4xPressure 
(capacitive) 

Wrist SVM 90% 

Buyn and Lee [20] 4xTactile  
(strain gauges) 

Smart Watch SVM 97.8% 

Ahsan et al. [21] 5xEMG Wrist ANN 88.4% 

Shull and Lee [22] 10xBarometers Wrist LDA 98.1% 

Xiao et al. [23] 8xFSR Forearm ELM 92.33% 

Zhang et al. [24] 4xFSR Wrist SVM 95.28% 

Benatti et al. [25] 4xEMG Forearm SVM 98.4%** 

*Only the air gestures form Lian et al. [18] has been taken into account in this comparison. 
** The accuracy is calculated from an error rate of 1.66% that corresponds the error of 1 in 60 gestures 

The studies listed above are summarized in table 1 as a comparison of each's gesture 

recognition method. The table contains only studies that are based on wearable devices. 

The five columns, starting from the left include: the authors of the research paper, the 

sensors used, the application on the human arm, the ML algorithm, and the accuracy 

rating.  

3 Theoretical Basics 

This section contains the theories that need to be known for this project: an anatomy and 

a machine learning section. In order to design an accurate and practical wearable device, 

as described in the objective, it is essential to understand the structure and the physical 

phenomenon in the body part that will be measured. Another requirement was to 

decrease the number of sensors. Therefore, the locations need to be carefully designed 

with the intention of obtaining accurate data with a limited number of sensors. As a result, 
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an anatomy part is included in this work. Later, in the actual recognition section, the 

machine learning method plays an important role in the relationship between sensor data 

and gestures. Since both topics are vast and hold a lot of information, only the essential 

aspects are summarized in the following paragraphs. 

3.1 Gesture Definition 

One of the main problems with gesture research is the lack of uniform definitions for 

commonly used terms. In general, gestures can be defined as non-vocal communication 

via the physical movement of the face, limbs, or the whole body [1]. The term 'gesture' 

is used throughout this thesis to describe one hand's posture only.  

Roughly, gestures can be classified as dynamic or static contractions. The former is a 

signal over a time frame, and it has two components: the hand configuration and the 

location. The configuration is the shape of the hand, including the fingers and the wrist. 

The location is a combination of the hand orientations and positions in space. On the 

contrary, a static gesture has no temporal duration. It is a configuration at a specific point 

in time. It is also important to note that in a static gesture, the length of the muscle and 

the configuration of the hand do not change. [20.] The muscles and the tendons generate 

force, for example, when a hand is still but holding an object. As mentioned in the 

objectives, this work focuses on static gestures.  

3.2 Hand Anatomy 

A human hand is a complex body part that can perform very fine movements 

representing one of the most intuitive ways to interact with surroundings. Anatomically, 

it is described as the terminal, prehensile portion of an upper limb, consisting of the wrist, 

palm, and fingers [26]. This chapter is mainly based on the Principles of Human Anatomy 

[27, 227-241, 264-281, 304-341, 392-412]. 
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3.2.1 Hand Motion 

The configuration of bones, joints, and muscles allow 27 degrees of freedom in 

movements. This work focuses only on angular movements that can be subdivided into 

flexion, extension, abduction, and adduction. These movements are illustrated in figure 

2. In flexion, the palm bends toward the forearm, decreasing the angle between 

articulating bones. For the thumb, flexion occurs when the thumb is touching the opposite 

side of the palm. The opposite movement is called extension, where the hand stretches 

out from the palm, increasing the angularity. In abduction, the movement points away 

from the midline: whereas adduction is towards the midline.  

 

Figure 2. A visualization of angular movements. Reprinted and modified from Gross Anatomy 
(2011) [28, 353, 369]. 

There is another angular movement called circumduction that belongs to the dynamic 

classification group. It is a combination of flexion, abduction, extension, adduction, and 

rotating motions that produce a circular motion called circumduction. It occurs in the 
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distal end of a body part. For instance, moving the hand in a circle at the wrist joint is a 

circumduction movement. Despite the fact that it is a dynamic gesture, in this work, 

circumduction motion is partly used to describe all the vague gestures, such as the 

intermediate form of flexion and adduction. 

3.2.2 Osteology of the Hand 

The bony structure of the hand, also called the osteology of the hand, can be broadly 

divided into three groups: the carpals, the metacarpals, and the phalanges. First 14 

phalanges in the hand form the fingers. The thumb, index finger, middle finger, ring 

finger, and little finger each have three phalanges: a distal, a middle, and a proximal one. 

The thumb is the only finger without the intermediate phalange.  

 

Figure 3. Osteology of the right hand. Reprinted from Principles of Human Anatomy (12th 
Edition) [27, 240]. 

Each of the five metacarpal bones make up the intermediate part of the hand called the 

palm. The wrist consists of a cluster of carpals. These eight small bones are physically 
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located in two rows, which are as follows: the proximal and distal rows. The proximal row 

is attached to the two big bones called ulna and radius. The former bone, ulna, locates 

on the little finger's side, and the latter bone, radius, is parallel to the ulna, locating on 

the forearm's lateral side. The carpals in the distal row are more settled and immobile 

than the proximal carpals. In figure 3, the bones of the hand are illustrated in more detail.  

3.2.3 Muscles of the Hand 

The study of pressure sensing applies to skeletal muscle groups in the hand where the 

muscle tissue is connected to the bones through the tendons, making it possible to move 

the joints and create the hand gestures. This work focuses on the tendons and muscles 

in charge of flexing and extending the wrist and fingers. They respectively control the 

hand abduction and adduction illustrated in figure 4 and figure 5. More specifically, the 

placements of thenar muscles (explained later in this chapter), extensor pollicis brevis, 

flexor pollicis longus, extensor digiti minimi, flexor digitorum superficialis, flexor carpi 

radialis, and extensor carpi ulnaris are all studied [22;27]. These are highlighted in the 

pictures below.  

 

Figure 4. Cross-section of a right wrist. Reprinted and modified from Musculoskeletal Key [29]. 
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Extensor carpi ulnaris extends and adducts the hand. The thumb and the entire hand 

extension are controlled by extensor pollicis brevis. In contrast, extensor digiti minimi 

extends a little finger and the hand. Additionally, extensor carpi ulnaris extends and 

adducts the hand. The thenar muscle group is a combination of three muscles, that are 

as follows: the abductor pollicis brevis, flexor pollicis brevis, and opponens pollicis. They 

are responsible, for example, the adduction, abduction, and flexion of the thumb. They 

are all located at the bottom of the thumb. In figure 4, only the abductor pollicis longus is 

seen. However, hand anatomy is a complex field. Therefore, a rough generalization can 

be done by stating that the abductor pollicis longus usually acts together with the 

abductor pollicis brevis, allowing the thenar group to be measured at that point.  

 

Figure 5. The carpal tunnel on a wrist. Reprinted and modified from Musculoskeletal Key [29]. 

The most important muscle in the wrist is the flexor carpi radialis. It flexes and adducts 

the whole hand at the wrist joint and precisely controls the flexion of the thumb. The 

flexor pollicis longus is responsible for flexing the thumb. Lastly, the vital place for 

measurement is the flexor digitorum superficialis due to its high density of tendons. 

Flexor digitorum superficialis is in charge of flexing all the fingers, while flexor carpi 

radialis flexes the thumb.  
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3.3 Data Preprocessing in Machine Learning 

It is essential to prepare the raw data before processing or analyzing them with any 

machine learning method. For large measurement scales and to avoid dependence in 

different measurement units, the data needs to be normalized. There are several data 

normalization methods. Nonetheless, the main idea of all of them is to transform all 

values into the same range for each dimension. Typically, the transformation is done into 

a smaller range, such as [−1, 1] or [0, 1]. The Min-Max normalization is an excellent 

choice for treating the ratios of the data values equally. Namely, it performs a linear 

transformation on the raw data, and therefore, it is used in this work. 

The raw data stream is divided into a window where features can be calculated over a 

series of points. These features represent the data that is organized into columns (𝑣𝑖
′). 

This method is applied for every feature, and thus, all income values will get a new, 

scaled value in the range of [0,1]. The idea in the Min-Max normalization [30] is that in 

column 𝑣𝑖
′, the smallest value (𝑚𝑖𝑛𝐴) of an attribute, A, is transformed into a 0, and the 

highest value (𝑚𝑎𝑥𝐴) of A into a 1, respectively. Then, the rest of the values in the column 

are scaled between 0 and 1. The Min-max normalization can be written as the following: 

𝑣𝑖
′ =

𝑣𝑖 − 𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴 −𝑚𝑖𝑛𝐴

(𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 (1) 

Here, it can be seen that the Min-Max maps the feature 𝑣𝑖 of the attribute, A to the column 

𝑣𝑖
′ in the range [𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 ,  𝑛𝑒𝑤_𝑚𝑖𝑛𝐴]. Where 𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 is the maximum of the 

normalized dataset and 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 is the minimum of the normalized dataset. 

3.4 Support Vector Machine Classifier 

Finding a good model for gesture recognition is the challenging part. The machine 

learning models can easily have limited and low accuracy, for example, if the samples 

are independent from time-series signals or if the dimension is too small [31]. The latter 

typically leads to overfitting the model. Another big drawback is that when a wearable 
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device is re-used, the sensor locations change meaning the data also changes and thus, 

requires retraining the model each time. A profound background in linear algebra is 

essential since it creates the underlying mathematics of all ML models. It also helps to 

understand the algorithms and how to use them in a project. 

This work uses Support Vector Machine algorithms due to its excellent performance in 

previous research studies, as shown in table 1. The SVM is a classifier derived from 

statistical learning theory by Vapnik in 1992. It is a classical supervised learning model 

for both regression and classification analysis. [31] The SVM has a low model complexity 

in a non-linear classification problem which is mathematically explained in the following 

subsections. Intuitively the goal is to construct an optimal hyperplane in multidimensional 

space in an iterative manner to separate the dataset into two classes. Chapters 3.4.1, 

3.4.2, and 3.4.3 are based on the two sources: [32;33]. 

3.4.1 Linear Separation 

This chapter starts with the linear separability concept, which is the most straightforward 

case of the SVM classification. Later, in chapter 3.4.2, the kernel trick is used to map the 

same inputs into high-dimensional feature spaces. This derives the non-linearly 

separable cases which occur in most of the practical cases.  

The first task is to find a line, called a hyperplane, which separates the two classes 

accurately. The classified classes are created from the labeled data distinguished with a 

classifier the positive '+ 1' and negative '-1' data points. These data points are referred 

to as the support vectors that locate in a vector space. As seen in figure 6, a support 

vector is a normal vector with several names and is often referred to as a weight vector 

in ML literature. Nevertheless, due to its perpendicularity to the hyperplane, it can be 

considered as a unit vector. This perpendicular distance between the support vector and 

the hyperplane is called a margin. The main idea is to minimize errors in classifications 

by finding a maximum marginal hyperplane that is far away from any data point. The 

hyperplane which meets all the above conditions is called an optimal hyperplane, as 

seen in figure 6.  
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Figure 6. Finding the optimal hyperplane to separate two classes 

The desired hyperplane is mathematically defined as following: 

𝒘𝑇𝜑(𝒙) + 𝑏 = 0 (2) 

where 𝒘 is the weight vector, 𝜑(𝒙) is a fixed feature-space transformation, and 𝑏 is a 

bias. More specifically, the bias is an unknown constant which is the reason why the 

hyperplane does not have to go through the origin. This helps fit the model in the best 

way. The equation above, and especially the term 𝒘𝑇 comes from the linear models for 

regression models.  

A training dataset is defined as 𝐷 = (𝒙𝑖, 𝑦𝑖). It comprises N input vectors 𝒙𝑖 ∊ (1, …, N) 

with the corresponding desired label 𝑦𝑖 ∊ (+1, -1). It is used for a dual representation that 

includes the kernel functions. These are later defined in detailed. However, in the training 

dataset 𝐷 = (𝒙𝑖, 𝑦𝑖), each data points (𝒙) are classified according to the decision function 

𝑓(𝒙), that is: 

𝑓(𝒙) = 𝑠𝑖𝑔𝑛(𝒘𝑇𝜑(𝒙) + 𝑏) (3) 

This means, the sign of 𝑓 is positive when the point is correctly classified and negative 

when classification is incorrect. The equation (3) needs to be calculated for each training 

Support vectors 
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sample. The multiplication with the respective class 𝑦𝑖 ensures that the term 

𝑦𝑖( 𝒘𝑇𝜑(𝒙𝑖) + 𝑏) is always positive in the case of correct classification. The constraint 

for this is, 𝒘𝑇𝜑(𝒙) + 𝑏 ≥ 1 and  𝒘𝑇𝜑(𝒙) + 𝑏 < −1 for the labelled classes "+1" and "-1". 

This means, negative and positive samples should fall on different sides of the 

hyperplane. The data points now satisfy the constraints: 

𝑦𝑖( 𝒘𝑇𝜑(𝒙𝑖) + 𝑏) ≥ 1, ∀  𝑖 = 1, … , 𝑁 (4) 

This is called the canonical representation of the optimal hyperplane, illustrated in figure 

7, satisfying the condition 𝑓(𝒙𝑖) = 𝑦𝑖. Now, an important point must be taken into 

account: there is always at least one active constraint. The hyperplane has always one 

support vector and when margins are added and maximized, there are at least two of 

them. To reiterate, two support vectors mean two constraints.  

 

Figure 7. The canonical representation of the optimal hyperplane. 

Misclassified point 

Support vector 
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There can be several different ways to classify the training data set. Thus, the best one 

can be determined by identifying the one with the smallest generalization error. In SVM, 

this means finding the maximized margin that has the smallest distance between the 

maximum marginal hyperplane and any support vectors. This requires knowledge off the 

statistical learning theory. From geometry, the margin 𝛾 can be defined as the following: 

𝛾 =
𝒘𝑇(𝒙𝑝𝑜𝑠 − 𝒙𝑛𝑒𝑔)

||𝒘||
=

2

||𝒘||
(5) 

Next, the margin 𝛾 needs to be found and maximized for a better performance. To 

maximize the distance between the support vectors, the parameters 𝒘 and 𝑏 need to be 

optimized. This is a necessary step in the training set to give a lower error rate from yet 

unobserved data classification. Another advantage lies in the fact that it requires only a 

few of the support vectors and not all the samples.  

To maximize the margin 𝛾 and to minimize the length of the vector 𝒘, knowledge in the 

field of linear algebra is required. Since maximizing 
1

||𝒘||
 is equivalent to minimizing ||𝒘||, 

it is also equivalent to minimize 
1

2
||𝒘||2 to solve the optimization problem. Furthermore, 

this leads to more compact classifiers: 

arg
𝑤,𝑏

𝑚𝑖𝑛 
1

2
||𝒘||2 (6) 

The equation underlies the conditions (10) and can now be called a quadratic 

programming problem in SVM. Now, The Lagrange multiplier method needs to be 

introduced to restate the previous problem. The basic idea in Lagrange function is to find 

the minimum of 𝑓 under the equality constraint 𝑔, which is as follows: 

𝛻𝑓(𝑥) − 𝛼𝛻𝑔(𝑥) = 0 (7) 

Where 𝛼 is called the Lagrange multiplier. With the constraints above, the corresponding 

Lagrange function is now: 
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𝐿(𝒘, 𝑏, 𝛼) =
1

2
||𝒘||

2
− ∑ 𝛼𝑖(𝑦𝑖

𝑛

𝑖=1

(𝒘𝑇𝜑(𝒙𝑖) + 𝑏) − 1) (8) 

Here, 𝛼 = (𝛼1, …, 𝛼𝑁 )T and 𝛼𝑖 ≥ 0. In order to solve the Lagrangian multipliers analytically, 

the number of samples must be small. This can be done by maximizing 𝐿(𝒘, 𝑏, 𝛼) for all 

samples and because there is (𝒘, 𝑏) for each hyperplane, the max 𝐿(𝒘, 𝑏, 𝛼) needs to 

be minimized. Maximizing 𝛼 can be done by the following: differentiating w.r.t a vector 𝒘 

and differentiating w.r.t a scalar 𝑏, and both need to be equal to 0. 

          𝒘 = ∑ 𝛼𝑖𝑦𝑖𝜑(𝒙𝑖)

𝑁

𝑖=1

(9)

 0 = ∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

(10)

 

Now, 𝒘 and b from 𝐿(𝒘, 𝑏, 𝛼) can be eliminated under the mentioned conditions. This 

leads to the dual representation of the maximum margin problem. However, it also needs 

to be maximized. Parameters 𝒘 and b are replaced by the Lagrange multipliers and the 

max 𝐿(𝒘, 𝑏, 𝛼) is represented by �̃�(𝛼). Now, the Lagrange function is as follows: 

�̃�(𝛼) = ∑ 𝛼𝑖

𝑁

𝑖=1

−
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝒙𝑖, 𝒙𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

(11) 

The equation (11) is under the constraints below: 

𝛼𝑖  ≥ 0,     ∀ 𝑖 = 1, … , 𝑁 (12) 

∑ 𝛼𝑖𝑦𝑖 = 0

𝑁

𝑖=1

(13) 

In the next step, a kernel function needs to be defined. This is presented in next, in 

chapter 3.4.2. 



19 
 
 
 

  
 

 
 

3.4.2 Non-Linear Separation 

When the training data is non-linearly separable, the previously applied hyperplane 

separation method needs some tricks and procedures. The basic idea is to use a 

function, the Kernel method, to transform the vector space into a higher-dimensional 

space. The Kernel allows the training data to be separated linearly. Thus, the canonically 

separating hyperplane can be determined similarly to the linear case. However, during 

the retransformation into the original space, the hyperplane becomes a non-linear 

interface. The transformation is shown in figure 8 below.  

 

Figure 8. Non-linear mapping from two-dimensional input space into a linear separable feature 
space. Modelled from Khan et al. [34] research article. 

On the left side in figure 8, the binary pattern classification lies in input space. As seen, 

it is complex and usually the classification is difficult to execute. After the Kernel 

mapping, the graph is now in high-dimensional feature space. As seen on the right side 

in figure 8, the data classification occurs as linearly separable. 

With mathematical methods, subsequently rescaling is done as follows: 𝒘 → 𝑘𝒘 and 𝑏 

→ 𝑘𝑏. This needs to be done to ensure the distance from any point 𝒙𝑛 to the hyperplane 

is unchanged. The kernel function used here, is defined as: 
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𝑘(𝒙, 𝒙′) = (𝜑( 𝒙)𝑇 , 𝜑( 𝒙′)) (14) 

Now, the kernel function can be used for substituting 𝒘 in equation (8). This leads to: 

𝒇(𝒙) = ∑ 𝛼𝑖𝑦𝑖𝑘(𝒙, 𝒙𝑖)

𝑁

𝑖=1

+ 𝑏 (15) 

In the hand gesture recognition, it makes more sense in practice to develop an algorithm 

that allows a certain number of outliers. Therefore, misclassifications need to be allowed. 

The Karush-Kuhn-Tucker (KKT) method fits well for this problem. It includes a Slack 

variable ξ𝑖, called Xi, that is needed to the constraints of the optimization problem by 

allowing the outliers. Also, KKT includes a regularization parameter C that is a positive 

error weight value. The parameter C determines the trade-off between the maximal 

margin and training error minimization. The constraints are now: 

0 ≤  𝛼𝑖 ≤  𝐶 (16) 

𝑦𝑖( 𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − ξ𝑖 (17) 

Both for 𝑖 = 1, … , 𝑁. The constraints (15) are also known as box constraints. The role of 

the ξ𝑖 is defined as the following: ξ𝑖 = 0 occurs when the training data is correctly 

classified, data inside the margin is characterized by 0 < ξ𝑖 ≤ 1 and finally, ξ𝑖 > 1 when 

the point is on the wrong side of the hyperplane.  

3.4.3 Advantages and Disadvantages of the SVM 

Finally, all pros and cons of the Support Vector Machine classifier are summarized in this 

chapter.  
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Advantages: 

1. Capable of fast classification 

2. Requires less data points 

3. Scales the data well to high dimensional space 

4. Decent performance for unknown datasets. 

5. In the field of SVM, the generalization occurs in practice and therefore, the risk 

of over-fitting is lower. 

Disadvantages: 

1. Sensitive to noise  

2. Difficult to choose the most suitable kernel function 

3. Problematic for large datasets or at least it requires long training time 

4. The SVM model is not suitable for fine-tuning parameters > a new training is 

required each time 

In summary, the Support Vector Machines only have a few drawbacks that would 

negatively impact this work. It is capable of high-dimensional pattern recognition with 

fewer samples representing the key concept of gesture recognition. With the SVM, the 

raw sensor signals from the non-linearity profiles can be transformed into a gesture. 

4 System Architecture 

There is a trade-off between practicality and accuracy when designing wearable devices 

based on biomechanical measurands. Using multiple sensor combinations in suitable 

locations provide more accurate measurements with higher amounts of hand gestures; 

however, these devices become larger and uncomfortable to wear in the applications. At 

the moment, there are no commercially available wearable pressure sensing devices for 

accurate real-time gesture recognition.   
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4.1 Sensor Array 

In chapter 3.2, it was shown that the signals around the wrist are precise to sensitive 

sensors due to the high density of tendons on a wrist. It is also known that the tactile 

sensors can accurately measure the pressure between the wrist and sensor surfaces 

and this way, map the hand and finger movements [3]. Pressure sensors can generally 

detect both dynamic and static contractions and they are robust to noise which makes 

them good candidates for HGR devices. Therefore, this work aims to meet all above 

mentioned requirements and create a tactile sensor array form five modified barometric 

sensors.  

4.1.1 Miniature Pressure Sensor with Microelectromechanical System 

A pressure sensor can be defined as a device that converts an obtained pressure signal 

into an output electric signal. There are five types of pressure sensors: piezoresistive, 

capacitive, optical fiber, resonant, and piezoelectric ones [35]. For the wristband, a 

miniature sensor model MPL115A2 [36] from NXP Semiconductors Inc. was chosen. It 

is a piezoresistive pressure sensor with a Microelectromechanical System (MEMS) 

technology. The MEMS pressure sensors can be used as barometers as well. Therefore, 

the MPL115A2 is called as a miniature barometer [36]. In figure 9, the MPL115A2 

sensor's appearance and block diagram are shown. 

The modern MEMS pressure sensors have low power consumption [36] and are very 

small. They are also resistant to sweat, allowing them to provide relatively stable signals. 

Additionally, they are inexpensive components and practical due to their compatibility 

with standard printed circuit boards. The MPL115A2 sensor has a small package size,  

5 x 3 x 1.2 mm, which makes it fit well for sensing a complex surface, such as the wrist. 

The sensor consists of a MEMS diaphragm with a Wheatstone bridge, temperature 

sensor, high-quality instrumentation amplifier, multiplexer, an analog-to-digital converter, 

and an Inter-Integrated Circuit (I2C) bus interface [16;36]. All the listed features are 

covered with a metal case, as seen in figure 9. 
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Figure 9. The MPL115A2 sensor's appearance and its block diagram. Reprinted from Tenzer et 
al. [14,1] synopsis. 

Due to the integrated ADC, the sensor gives the digitized temperature and pressure 

outputs via its I2C port. The MPL115A2 sensor perceives a pressure signal in range 50 

to 115 kPa [36]. For the mentioned features, the MPL115A2 model is an excellent choice 

for cost-efficient wearable applications. 

4.2 Circuit Design 

A sensor reduction is one of the main objectives concerning the design of the wristband. 

The advantage is that the smaller number of sensors makes data processing more 

resource efficient. However, this is a significant risk in terms of accuracy, since each 

sensor must perform in a stable and error-free manner. As mentioned in the previous 

chapter, the MPL115A2 sensor uses the I2C bus interface. The circuit design takes into 

account that each sensor has the same predetermined I2C address. Therefore, different 

protocols are needed to successfully read the data from all the sensors via the same I2C 

bus. Figure 10 shows the circuit of the MPL115A2 sensor.  
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Figure 10. The MPL115A2 pressure sensor circuit.  

Each sensor has two capacitors. One is connected to the ground from CAP, and one is 

for the VDD power supply connection. The recommended value for each capacitor is 1 

µF [36] used in this work. Pin 3 is connected to the ground, while pin 4 is connected to 

VDD for normal operation, and pin 6 is not used in this work. Pin 5, 7, and 8 are all 

connected to the Arduino NANO 33 BLE. The Serial Data (SDA) input/output line and 

the Serial Clock Input (SCL) are both connected with the pull-up resistors to disable the 

I2C communication [36]. In figure 11, the I2C communication on the Arduino NANO 33 

BLE's side is shown. 

The Arduino NANO 33 BLE is a microcontroller board, which is chosen to be used due 

to its simple and user-friendly interface and integrated Bluetooth feature that allows 

wireless communication. There are five sensors in this work separately connected to the 

Arduino's input/output (I/O) pins. For the I2C communication, there are two pull-up 

resistors with recommended values of 4.7 kΩ [36]. This method enables the Arduino 

NANO 33 BLE to share the I2C bus with all the sensors. Thus, only four lines are 

necessary to communicate with all sensors: two communication and two power lines. 

The schematic of the Arduino NANO 33 BLE is illustrated in figure 11 below.  
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Figure 11. The Arduino NANO 33 BLE circuit.  

The overall circuitry design includes five times the MPL115A2 circuits and one Arduino 

NANO BLE 33 circuit. The schematic is attached to Appendix 1. 

4.3 Sensor Array Sampling Rate 

The main challenge concerning performance is the sensor data conversion time, which 

is 1.6 ms [36]. A typical serial approach has to go through each sensor in the array and 

wait until the data is available. Therefore, an algorithm from Tenzer et al. research [14] 

has been used to calculate a faster sensor array sampling rate. The study [14] compared 

both serial and double-loop methods, where the latter could provide a better 

performance. The double-loop method is based on the waiting time used to communicate 

a start-conversion command to all the sensors. The algorithm is interested in the speed 

of the sensors, microcontroller, and bus connection. After alternately reading the data 

from each sensor in a suitable time interval, the sensor array sampling time can be 

calculated from the following equation: 
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(
2𝐶𝑏 + 𝑆𝑏 + 𝑅𝑏

𝑏𝑢𝑠 𝑠𝑝𝑒𝑒𝑑
) ∙ 𝑁 + 𝑇𝑐 (18) 

Here 𝐶𝑏 is the bits required to command the microcontroller's sensor selection, 𝑆𝑏 is the 

bits required to command data conversion, 𝑅𝑏 is the bits required to read the data, 𝑇𝑐 is 

the conversion time of the sensors, and 𝑁 is the number of sensors in the device. The 

bus communication speed is the maximum operating value in kHz for the I2C interface. 

[14.] 

4.4 System Layout 

The general distribution of the system is illustrated as a block diagram in figure 12. 

  

Figure 12. The block diagram of the architecture system.  

When a gesture occurs, the device records the wrist tactile profile with five modified bar-

ometric pressure sensors. All five recorded pressure sensor data values are read on the 

Arduino NANO 33 BLE microcontroller board via the I2C bus communication. The code 

is written in the Arduino Integrated Development Environment, also known as Arduino 

Software (IDE). Then, the sensor values are transmitted via Bluetooth or Miro USB to 

the local PC, where a gesture database is created.  

5 Wristband Design 

This chapter focuses on designing a complete and functional prototype that implements 

the requirements of the previous chapters. Additionally to the earlier prerequisites 

concerning the objectives, the design focuses on creating a practical, ergonomic, and 
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wearable prototype. A device that goes around the wrist should have a natural and 

comfortable approach for HGR applications. 

5.1 Wristband Materials 

The prototype is mainly used for research purposes. Therefore, the wristband material 

needs to be durable and easy to build and use. The wristband requires a flexible and 

rigid material to fit properly on the curved surface to fulfill the conditions. The outer layer 

around the electronics should ensure a tight contact between the sensors and the wrist. 

Therefore, a custom faux suede and Velcro strap combination is used here. The material 

is low-cost, easy to attach, and helps to hold the sensors in place. The printed circuit 

board (PCB) should be manufactured on a flexible polyimide due to its bending feature. 

Also, additional silicone is used for the sensors' rubber casting. For over-molding the 

liquid rubber, the object is to print the 3D-printed models using Polylactic Acid (PLA) 

plastic. The rubber casting method is explained more specifically in chapter 5.2.3.  

5.2 Placements of the Sensors 

The information from anatomy and other studies can be applied in the acquisition of 

sensor models and determine the sensors' locations. The number and location of the 

wristband sensors were chosen, considering the fact that the classification accuracy can 

still be 90% with only five sensors [22]. Therefore, in this work, the prototype measures 

the contact pressure distribution with five modified tactile sensors that are later classified 

into hand gestures.  

A high density of tendons underside the wrist makes it the most important source for the 

measurand. The sensors are strategically placed on estimating physical pressure 

changes from a surface. The sensors are located as follows: three sensors are located 

in line, close to each other on the underside of the wrist. The two other sensors lie on 

both sides of the wrist. Studies [22] have shown that measuring tendons located on the 

posterior side reflects the tendons' movements on the anterior side. This information is 
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mostly redundant, and therefore no sensors were placed on the posterior side. In 

summary, only the muscles and tendons mentioned in chapter 3.2.3 were directly 

measured. The sensor placements on the wristband are illustrated in figure 13. 

 
Figure 13. Hand-sided view of transverse section with five MPL115A2 sensors. Printed and 

modified from Principles of Human Anatomy (12th Edition) [27, 403]. Not in scale. 

The sensors in the wristband have been named to distinguish the data values in the 

following process. Figure 13 shows that sensor1 represents the left side sensor, closest 

to the little finger, on the underside locating sensor2, sensor3, and sensor4, and on the 

right side, close to the thumb, is sensor 5. 

5.3 Printed Circuit Board Design 

Hand movements change the shape of the wrist surface, making it challenging to place 

the sensor. Therefore, the wristband needs to be compact and tight enough to execute 

an accurate hand gesture classification with five pressure sensors. Because of this, the 

board should contain all the electronics used in the wristband. It connects all the five 

pressure sensors with the Arduino NANO 33 BLE and other components, namely 

resistors and capacitors. The printed circuit board, seen in figure 14, was designed with 

Altium. The 3D picture of the designed PCB is attached to Appendix 2.  

sensor1 

sensor2 
sensor3 

sensor4 

Sensor5 
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Figure 14. A two-dimensional layout of the printed circuit board. Designed with Altium. 

Due to the fact that the Arduino NANO 33 BLE is not bendable and the wrist itself is 

boney, the sensors are placed slightly above the centerline, allowing the wristband to fit 

better around the wrist. They are also located on the backside of the wristband, as seen 

in figure 14. As mentioned in chapter 4.2, each sensor has two ceramic capacitors, and 

since all sensors are connected in series, they share two pull-up resistors for the I2C 

communication. The microcontroller on the Arduino NANO 33 BLE can be powered from 

a local PC via the Micro USB cable connection since it has a built-in voltage regulator. 

In this project, the microcontroller runs at 3.3V. 

The manufacturing of the PCB took place at PCBWay, in China. In table 2, the PCB 

specifications are shown in detail. 

Table 2. The PCB specifications. 

Type Flexible Circuit Board 

Board Size 153 x 45 mm 

Board Thickness 0.1 mm 

Base Material Copper 

Layers 2Layer 

Solder mask Yellow 

Material Polyimide Flex 

Manufacture PCBWay - China 
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Concerning the wristband design, the PCB requires an extra fabric to hold it still. The 

holes on the upper and bottom sides were designed for sewing purposes. That way, the 

board can be attached to a fabric. Respectively, the holes on the side are for wires to 

connect the PCB to their ends.  

5.4 Mechanical Design 

The prototype design corresponds to already existing ergonomic shapes, which 

contribute to the practicality of the device. Moreover, the wristband should provide 

reliable mechanical support for the sensors to ensure the sensors are correctly attached 

to the wrist.  

The board's width is determined by the Arduino NANO 33 BLE board size, that is a 

45x18mm. A smaller model would also be suitable; nevertheless, the Bluetooth feature 

allows testing the data's wireless transmission with an easy-to-use interface. The custom 

two-sided printed circuit board's size and weight are, without the components, 153 × 45 

mm and 0.7 g, respectively. In figure 15, the final result of the PCB is shown. 

 
Figure 15. The manufactured Printed Circuit Board. 

The tendon and muscle movements apply motion and pressure to the sensors. 

Therefore, the sensors are integrated with the PCB to stabilize their positions. The 

components are soldered on the flexible PCB with standard integrated circuit surface-

mount techniques. This circuit board is suitable for over-molding with liquid polymer that 

is explained in chapter 5.3.1. It is also important to mention that the wristband is ideally 

made for a wrist with a circumference of 17 cm, and therefore, the use of the wrist strap 
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is limited. However, the connection holes on the side allow an attachment of a slightly 

larger circumference, maximum for approximately 20 cm. 

5.4.1 Rubber Casting Process 

The sensors' function is to identify the contact pressure profile between the device and 

the wrist surface. For this, each sensor requires a high density. Therefore, the MEMS 

sensors need to be encased in liquid rubber to give better measurements and provide a 

stable contact surface. With rubber casting, the sensor can convert a physical 

measurand from the tendons and muscles to an electric signal. According to studies [14], 

the best result is expected to be obtained using liquid urethane and vacuum degassing. 

However, small quantities of liquid urethane are rare on the market, and the vacuum 

degassing method is too expensive for the realization of this project. Instead, soft silicon 

was used. 

A ventilation hole is only with a 1 mm diameter, and the casting is carried out at normal 

atmospheric pressure. This will leave air caught in the metal case's ventilation hole. The 

rubber's pressure is too small to change air volume between the rubber and the sensor, 

and therefore, the trapped air would cause a very low sensitivity. Thus, the air needs to 

be removed from inside the case. As mentioned above, one way to implement the air 

remover method is to use vacuum degassing. However, it is an expensive method and 

thus would not be used for a cost-efficient prototype. Another way would be the removal 

of the metal case, but this creates a high risk of damaging the sensor itself. The most 

suitable approach would be to use a small syringe to spread the rubber into the metal 

case through the ventilation hole before it cures. This method allows the surface contact 

pressure to be transmitted through the rubber to the sensor.  

First, the soldered sensors were isolated from the printed circuit board by a 3D printed 

mold. Two different sized molds are used in the process. The dimensions for the sensor 

units located on the side are 7 x 8 x 2.5 mm, and for three sensors located in the middle, 

the sizes are 30 x 8 x 2.5 mm, respectively. The molds and rubber casting process is 

shown in figure 16. The thickness affects the sensor's sensitivity, and therefore, the 
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minimum size was used. The rubber thickness of 2.5 mm had an excellent performance 

in the tests. Consequently, it was chosen to be the final thickness. 

 

Figure 16. The rubber casting process. 

Extruding the silicone inside the metal housing is more complicated than expected 

before. Often, big air bubbles remain in the sensor, which in turn impairs pressure 

detection. As a result, the method required three PCBs, where the last one showed good 

performance.  

5.4.2 Sensor Performance Evaluation 

A sensitivity test determines each sensor's new sensitivity after the rubber casting 

process to ensure that the sensor is sensitive enough for HGR. First, the sensors are 

measured without applying any load. Then, the weight is applied incrementally above 

the ventilation hole. At the same time, the sensor response is recorded and saved to a 

local PC. The modified MEMS sensors were tested, and it was seen that they have good 

temperature stability, high sensitivity, low hysteresis, and good linearity, as was shown 

in the study [14]. These qualities also apply to tactile sensors, which is why these 

pressure sensors can be considered as tactile sensors. 

However, the sensors should be sensitive enough to recognize the gentle forces that 

occur during the static gestures. Therefore, the wristband is attached to the wrist while 

the hand is doing a circumduction movement slowly. At the same time, the pressure 

signals are captured and analyzed. Figure 17 shows the signals from each sensor during 

the circumduction movement. The x-axis represents time in milliseconds, and the y-axis 

represents the sensor value. 
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Figure 17. Sensor output values versus time for the sensors with a silicone layer of 2.5 mm 
thickness in the circumduction movement. The orange color represents sensor1, the 
blue is sensor2, the grey is sensor3, the green is sensor4, and the pink color 
represents sensor5. 

As seen in figure 17, the system with rubbers of 2.5 mm thickness is stable enough to 

recognize the pressure changes. 

5.5 Dataset 

This chapter describes the conditions and characteristics under which the 

measurements are performed. It includes the trial set, where gestures for recognition are 

introduced. Here it is also described how the dataset is created. 

The experimental test involved one subject with a wrist circumference of 17cm. The 

participant sat comfortably in a chair, leaning against a fixed seatback. Then, the 

participant was asked to place the arm on the chair's armrest, forming a 90º angle 

between the forearm and the armrest. The wristband (figure 18)  was then placed on the 

participant's right wrist, and the power cable of the wristband was connected to the local 

PC. The wire has no adverse effect on this test. Then, the participant was asked to 

perform a trial set and repeat it ten times. 
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Figure 18. The prototype of the wristband. 

The testing trial consists of ten static gestures. They are the followings: Fingers 

Adduction (1), Wrist Flexion (2), Wrist Extension (3), Wrist Adduction (4), Wrist Abduction 

(5), Fingers Abduction (6), Clenched Fist (7), Holding a Phone (8), an OK Sign (9), and 

a Shaka Sign (10). These gestures are illustrated in figure 20. A hypothesis is that these 

gestures have different motion states, denoting that they are easy to distinguish from 

each other. 

The trial was performed as follows: fingers adduction, wrist flexion, wrist extension, wrist 

adduction, wrist abduction, fingers abduction, clenched fist, holding a phone, the OK 

sign, and the shaka sign. Each gesture was recorded for approximately two seconds, 

and the transformation between the gestures needed two seconds. For creating a good 

base with enough data, the general rule of thumb is used. It means that each additional 

variable requires 20 subjects. If the total number of variables is five, then the minimum 

sample size is a hundred. It means a trial needs to be repeated ten times.  

To reiterate, the signals were simultaneously recorded from the five pressure sensors. 

The data values were then collected straight in an excel spreadsheet. The rows 

represent individual data points, and the six columns represent the features and a class. 

For machine learning, the data representation must be a table, and therefore, the files 

were saved as a .csv format. This layout is now a two-dimensional numerical array, also 

known as matrix.  
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Figure 19. Performed hand gestures. 
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Moreover, integrating the edge cases in the database is essential. It was done by 

recording four trials with the exaggeration and the light postures of each gesture. For 

example, when measuring the wrist extension gesture, the hand was measured in a 

similar position six times in a row. Then, two times the hand's position was left deficient 

in flexion, and the values were recorded. In the two-last recording, the hand was in the 

excessive deflection. These events create the edge cases for the hand extension 

gesture. Sometimes the subject performed a circumduction gesture, and thus, an extra 

round was performed. Therefore, the trial was done 11 times in total, and the best ten 

gestures, defined by the recorder, were stored in the database.   

6 Testing the SVM Algorithms 

The device is intended for real-time applications. Therefore, an excellent computational 

efficiency is essential. According to comparison table 1, the Support Vector Machine 

algorithm performed well with good accuracy. The SVM is also easy to use for training. 

However, it requires a lot of empirical testing to get the best model for a project.  

6.1 Gesture Recognition Framework 

In the following, the most important processes of the framework are described, starting 

from the inclusion of the data up to the result of the full training. First, the database was 

created with 10000 data points, as was explained in chapter 5.5. The database is then 

split into training and testing datasets to train and evaluate the models, respectively. In 

order to find the model's optimized hyperparameters, a grid search algorithm is used with 

cross-validation. Finally, the performance is evaluated. All the steps are then repeated 

with tuned parameters in order to find the most suited model to classify the gestures. 

The object framework is illustrated with a flowchart in figure 20. 
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Figure 20. A Flowchart of the data classification and evaluation process. 

First, the database was created with 10000 data points. Then the database is split into 

training and testing sets to obtain independent results. Usually, the features are extracted 

from the database before using a classifier. Reducing the number of data features allows 

us to work with large datasets by reducing a model's complexity. Hence, it enables the 

SVM algorithm to train faster and to avoid overfitting. This project includes a detailed 

study in sensor placements, and the sensor number is already reduced. Therefore, all 

the sensors, which are the features, are used. 

6.1.1 Data Splitting 

The data is split into two parts: training and testing datasets to obtain independent 

results. The dataset's division is as follows: a test set is 20%, and a training set is 80%, 

which is executed with a random seed. The training set's primary function is to train the 

classifier that later the testing set tests. The final results show the performance of the 

classifier to properly differentiate the gestures from the test dataset.  

6.1.2 Data Preprocessing  

Before using the Support Vector Machine, the data needs to be centered and scaled. It 

is done separately to the testing and training datasets to avoid data leakage, which 

occurs when information about the training dataset corrupts or influences the testing 
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dataset. The data is normalized by scaling the measurement values from 0 to 1. The 

normalization was done with the equation (1), which was presented in chapter 3.3. 

A feature histogram (figure 21) is created to indicate the statistical frequency distribution 

of the values from the sensors with respect to the feature values. The histogram shows 

a clear differences in the values between the sensors' performance. 

 

Figure 21. Feature Histogram of the sensor. The X-axis describes the explained variance, and 
the Y-axis represents the features. 

As shown in figure 21, sensor5 has a weak performance. Each sensor's effect on gesture 

recognition is distributed as follows: sensor5 approximately 1.2 %, whereas sensor1 has 

18.2 % and sensor3 has 18.8 % impact, sensor4 has the second most with 27.9 %, and 

the best-performed feature was sensor2 with 33.9% impact.  

6.1.3 Feature Selection 

This process selects the features with strong performances. As seen in figure 22, 

sensor5 has a low performance, and thus, the use of all features as input would provide 

weaker accuracy in the results. Therefore, only the features with strong performance in 

differentiation should serve as input. 
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Before leaving out sensor5, one more analysis needs to be done. The feature value 

differences of all the classes are illustrated graphically with the scatter plots. When 

comparing, for example, sensor1 and sensor2, there are exact distributions between all 

the gestures. This is shown in figure 22.  

 

Figure 22. Distributions between the gestures with sensor1's and sensor2's values. The X-axis 
describes sensor1's sensor values, and the Y-axis represents sensor2's sensor 
values. On the right, each gesture (from 1 to 10) are color-coded. 

In figure 22, the dots represent the correctly classified gestures while the crosses 

represent the wrong classified gestures.  

Figure 23 shows the distributions between all the gestures with sensor1 and sensor5 

values. As can be seen, it is not easy to distinguish the gestures. The dots and the 

crosses lie on the same line. The same occurs when comparing sensor5 with the rest of 

the sensors. 
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Figure 23. Distributions between the gestures with sensor1's and sensor5's values. The X-axis 
describes sensor1's sensor values, and the Y-axis represents sensor5's sensor 
values. On the right, each gesture (from 1 to 10) are color-coded. 

Based on the previous analysis and empirical testing, it was decided that leaving out 

sensor5 would improve the SVM classifier's results. Thus, the following features have 

been selected for the input: sensor1, sensor2, sensor3, and sensor4. 

6.1.4 Cross Validation 

Before the cross validation, it is essential to redistribute the training dataset, which 

corresponds to 80 %. It is split into training cross validation- and validation set. The 

distribution related to the training dataset is as follows: the training cross validation set 

is 70 %, and the validation set is 30 %. With cross validation, the hyperparameters can 

be optimized to improve a model's performance and predictions.  

Optimizing the Support Vector Machine is finding the best value for the error 

regularization parameter C, the kernel coefficient gamma, and the best fitting kernel 

function. These all are done manually with the cross validation and a grid search 

algorithm. However, a grid search took a long time to calculate, and thus, MATLAB was 
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used for repeating the task. After extensive examination of the parameters and testing 

of the accuracies, the following parameters were identified as the most effective ones: 

Table 3. Parameter adjustment of the SVM. 

Parameter Value 

C 10 

Gamma scale 

Kernel Gaussian radial basis function 
(RBF) 

Others default 

The parameters were calculated ten times, where eight of ten were the ones that are 

listed in table 3. The Gaussian radial basis function kernel was used in this algorithm. It 

can be mathematically described as follows: 

𝑘(𝒙, 𝒙′) = 𝑒−𝛾||𝜑( 𝒙)−𝜑( 𝒙′)||2
, γ >  0 (19) 

For the formula (19), the parameters are the same as described in chapter 3.3, Support 

Vector Machine Classifier. The ‘scale’ value means that the algorithm uses 

1/features*the variance of the training set as value of gamma.  

7 Results and Discussion 

In this chapter, the full training results are presented, and the wristband's overall 

performance is analyzed. The performance of the classifier is evaluated with a confusion 

matrix in figure 24. Each row represents an actual gesture (from 1 to 10), and each column 

represents a predicted gesture.  



42 
 
 
 

  
 

 
 

 

Figure 24. Confusion matrix of the Gaussian SVM. 

In the confusion matrix, the diagonal elements represent how many percentages are 

labeled correctly by the classifiers. These values are also called true-positive rates. The 

off-diagonal elements are mislabeled and thus called as false-negative rates.  

The overall accuracy of full training is 98.0% for four sensors. With five sensors, the best 

classifier accuracy was 97.2%. 

7.1 Cost Analysis 

One of the main goals of this project is to develop a cost-efficient wristband for static 

gesture detection. The approach started with a lot of background researching of the 

existing systems and devices. The focus was on searching the available sensor types, 

their accuracy, and the features' relation. This chapter reviews the cost breakdown of the 
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project, which can be seen in table 4. The components are summarized and calculated 

together to get the overall prize for the device.  

Table 4. Production Development Costs. 

Type Model Company Cost Quantity Total Cost 

Electronics:      

Pressure 
Sensor 

MPL115A2 NXP 5.63 CHF 15  
84.45 CHF 

Capacitor 1 uF TDK 0.072 CHF 30 2.16 CHF 

Resistor 4.7 kΩ VISHAY 0.04 EUR 6 0.24 EUR 

Microcontroller Arduino NANO 33 
BLE 

Arduino 19.50 EUR 1  
19.50 EUR 

Printed Circuit 
Board 

Flexible PCBWay 20.8 USD 5  
104.0 USD 

Others:      

Liquid Silicone Gingifast Elastic 
2x50 ml 

Zhermack 58.30 CHF 1  
58.30 CHF 

Faux Suede Clothing Belt Reused 0 1 0 

Velcro Stripes MIGROS 6.90 CHF 1 6.90 CHF 

Shipping & 
Handling 

    
9.50 EUR 

     

*Currency converter ([151.81 x 0.93 EUR] + [104.0 x 0.85 EUR] + 29.24 EUR) 

 Costs total ≈ 258,82 EUR 
*Currency rates were taken from Morningstar on 26th Oct 2020, 15:51 UTC. 

The component selections can reduce the value of the final product. However, the 

accuracy of the components must be taken into account when replacing them. The most 

expensive component of the product is the printed circuit board. Other expensive parts 

were the liquid silicone and the sensors. There are usually low-priced liquid polymer 

products on the market. However, they were not available during the prototype design. 

In addition, there are no alternative, less expensive models available for the sensors, 

according to the present information. However, as this project shows, the number of 

sensors can be reduced.  

According to table 4, the overall cost for the wristband development is ~260€. Further, it 

can be estimated that the final price for one prototype is around ~140 €, which is 

reasonable. The prototype is hence more affordable than the other wearable gesture 

recognition prototypes. The device's price can be reduced by 20 % with a more precise 
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design, for example, by reducing the quantities of the PCBs and using a low-cost liquid 

polymer for the rubber casting process. Also, the Arduino NANO 33 BLE should be 

changed ideally to another, smaller microcontroller.  

7.2 Risk Analysis 

This chapter includes a risk analysis, which evaluates the factors that affect the 

performance of the wristband. In this project, the risk is defined as an event that was 

identifiable in advance and can affect the design, performance, and objectives. Each risk 

is analyzed to identify its qualitative effect on the wristband. The qualitative risk analysis 

additionally considers the probability and impact of each risk. This project's impact is 

classified into four groups, which are low, medium, high, and extreme. These are shown 

in table 5. The probability has three levels: low, medium, and high, and is presented in 

table 6. All the tables in this chapter are created from the source [37]. 

Furthermore, the features are combined to create a probability/impact assessment. This 

graphical report is called a risk matrix. There are different types of risk analyzing methods 

and risk matrices. Therefore, all tables and definitions are tailored solely to serve this 

thesis. 

Table 5. The impact levels. 

Impact Low Medium High Extreme 

 Acceptable Moderate Ineligible Intolerable 

Description  Not affecting 
the objectives 

The act of mitigating Not suitable Place the event 
on hold.  

As seen in table 5, the impact is the effect of the risk. All of them are associated with the 

objectives that are the cost and quality. When the impact is low, it is acceptable to 

continue. Medium impact needs mitigation efforts, and all high impacts require some 

actions. The extreme is intolerable, and therefore, the event must be placed on hold.  
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The probability levels are the likelihood that a risk will happen. These are illustrated in 

table 6. 

Table 6. The probability levels. 

Probability Low Medium High 

 Acceptable Moderate Ineligible 

Description Risk occurs very 
rarely 

Risk will likely occur Risk is expected 

 

The graphical report includes only the risks with the highest impact and probability for 

the wristband to fail its goals. The risk matrix is shown in table 7 to visualizing the overall 

levels of the risks. 

Table 7.  A 3 x 4 risk analysis matrix for determination of qualitative severity levels and 
probability levels. 

Impact Low Medium High Extreme 

 
Probability 

Little to no effect 
on event 

Effects are felt but 
not critical to 

outcome 
 

Serious impact to 
the outcome 

Could result in 
disaster 

Low -1- -4- -6- -10- 

PCB design 

Medium -2- -5- 

Soldering 

-8- 

Sensor 

placement 

-11- 

Delays in 

orders 

High -3- -7- -9- 

Machine Learning 

-12- 

Rubber casting 
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The most extreme risk is the rubber casting process, as it is the most difficult and 

challenging phase of the project. It requires careful work and the right tools. Thus, the 

likelihood that something will go wrong is high. If this happens, the result will be a non-

functioning wristband, as air will remain between the sensor and the rubber, and the 

sensor will no longer be able to detect hand movements accurately. The second extreme 

risk is the delay in transporting the products. Usually, this does not happen, as products 

are ordered on time. In addition to that, it is possible to trace each order step by step. 

However, during the Coronavirus (COVID-19) pandemic, there were many delays in 

different sectors. For this work, the manufacturing and transportation of the PCB were 

two months behind the scheduled time. This affected the overall outcome, as there was 

no time left to refine the design. 

According to table 5, designing the PCB, choosing the machine learning algorithm, and 

placing the sensors are classified as high impact risks. There is a very high probability 

that the used algorithm is not good enough in machine learning, leading to a high-profile 

error susceptibility. It would negatively affect the accuracy of the device. The limited 

number of sensors requires exact measurement positions. If this changes too much, the 

device is not capable of measuring accurately. The same principle applies to the PCB 

design. If there are errors, the measurement cannot be done. Although the probability of 

the PCB design error is low, its consequences are truly extreme. Therefore, it is classified 

as the third riskiest process. 

The least risky is the soldering of the electron components process. There is always a 

risk of errors in the manufacturing of the components and the soldering itself. There are 

many components and PCB boards, and thus in the event of errors, these can be 

replaced. 
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8 Conclusion and Future Improvement 

The aim of developing a wristband, which recognizes statistic gestures accurately with 

fewer sensors, has been achieved. Three main objectives nominated for the project 

were: affordability, accuracy, and fewer sensors. A cost breakdown was made for the 

device, which shows that its final price is only around 140 €. With small changes, the 

price of the device can be reduced by another 20 %. The same accuracy of 98.0 % for 

four sensors was obtained several times when predicting the right gestures using the 

RBF classifier. Therefore, the accuracy and fewer sensors -objectives are also met. 

Additionally, the SVM performed fast and thus can be used in real-time applications. 

While the prototype meets the main objectives, many details in the design stage need to 

be redesigned. The biggest drawback was the PCB board, as sensor5 was not robust. It 

did not have a proper connection when the wristband was placed around the wrist in the 

trial set. The Arduino NANO is a thick and rigid component, whereas the PCB itself is 

very thin and bendable. Therefore, the SDA and SCL connections to the boards were 

unstable. Additionally, the wristband, as such, is not the ideal model for practical gesture 

recognition. For instance, the size of the wristband needs to be adjustable. Small sensing 

units needs to be designed and integrated with an already existing design, such as a 

smartwatch, to overcome the mentioned challenges. 

The database for gesture recognition was collected from the same participant. Hence, in 

the development of the model, the training dataset should be created from different 

participants in a future project.   
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The Schematic Diagram of the Wristband  

 
Schematic for the sensor inputs of the control board.
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Printed Circuit Board of the Wristband 

 

3D layout of the PCB. 


