

Analysis of deploying a React PWA on Google Play

store using Trusted Web Activity

Yoseph Alemu

Bachelor’s Thesis

 Degree Programme in BITE

 2020

Abstract

 Date 22.11.2020

Author(s)
Yoseph Alemu

Degree program
Business Information Technology

Report/thesis title
Analysis of Deploying a React PWA on Google Play store using
Trusted web Activity

Number of pages
and appendix pages
44 + 6

With the increased use of mobile devices across the world, it has become essential that

companies utilize mobile application trends to reach more users and expand their platform

availability. However, due to the high price of developing native applications. Moreover,

from a web developers perspective, the additional skill required to develop native applica-

tions makes it hard to consider developing these applications.

This project aims to show an alternative approach to create mobile applications from an al-

ready available web app. The project will explore this idea by developing a React web app

that meets PWA’s criteria and wrapping it with TWA to publish the application in Google

Play Store. Nevertheless, due to the time and resource constraints, it will not include the

detailed development of the React application, Native app development, and publishing to

the Apple App Store. However, it will provide necessary information about React, PWA,

TWA, and web performance optimization.

Progressive Web Applications are faster, available offline, responsive, installable, and se-

cure. These features make PWA a good candidate for mobile use, but PWA needs a

browser to run. Therefore, by utilizing the power of the browser and web APIs, web appli-

cations can now present web content with the feel and features of Native applications.

This thesis presents the analysis of progressively enhancing a React Application and the

process of web performance optimization that was needed to meet the requirements of us-

ing Trusted Web Activities

The thesis concludes that PWA and TWA combination has good potential for future devel-

opment and makes it easier for developers with web application backgrounds to transition

to mobile easily. Nonetheless, optimizing a web application to reach a Lighthouse perfor-

mance score of at least 80 takes much work. However, considering the high performance

that can be achieved, the result will be worth the work.

Keywords
PWA, TWA, React, Mobile Development

Table of contents

Abbreviations and Acronyms ... 3

Table of Figures ... 4

Table of Listings .. 5

1 Introduction ... 1

1.1 Topic ... 1

1.2 Objective ... 1

1.3 Working Method .. 2

1.4 Limitations ... 2

1.5 Scope ... 2

2 Theoretical framework ... 3

2.1 SPA frameworks ... 3

2.2 React .. 3

2.2.1 DOM and Virtual DOM ... 4

2.2.2 JSX .. 5

2.2.3 Components ... 5

2.3 Native Applications ... 6

2.3.1 Native vs Web .. 6

2.4 React Native ... 7

2.5 Progressive Web Applications ... 8

2.5.1 History of PWA ... 8

2.5.2 Progressive enhancement .. 9

2.5.3 PWA Features .. 10

2.5.4 The web app Manifest .. 11

2.5.5 Service Worker .. 12

2.6 Trusted Web Activities .. 17

2.6.1 Benefits of using TWA .. 18

2.6.2 WebView .. 18

2.6.3 Chrome Custom Tabs .. 20

2.6.4 Why use CCT over WebView? ... 20

2.7 Web Performance Optimization .. 21

2.7.1 WPO testing test tools .. 22

3 Implementation.. 24

3.1 Features requirement .. 24

3.2 Development environment .. 25

3.3 Create-React-App ... 25

3.4 Cinkino React App .. 27

3.5 Cinkino Progressive Web App ... 28

3.5.1 Implementing Service Worker .. 29

3.6 Web Performance Optimizations ... 31

3.6.1 Compression .. 31

3.6.2 Code Splitting ... 32

3.6.3 Upgrading non-secure HTTP requests ... 34

3.6.4 Responsive Images .. 34

3.6.5 Efficient HTTP cache policy ... 35

3.6.6 Publishing Cinkino on Google Play .. 36

4 References .. 40

Appendices .. 45

4.1 Appendix 1. Cinkino final Desktop and Mobile performance score 45

Appendix 2. Cinkino final view ... 47

Abbreviations and Acronyms

AAB Android Application Bundle

API Application Programming Interface

APK Android application package

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CCT Chrome Cutom Tabs

CLI Command Line Interface

CRA Create React App

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

CSSOM Cascading Style Sheets Object Model

DOM Document Object Model

JSX JavaScript Syntax Extension

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

HTTPS HyperText Transfer Protocol Secure

JSON JavaScript Object Notation

MDL Material Design Lite

NPM Node Package Manager

SDK Software Development Kit

TWA Trusted Web Activity

PWAs Progressive Web Applications

SPA Single-Page Application

UI User Interface

URL Uniform Resource Locator

WPO Web Performance Optimization

Table of Figures

Figure 1 Comparison for Native, Web and Hybrid Apps (web2appinfotech, 2016) 7

Figure 2 PWA Success stories (ScandiPWA, 2019) ... 9

Figure 3 WebAPI Features available in latest Chrome version 86.0.4240.75 (Bar, 2020) 11

Figure 4 Service Workers browsers support .. 13

Figure 5 Summary of Service Worker events (MDNcontributors, 2020) 14

Figure 6 FETCH browser compatibility ... 14

Figure 7 Promise support for browsers .. 15

Figure 8 Service Worker life cycle (Rabouw, n.d.) .. 16

Figure 9 WebView use example (Hoober, 2018) .. 19

Figure 10 Comparison for Webview, CCT, and TWA ... 21

Figure 11 CRA development version Lighthouse score on Incognito mode...................... 26

Figure 12 CRA development version Lighthouse score on Normal mode 26

Figure 13 CRA production version Lighthouse mobile score .. 27

Figure 14 Web Manifest installed successfully ... 29

Figure 15 Cinkino Application Lighthouse score before optimization 31

Figure 16 Content-encoding compression properties ... 32

Figure 17 Compression tools comparison (magenx, 2020) .. 32

Figure 18 Before and After Firebase Hosting ... 32

Figure 19 Non-Lazy loaded App .. 33

Figure 20 Code splitting with React lazy .. 33

Figure 21 Non-secure HTTP requests ... 34

Figure 22 HTTP cache policy for material.js ... 35

Figure 23 PWABuilder results for https://cinkinoweb.web.app/... 36

Figure 24 PWABuilder generated android package ... 38

Figure 25 Cinkino release overview on Google play console ... 38

Figure 26 Cinkino final Performance score on Desktop.. 45

Figure 27 Cinkino final performance score on mobile .. 46

Figure 28 Installed APK version of Cinkino on home screen .. 47

Figure 29 Cinkino splash screen on mobile screen .. 48

Figure 30 Cinkino Auto suggest Search ... 49

Figure 31 Cinkino sidebar .. 50

Figure 32 Cinkino Filter by location .. 51

Figure 33 Cinkino Location search ... 52

Figure 34 Cinkino News page .. 53

Figure 35 Cinkino Bookmark page ... 54

https://haagahelia-my.sharepoint.com/personal/a1600615_myy_haaga-helia_fi/Documents/Thesis/1st%20version%20thes_Alemu.docx#_Toc56980917
https://haagahelia-my.sharepoint.com/personal/a1600615_myy_haaga-helia_fi/Documents/Thesis/1st%20version%20thes_Alemu.docx#_Toc56980918
https://haagahelia-my.sharepoint.com/personal/a1600615_myy_haaga-helia_fi/Documents/Thesis/1st%20version%20thes_Alemu.docx#_Toc56980919

Table of Listings

Listing 1 JSX in React functional component ... 5

Listing 2 JSX converted to JavaScript code with Babel .. 5

Listing 3 Service Worker registration .. 17

Listing 4 Installation phase of a Service Worker ... 17

Listing 5 Activation phase of a Service Worker .. 17

Listing 6 Create-react-app dependencies and scripts .. 25

Listing 7 3rd party packages and libraries used ... 27

Listing 8 Web App Manifest for Cinkino ... 28

Listing 9 Adding Web manifest ... 29

Listing 10 Adding Service Worker .. 30

Listing 11 NetworkFirst caching strategy using Workbox ... 31

Listing 12 Content security Policy upgrade .. 34

Listing 13 Responsive Images using srcset ... 35

1

1 Introduction

1.1 Topic

The number of smartphone users is increasing rapidly and provides businesses more op-

portunities to reach this broad market; therefore, this trend calls for more mobile applica-

tion development investment. Most companies have a website; unfortunately, they do not

have the resources or current necessity to develop mobile applications due to the addi-

tional investment needed to create Native applications. According to Laaksonen, mobile

developers can take up to 5000 euros just for the prototype version, which is just the

cheapest stage. By the end of the project, he estimates that the price tag could reach 15

000 to 30 000 € for a fully functional application. (Laaksonen, 2018)

Besides the price tag, for developers who work with the web application, creating Native

apps requires additional skills, which halts the development time. Web developers who

create websites are required to learn HTML, CSS, and JavaScript; on the other side, mo-

bile developers need a good understanding of Java, objective-c, Kotlin, swift or other lan-

guages, and additional frameworks. (Snigdha, 2020) Therefore, it makes it hard for either

of these sides to transition between these technologies.

1.2 Objective

If a company already has a web application but needed to reach more customers by de-

veloping a native mobile application available on app stores, the only option was to hire

developers to create it from scratch. Still, there are better alternatives before going down

that path, by redesigning the already available web app, turning it into a Progressive web

app that can be installed on mobile devices and can also take advantage of the hardware

already available.

The objective of this work is to show this alternative path for interested developers and

other stakeholders before they invest time or money into developing native mobile appli-

cations from scratch. It is structured to show the overall development process from creat-

ing a React PWA to deployment on Google play. With Trusted Web Activity, it has be-

come easier for a web developer to deploy a web app in Google play like Native apps, but

without all the skills required to build Native apps.

TWA was first introduced in 2019 at the Google I/O conference, according to Peter

Mclachlan and Andre Bandari from Google (Google I/O, 2019).TWA is the best way to

show full-screen web content on the android app, it is a chrome browser with no browser

UI, which gives it a Native look, and it is secured with Digital asset links that verify if the

app owner is also the content owner. With this technology, developers can now easily turn

2

their Web applications with Progressive design guidelines, wrap them in trusted web activ-

ity, and publish to the store. (Google I/O, 2019)

1.3 Working Method

This thesis will have two parts, theoretical background and a practical section to achieve

the above objective. The theoretical section discusses concepts related to the topic. A

basic React web application with Finkinno API will be developed in the practical chapter,

and the performance will be evaluated. Besides being one of the popular JavaScript librar-

ies, React is maintained by Facebook and a vast community of developers, which gives it

consistency, reliability, and hope for further growth; therefore, developers can use it with-

out the fear of it being outdated.

After the development of the React application, it will be enhanced using Service Worker

to make it work offline and for increased performance. Finally, it will be wrapped with TWA

and deployed on Google Store.

1.4 Limitations

One of the project limitations was the lack of information regarding Trusted web Activities.

It was introduced recently; therefore, it does not have enough documents other than the

official Google developer website’s general documentation. Also, working part-time has

put too much strain during the finalization of this thesis.

1.5 Scope

This work will cover the basics related to the topic of this thesis, but due to the lack of time

and resources, the following topics will not be included

- Full details of the React web app development

- Android and ios applications development

- Detailed publishing instructions for Google Play Store

3

2 Theoretical framework

The purpose of this chapter is to discuss the technological options that a company deliv-

ers its application software. Commonly application software is developed as a native ap-

plication or a web application. This theoretical section will have seven subsections To pro-

vide a general overview of this project.

2.1 SPA frameworks

SPA framework or JavaScript frameworks are a collection of HTML templates and JavaS-

cript code that comes pre-written to avoid repetitive programming tasks. The term “frame-

work” is usually used interchangeably with “library”; they are both a collection of code that

can be reused to make development easier. However, the difference is the control level

they give. Libraries provide specific functions that can be called to solve particular prob-

lems, giving more control for the coder but do not have full structure. On the other hand,

frameworks provide the full structure for development. They can include a set of libraries,

but frameworks set how these resources are used also called “inversion of control.”

They give developers the ability to customize and build on top of them instead of starting

from scratch to create the desired applications. The use of these frameworks saves devel-

opment time and makes scaling applications easier. Few JavaScript frameworks are avail-

able on the web right now; they are mostly open-source, backed by big technology com-

panies and developers, which means anyone with the skill can contribute, and developers

can use these technologies for free. (Scott, 2015)

According to Stack Overflow 2019 statistics, JavaScript is the most popular programming

language, and this has been unchanged for the last decade. Also, jQuery, React, and An-

gular has been named the most popular JavaScript frameworks with 48.7, 31.3, and 30.7

percent, respectively. (Stackoverflow, 2019).

However, for this thesis, due to its popularity and the writer’s experience with this library,

React Js will be used as the primary development library and will be discussed in this sec-

tion further.

2.2 React

“React.js is an open-source front end JavaScript library(not a full-fledged framework) to

develop SPA that was created by a team of Facebook developers led by Jordan Walke

back in 2011 and became open source in June 201” (Nikhil, 2020). Although Facebook

develops it, it is also maintained by a large community of developers and companies (Wik-

ipedia, 2020)

4

React is considered by most to be one of the most disruptive web app technologies

throughout the last decade. It is faster and more versatile than Angular, which is another

popular JavaScript framework that is maintained by Google. Additionally, React starter

template supports the use of PWA. React is also widely used by large companies such as

Facebook, Netflix, Uber, Airbnb, and more. (webapp007, 2019)

 According to the React official page in technical terms, “React is declarative, Learn Once,

Write Anywhere component-based Library to build single-page application” (ReactJsOrg,

2020).

React is declarative because the programmer does not have to interact with the DOM di-

rectly, but the virtual DOM instead, so declare what the component UI should look like in a

particular state, and React handles the rest with the DOM. It is also “Learn Once, Write

Anywhere” React can also be used to create mobile apps using React-native (which will

be discussed further in the coming section), desktop apps with Electron, and back-end de-

velopment with Node. Therefore, it is cross-platform and minimizes the learning curve for

creating applications for different platforms.

As a component-based library, React supports the creation of “self-state managing” UI

components, which can be reused. (ReactJsOrg, 2020).

2.2.1 DOM and Virtual DOM

DOM (Document Object Model) represents the actual application structure created by the

browser when the page is loaded. It is an interface for the program to change the style,

content, and structure of the page. The Object model allows JavaScript to change, add

and remove elements, attributes, and CSS, also reacts to HTML events. (Codecademy,

2020)

The manipulation of the DOM is slow and made worse because most JavaScript frame-

works update the DOM more than they have to; therefore, React brought a solution by in-

troducing Virtual DOM. (Codecademy, 2020). “The virtual Dom is a fast, in-memory repre-

sentation of the real DOM, and it’s an abstraction that allows us to treat JavaScript and

DOM as if they were reactive” (Fedosejev, 2015)

It works by creating a virtual representation of the real DOM by rerendering the UI when-

ever there is a change in the data model. Then by comparing it with the previous version

of the virtual DOM, it updates the difference to the real DOM.

This creates a fast experience because only the difference in the two virtual representa-

tions is updated, and React lets developers write code as if the entire DOM is rerendered

every time the application state changes. (Fedosejev, 2015)

5

2.2.2 JSX

“JSX is an XML/HTML-like syntax used by React that extends ECMAScript so that

XML/HTML-like text can co-exist with JavaScript/React code. The syntax is intended to be

used by preprocessors (i.e., transpilers like Babel) to transform HTML-like text found in

JavaScript files into standard JavaScript objects that a JavaScript engine will parse.”

(reactenlightenment, 2020)

In simple terms with JSX helps developers write JavaScript in HTML code, and by using

Babel, it is possible to convert JSX into JavaScript code.

As shown in Listing 1, it is possible to write HTML-like text inside a function, but it has to

be enclosed in a <div> or single element, multiple closing tags are not allowed, and in

Listing 2, the converted version of JSX is shown.

const Test = () => {

 return (

 <h1>This is JSX</h1>

)

}
Listing 1 JSX in React functional component

function Test () {

 return React.createElement(‘h1’, {}, ’This is JSX’);

}

Listing 2 JSX converted to JavaScript code with Babel

2.2.3 Components

As discussed in the previous section, React is a component-based library, and these com-

ponents can be reused when needed. It is possible to breakdown components to render a

single word or render many elements; therefore, it makes it easier to handle the rendered

UI independently. (Kagga, 2018)

“A component is a JavaScript class or function that optionally accepts inputs, i.e., proper-

ties(props) and returns a React element that describes how a section of the UI (User Inter-

face) should appear.” (Kagga, 2018)

As shown in Listing 1, Test is a component that returns a JSX, and it can be exported us-

ing “export default,” so other components can reuse it.

The example shown in Listing 1 is a functional component, but there is also another kind

of component called a class-based component. They are also called stateless and stateful

components, respectively. That is because functional components, unlike their class-

6

based counterpart, could not store component states and were only used to receive props

and render React elements. After the introduction of React Hooks in React version 16.8, it

is possible to use state in functional components using the “useState” function(hook).

(ReactJs, 2020).

2.3 Native Applications

Native apps are developed specifically for a particular mobile device and are installed di-

rectly onto the device itself. (Perera, 2020)

Native apps work only on devices or platforms they are designed for because, unlike web

apps that run in browsers and are built with the language of the web(HTML, CSS, JS), Na-

tive apps are developed with a specific programming language and with certain devices in

mind.

There is a variety of hardware available in the market, such as desktop, mobile, tablet,

smartphone; there are also few major Operating Systems that run these devices, such as

IOS, Android, and Linux. All these hardware and Operating Systems require machine-spe-

cific programming language to develop native Apps. For example, IOS running devices re-

quire Apps that are created with languages such as Objective-C or Swift, while Android

devices need Java, Kotlin, and C++ programming languages. Due to these specific re-

quirements, developing multi-platform apps were a problem both for clients and devel-

oper. (Perera, 2020)

As previously discussed, web applications use the power of HTML, CSS, and JavaScript

to present content to users’ screens, and they can only run on devices with a browser.

Another solution is using Hybrid applications; Hybrid is, as the name indicates, a combina-

tion of Native and Web.

Hybrid apps take advantage of the simplicity of presenting web elements inside Native

apps using WebView; this provides the benefit of both technologies, as shown in Figure 2;

hybrid apps utilize the high performance, reactivity, and use of hardware features from

Native and multidevice support, responsiveness and simplicity from the web. (Saccomani,

2020)

2.3.1 Native vs Web

According to (Saccomani, 2019), smartphone users are likely to spend more time on their

native apps that they installed from their respective stores such as Google Play and Ap-

ple’s app store, Leaving less time for web browsers to be utilized as they are only used to

look up information. (Saccomani, 2019)

7

There are many reasons why smartphone users prefer to spend time on their native apps.

Engagement

Native apps are engaging; when we wake up in the morning, we can see all the infor-

mation we need in the form of notifications; these updates are sent by our apps and run in

the background even if the application is closed, therefore it will be easier for users to re-

turn to the application without meaning to use it. (Saccomani, 2019)

Access

All our native apps come with icons that can be placed on our phone screens, either on

the home screen or application list screen, and they can be accessed with a tap of a but-

ton. Unlike the mobile web, which makes it harder for users to come back because of the

hassle with writing URL in the browser. (Saccomani, 2019)

Features

Native apps have access to mobile hardware’s full capabilities; we use the camera in our

apps to take a picture and videos, geolocation to use maps and track our location, micro-

phone for sending voice information, and Bluetooth to connect other devices and so much

more. Therefore, access to these hardware features has made Native apps powerful and

preferable over web apps for users. (Saccomani, 2019)

Figure 1 Comparison for Native, Web and Hybrid Apps (web2appinfotech, 2016)

2.4 React Native

React Native takes a different approach from both Native and Hybrid Apps; it is neither hy-

brid nor native. Like React, it is entirely built with JavaScript, which makes code-sharing

so much easier. React Native is also built by Facebook; it uses a similar codebase with

react, the only difference being “In Reactjs, virtual DOM is used to render browser code in

Reactjs while in React Native, native APIs are used to render components in mobile. The

8

apps developed with Reactjs renders HTML in UI while React Native uses JSX for render-

ing UI, which is nothing but JavaScript.” (Shah, 2020)

There are few ways developers can use while starting to develop React Native applica-

tions, one way is to use Expo client, and the other is using the React Native client.

Expo is a set of tools and services that helps developers build, deploy, and quickly iterate

on native Android, iOS, and web apps from the same JavaScript codebase while taking

advantage of the capabilities of the smartphones’ competencies, such as camera, loca-

tion, notifications, sensors, haptics, and so much more. Expo (2020).

2.5 Progressive Web Applications

2.5.1 History of PWA

The word “Progressive web App” was first introduced in 2015 by Alex Russel, who was a

chrome developer. However, the interest in this technology goes back to the first introduc-

tion of the iPhone in 2007. During the time, Apple’s CEO Steve Job was excited about the

development of web apps that could harness the capabilities of the Safari browser to run

on all iOS devices seamlessly. However, due to a shift in the company’s direction, the in-

terest quickly died down. (ScandiPWA, 2019)

Despite that, other technology companies such as Google and Microsoft have taken the

initiative in advancing this development approach, but it was Google who first adopted this

approach in early 2015. With the increase in mobile internet usage, it became commer-

cially profitable to develop content with mobile users in mind. However, the responsive de-

sign was not enough to attract these users without compromising on developing expen-

sive Native apps. (ScandiPWA, 2019)

Microsoft has also been pushing to make PWA a standard for developing web applica-

tions. By launching PWABuilder, they have made it easier to turn a typical web application

into PWA that can be wrapped and deployed on the biggest App Stores. With the contri-

bution of Google, PWABuilder uses Bubblewrap CLI under the hood to generate a TWA

packaged version of the provided application, which can be deployed on Google play

store also, APK version of the app that can be tested in android studio or on a mobile de-

vice. This service, however, is not limited to Google Play Store; this tool can also wrap the

PWA to be published in Apple App Store, Microsoft Store, and Samsung Store.

The early adoption of this approach has given companies business success, and that has

sparked interest in other businesses; for example, Alibaba has increased conversion rate

by 76%, the Washington Post has seen an 88% increase in their site performance and

these are a few of the success stories, more can be seen on Figure 2.

9

Figure 2 PWA Success stories (ScandiPWA, 2019)

2.5.2 Progressive enhancement

One of the core concepts of building a progressive web application, as the name indi-

cates, is Progressive enhancement; it is a web app design strategy to create and deliver

the critical web content and functionalities that can be available to all users no matter the

device or browser. This is done by incrementally adding enhancements to devices and

browsers that can support newer features without compromising the contents provided to

lower versions. (Todd Parker, 2010)

 It was hard to estimate and design an application that is available for all users, as the

browser technologies and devices(screen size, device version, brand) used are different

across users and get updated quickly; besides, it is vital to keep in mind the network issue

in other parts of the world. That is why creating the basic user experience that can deliver

the basic functionalities is essential. When building a website, the primary goal is to en-

sure that everyone gets the best possible experience within the capabilities and con-

straints of their browser. (Todd Parker, 2010)

10

2.5.3 PWA Features

There are many reasons why PWAs are becoming popular, the most prominent being per-

formance, but that is not the only benefit it brings to the table; it has a lot of features that

stand out from previous development approaches such as native feel, installability, offline

use, update, responsiveness, and security. (ScandiPWA, 2019)

Native feel: with increased performance and smooth navigation that Native apps are

known for, PWA also uses many WebAPIs to achieve features that were traditionally re-

served for Native apps, such as geolocation, push notifications, camera access, and much

more. Full WebAPI features available for the latest version of Chrome can be seen in Fig-

ure 3.

Installable: PWA can be installed on the home screen of mobile devices. With the use of

App Manifest, PWA can tell the browser how to install the app. Usually, this feature was

available by using the install button that becomes available in the browser when the PWA

loads, but with TWA, it can be downloaded and installed from the Google store. With the

help of additional tools, however, PWAs can be packaged and deployed in other app

stores.

Offline: with the use of Service Workers, PWA can make content available offline after

being accessed one time; this is achieved by caching and storing static pages during ini-

tial load.

Update: If the device has a connection, the content can be updated on the fly.

Responsive: PWA is made with all user devices in mind; therefore, responsive design is

an integral part of the development process. They can be available on any device with a

browser; although some features might not be supported by some browsers, it can still

provide the basic functionalities.

Security: PWA only runs over secure HTTPS protocol keeping information safe.

11

Figure 3 WebAPI Features available in latest Chrome version 86.0.4240.75 (Bar, 2020)

2.5.4 The web app Manifest

It is a single JSON formatted object that is stored in the root folder containing information

about the application. It provides the browser with additional information about the appli-

cation it is running, and if needed, information on installing the application on the home

screen of a mobile device. (LePage, 2020)

 From a business point of view, this helps the application to be accessible along with other

native applications giving it extra accessibility and attention from the users. From the us-

ers’ point of view, it provides ease of access as they don’t have to open the browser just

to reach the content needed. Bookmarks are another option, but using them can be time-

consuming as users bookmark many websites but end up getting confused about where

they are stored.

12

Web Manifest properties

Name: the web app always has a name provided, but the browser will use this as the title

of the splash screen when the application is installed on the mobile home screen.

Short_name: this will be the title used under the icon of the application

Start_url: the content or page that will be loaded after the tap of the icon.

Scope: scope defines the pages that will be included in the PWA; by default, the value of

this property comes with “.” this means all the pages in the application are included; it can

also be made to include a few of the pages by specifying the names.

Display: this property defines what the app should look like once it loads on mobile de-

vices’ home screen; the default value is standalone, which hides the browser input and

controls which are typically seen on the browser page, thereby giving it a more native app

look. There are also additional settings such as fullscreen,minimal-UI, and browser. The

fullscreen setting shows the app without any browser UI integrated while the browser dis-

plays it with full browser UI.

background_color: defines the color of the background on the splash screen.

Icons: an array of icons that will be used when the app is installed on mobile.

2.5.5 Service Worker

It is a simple JavaScript file that is stored in the browser and stays with it even if there is

no internet connection, so users can see the browser partially, even if it is offline. In tech-

nical terms, a Service Worker is a JavaScript file that runs in the background on a sepa-

rate thread from the normal JavaScript. HTML inside the browser loads regular JavaScript

files; it runs on a single thread, which means that one command is run at a time, and even

if there are many JavaScript files, they are executed Synchronously. The loaded script

can then manipulate the DOM to make the static HTML page more dynamic. In applica-

tions without Service Workers, the interaction between the server (which provides the con-

tent) and the browser (that sends the request) is direct; therefore, browsers need an inter-

net connection to get content back. (MDNcontributors, 2020)

Service Worker is initially loaded by the root HTML page; therefore, after getting regis-

tered, it can be used by all pages of the web application. Unlike regular JavaScript, it is

not linked with one particular page; therefore, it can run in the background even if the

pages are closed and will respond to specific events.

The Service Worker is restricted from using local storage, the DOM, and the window di-

rectly because it cannot work asynchronously with the regular JavaScript running inside.

However, pages can interact with the Service Worker by direct postMessage, one-to-one

13

Message Channels, and one-to-many Broadcast Channels; using this, it can indirectly

communicate with the DOM. (Geddes, 2019)

Also, for security reasons, Service Workers only run over HTTPS protocol. As the middle

ground between the application and the server, it is crucial that the connection is secure

and not open for an attack. (MDNcontributors, 2020). However, it can be used over the lo-

calhost for development purposes, which will be demonstrated in the implementation

chapter.

Before the use of Service Worker, however, it is crucial to know the browser’s version that

is compatible and support the registration of Service Workers. There are few services

online where this can be done. Some even support live browser compatibility testing while

coding. For this project, I have used caniuse.com, which shows the full list of features sup-

ported by the major browsers.

Figure 4 Service Workers browsers support (Deveria, 2020)

The most important role of Service Workers is to listen to events on both sides of the ap-

plication, from both the server-side and the client-side. It can listen to events and decide

whether to respond with a predefined message, a cached static page, or redirect it to the

main page.

By caching pages, the Service Worker ensures that even when there is no connection, it

can serve the page without failure; therefore, the user will not get the annoying offline re-

sponse page from the browser.

There are few events Service Workers listen to make changes, such as Fetch, sync, and

Push; these events fall under functional events while register, install, and activate are part

of lifecycle events. Functional events are either received from the server or the client,

while Lifecycle events belong to the Service Worker itself. (MDNcontributors, 2020)

14

Figure 5 Summary of Service Worker events (MDNcontributors, 2020)

Fetch events: By making use of fetch API, which is a cleaner way of making AJAX calls,

Service Workers could be able to intercept requests that are triggered when a new file is

requested from the server. The Fetch API also uses promise for asynchronous operations.

A promise is a great way to make a request which might not be available during the time

but will be resolved once the promise is ready to return a value.

 That is why it is essential to check if the browser supports both fetch API and Promise

API; as shown in Figures 6 & 7, they are supported by the major browsers such as

Chrome, safari, edge, and opera. Although some sub-features are not available for all

browsers, this is a good start. (Love, 2019)

Figure 6 FETCH browser compatibility (Deveria, 2020)

15

Figure 7 Promise support for browsers

Push events: Service Workers take advantage of the Push API to listen to messages that

are sent by web push servers and display them to the user using notification API; this

brings native features for our web app, making interaction with the user more efficient.

Interaction: After the notification is loaded on the page, the user will be able to interact

with the message, which will trigger an event; Service Worker also listens to these interac-

tions and respond accordingly.

Background synchronization: Service Worker listens to events that are created by the

browser when there is no internet connection, that is because it runs in the background

even without a connection; therefore, it will be able to respond with a promise which it will

execute once the connection is restored until then the actions will be stored in the cache.

But it is important to note that Sync API is currently not fully supported by all browsers.

Service Worker Life cycle

This life cycle refers to the stages the Service Worker takes from the loading of the URL

up to the activation and final control of the scoped pages. As shown in Figure 8, the root

index.html loads the main JavaScript file that is app.js, which runs the Service Worker Ja-

vaScript code to run in the background and registers it as a background process after

downloading; as stated above, it is executed separately from the regular JavaScript code.

But before that happens, the Service Worker checks whether the browser it is running on

supports its use; if so, it will register, thereby triggering the installation event; however, it is

only activated if the browser is registering the Service Worker for the first time or if there

are new updates in the page that are under its scope. (Service Worker API, 2020)

16

Figure 8 Service Worker life cycle (Rabouw, n.d.)

1st phase (Registration): To make use of Service Worker, it must be registered as a

background process; this is achieved by executing a JavaScript code from the root of the

application; this code contains the serviceWorker.register() method to download and reg-

ister the Service Worker when it succeeds, it will be downloaded to the client and try to in-

stall itself. (Service Worker API, 2020)

Also, a scope can be defined to tell the Service Worker the limits of control over the pages

of the application; this can be seen by using the registration.scope method. As shown in

Listing 1, the code will check if serviceWorker property is available in the navigator(which

is the browser); if so, will point to the location of the Service Worker that will register sw.js

when the page loads and log a message of success also its scope which is the home

page, but normally its scope is the entire page by default, else logs a fail message. If there

is an already installed Service Worker, It will return the registration object of the active ver-

sion. (DevelopersGoogle, 2019)

As shown in Listing 3, the registration is complete after the successful loading of the SW.

if (‘serviceWorker’ in navigator) {

 window.addEventListener(‘load’, ()=> {

 navigator.serviceWorker.register(‘/sw.js’, {scope: ‘/home/’}).then(

 (registration)=> {

 // registration was successful

 console.log(

 ’ServiceWorker registration successful with scope: ’,

 registration.scope

);

 })

 .catch((err)=> {

 // registration failed

 console.log(‘ServiceWorker registration failed: ’, err);

 })

 });

}

17

Listing 3 Service Worker registration

2nd Phase (Installation): The registration of the Service Worker also triggers the installa-

tion phase; this is done by using the addEventListener, which is a special event, unlike

the normal “addEventListener” that has DOM access. After completed installation, the

Service Worker will be able to precache a portion of the pages to serve them on the next

reload. As shown in Listings 2, the install event will trigger the installation of the Service

Worker. (DevelopersGoogle, 2019)

self.addEventListener(‘install’, (event) => {

 console.log(‘[Service Worker] Installing Service Worker ...’, event);

});

Listing 4 Installation phase of a Service Worker

3rd phase(activation): Upon successful installation, the phase of activation is triggered

but will consider the usage of other Service Workers that are in use before activating; this

is to create consistency in the app, so only one should run at a time. After activation, the

Service Worker can start monitoring the pages in its scope but ensure that the pages must

be reloaded, and the new version should claim those pages.

As shown in Listing 6, it needs to listen to the activate event before going forward.

 self.addEventListener(‘activate’, function(event) {

 // Perform some task

 });

Listing 5 Activation phase of a Service Worker

2.6 Trusted Web Activities

TWAs helps in integrating the web experience with the Native experience; PWAs already

provide this experience with “add to home screen” and other Web API features, but TWA

takes this experience further.

TWA provide a full-screen view for web apps on mobile devices, making it look like a Na-

tive app and supports the full features of PWAs, also making the PWA deployable in

Google store; what makes TWA more powerful is its capacity to utilize Digital Asset Links

to confirm the content owner is also the one deploying the application.

TWA is full screen, meaning it shows web content in full display like a regular native app

by covering the whole screen of the mobile device except the system UI; this feature is not

18

achieved by CCT mainly because it has to display the URL bar, TWA solved this problem

by using Digital Asset Links to confirm the content owner is also the one deploying the ap-

plication thereby eliminating the need to show top URL bar and other browsers UI.

TWA builds on the benefits of WebView and Chrome Custom Tab, which were mainly re-

sponsible for integrating the web experience with the Native; these technologies can be

embedded in native applications to show web content inside the native app screen.

This section provides a clear understanding of this technology and its priors (WebView

and Chrome Custom Tab).

2.6.1 Benefits of using TWA

TWA is powered by Web APIs in the browser of mobile devices; therefore, its features are

dependent on the available Web APIs. Unlike Native applications, which have full access

to the hardware capabilities of mobile hardware, Web APIs lack access to certain features

such as Inter-app sharing, User Idle detections, geofencing, proximity sensor, contacts

SMS, ambient light, and NFC. These features are based on the current version of Chrome

(86.0.4240.75); more features are available in Figure 3.

 It is important to note which features are supported by all target users to provide the best

experience; if one of the above features is a necessary requirement, it is best to use a Na-

tive application, but there are important benefits TWA provides over Native. (RAJ, 2020)

Lightweight: All the content displayed in TWA is fetched from the web; therefore, it is not

as bloated as Native apps; the size of the apps will barely cross 2MB; this saves a lot of

space in mobile devices with small memory size.

Content-driven: If the desired application is content-driven and doesn’t require compli-

cated mobile hardware use, TWAs could be the best option.

Update: Native applications need to be updated every time there is a change, and users

without recent update will not get full functionalities, but TWA automatically update the

content.

2.6.2 WebView

A WebView “is an embeddable browser that a native application can use to display web

content” (Kirupa, 2019).

In typical Native applications, when the user clicks on an external link, the request will try

to fetch a web content that gets redirected to the default mobile browser; this is observa-

ble when the browser opens on a new screen with all the navigations and the URL bar.

So, the solution is to use WebView to show the web content without redirecting it to the

browser; WebView loads contents both from HTTP and HTTPS in the view box without

19

leaving the native app. Therefore, WebView integrates well with Native apps; it takes re-

quests from the clicked link and renders it on a full-screen tab or small section of the app

screen, making the redirection process feel as if the user never left the app. In addition, it

gives the developer the freedom to make few tweaks on the view screen to make it feel

more in theme with the app, and this is a significant user experience change compared to

redirecting to the browser.

Besides the user experience, it makes updating the contents inside very easy; since all

the information inside the WebView is coming from the server, the web app is connected

to, updates are seamless and automatic.

Figure 9 WebView use example (Hoober, 2018)

It is vital to note that even though WebView renders web content, the content should not

be data-heavy, which clashes with the native concept of the app. It is also good practice to

plan for the contents that should be served inside the WebView and what should stay in

the Native; the best way to design is to avoid rendering functionalities that require interac-

tion with the hardware and other complex features such as input boxes and navigations

inside WebView. (Hoober, 2018)

As shown in Figure 9, Quora Native mobile app uses WebView to render the necessary

text content while handling the complex features with the native app.

WebView has many use-cases, one of the popular being advertising; this makes it easy

for apps to serve timely ads to users straight from the ad-server.

20

2.6.3 Chrome Custom Tabs

Chrome custom tabs are also another option to show web content in native applications, it

was introduced on chrome version 45, but now it is supported by almost all android brows-

ers. (Googledevelopers, 2020)

like WebView, it displays web content, but it will not be full screen (browsers’ address bar

will be visible). Nevertheless, unlike WebView, it gives developers the freedom to custom-

ize the UI of the display screen by changing the toolbar color, adding enter-exit anima-

tions, and add custom actions to the Chrome toolbar, overflow menu, and bottom toolbar.

(Kinlan, 2016)

In addition to making design changes, Custom tabs support the prefetching of content, re-

sulting in faster loading and seamless transition to the content screen. According to Kin-

lan, by prefetching content, the loading speed can be minimized by 700 ms; this is

achieved by connecting to the URL beforehand. (Kinlan, 2016)

2.6.4 Why use CCT over WebView?

CCT supports the full features of the browser, which WebView does not have.

Cookie Jar - WebView cannot access cookie information outside the app, while CCT

uses a shared cookie jar allowing sign in and permission features to be automatic.

UI customizations - provides developers with the tools to customize Toolbar color, Action

button, Custom menu items, Custom in/out animations, and the bottom toolbar

Update - updating CCT is quite simple; users do not need a separate way to update the

features of the customer tab; all it takes is updating the browser.

Security - because CCT has full features of the browser, it takes advantage of the brows-

ers’ safety features, protecting the user from unsafe sites.

Performance – CCT enables pre-rendering to provide contents to be fetched in advance,

thereby decreasing the load time.

21

Figure 10 Comparison for Webview, CCT, and TWA

As shown in Figure 10, using the power of the browser, TWA provides more features as

compared to Webvies and CCT. Although TWA is similar to CCT, it’s the ability to show

full-screen content that makes it a good option for a standalone mobile application.

2.7 Web Performance Optimization

Web performance refers to how quickly site content loads, render in web browsers, and

how well it responds to user interaction. (contributorsMDN, 2020)

Web performance is a key aspect of user experience; fast-loading sites generate more us-

ers, while slow loading sites frustrate users and takes away already existing ones. Espe-

cially at this time, where most web activity is done through mobile devices, makes perfor-

mance very important.

As apparent it is, mobile devices are susceptible to slow connection, but despite this fact,

it is the developers’ responsibility to make sites that are accessible no matter the connec-

tion speed.

According to research done by SOSTA, an American software testing company, web per-

formance was found to be at the center of user experience, business value, and technical

metrics; also, the research has made the following key findings. (Everts, 2016)

- 46% of online shoppers responded that shopping on mobile devices to be their

least favorite experience.

- Over 3G networks, on average, the load time for mobile devices is 19 seconds.

- 53% of mobile site users leave if the page does not load in under 3 seconds.

22

- Mobile pages that load under 5 seconds have a 70% more session rate than sites

loading above 19 seconds and double the revenue.

- Almost half of the request by servers are related to ads

In addition, case studies done by (wpostats, 2020), have shown that many companies

who optimized their site performance have increased their conversion rates, decreased

bounce rates, and increased their revenue.

- snipesUSA.com has doubled its conversion rate by 1% after a 30% increase in

page loading.

- Rossignol.com have increased their conversion rate by 94% after improving load

time by1.9 seconds and speed index by a factor of 10.

- Radins.com also saw a 12% conversion increase after improving the speed index

by 51%

There are many success stories related to improved performance that can be found on

wpostats, which prove that WPO(web performance optimization) affect business and cus-

tomer retention; one of the reasons is that performance is one of the key indicators in

SEO(search engine optimization), slower loading results in lower site ranking by search

engines which lead to fewer users visiting it. (Everts, 2016)

2.7.1 WPO testing test tools

Performance testing is one of the fundamental processes during the development of a

web application; the results provide information on how fast the browser loads resources

for initial page load over certain connections. Few metrics determine how this is calcu-

lated, such as First Contentful Paint, Speed Index, Largest Contentful Paint, Time to Inter-

active, Total Blocking Time, and Cumulative Layout Shift.

There are many testing tools available online that provide the above-listed results, but

Google Lighthouse was found to be the best option; one of the reasons is that it supports

tests over local development environment, also lists opportunities to optimize lower perfor-

mance scores.

First Contentful Paint: First Contentful Paint marks the time at which the first text or im-

age is painted.

Speed Index: Speed Index shows how quickly the contents of a page are visibly popu-

lated

Largest Contentful Paint: Largest Contentful Paint marks the time at which the largest

text or image is painted.

Time to Interactive: Time to interactive is the amount of time it takes for the page to be-

come fully interactive.

23

Total Blocking Time: Sum of all time periods between FCP and Time to Interactive,

when task length exceeded 50ms, expressed in milliseconds.

Cumulative Layout Shift: Cumulative Layout Shift measures the movement of visible el-

ements within the viewport.

Performance Optimization Solutions will be better explained in the implementation section

with the practical results as an example

24

3 Implementation

In this section, the technical overview of creating a React PWA starting from the initial de-

velopment of the application, Progressive enhancements, packaging in TWA, and deploy-

ment on Google store will be discussed.

The PWA developed in this work was named Cinkino; it is a React App that uses Finnkino

API to fetch data from the server and shows available movies in certain cinema locations.

The basic setup of the application is created with CRA(create-react-app), a template that

is developed by Facebook; it provides the basic features for creating a single page appli-

cation. Redux JavaScript library will be used to handle the application state; this will help

to avoid prop drilling and provide an organized place for storing the applicationlevel states.

“Prop drilling (also called “threading”) refers to the process you have to go through to get

data to parts of the React Component tree.” (Dodds, 2018)

In addition, few additional 3rd party dependencies will be used to implement the planned

functionalities; these dependencies will be downloaded using NPM (node package man-

ager).

3.1 Features requirement

Most of the features that are planned for this application are dependent on the Finnkino

API. It is a public API available on the Finnkino website, available at https://www.finn-

kino.fi/xml/; requests sent to this API returns an XML formatted response.

 However, the search and bookmarking functionalities are not part of it; therefore will need

additional logic coded into the app.

The application will also use Google Map API to locate the closest Finnkino cinema.

Although the map is not provided by Finnkino API, it will use the area property to fetch and

place location data on Google Map.

To summarize, the following features will be available in the Cinkino App

• Searching movies available in the Finnkino Cinemas

• Filtering movies based on location and/or date

• Bookmarking movies for later viewing: After browsing through the list of movies,

• Delete movies in the bookmarks

• Check the location of theatres nearby

• Check out news from Finnkino

https://www.finnkino.fi/xml/
https://www.finnkino.fi/xml/

25

3.2 Development environment

Software Version Hardware

OS Windows x64 10.0.18363

Processor AMD_Phe-

nom(TM)_II_X3_B75

VScode 1.50.1 RAM 4GB

Chrome Browser 83.0.4103.122

Node.js 12.14.1

NPM 6.14.8

Lighthouse 6.0

Firebase CLI 8.16.0

3.3 Create-React-App

Create-react-app is a React application starter template; it provides the basic front end en-

vironment with the latest JavaScript features. It comes with NPM for downloading third

party packages, Webpack for bundling, and Babel to compile ECMAScript 2015.

 Babel compiles a new version of JavaScript to older versions of JavaScript so applica-

tions can work on older browsers.

CRA also provides start, build, test, and eject scripts, which will come in handy for devel-

opment and production, but during the development of this application, start and build

scripts will be used for running the application and bundling the production version.

{

 "name": "cinkinoweb",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

 "@testing-library/jest-dom": "^5.11.5",

 "@testing-library/react": "^11.1.0",

 "@testing-library/user-event": "^12.1.10",

 "react": "^17.0.1",

 "react-dom": "^17.0.1",

 "react-scripts": "4.0.0",

 "web-vitals": "^0.2.4"

 },

 "scripts": {

 "start": "react-scripts start",

 "build": "react-scripts build",

 "test": "react-scripts test",

 "eject": "react-scripts eject"

 },
Listing 6 Create-react-app dependencies and scripts

26

But before going forward on the development, it is a good practice to check the perfor-

mance level we are starting with, especially for the development of this application, mainly

because of Googles’ TWA requirement that a web applicationshould be 100% PWA with a

performance of 80 minimum. For this purpose, Lighthouse testing tool was found to be a

perfect tool; it can be installed as a chrome extension to analyze pages; as discussed in

the above section, Lighthouse calculates five basic benchmarks, Performance, Accessibil-

ity, Best Practices, SEO, and Progressive Web App.

During initial testing, the scores were fluctuating when the test was done on normal

browser mode and incognito mode; this is mainly due to the negative effect of extensions

that were installed in the browser.

As seen in figures 11 and 12, there is a 28-point difference in the performance index be-

tween these two modes.

Figure 11 CRA development version Lighthouse score on Incognito mode

Figure 12 CRA development version Lighthouse score on Normal mode

The production build, however, is much faster than the development version of the appli-

cation; CRA has a built-in Webpack bundler which builds a minified bundle of the applica-

tion, thereby increasing the performance; as seen in Figure 13, the performance in-

creased to 99 when tested in Incognito mode.

27

Figure 13 CRA production version Lighthouse mobile score

Chrome dev tools can be used to check the size and see how much bundling saves re-

sources of the resources sent to the browser; by going into the network tab of inspect

mode, it is possible to see the resources that the page loaded in the case of CRA, the

browser was loading 1.8 Mb of resources before bundling, but after, that size decreased

to 139Kb.

3.4 Cinkino React App

Although the details for the development of this application are out of scope for this work,

the dependencies used will significantly affect the performance of the app; therefore, it will

be discussed briefly in this section.

Additional dependencies and libraries were needed to implement some of the features

proposed in section 3.1 to increase the development speed and make the application

more responsive for mobile devices. Besides the dependencies shown in Listing 7, Mate-

rial Design Lite(MDL) was used for styling the application; by using this library, it was pos-

sible to develop responsive pages that interact well on mobile devices, although this ap-

proach had created a strain on the page load.

"dependencies": {

 "@react-google-maps/api": "^1.13.0",

 "axios": "^0.19.2",

 "fast-xml-parser": "^3.16.0",

 "react-autosuggest": "^10.0.2",

 "react-datepicker": "^3.3.0",

 "react-redux": "^7.1.3",

 "react-router-dom": "^5.1.2",

 "redux": "^4.0.5",

 "redux-promise": "^0.6.0",

 },

Listing 7 3rd party packages and libraries used

28

@react-google-maps/api: used for loading Google Maps API

Axios: is a promise-based HTTP client library

fast-XML-parser: used for converting XML data formats to JSON

react-autosuggest: provides automatic search suggestions based on the available data

react-datepicker: a full date and time picking solution

react-router-dom: a routing solution for the components inside the app

redux: is an open-source library that is used for managing application-level state

redux-promise: is an Asynchronous middleware that helps in passing promises inside an

action object.

3.5 Cinkino Progressive Web App

To meet the requirements of TWA deployment, the react application build has to be en-

hanced to become Progressive. According to Lighthouse, for an application to get 100 on

PWA metrics, it has to be fast, reliable, installable, and PWA optimized. Sub-Metrics are

available under these results and can be found in the Lighthouse tab. As discussed in

section 2.5, the first task would be creating Web Manifest that tells the browser how to in-

stall the application by providing a banner icon, name, and other properties.

According to Lighthouse metrics, Web Manifest should at least include name, icons with

192x192 px and a 512x512 px, start_url, display, and prefer_related_applications proper-

ties.

{

 "short_name": "CinkinoWeb",

 “name”: “Cinkion Cinema APP”,

 "icons": [

 { "src": "logo192.png",

 "type": "image/png",

 "sizes": "192x192",

 "purpose": "any maskable"},

 { "src": "logo512.png",

 "type": "image/png",

 "sizes": "512x512"}],

 "start_url": "/",

 "display": "standalone",

 "theme_color": "#000000",

 "background_color": "#ffffff",

 "lang": "English",

 “description”: “React App to check Finnkino cinema schedule”,

 "scope": ".",

 "orientation": "any"

}

Listing 8 Web App Manifest for Cinkino

29

As per the Manifest shown in Listing 8, the browser will check start_url to display the front

of the application with the scope of the entire page; after the Manifest has been created, it

can be referenced in the index.html file as a link in such a way as shown in Listing 9.

 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />

Listing 9 Adding Web manifest

The successful integration of the web manifest can be seen in the browsers inspect mode

under the Application tab.

Figure 14 Web Manifest installed successfully

3.5.1 Implementing Service Worker

Service worker enhance web applications to work offline, as mentioned in section 2.5.5,

It runs in the background separate from the regular JavaScript; it is like a proxy server

which listens to events going in and out of the client.

A service worker can be manually created by writing the JavaScript code in the root folder,

enhancing it to listen to specific events and cache required files and pages.

Another option to writing service worker from scratch is by using Workbox, “It is a collec-

tion of libraries and tools used for generating a service worker, precaching, routing, and

runtime-caching.” (developersGoogle, 2020)

To make development faster, PWABuilder auto-generated Workbox will be used to cache

the files of the page. PWABuilder generates the required Workbox with seven options, Of-

fline copy of pages, Offline copy with Backup offline page, Cache-first network, Advanced

caching, Background Sync, and Serving Cached media.

30

Each caching solution can be customized to generate Workbox with the required function-

ality; for this project, however, Advance Caching was chosen; this solution provides good

customization options to cache HTML, JS, Stylesheets, Images, and Fonts, also, the max-

imum amount of files and how long files should be cached can be customized.

Although it is preferable to cache all the files in the app, this will create an additional prob-

lem by taking too much cache storage, therefore for Cinkino App, Images caching will not

be available.

There are two types of caching strategies used in this solution, NetworkFirst and

StaleWhileRevalidate, the former allows the Service Worker to fetch a response directly

from the network; if the request is successful, it will cache the files and make them availa-

ble when there is a failed request. The latter, however, responds with the cached files by

default and requests from the network if they are not in the cache.

StaleWhileRevalidate is preferable if the Apps are not updated quickly, while NetworkFirst

is the ideal solution for Apps that require fast updates. (developersGoogle, 2020)

The code shown on Listing 10 will be added in the index.html file; this code will register

the Service Worker, to integrate the service worker update when there is new content

available and notify users when the pages are ready to be used offline.

 <script type="module">

 import ’https://cdn.jsdelivr.net/npm/@PWABuilder/pwaupdate’;

 const el = document.createElement(‘pwa-update’);

 document.body.appendChild(el);

 </script>

Listing 10 Adding Service Worker

Once the service worker is available in the root of the app, files that will be precached can

be assigned using the code in Listing 10; this code is stored in its JavaScript file by de-

fault, it is named PWABuilder-sw.js, this is the file that the code in Listing 10 will check to

register the ServiceWorker therefore, renaming it will not work.

The code in Listing 11 uses NetworkFirst strategy to pre-cache all the HTML files in the

App, the files will be stored for a day and the maximum limit is 10 HTML pages, this can

be adjusted as needed.

workbox.routing.registerRoute(

 ({event}) => event.request.destination === ’document’,

 new workbox.strategies.NetworkFirst({

 cacheName: HTML_CACHE,

 plugins: [

 new workbox.expiration.ExpirationPlugin({

 maxAgeSeconds: 1 * 24 * 60 * 60,

 maxEntries: 10,}),

],

31

 })

);

Listing 11 NetworkFirst caching strategy using Workbox

3.6 Web Performance Optimizations

After developing the Cinkino react application with the functionality requirements, the

Lighthouse performance results were not enough to deploy with TWA, the first problem is

that it is not a PWA, and secondly, the performance result was not enough to meet the re-

quirements set for deployment on Google store.

Figure 15 Cinkino Application Lighthouse score before optimization

According to Figure 15, the application needs to fulfill the PWA requirement and increase

the performance level by 20%, but this is not the only result delivered by Lighthouse; it

also provides suggestions that can help improve all the test metrics.

3.6.1 Compression

Compression is a way to build a bundled version of the application in a way to optimize

the code in the served files. CRA uses Gzip in its webpack configuration to compress the

build files; while this is a useful compression tool, I have found Brotli performs better with

compression. Figure 17 shows that Brotli provides faster and more optimal compression

than other compression tools such as Gzip and deflate.

Although it is possible to build a webpack configuration which utilizes Brotli aside from the

one provided by CRA, that requires additional expertise with webpack.

The easiest way to implement this compression tool was to deploy using Firebase; as of

Aug 2020, Firebase uses Brotli to compress files hosted on its server. (Deng, 2020). The

tool used to compress files can be checked in the Network tab under header response in

32

the content-encoding property either as gzip or br.

Figure 16 Content-encoding compression properties

Figure 17 Compression tools comparison (magenx, 2020)

After creating an account on Firebase, the project build was hosted on its server; with ad-

ditional compression by Brotli, the Lighthouse performance score has increased by 12%

and reached 73.

Figure 18 Before and After Firebase Hosting

3.6.2 Code Splitting

Code splitting is a way to send JavaScript files that are essential to the required page

load. Normally, the client loads all the JavaScript whether it is needed for the specific

page or not; for example, when a user navigates to a web application with a login page,

33

the browser doesn’t know if the user will log in successfully, but will still load the entire Ja-

vaScript for the whole application. This approach takes unnecessary loading and parsing

time. (Aakash, 2020)

By default, CRA Webpack supports code-splitting using lazy loading and Suspense. Us-

ing lazy loading, it is possible to load and run JavaScript code that is needed by a specific

component without loading the whole JavaScript code for the entire app.

Lazy loading uses a promise that when the specified component is available, it will be im-

ported; if many components need to be loaded, they will have to wait until the promise is

resolved, therefore when webpack bundles this app, it creates smaller chunks of JavaS-

cript for each component instead of large size bundle and Suspense provides a fallback

during the asynchronous call until it has been resolved and the promise has been returned

then it wraps the components that will be returned when resolved. (Aakash, 2020)

Figure 19 shows the bundled JavaScript file, which is fetched when the Application loads,

and no matter the user navigates to different pages, the JavaScript loaded will stay the

same because the whole application is bundled into these three chunks of large size Ja-

vaScript code.

In the case of Figure 20, however, the JavaScript code loaded decreases in size, and

each component loads its JavaScript code when it is navigated; the splitting minimized the

size from 162kb to 145kb; also, the performance score of the application increased from

73 to 76.

This difference, however, would be much more visible on large scale applications where

there are many components.

This can be seen in dev tools Network tab with JS filter on.

Figure 19 Non-Lazy loaded App

Figure 20 Code splitting with React lazy

34

3.6.3 Upgrading non-secure HTTP requests

One of the problems faced during testing on other browsers was that the initial page load

was done over a secure HTTPS protocol but navigating to other pages request content

over non-secure HTTP protocol; this problem was only visible on other browsers such as

edge and opera while working well on Chrome. After some research, it was found that the

images requested from the Finnkino API were using HTTP instead of the secure option,

this can be seen in Figure 21, but by default, Chrome browser was upgrading this request

to HTTPS.

By adding the Content-Security-Policy meta tag shown in Listing 18, other browsers can

also be told to upgrade the requests to HTTPS, thereby avoiding non-secure requests.

<meta http-equiv="Content-Security-Policy" content="upgrade-insecure-requests">

Listing 12 Content security Policy upgrade

Figure 21 Non-secure HTTP requests

3.6.4 Responsive Images

Images are non-blocking resources, unlike CSS and JavaScript, but they are bigger in

size, and fetching them takes more time for the browser. For faster networks, it might not

be a problem to load large-size images, but for small screen devices, it is pointless to load

high pixel images that take a long time to load, which affects the page load time with full

content.

Typically, images are rendered when the browser finds the tag with <src> property,

and it loads the image from the source, using srcset; however, the browser can load im-

ages based on the screen size parameters defined.

As shown in Listing 13, when the width of the screen is 1200w, the large image with a big-

ger size will be loaded, while it is 600w and lower medium-size versions of the image will

be loaded; these breakpoints can be defined on any screen width but will fall back to the

src if the breakpoint is not defined.

35

With this strategy, it is possible to avoid strains on small screen devices with unneces-

sarily large size images, saving larger network requests, thereby increasing performance.

<img

srcset={`${largeImg.jpg} 1200w,

 ${mediumImg.jpg} 600w,

 ${smallImg.jpg} 400w,`}

width="100%" height="100%"

src={large}

alt="responsive image"/>

Listing 13 Responsive Images using srcset

3.6.5 Efficient HTTP cache policy

“All HTTP requests that the browser makes are first routed to the browser cache to check

whether a valid cached response can be used to fulfill the request. If there is a match, the

response is read from the cache, eliminating both the network latency and the data costs

that the transfer incurs.” (Posnick & Grigorik, 2020)

On this project application, the cached resources were being stored for a maximum of 24

hours; therefore, it was flagged by Lighthouse as “Serve static assets with an efficient

cache policy.” By changing the response header in the server, in this case, Firebase, the

amount of time the cache is stored has been increased to a week.

The result can be seen in the Network tab under the “Headers” property. For example, as

shown in Figure 22, material.js is being served from the memory cache of the browser,

and it will be stored for a week. Although this has not shown an increase in the perfor-

mance score, on repeat visits, it will be more visible to the users.

Figure 22 HTTP cache policy for material.js

36

3.6.6 Publishing Cinkino on Google Play

Now that the React PWA has been optimized to achieve the 80 scores on Lighthouse, it is

ready to be wrapped with TWA to be deployed on Google play; one easy way I found dur-

ing my research is to use Microsoft PWABuilder.

After providing this service with the link of the hosted web App, it generates functional ver-

sions that can be deployed on major application stores such as Google Play, Samsung

Galaxy, Microsoft, and macOS stores. After submitting the hosted web application link, it

checks the Application for Manifest and Service worker to make sure it conforms to PWA

requirements.

If the necessary requirements are met, PWABuilder will provide an option to package the

application for the above-mentioned stores.

As shown in Figure 23, the tool calculates the score based on the availability of Manifest,

Service Worker, and security.

Figure 23 PWABuilder results for https://cinkinoweb.web.app/

As shown in PWABuilder, packaging options cover the major application stores to make

applications discoverable by all platform users. In this case, however, the scope of this

thesis is to publish PWA on Google Play Store; therefore, the Android option will be used

by default; this option uses Bubblewrap to package applications with TWA.

https://cinkinoweb.web.app/

37

Figure 23 PWABuilder packaging options for major stores

The Android packaging option also provides many properties to customize the features

that will be available once it is generated. A few of the important properties include the fol-

lowing.

Fallback behavior: a property to assign a fallback when TWA experience is not working;

therefore, it will use CCT and WebView as a fallback option, with CCT being the default.

ChromeOS only: if enabled, this property restricts the use of other devices except for

ChromeOS

Signing key: this property provides an option to use the already available signing-key,

generate a new key, or not use the key at all. Using the “Use mine” option, a new version

of the application can be created for continuous updates.

Include source code: if enabled, the final generated zip file will include a Java android

source code for the application that can be customized with android studio.

Most of the information in the options form is already prefilled because it uses information

from the Manifest by default.

As shown in Figure 24, Once the TWA wrapped version of the application is generated, it

contains six files. assetlinks.json contains “sha256_cert_fingerprints” information that

proves the PWA owner is also the one responsible for the Android package.

Signing keys provided in the generated file will be useful when a new version of the appli-

cation is published; therefore, it needs to be stored securely.

CinkinoWeb.aab is a format that will be published to the application store, although the

APK version can also be used.

38

Figure 24 PWABuilder generated android package

As seen in Figure 24, the packaged version of the Cinkino app is less than 700kb, which

is impossible to achieve if the app is native.

Figure 25 Cinkino release overview on Google play console

The signed version of the application was uploaded on Google Play Store; after filling the

required forms confirming Cinkino abide by the store rules, It was submitted for publishing.

But because of the store rules, it is currently in the process of review by the Store team.

As seen in Figure 25, Cinkino is will be available in Google Play Store once the review

process is approved by the store team.

39

Discussion

In conclusion, the combination of PWA with TWA has a lot of potential for growth.

With increased browser support and active interest from the developing community, the

writer believes these technologies can help small companies publish mobile applications

easily, and for web developers, this approach highlights the knowledge they already pos-

sess and would be a good addition to their skill set.

However, due to the TWA requirements for PWAs to achieve a Lighthouse mobile perfor-

mance score of 80 minimum, the performance optimization process is a lot of work.

A final performance score of 84 has been reached after extensive optimizations and re-

search. The writer believes it is possible to increase this score by avoiding third-party li-

braries that request resources over the network.

The use of PWABuilder is highly recommended; it generates full PWA features such as

Manifest and service worker as needed; in addition, it generates TWA wrapped android

package that is production-ready, therefore saves a lot of time and coding.

React code-splitting features using React lazy were very useful during the performance

optimization process.

The publishing of the Cinkino application was not finalized, it was released for open test-

ing on Google Play, but due to the review process that is required, the application is not

yet available in the app store. However, the test is done with the APK installed version ran

full screen with all the features on a personal mobile device.

The final version of the web application can be found on https://cinkinoweb.web.app/

40

4 References

Aakash, 2020. Effective Code Splitting in React: A Practical Guide. [Online]

Available at: https://hackernoon.com/effective-code-splitting-in-react-a-practical-guide-

2195359d5d49

[Accessed 25 10 2020].

Bar, A., 2020. WHAT WEB CAN DO TODAY?. [Online]

Available at: https://whatwebcando.today/

[Accessed 15 10 2020].

Codecademy, 2020. React: The Virtual DOM. [Online]

Available at: https://www.codecademy.com/articles/react-virtual-dom

[Accessed 12 10 2020].

contributorsMDN, 2020. The "why" of web performance. [Online]

Available at: https://developer.mozilla.org/en-

US/docs/Learn/Performance/why_web_performance

[Accessed 15 10 2020].

Deng, K., 2020. New for Firebase Hosting: request logging, Brotli compression, and

internationalization. [Online]

Available at: https://firebase.googleblog.com/2020/08/firebase-hosting-new-features.html

[Accessed 20 10 2020].

Developers, G. C., 2019. Android WebView 101. [Online]

Available at:

https://www.youtube.com/watch?v=qMvbtcbEkDU&t=560s&ab_channel=GoogleChromeD

evelopers

[Accessed 04 10 2020].

DevelopersGoogle, 2019. Introduction to Service Worker. [Online]

Available at: https://developers.google.com/web/ilt/pwa/introduction-to-service-worker

[Accessed 04 10 2020].

developersGoogle, 2020. Lab: Workbox. [Online]

Available at: https://developers.google.com/web/ilt/pwa/lab-workbox

[Accessed 23 10 2020].

Deveria, A., 2020. Service Workers. [Online]

Available at: https://caniuse.com/?search=service%20workers

[Accessed 29 09 2020].

Dodds, K., 2018. Prop Drilling. [Online]

Available at: https://kentcdodds.com/blog/prop-drilling

[Accessed 20 10 2020].

41

Everts, T., 2016. Mobile Load Time and User Abandonment. [Online]

Available at: https://developer.akamai.com/blog/2016/09/14/mobile-load-time-user-

abandonment

[Accessed 20 10 2020].

Fedosejev, A., 2015. React.js Essentials. s.l.:Packt Publishing.

Geddes, D., 2019. Service worker mindset. [Online]

Available at: https://web.dev/service-worker-mindset/

[Accessed 30 09 2020].

Google I/O. 2019. [Film] Directed by Andre Bandarra Peter McLachlan. USA: Google.

Googledevelopers, 2020. Custom Tabs. [Online]

Available at: https://developers.google.com/web/android/custom-tabs

[Accessed 06 10 2020].

Hoober, S., 2018. Mobile Apps: Native, Hybrid, and WebViews. [Online]

Available at: https://www.uxmatters.com/mt/archives/2018/08/mobile-apps-native-hybrid-

and-webviews.php

[Accessed 06 10 2020].

Kagga, J., 2018. Understanding React Components. [Online]

Available at: https://medium.com/the-andela-way/understanding-react-components-

37f841c1f3bb

[Accessed 11 10 2020].

Kinlan, P., 2016. Chrome Custom Tabs. [Online]

Available at: https://developer.chrome.com/multidevice/android/customtabs#whentouse

[Accessed 06 10 2020].

Kirupa, 2019. Understanding WebViews. [Online]

Available at: https://www.kirupa.com/apps/webview.htm

[Accessed 05 11 2020].

Laaksonen, 2018. vivecho. [Online]

Available at: https://vivecho.com/cost-of-mobile-development/

[Accessed 30 09 2020].

LePage, P., 2020. Add a web app manifest. [Online]

Available at: https://web.dev/add-manifest/

[Accessed 24 10 2020].

Love, C., 2019. What Browsers Support Service Workers?. [Online]

Available at: https://love2dev.com/blog/what-browsers-support-service-workers/

[Accessed 02 10 2020].

magenx, 2020. Brotli Compression - build nginx dynamic module - magento static

optimization. [Online]

Available at: https://www.magenx.com/blog/post/brotli-compression-build-nginx-dynamic-

42

module-magento-static-optimization.html

[Accessed 20 10 2020].

MDNcontributors, 2019. Populating the page. [Online]

Available at: https://developer.mozilla.org/en-

US/docs/Web/Performance/How_browsers_work

[Accessed 24 10 2020].

MDNcontributors, 2020. Service Worker API. [Online]

Available at: https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

[Accessed 02 10 2020].

MDNcontributors, 2020. Using Service Workers. [Online]

Available at: https://developer.mozilla.org/en-

US/docs/Web/API/Service_Worker_API/Using_Service_Workers

[Accessed 03 10 2020].

Nikhil, 2020. 13 Best JavaScript Framework For 2020. [Online]

Available at: https://www.lambdatest.com/blog/best-javascript-framework-2020/

[Accessed 10 10 2020].

Perera, P., 2020. A Comparison: Native Apps vs Web Apps. [Online]

Available at: https://www.technocrat.com.au/blog/comparison-native-apps-vs-web-apps

Posnick, J. & Grigorik, I., 2020. Prevent unnecessary network requests with the HTTP

Cache. [Online]

Available at: https://web.dev/http-cache/

[Accessed 15 11 2020].

Rabouw, R., n.d. pwa-fundamentals. [Online]

Available at: https://pwa-fundamentals.nl/chapters/service-workers.html#service-worker-

lifecycle

[Accessed 01 10 2020].

RAJ, V., 2020. Trusted Web Activities — II. [Online]

Available at: https://medium.com/groww-engineering/trusted-web-activities-ii-

2dbd6d5d6e90

[Accessed 18 10 2020].

reactenlightenment, 2020. What Is JSX?. [Online]

Available at: https://www.reactenlightenment.com/react-jsx/5.1.html

[Accessed 11 10 2020].

ReactJs, 2020. Introducing Hooks. [Online]

Available at: https://reactjs.org/docs/hooks-intro.html

[Accessed 11 10 2020].

43

ReactJsOrg, 2020. React – A JavaScript library for building user interfaces. [Online]

Available at: https://reactjs.org/

[Accessed 10 10 2020].

Saccomani, P., 2019. People Spent 90% of Their Mobile Time Using Apps in 2019.

[Online]

Available at: https://www.mobiloud.com/blog/mobile-apps-vs-the-mobile-web

[Accessed 15 10 2020].

Saccomani, P., 2020. Native Apps, Web Apps or Hybrid Apps? What’s the Difference?.

[Online]

Available at: https://www.mobiloud.com/blog/native-web-or-hybrid-apps

ScandiPWA, 2019. History of Progressive Web Apps. [Online]

Available at: https://medium.com/progressivewebapps/history-of-progressive-web-apps-

4c912533a531

[Accessed 10 10 2020].

ScandiPWA, 2019. History of Progressive Web Apps. [Online]

Available at: https://medium.com/progressivewebapps/history-of-progressive-web-apps-

4c912533a531

[Accessed 10 14 2020].

Scott, E., 2015. SPA Design and Architecture: Understanding Single Page Web

Applications. s.l.:Manning Publications.

Shah, H., 2020. Reactjs vs React Native. [Online]

Available at: https://www.simform.com/reactjs-vs-reactnative

[Accessed 10 10 2020].

Snigdha, 2020. 25 Best Programming Languages for Mobile Apps & Top Mobile App

Development Tools & Frameworks. [Online]

Available at: https://www.appypie.com/top-programming-languages-for-mobile-app-

development

[Accessed 30 09 2020].

Stackoverflow, 2019. Developer Survey Results. [Online]

Available at: https://insights.stackoverflow.com/survey/2019#technology

[Accessed 10 10 2020].

Todd Parker, . J. . C. W. P. T., 2010. Designing with Progressive Enhancement: Building

the Web that Works for Everyone. s.l.:New Riders.

web2appinfotech, 2016. Mobile App Comparison. [Online]

Available at: http://www.web2appinfotech.com/mobile-app-comparison-native-vs-hybrid-

vs-web/

[Accessed 15 10 2020].

44

webapp007, 2019. JavaScript Frameworks 2020. [Online]

Available at: https://dev.to/webapp007/javascript-frameworks-2020-699

[Accessed 11 10 2020].

Wikipedia, 2020. React (web framework). [Online]

Available at: https://en.wikipedia.org/wiki/React_(web_framework)

[Accessed 10 10 2020].

wpostats, 2020. WPO stats. [Online]

Available at: https://wpostats.com/

[Accessed 15 10 2020].

45

5 Appendices

5.1 Appendix 1. Cinkino final Desktop and Mobile performance score

Figure 26 Cinkino final Performance score on Desktop

46

Figure 27 Cinkino final performance score on mobile

47

Appendix 2. Cinkino final view

Figure 28 Installed APK version of Cinkino on home screen

48

Figure 29 Cinkino splash screen on mobile screen

i

49

Figure 30 Cinkino Auto suggest Search

50

Figure 31 Cinkino sidebar

51

Figure 32 Cinkino Filter by location

52

Figure 33 Cinkino Location search

53

Figure 34 Cinkino News page

54

Figure 35 Cinkino Bookmark page

