

Antti-Juhani Takamaa

Hardware-based WAN emulator re-
placed with software-based one

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

15 November 2020

 Abstract

Author
Title

Number of Pages
Date

Antti-Juhani Takamaa
Hardware-based WAN emulator replaced with software-based
one
29 pages + 4 appendices
15 November 2020

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major IoT and Cloud Computing

Instructors

Marko Uusitalo, Senior Lecturer and Head of Degree Pro-
gramme

The aim of this thesis was to find a more cost-efficient solution for Secure Land Communi-
cations, subsidiary of Airbus Defence and Space, to emulate a wide area network in their
testing processes.

The old solution is a hardware-based network device that emulates network impairments in
a wide area network. Scaling the emulation capability up with the old solution is expensive.
The new researched solution is a software-based emulator, an application that emulates
network impairments in a wide area network.

The new emulation solution needed to be tested against the old one. The phases of the
testing process were planning, execution and examination of results. Planning started with
discussion with stakeholders, the project requirements and project timing was agreed upon.
Next, the test environment and the test case that would be ran with all the emulators, was
created. Software-based WAN emulator options were researched and selected. The created
testing plan was executed. Results following from the tests were examined. Conclusion were
drawn from the results.

The aim of this thesis was reached. SoftPerfect Connection Emulator is a WAN emulation
application, which’s performance closely matches the performance of Apposite Technolo-
gies’ Netropy N91 WAN emulation device. The cost of the new solution is approximately
7,5% of that of the old solution.

Keywords Network, WAN, Emulation, SoftPerfect Connection Emulator,
Apposite Technologies Netropy N91

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Antti-Juhani Takamaa
WAN-emulaatio laitteen korvaaminen ohjelmalla

29 sivua + 4 liitettä
15.11.2020

Tutkinto insinööri (AMK)

Tutkinto-ohjelma tieto- ja viestintätekniikka

Ammatillinen pääaine verkot ja pilvipalvelut

Ohjaajat

Lehtori Marko Uusitalo

Tämän insinöörityön tavoite oli löytää kustannustehokkaampi ratkaisu Secure Land Com-
munications:lle, Airbus Defence and Spacen tytäryhtiölle, emuloida laaja-alaista verkkoa
heidän testausprosesseissaan.

Vanha ratkaisu oli laitteistopohjainen verkkolaite, joka emuloi verkon heikentymistä laaja-
alaisessa verkossa. Emulaatiokyvyn skaalaaminen suuremmaksi vanhalla ratkaisulla on kal-
lista. Uusi tutkittu ratkaisu on ohjelmistopohjainen emulaattorisovellus, sovellus, joka emuloi
verkon heikentymistä laaja-alaisessa verkossa.

Uutta emulation ratkaisua piti testata vanhaa vastaan. Testausprosessin vaiheet olivat suun-
nittelu, toteutus ja tulosten tarkastelu. Suunnittelu alkoi keskustelulla sidosryhmien kanssa
ja projektin vaatimuksista sekä ajoituksesta sovittiin. Seuraavaksi testiympäristö ja testiske-
naario, joka suoritettaisiin jokaisella emulaattorilla, luotiin. Ohjelmistopohjaiset laajan alan
verkko emulaattorivaihtoehdot kartoitettiin ja soveltuvimmat valittiin jatkoon. Luotu tes-
taussuunnitelma toteutettiin. Testeistä saadut tulokset tutkittiin. Päätelmät johdettiin
tuloksista.

Tämän insinöörityön tavoite saavutettiin. SoftPerfect Connection Emulator on laajan alan
verkkoemulaatiosovellus, jonka suorituskyky läheltä vastaa Apposite Technologies
Netropy N91 -laajan alan verkkoemulaatiolaitetta. Uusi ratkaisu maksaa noin 7,5 %
vanhan ratkaisun hinnasta.

Avainsanat Verkko, laaja-alainen verkko, Emulaatio, SoftPerfect Connec-
tion Emulator, Apposite Technologies Netropy N91

Contents

List of Abbreviations 3

1 Introduction 1

2 Netropy N91 1

3 Network Impairments 2

4 Planning 3

4.1 Timing 3

4.2 Test Planning 3

4.2.1 Environment Planning 4

4.2.2 Test Case Planning 4

4.3 Software 5

4.3.1 WANem 5

4.3.2 SoftPerfect Connection Emulator 6

4.3.3 Gambit Communications Mimic NetFlow Simulator 6

4.3.4 WAN-Bridge 6

4.3.5 iTrinegy NE-ONE Flex 7

4.4 Hardware 7

5 Execution 8

5.1 Software Installation 8

5.2 Test Setup 8

5.2.1 Environment Setup 8

5.2.2 Test Case Setup 8

5.3 Test Execution 9

5.3.1 Baseline 10

5.3.2 Benchmarks 12

6 Results 17

6.1 Packet Loss 17

6.2 Jitter, Duplication and Reordering 18

6.3 WANem Instability 20

7 iPerf3 Operation 22

7.1 Packet Loss 22

7.2 Jitter 24

7.3 Packet Reordering & Duplication 27

8 Follow-up 27

9 Conclusion 28

References 30

Appendices

Appendix 1. iPerf3 output - N91 / 4% packet loss

Appendix 2. iPerf3 output - WANem / 4% packet loss

Appendix 3. iPerf3 output - SCE / 4% packet loss

Appendix 4. iPerf3 output – N91 & SCE / Duplication & Reordering

List of Abbreviations

CAT6a Category 6A. Standardized twisted pair cable for Ethernet

and other physical layers.

CLI Command-Line Interface. Processes commands to a com-

puter program in the form of text.

CMD Command Prompt. Default command-line interface in Mi-

crosoft Windows operating systems.

CPU Central Processing Unit. Electronic circuitry within a com-

puter that executes instructions to make up a computer pro-

gram.

GNSS Global Navigation Satellite System. System that uses satel-

lites to provide autonomous geo-spatial positioning.

GPS Global Positioning System. Satellite-based radionavigation

system owned by the United States government.

GUI Graphical User Interface. Form of user interface that allows

user to interact with electronic devices through graphical

icons.

HPE Hewlett Packard Enterprise. American multinational enter-

prise information technology company.

IP Internet Protocol. Principal communications protocol in the In-

ternet protocol suite.

IPv4 Internet Protocol version 4. Fourth version of the internet pro-

tocol.

IPv6 Internet Protocol version 6. Sixth version of the internet pro-

tocol.

MAC Media Access Control. Unique identifier assigned to a net-

work interface controller.

MPLS Multiprotocol Label Switching. Routing technique in telecom-

munications networks.

NIC Network Interface Controller. Computer hardware component

that connects a computer to a computer network.

NTP Network Time Protocol. Networking protocol for clock syn-

chronization between computer systems.

OS Operating System. System software that manages computer

hardware, software resources, and provides common ser-

vices for computer programs.

PC Personal Computer. Multi-purpose computer whose size, ca-

pabilities, and price make it feasible for individual use.

PCIe Peripheral Component Interconnect Express. High-speed se-

rial computer expansion bus standard.

RAM Random Access Memory. Form of computer memory that can

be read and changed in any order.

RFC Request for Comments. Publication from the Internet Society

and its associated bodies, most prominently the Internet En-

gineering Task Force.

RTCP RTP Control Protocol. Sister protocol of the Real-time

Transport Protocol.

RTP Real-time Transport Protocol. Network protocol for delivering

audio and video over Internet Protocol networks.

SCE SoftPerfect Connection Emulator. Wide area network envi-

ronment emulator application.

SLC Secure Land Communications. European public safety com-

munication systems company.

TCP Transmission Control Protocol. One of the main protocols of

the internet protocol suite.

ToS Type of Service. A field located in the second byte of the in-

ternet protocol version 4 header.

UDP User Datagram Protocol. One of the main protocols of the in-

ternet protocol suite.

UPS Uninterruptible Power Supply. Electrical apparatus that pro-

vides emergency power to a load

USB Universal Serial Bus. Industry standard that establishes spec-

ifications for cables and connectors and protocols for connec-

tion.

VLAN Virtual Local Area Network. Any broadcast domain that is par-

titioned and isolated in a computer network at the data link

layer.

WAN Wide Area Network. Telecommunications network that ex-

tends over a large geographic area.

WANem Wide Area Network emulator. Wide area network environ-

ment emulator software.

1

1 Introduction

Testing is a necessary part of software development. With network-enabled applications,

especially time-critical ones, it is crucial to test the product in suboptimal environments.

Secure Land Communications develops mission-critical communication products, where

the reliable operation of the whole communications system is key.

Secure Land Communications (SLC), subsidiary of Airbus Defence and Space, needs to

test their products’ reliability and performance in order to guarantee them to the custom-

ers. There are many tests for hardware and software. One of the tests for software is

resilience in a network with poor connectivity.

When two machines are connected via Wide Area Network (WAN), some errors in the

network traffic are expected. For SLC to test their products performance in a WAN envi-

ronment, a WAN emulator is needed. Currently SLC is using mainly hardware-based

WAN emulators.

One of the emulator models in use at SLC is Apposite Technologies Netropy N91 Net-

work Emulator, later referred to as N91. The N91 supports the emulation of four links.

Problem arises when testing needs to be scaled up and multiples of tens of WAN links

need to be emulated.

The cost of a N91 unit and a license is high, so simply buying more of them is not the

most cost-efficient solution. That is why it was decided to look for a more cost-efficient

alternative, a software-based WAN emulator.

The goal of this project is to find a WAN emulator which is more cost-efficient than the

N91.

2 Netropy N91

Apposite Technologies Netropy N91 is a high-precision appliance used for network emu-

lation [1]. N91 appliance pictured below.

2

Figure 1. Netropy N91

The N91 can be used to emulate network impairments and view the impairment results

in real time. It is configurable via browser-based Graphical User Interface (GUI), which

is convenient as it is a rack mounted appliance. The N91 also offers a comprehensive

Command Line Interface (CLI) for automated testing purposes. [1]

As stated earlier, the N91 has four separate emulation engines, each capable of 1 Gbps

throughput. Each of the four links can be set to operate at a certain bandwidth from 100

bps all the way to the maximum 1 Gbps. The supported network impairments are delay,

packet loss, packet corruption, packet reordering and packet duplication. [1]

3 Network Impairments

Different network error types, or so-called network impairments, will be addressed fre-

quently later in this study. It is important for one to understand what the different errors

mean exactly.

Packet delay is the most common effect witnessed in network traffic. It is the amount of

time that elapses between the time a packet is transmitted and the time it is received [2].

Delay can never be eliminated, as the speed of light in a vacuum is the fastest a packet

could theoretically propagate [2]. Packet delay only becomes a problem when it is con-

stantly very high, but even then, it can not technically be classified as network error. If

the delay of a connection is always high, but constant, delay is just seen as a character

of the connection, not an error in the connection. For example, a satellite link connection

has high delay, but it is just a natural character of a satellite connection, not an error.

Packet jitter is the measure of packet delay variation [2]. In other words, when the delay

constantly changes from low to high, it is called jitter. Jitter is an important factor in a

network connection as it affects how long software can expect to wait for data to arrive

[2]. Significant changes in delay most likely cause errors in software functionality.

3

Packet loss is the disappearance of a packet that was transmitted [2]. There are ways to

combat packet loss, but it always includes re-transmitting the packet that was originally

lost, a lost packet can not be recovered.

Packet corruption occurs when the contents of a packet are damaged, but the packet

continues to flow towards its destination [2]. Packet corruption mitigation works the same

way as packet loss mitigation. From the receiver’s point-of-view, a corrupted packet is

the same as a lost packet, it needs to be received again.

Packet duplication occurs when one packet becomes two or more identical packets [2].

Packet duplication does not happen by itself, rather it is usually caused by the transmitter

or a network device along the way to the receiver.

Packet reordering occurs when packets are received in different order than they were

transmitted in [2]. Packet reordering is usually caused by the same factors as packet

duplication.

4 Planning

4.1 Timing

The timing of the project was planned with the stakeholders interested in the project. This

included the Laboratory team, the radio connectivity server team and the artificial intelli-

gence laboratory team.

It was decided that the timeframe for the whole project is ready as soon as possible,

because it possibly removes a major bottleneck from the testing process. The only hard

deadline given was regarding the usage of the N91. The device would be available for

limited testing until the end of August 2020.

4.2 Test Planning

First a benchmark needs to be taken with the N91 and after that the software test results

are compared to the benchmark. The test for the software needs to reflect the current

setup with the N91. This consists of physical devices and their connections, as well as

the load moving in the system.

4

4.2.1 Environment Planning

The N91 is connected between two devices. From the two devices perspective, they

have a point-to-point connection. There can be no network devices such as switches or

routers in the system, as they could affect the emulation results by creating inconsisten-

cies.

A movable testbench would need to be created in order to get two end-devices near the

N91. This is because the N91 can not be moved, and there can be no network devices

in the test system as previously mentioned. The end devices will be connected straight

to the WAN emulation device with Category 6A (CAT6a) Ethernet cables.

The end devices will need to be able to run traffic generation as well as traffic capturing

software. Two Linux Personal Computers (PC) running CentOS 7 will suffice for this pur-

pose, as they can be also installed to the movable testbench.

Clock synchronization between the two end-devices will have to be considered, when

running one-way jitter scenarios later discussed in chapter 4.2.2. One-way delay and

jitter are measured by transmitting a precisely timestamped packet to the receiver and

comparing the timestamp to the receiver’s reference clock - the difference is the one-

way delay and the variation in delay is jitter [3]. Differences in the reference clock times

significantly affect the result of this comparison. The end-devices’ reference clocks will

be synchronized with a Network Time Protocol (NTP) time server.

The NTP time server model in use is Meinberg IMS – LANTIME M1000. It provides a

stratum 1 level time base for a network. The device has a Global Navigation Satellite

System (GNSS) receiver using Global Positioning System (GPS), that provides the de-

vice itself with a stratum 0 level time base. [4]. The offset of the stratum 0 level time was

-2 µs.

4.2.2 Test Case Planning

In the test case traffic flows from one end-device to the other via a WAN emulator. The

WAN emulator causes errors to the traffic. These errors will be detected and captured at

the receiving end-device.

5

Traffic generation and receiving will be done with iPerf3 running on both end-devices.

Packet capturing will be done on the receiving end-device with Wireshark. Error detection

will be done on the receiving end-device with iPerf3 and Wireshark.

Traffic errors to be generated were discussed with the parties using the N91. Currently

the WAN emulator is used to mainly emulate periodic packet loss. More accurately four

packets lost on a period of 100 packets, resulting in a packet loss of 4%.

Other error generation scenarios were discussed to be used in the future and used for

the comparison of the WAN emulators. The chosen error generation scenarios can be

found in the table below:

Scenario Parameters

Packet Loss 4% packets lost

Packet Reordering 5% packets reordered, 10 packets spacing

Packet Duplication 5% packets duplicated

Packet Jitter Delay of 250ms, fluctuation of 250ms (0-
500ms delay)

Table 1. Error generation types and parameters

The test case duration will be 30 seconds.

4.3 Software

Software to emulate WAN traffic was searched from the internet, using keyword WAN

emulation software. Five different software were chosen for closer review.

4.3.1 WANem

Wide Area Network emulator, or WANem for short, is built on top of Knoppix Linux [5]. It

does not need to be installed, it boots from a flash drive and runs as Live Linux. Once

running, it offers a web GUI with a full control panel. WANem is an open-source software

[5].

6

WANem supports packet filtering based on IPv4 source & destination address. The fol-

lowing network impairments are supported by WANem: delay, loss, duplication, reorder-

ing and corruption. [6]

4.3.2 SoftPerfect Connection Emulator

SoftPerfect Connection Emulator (SCE) is a WAN environment emulator [7]. It offers a

free trial version of the software, limited to 30 seconds duration per emulation [7]. This is

enough for as long as we just compare its performance with other software and the N91.

SCE allows to apply actions to specific streams of packets using filters. Packets can be

filtered using Internet Protocol (IP) source & destination address range (IPv4 or IPv6),

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port number or

Media Access Control (MAC) address. SCE can emulate the following network impair-

ments: delay, loss, duplication, reordering and corruption. SCE runs on any PC with Win-

dows 7 or higher version operating system. [8]

4.3.3 Gambit Communications Mimic NetFlow Simulator

Gambit Communications Mimic NetFlow Simulator was available for downloading after

contacting Gambit Communications representative for download link.

Upon installation it was however discovered that the software was indeed just a network

traffic simulator, it did not have any emulation capabilities as marketed which made it

unfit for our use case.

4.3.4 WAN-Bridge

WAN-Bridge was installed to a test machine. It did have the network traffic emulation

features we were looking for.

WAN-Bridge was also discontinued in 2010, so there is no support for it anymore. For

these reasons, we chose to not investigate the software any further.

7

4.3.5 iTrinegy NE-ONE Flex

After more in-depth review of iTrinegy NE-ONE Flex network emulator, it was discovered

that it only supports network traffic emulation between virtual machines. This made it

unfit for our use case.

4.4 Hardware

Hardware specifications were needed for two different type of machines, the end-devices

and the emulator. The end-devices would not need much performance, they only need

to be able to run Linux and have ethernet port. Already available machines were used

as end-devices.

Neither of the chosen WAN emulation software have any minimum hardware require-

ments, but the emulator machine was still configured to have enough performance to not

cause a bottleneck in the WAN traffic emulation. It will also need more than one ethernet

port, so an additional Peripheral Component Interconnect Express (PCIe) Network Inter-

face Controller (NIC) was used. Such a machine was not available, so one was built.

The machines had the following specifications:

 Emulator End-devices

CPU Intel Xeon E5-1620 @
3,6GHz

Intel Core i5-8250U @
1,6GHz

RAM 16GB 16GB

NIC Broadcom NetXtreme Gigabit
Ethernet BCM5719-4P, 4-slot

Intel Ethernet Connection
I219-V

Table 2. Test machine specifications

The before mentioned emulator machine will only be used for the testing phase. A differ-

ent configuration would be chosen in the future, if tests succeed.

8

5 Execution

5.1 Software Installation

WANem .iso file was acquired and burned to a Universal Serial Bus (USB) flash drive.

Functionality of the created media was tested by booting into the WANem Operating

System (OS). SCE installer was acquired and installed on the emulator machine running

Windows 10 LTS C 64-bit Build 17763. Drivers for the PCIe NIC were updated.

Wireshark and iPerf3 were installed to the two Linux PC end devices, both running Cen-

tOS 7 3.10.0-1127.10.1.el7.x86_64. The PCs had a point-to-point connection to each

other, so they were configured with IP-addresses using the /31 mask.

5.2 Test Setup

Test setup was built according to the plan in chapter 4.2.

5.2.1 Environment Setup

Reference clocks on the two end-devices were synchronized with an NTP time server.

The devices were connected to a network where they had connection to the NTP time

server, then synchronization with the NTP stratum 1 source was invoked and finally the

devices were removed from the network.

The two end device PCs were installed to a movable test bench. This way the devices

could be easily moved into a cramped server room close to the N91 and moved out of

the way if needed. The PCs were connected to specific power sources in the server

room, not to disrupt load on the Uninterruptible Power Supply (UPS).

N91 emulation link usage was discussed and confirmed with relevant parties, and the

link available for testing was identified. Engine 1 was used for testing, but engines 2-4

were not to be touched. The end devices were connected to the N91.

5.2.2 Test Case Setup

iPerf3 server was started at the receiving end-device, using the command:

9

iperf3 -s

In the above command the option -s starts an iPerf3 server on the machine with default

settings. By default, the server is listening on TCP port 5201, waiting for connections

from iPerf3 clients [9].

iPerf3 client-side command was prepared to be executed on the transmitting end-device:

iperf3 -c 10.10.10.2 -u -t 30 --get-server-output --logfile <Em-

ulator_Scenario>

The above command starts an iPerf3 client executable. The options are explained in the

table below:

Option Explanation

-c 10.10.10.2 Run iPerf3 in client mode connecting to a spe-
cific iPerf3 server

-u Transmit using UDP protocol

-t 30 Time in seconds to transmit for

--get-server-output Get the output from the server

--logfile <Emulator_Scenario> Send output to a log file

Table 3. iPerf3 client-side options and explanations [9]

TCP protocol performs error checking and correction, whereas UDP does not [10]. It was

critical to distinguish the errors generated by the WAN emulator, that is why UDP was

used for transmission rather than TCP. In order to get the maximum amount of available

data for review, both data from the client side, and data from the server side was needed.

The results were finally recorded to a logfile, named as per the WAN emulator used and

the test scenario performed, for example ‘N91_Loss’. Because of our requirements, in

the tests the throughput report interval of iPerf3 was kept at the default value of one

second. The throughput report is simply an interim result of the traffic generation, that in

our case, is displayed on the iPerf3 server.

5.3 Test Execution

First a baseline was taken with the N91, then benchmarks run with WANem and SCE.

10

5.3.1 Baseline

Engine 1 needed to be configured on the N91 according to the planned emulation sce-

narios before each baseline test was taken. Shown in the figure below is the main view

on the N91 web interface.

Figure 2. Netropy N91 web interface main view.

Engine 1 was selected from the main view, and the packet classification was first config-

ured. With packet classification, the user can choose which packets go through the emu-

lation engine and which packets are just forwarded straight through. Shown in the figure

below is the packet classification view on the N91 web interface.

11

Figure 3. Netropy N91 web interface packet classification view.

Packets can be classified by IP source & destination address range (IPv4 or IPv6), Virtual

Local Area Network (VLAN), TCP or UDP port number, IP ToS, MAC address, MPLS

label, or any other packet contents [1]. For our use case none of the traffic needed to

bypass the emulation, so the packet classification was turned off and all the traffic con-

figured to use our test case path.

Before each test was ran, the emulation parameters were configured according to the

plan. In the N91, the emulation is called a path, through which the traffic is directed.

Shown in the figure below is the path configuration view on the N91 web interface.

12

Figure 4. Netropy N91 web interface path configuration view.

The configuration window is divided in to three different columns: Port 1, WAN and Port

2. Each of these columns are split into two sections, inbound and outbound traffic. In our

use case, we were only interested in the WAN column, the Port 1 & 2 columns were left

untouched. In the WAN column both sections were always mirrored to match each other,

so that the WAN emulation of the traffic would occur both ways. The parameters needed

were Delay, Loss, Reordering and Duplication.

If the operator of the device wants to set a certain bandwidth limit, it can be accomplished

in the Port 1 & 2 columns, using the Bandwidth parameter. The minimum bandwidth is

100 bps and this value can be increased in 1 bps increments up to the maximum band-

width supported by the ports of the device or by the license key.

5.3.2 Benchmarks

WANem was chosen to be tested first. The emulator PC was booted to the WANem Live

Linux OS with the media created earlier. However, before configuring the emulation pa-

rameters, bridging needed to be setup between the two end-devices. From the WANem

web interface, a remote console session was established, and the bridge was configured.

Shown in the figure below is the remote console view on the WANem web interface. See

figure 5 below.

13

Figure 5. WANem web interface remote console view

The command given is not WANem specific, but rather an old universal Linux command:

bridge add br0 eth0 eth1 --start

Four different things were configured with the previous command:

1. Bridge with name br0 is created

2. Interface eth0 is added to the bridge br0

3. Interface eth1 is added to the bridge br0

4. Bridge interface br0 is started

Next emulation parameters were configured according to the planned test scenarios.

From the WANem web interface advanced mode was chosen, and parameters set for

both interfaces in configured in the bridge previously. Shown in the figure below is the

advanced mode view on the WANem web interface.

Figure 6. WANem web interface advanced mode view

14

In the configuration window all the parameters are arranged into a table. For our testing

the only relevant sections of the table were Delay, Loss, Duplication and Packet reorder-

ing.

If a certain bandwidth would need to be emulated, it can be done by setting a value in

the Bandwidth section of the table. The bandwidth drop-down menu offers multiple ready

pre-sets, that reflect certain standard connection speeds. Many of these pre-sets how-

ever are old, so often a custom bandwidth limit needs to be set. The custom bandwidth

limit that can be emulated accurately, can range from 120 kbps up to half of the speed

supported by the ports on the device.

SCE was the final WAN emulator to be tested. The emulator PC was booted to the in-

stalled Windows 10 OS and SCE application was started. Shown in the figure below is

the main view of SCE.

15

Figure 7. SCE application main view

In SCE as well, bridging needed to be configured before the emulation parameters could

be set and testing started. From the main view Tools - Bridging was selected. Shown

in the picture below is the bridge tool of SCE.

16

Figure 8. SCE application bridge tool

SCEs bridge tool was easy to use. Bridging could be set either on or off and the two

network interfaces to be bridged were chosen from a drop-down menu of available inter-

faces.

Emulation parameters were set from the SCE main view (figure 7). In the main view

below the toolbar there is a drop-down menu to choose a specific network interface from.

After the interface is selected, the emulation parameters can be set from the different

tabs. For our testing we were interested in the Latency, Packet Loss, Duplication and

Reordering tabs. Illustrated in the pictures below are the Packet Loss and Latency tabs.

Figure 9. SCE packet loss tab

17

Figure 10. SCE latency tab

If needed, a certain bandwidth could be emulated with SCE. From the Transfer tab, the

Speed Limit menu offers a wide variety of bandwidth limit pre-sets based on commonly

used bandwidths. A custom bandwidth limit can also be set from the Speed Limit menu.

Note that in case bandwidth limit is used, the Both-option should be chosen from the

Traffic Direction menu. This way the bandwidth limit resembles common real-world situ-

ations.

6 Results

Main point in the comparison of results was the emulators ability to emulate packet loss.

Secondary comparison points were jitter, duplication and reordering abilities.

6.1 Packet Loss

The baseline results from the N91 were as expected, it could emulate a steady packet

loss according to the given parameters. As one can see in Appendix 1, the average

packet loss emulated at the end of the test was 3,9%. The bottom half of the appendix

is the iPerf3 server output. The server output has a list of lines, one for every one second

interval of the test. At the end of each of these lines, is the lost percentage for that specific

interval. Below the list is one final line, displaying a summary of all the intervals. The

average lost percentage for the whole test can be found at the end of this summary line.

The given packet loss target was 4,0%, making the result a very close match. More im-

portantly, the N91 could keep the packet loss rate steady during the whole test. Every

ten second interval started with packet loss of 0%, but for the rest of the interval the loss

rate was 4,4%, averaging out to the previously mentioned 3,9%.

18

Emulation results with WANem were not satisfying. In Appendix 2, one can see that the

average packet loss emulated at the end of the test was 3,8%. The bottom half of the

appendix is the iPerf3 server output. The server output has a list of lines, one for every

one second interval of the test. At the end of each of these lines, is the lost percentage

for that specific interval. Below the list is one final line, displaying a summary of all the

intervals. The average lost percentage for the whole test can be found at the end of this

summary line. The given packet loss target was 4,0%. Even though this was a close

match, the fluctuation of the packet loss was unacceptably high. In this test the loss

percentage ranged from 0% to 7,8%. In some other tests a packet loss of 10.0% was

recorded, with the packet loss parameter being set to 4,0%. Because of our require-

ments, in our testing the emulated packet loss needs to be steady. Deviation of two and

a half times from the given parameter value is too high, be it even momentarily.

SCE emulation results were satisfying. Appendix 3 shows, that the average packet loss

emulated was 4,2%. The bottom half of the appendix is the iPerf3 server output. The

server output has a list of lines, one for every one second interval of the test. At the end

of each of these lines, is the lost percentage for that specific interval. Below the list is

one final line, displaying a summary of all the intervals. The average lost percentage for

the whole test can be found at the end of this summary line. The given packet loss target

was 4,0%. This means that the packet loss emulation was close enough to the target.

Important thing to notice is that the packet loss percentage mostly remained within 0,5%

of the target 4,0%. Even though this is less steady than the N91, it still steady enough

emulation for our purposes.

In conclusion the N91 gave us a reliable packet loss emulation baseline. SCE reached

results good enough compared to the baseline, WANem did not. The remaining tests

were still performed with WANem to gain reference, even though WANem would not be

selected for our final use.

6.2 Jitter, Duplication and Reordering

Jitter emulation was measured by inspecting the total packets received per interval sec-

tion in the server section of iPerf3 output file. The target packets sent per interval de-

pends on bandwidth of the connection, in our case iPer3 sent 90-91 packets per interval.

When the connection has a fluctuating delay, the packets received per interval start to

deviate from the default 90-91 packets.

19

When the tests were run with the N91, iPerf3 output showed a clear deviation in the

packets received per interval. We wanted SCE to show similar deviation in the packets

received per interval. SCE did also show a clear deviation in the packets received per

interval section. The deviation was not as large in the case of SCE when compared to

the N91. In the future the delay correlation parameter would need to be increased for

SCE to gain similar results compared to the N91. The chart below illustrates the effect of

latency correlation on random delay between 100ms and 200ms in SCE.

Figure 11. Latency correlation in SCE [8]

Duplication and reordering emulation were measured by inspecting the summary line in

the server section of the iPerf3 output files. See Appendix 4. In the summary line, reor-

dered packets are logically seen as datagrams received out-of-order. Duplicated packets

however are also seen as datagrams received out of order. This is because whenever

there is a packet duplication, for example when packet number 66 is duplicated, it causes

iPerf3 to perceive that the packet number 67 is out of order.

N91 and SCE performed similarly when emulating packet reordering and duplication. In

these tests the performance of the two emulators was a close match. The emulation

results also were an extremely close match to the target 5% parameter in both scenarios

for both emulators – The target result was 112 packets received out-of-order.

20

In conclusion SCE performed very similarly compared to the N91, when emulating jitter,

duplication and reordering.

6.3 WANem Instability

Explaining the WANem packet loss inaccuracies and trying to resolve the cause(s) is not

a target of this thesis. However, doing so has been deemed to provide valuable infor-

mation for parties interested in this project.

The packet loss emulated by WANem was discovered to be irregular. When running the

tests, packet loss target was set to 4%. The loss percentage ranged from 0% to 7,8%.

In the charts below, is the I/O graph derived from the Wireshark captures taken during

the packet loss emulation tests for the N91 and WANem respectively.

Figure 12. N91 packet loss emulation test Wireshark I/O graph

21

Figure 13. WANem packet loss emulation test Wireshark I/O graph

The previous charts further illustrate the irregularities in the packet loss emulation when

WANem was used. Time in seconds is shown in the x-axis and packets sent per second

is shown in the y-axis. The contour of the line is much more aggressive in the WANem

chart than it is in the N91 chart.

The effect of increasing the duration of the emulation period was tested with WANem.

The packet loss emulation test duration was increased from 30 seconds to 300 seconds.

The test was started and the output on the iPerf3 server machine was observed. It

seemed that now that the test period was longer, there was a higher change to witness

anomalies in the packet loss emulation percentage. Three of these 300 second tests

were performed, and the highest packet loss percentage per interval observed was

10.0%, as stated earlier in chapter 6.1. It is possible, that with even higher emulation

periods, an even higher deviation could be witnessed.

The high fluctuation in the emulated packet loss percentage was tried to be mitigated by

setting a correlation percentage value in the WANem advanced mode view (figure 6).

Setting the correlation value to anything else than 0% however, caused the emulated

packet loss percentage to drop to 0%. With some investigation, this behaviour was found

out to be a known bug in the Netem-libraries, that WANem uses for packet loss emulation

[11].

22

The reason what causes WANem packet loss emulation to be so erratic was not found.

One speculated cause is that WANem, and the OS that it is built on, use 32-bit architec-

ture. It might be that due to the limit of maximum 4 Gb RAM utilization, WANem simply

can not emulate steady network impairments on high speed connections.

7 iPerf3 Operation

The operation methods of iPerf3 determine the results witnessed in the tests that were

ran. For this reason, iPerf3 method to calculate packet loss is explained. iPerf3 methods

to calculate jitter, duplication and reordering are also explained.

7.1 Packet Loss

iPerf3 transmitter inserts a running sequence number to all the payload packets it sends

during a traffic generation session. iPerf3 receiver extracts these sequence numbers

from the received packets and determines if packets have been lost. Below is the part of

the iPerf3 source code performing packet loss detection [12].

if (pcount >= sp->packet_count + 1) {

 if (pcount > sp->packet_count + 1) {

 sp->cnt_error += (pcount - 1) - sp->packet_count;

 }

 sp->packet_count = pcount;

}

First iPerf3 checks if the sequence number of the packet received is going forward, by

comparing the sequence number of the packet received pcount to the highest seen

sequence number sp->packet_count. Then it checks if there is a gap in the two se-

quence numbers, if a gap is detected, it is count as a loss and the cnt_error variable

is incremented. Lastly the highest seen sequence number is updated. [12]

When the iPerf3 traffic generation session ends, the transmitter and the receiver ex-

change control information with a TCP stream [9]. With this exchange the iPerf3 receiver

gets the total number of payload packets sent from the transmitter. Now the iPerf3 re-

ceiver can compare the number of lost packets to the number of sent packets and con-

firm the total packet loss percentage. In chapter 5.2.2, it was mentioned that the iPerf3

23

throughput report interval was kept at the default value of one second. The length of this

report interval has a fundamental effect on the value of packet loss perceived per interval,

discussed in chapter 6.1 and Appendices 1-3.

The total packet loss calculated at the end of the iPerf3 traffic generation session is un-

affected by the report interval, but the value of packet loss per interval can fluctuate a lot

depending on the report interval. If the report interval was longer, in our testing all the

emulators would have gotten per interval packet loss emulation results closer to the tar-

get 4%, simply because the average packet loss would have been calculated from a

bigger sample of packets. A shorter report interval would have caused the emulators to

get result that deviate more from the target 4% packet loss. This effect is illustrated in

the table below.

24

A number

sequence, N=24 Sample size Average(s)

4 24 4

3 12 3,75|4,25

3 8 3,63|4|4,38

3 6 3,5|4|4,17|4,33

4

4

4

4

4

4

4

4

4

4

4

4

5

4

4

5

5

4

4

4

Table 4. Relation of sample size and average

Average value is calculated from the same sequence of numbers using different sample

sizes. The smaller the sample size gets, the more the average starts to deviate from the

overall average. The same effect applies when iPerf3 calculates packet loss per interval.

7.2 Jitter

iPerf3 transmitter insert a timestamp to all the packets it sends during a traffic generation

session. iPerf3 receiver then extracts these timestamps from the received packets and

compares them to the current time to calculate the delay of the packet. These

25

computations are based on the Request for Comments (RFC) 1889 standard, sections

6.3.1 and A.8 [12]. Section 6.3.1 describes a sender report Real-time Transport Protocol

(RTP) Control Protocol (RTCP) packet, as shown below [13].

Figure 14. Sender report RTCP packet

The fields in this packet that we are interested in are the NTP timestamp fields. The NTP

field contains the wallclock time when the packet was sent. If the wallclock time is not

available to the transmitter, the value of this field would be set to zero. [13]. In our test

case the transmitter had an NTP time server connection, so this field contains a non-

zero time value. This is the timestamp that the iPerf3 receiver extracts from the packets

in our test case.

Section A.8 describes the algorithm that iPerf3 uses to estimate jitter. The delta times of

the received packets are unknown to iPerf3, so the jitter measurement is in fact a close

estimate, not an exact measurement. [12]. Delta time is the time between the transmis-

sion of two consecutive packets. Below is the algorithm described in Section A.8 [13].

26

int transit = arrival - r->ts;

int d = transit - s->transit;

s->transit = transit;

if (d < 0) d = -d;

s->jitter += (1./16.) * ((double)d - s->jitter);

The above code snippet requires two inputs: r->ts, which is the timestamp from the

incoming packet and arrival, which is the current time on the system. The variable

transit, indicating the transit time for the received packet, is calculated by reducing

the timestamp time from the current time. The floating variable s->transit holds the

transit time of the previously received packet. A temporary variable d is calculated for

jitter measurement and it is forced to be a non-negative number. The variable s->jit-

ter holds a floating value of the estimated jitter. The integer 16 in the calculations is

derived from the transmission window size. [13]

Below is the part of the iPerf3 source code, that performs jitter calculations [12].

iperf_time_now(&arrival_time);

iperf_time_diff(&arrival_time, &sent_time, &temp_time);

transit = iperf_time_in_secs(&temp_time);

d = transit - sp->prev_transit;

if (d < 0)

 d = -d;

sp->prev_transit = transit;

sp->jitter += (d - sp->jitter) / 16.0;

The first method iperf_time_now sets the variable arrival_time to be the current

time prompted from the system. The second method iperf_time_diff sets the value

for the variable temp_time by calculating the difference between the variable’s arri-

val_time and sent_time according to the algorithm described in RFC 1889 section

A.8 [14]. In the third line, the value of the variable transit is set to be the value of the

variable temp_time in seconds. In the last five lines of the code snippet, a temporary

variable d is created from the current and previous transit value, the variable d is forced

to be non-negative and the variable sp->jitter is calculated from the value of variable

d and the value of the previous jitter estimate. This calculation too is described in the

RFC 1889 section A.8. [12]

27

7.3 Packet Reordering & Duplication

iPerf3 detects both reordered and duplicated packets as packets received out-of-order,

as previously mentioned in chapter 6.2. In the iPerf3 source code, packet loss detection

first checks if the packet sequence numbers are going forward as mentioned in chapter

7.1. If the packet sequence number is not going forward, meaning the first if-clause is

not true, the logic moves on to the else-clause shown below. [12]

else {

 sp->outoforder_packets++;

 if (sp->cnt_error > 0)

 sp->cnt_error--;

}

If the sequence number moves backwards or stays the same, the value of the variable

outoforder_packets is incremented by one. Also, if the value of the variable

cnt_error is not zero, its value is decremented by one. The decrementing is done

because an out-of-order packet offsets a prior sequence number gap counted as a loss.

[12]

8 Follow-up

SCE was found to be a fit candidate to be an alternative to the N91. Next, SCE is to be

tried out by the parties currently using N91 for WAN emulation in their testing. The SCE

will replace the N91 in some of the current tests for some period. The purpose is to test

SCE operation in the real environment.

Currently the tests in which the N91s are used are automated. Ability to operate the N91

with CLI is crucial because of this. SCE also offers the ability to operate with command-

line parameters used from the Windows PowerShell or Command Prompt (CMD) [8].

The current automated tests will have to be adjusted to use the WAN emulator this way.

A Professional Edition license of SCE for a single device will be purchased, as it comes

with the necessary features needed [15]. SCE will be installed on a specified Hewlett

Packard Enterprise (HPE) Workstation. The machine has the following specifications:

28

CPU Intel Xeon E -2236 3.4GHz 6C

RAM 16GB DDR4 2666 DIMM ECC

NIC Intel X550-T2 10GbE Dual Port NIC

SSD HP Z Turbo Drive M.2 512GB TLC SED

HDD 2TB 7200RPM SATA

Table 5. HPE Workstation specifications

The testing parties have had complains about the graphs produced by the N91 regarding

the unclarity and usability of them. By early remarks, SCE does produce clear and easy-

to-use graphs, that the testing parties are satisfied with. Graphs produced by the emula-

tors was not a comparison point in our testing, but it is, nevertheless, a good addition

with the SCE according to the users of the N91.

Multi-link emulation with SCE is something that will be tested in the future, if the single-

link emulation in the real environment is found to be successful. This means that the NIC

presented in Table 5, would be switched to one with four ports. The goal is to be able to

simulate four links with the SCE workstation in such a way that it matches the link ca-

pacity of the N91.

If the testing parties find the SCE to be a satisfying alternative to the N91, more SCE-

licenses and workstations will be acquired depending on the future.

9 Conclusion

The current way to emulate a WAN is not cost-efficiently scalable, and a new way needed

to be found. The requirements for the new WAN emulator were carefully set based on

the currently used WAN emulator. When the plan was ready, it was executed closely,

and the following results were reviewed.

The results of this project indicate that a hardware-based WAN emulator can be replaced

by a software-based WAN emulator. There is, however, a lot of variation in the reliability

and quality of the emulator applications offered by different companies. The applications

should always be tested against the solution currently in place before implementation.

29

One thing to keep in mind is that even though the software-based emulators performance

comes close to that of a hardware-based one, it can not currently truly match it.

SoftPerfect Connection Emulator was selected for further comparison against the

Netropy N91. The next step in the comparison process is to implement SCE into the

production testing environments, to see how it performs in our real use scenarios. The

thorough pilot testing phase performed by this project suggests that SCE can replace

the N91 in some of our use cases. Netropy N91 devices will how ever remain in use, as

some of the use cases require quite accurate performance from the WAN emulator. As

stated earlier, software can not yet, if ever, fully match hardware performance.

The goal of this project was to find a more cost-effective WAN emulator. This goal was

met, as the cost of the new solution is approximately 7,5% of that of the old solution. The

final testing of the new solution, however, is not yet complete. The duration of the transfer

period from the old solution to the new one depends on many different things, most of

which can not be influenced by the implementer of this project.

30

References

1 Apposite Technologies. 2017. Online. Netropy Datasheet - N91.
https://www.epsglobal.com/Media-Library/EPSGlobal/Products/files/appo-
site/N91-1G.pdf?ext=.pdf. Accessed October 25, 2020.

2 IWL. 2020. Online. Causes and Correlation of Network Impairments.
https://iwl.com/idocs/causes-and-correlation-of-network-impairments. Accessed
October 25, 2020.

3 Accedian Networks. 2012. Online. White Paper – One-Way Delay Measurement
Techniques. https://accedian.com/wp-content/uploads/2015/05/One-WayDelay-
MeasurementTechniques-AccedianWhitePaper.pdf. Accessed November 5,
2020.

4 Meinberg. 2020. Online. Modular Synchronization Platform LANTIME M1000.
https://www.meinbergglobal.com/english/products/modular-1u-sync-system.htm.
Accessed November 5, 2020.

5 WANem. Online. WANem: The Wide Are Network Emulator.
http://wanem.sourceforge.net/. Accessed October 25, 2020.

6 WANem. 2007. Online. Wide Area Network Emulator User Guide.
https://netix.dl.sourceforge.net/project/wanem/Documents/WANemv11-User-
Guide.pdf. Accessed October 25, 2020.

7 SoftPerfect Network Management Solutions. 2020. Online. SoftPerfect Connec-
tion Emulator. https://www.softperfect.com/products/connectionemulator/. Ac-
cessed October 25, 2020.

8 SoftPerfect Network Management Solutions. 2020. Online. SoftPerfect Connec-
tion Emulator Online User Manual. https://www.softperfect.com/products/connec-
tionemulator/manual/. Accessed October 25, 2020.

9 ESnet. 2020. Online. Invoking iPerf3. https://software.es.net/iperf/invoking.html.
Accessed October 25, 2020.

10 Doyle, Sean. 2018. Online. TCP vs. UDP: Understanding the Difference. Private
Internet Access. https://www.privateinternetaccess.com/blog/tcp-vs-udp-under-
standing-the-difference/. Accessed October 25, 2020.

11 Networking Group. 2014. Online. NetemCLG (Correlated Loss Generator): fixing
loss model of Netem. http://netgroup.uniroma2.it/twiki/bin/view.cgi/Main/Netem-
CLG. Accessed November 5, 2020.

12 GitHub/ESnet/iperf. 2020. Online. iperf/iperf_udp.c. https://github.com/esnet/ip-
erf/blob/master/src/iperf_udp.c. Accessed November 14, 2020.

31

13 Schulzrinne H., Casner S., Frederick R., Jacobson V. 1996. Lawrence Berkeley
National Laboratory. Online. RTP: A Transport Protocol for Real-Time Applica-
tions. https://tools.ietf.org/html/rfc1889#section-6.3.1. Accessed November 14,
2020.

14 GitHub/ESnet/iperf. 2019. Online. iperf/iperf_time.c. https://github.com/esnet/ip-
erf/blob/master/src/iperf_time.c. Accessed November 14, 2020.

15 SoftPerfect Network Management Solutions. 2020. Online. Purchasing Infor-
mation. https://www.softperfect.com/order/?product=sce. Accessed October 25,
2020.

Appendix 1

 1 (2)

iPerf3 output - N91 / 4% packet loss

Connecting to host xxx.xxx.xxx.xxx, port 5201
[5] local xxx.xxx.xxx.xxx port 35471 connected to xxx.xxx.xxx.xxx port 5201
[ID] Interval Transfer Bandwidth Total Datagrams
[5] 0.00-1.00 sec 116 KBytes 950 Kbits/sec 82
[5] 1.00-2.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 2.00-3.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 3.00-4.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 4.00-5.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 5.00-6.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 6.00-7.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 7.00-8.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 8.00-9.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 9.00-10.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 10.00-11.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 11.00-12.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 12.00-13.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 13.00-14.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 14.00-15.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 15.00-16.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 16.00-17.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 17.00-18.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 18.00-19.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 19.00-20.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 20.00-21.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 21.00-22.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 22.00-23.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 23.00-24.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 24.00-25.00 sec 127 KBytes 1.04 Mbits/sec 90
-
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-25.00 sec 3.11 MBytes 1.04 Mbits/sec 0.164 ms 88/2254 (3.9%)
[5] Sent 2254 datagrams

Server output:
Accepted connection from xxx.xxx.xxx.xxx, port 36936
[5] local xxx.xxx.xxx.xxx port 5201 connected to xxx.xxx.xxx.xxx port 35471
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-1.00 sec 116 KBytes 950 Kbits/sec 9.232 ms 0/82 (0%)
[5] 1.00-2.00 sec 123 KBytes 1.01 Mbits/sec 0.185 ms 4/91 (4.4%)
[5] 2.00-3.00 sec 122 KBytes 996 Kbits/sec 0.160 ms 4/90 (4.4%)
[5] 3.00-4.00 sec 123 KBytes 1.01 Mbits/sec 0.164 ms 4/91 (4.4%)
[5] 4.00-5.00 sec 122 KBytes 996 Kbits/sec 0.161 ms 4/90 (4.4%)
[5] 5.00-6.00 sec 123 KBytes 1.01 Mbits/sec 0.170 ms 4/91 (4.4%)
[5] 6.00-7.00 sec 122 KBytes 996 Kbits/sec 0.103 ms 4/90 (4.4%)
[5] 7.00-8.00 sec 123 KBytes 1.01 Mbits/sec 0.164 ms 4/91 (4.4%)
[5] 8.00-9.00 sec 122 KBytes 996 Kbits/sec 0.150 ms 4/90 (4.4%)
[5] 9.00-10.00 sec 123 KBytes 1.01 Mbits/sec 0.166 ms 4/91 (4.4%)
[5] 10.00-11.00 sec 127 KBytes 1.04 Mbits/sec 0.157 ms 0/90 (0%)

Appendix 1

 2 (2)

[5] 11.00-12.00 sec 123 KBytes 1.01 Mbits/sec 0.161 ms 4/91 (4.4%)
[5] 12.00-13.00 sec 122 KBytes 996 Kbits/sec 0.162 ms 4/90 (4.4%)
[5] 13.00-14.00 sec 123 KBytes 1.01 Mbits/sec 0.167 ms 4/91 (4.4%)
[5] 14.00-15.00 sec 122 KBytes 996 Kbits/sec 0.134 ms 4/90 (4.4%)
[5] 15.00-16.00 sec 123 KBytes 1.01 Mbits/sec 0.168 ms 4/91 (4.4%)
[5] 16.00-17.00 sec 122 KBytes 996 Kbits/sec 0.138 ms 4/90 (4.4%)
[5] 17.00-18.00 sec 123 KBytes 1.01 Mbits/sec 0.141 ms 4/91 (4.4%)
[5] 18.00-19.00 sec 122 KBytes 997 Kbits/sec 0.172 ms 4/90 (4.4%)
[5] 19.00-20.00 sec 123 KBytes 1.01 Mbits/sec 0.191 ms 4/91 (4.4%)
[5] 20.00-21.00 sec 122 KBytes 997 Kbits/sec 0.211 ms 4/90 (4.4%)
[5] 21.00-22.00 sec 129 KBytes 1.05 Mbits/sec 0.164 ms 0/91 (0%)
[5] 22.00-23.00 sec 122 KBytes 996 Kbits/sec 0.159 ms 4/90 (4.4%)
[5] 23.00-24.00 sec 123 KBytes 1.01 Mbits/sec 0.166 ms 4/91 (4.4%)
[5] 24.00-25.00 sec 122 KBytes 996 Kbits/sec 0.164 ms 4/90 (4.4%)
[5] 25.00-25.04 sec 0.00 Bytes 0.00 bits/sec 0.164 ms 0/0 (0%)
-
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-25.04 sec 0.00 Bytes 0.00 bits/sec 0.164 ms 88/2254 (3.9%)

iperf Done.

Appendix 2

 1 (2)

iPerf3 output - WANem / 4% packet loss

Connecting to host xxx.xxx.xxx.xxx, port 5201
[5] local xxx.xxx.xxx.xxx port 50619 connected to xxx.xxx.xxx.xxx port 5201
[ID] Interval Transfer Bandwidth Total Datagrams
[5] 0.00-1.00 sec 116 KBytes 950 Kbits/sec 82
[5] 1.00-2.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 2.00-3.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 3.00-4.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 4.00-5.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 5.00-6.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 6.00-7.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 7.00-8.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 8.00-9.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 9.00-10.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 10.00-11.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 11.00-12.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 12.00-13.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 13.00-14.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 14.00-15.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 15.00-16.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 16.00-17.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 17.00-18.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 18.00-19.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 19.00-20.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 20.00-21.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 21.00-22.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 22.00-23.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 23.00-24.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 24.00-25.00 sec 127 KBytes 1.04 Mbits/sec 90
-
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-25.00 sec 3.11 MBytes 1.04 Mbits/sec 0.009 ms 86/2254 (3.8%)
[5] Sent 2254 datagrams

Server output:
Accepted connection from xxx.xxx.xxx.xxx, port 36928
[6] local xxx.xxx.xxx.xxx port 5201 connected to xxx.xxx.xxx.xxx port 50619
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[6] 0.00-1.00 sec 113 KBytes 926 Kbits/sec 6.892 ms 2/82 (2.4%)
[6] 1.00-2.00 sec 119 KBytes 973 Kbits/sec 0.066 ms 7/91 (7.7%)
[6] 2.00-3.00 sec 122 KBytes 996 Kbits/sec 0.006 ms 4/90 (4.4%)
[6] 3.00-4.00 sec 122 KBytes 996 Kbits/sec 0.010 ms 5/91 (5.5%)
[6] 4.00-5.00 sec 126 KBytes 1.03 Mbits/sec 0.014 ms 1/90 (1.1%)
[6] 5.00-6.00 sec 123 KBytes 1.01 Mbits/sec 0.007 ms 4/91 (4.4%)
[6] 6.00-7.00 sec 122 KBytes 996 Kbits/sec 0.005 ms 4/90 (4.4%)
[6] 7.00-8.00 sec 126 KBytes 1.03 Mbits/sec 0.005 ms 2/91 (2.2%)
[6] 8.00-9.00 sec 122 KBytes 996 Kbits/sec 0.004 ms 4/90 (4.4%)
[6] 9.00-10.00 sec 123 KBytes 1.01 Mbits/sec 0.006 ms 4/91 (4.4%)
[6] 10.00-11.00 sec 122 KBytes 996 Kbits/sec 0.006 ms 4/90 (4.4%)
[6] 11.00-12.00 sec 124 KBytes 1.02 Mbits/sec 0.010 ms 3/91 (3.3%)

Appendix 2

 2 (2)

[6] 12.00-13.00 sec 120 KBytes 985 Kbits/sec 0.007 ms 5/90 (5.6%)
[6] 13.00-14.00 sec 119 KBytes 973 Kbits/sec 0.008 ms 7/91 (7.7%)
[6] 14.00-15.00 sec 123 KBytes 1.01 Mbits/sec 0.010 ms 3/90 (3.3%)
[6] 15.00-16.00 sec 126 KBytes 1.03 Mbits/sec 0.005 ms 2/91 (2.2%)
[6] 16.00-17.00 sec 122 KBytes 996 Kbits/sec 0.007 ms 4/90 (4.4%)
[6] 17.00-18.00 sec 124 KBytes 1.02 Mbits/sec 0.008 ms 3/91 (3.3%)
[6] 18.00-19.00 sec 124 KBytes 1.02 Mbits/sec 0.007 ms 2/90 (2.2%)
[6] 19.00-20.00 sec 129 KBytes 1.05 Mbits/sec 0.007 ms 0/91 (0%)
[6] 20.00-21.00 sec 124 KBytes 1.02 Mbits/sec 0.009 ms 2/90 (2.2%)
[6] 21.00-22.00 sec 126 KBytes 1.03 Mbits/sec 0.010 ms 2/91 (2.2%)
[6] 22.00-23.00 sec 117 KBytes 961 Kbits/sec 0.008 ms 7/90 (7.8%)
[6] 23.00-24.00 sec 127 KBytes 1.04 Mbits/sec 0.007 ms 1/91 (1.1%)
[6] 24.00-25.00 sec 122 KBytes 996 Kbits/sec 0.009 ms 4/90 (4.4%)
[6] 25.00-25.04 sec 0.00 Bytes 0.00 bits/sec 0.009 ms 0/0 (0%)
-
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[6] 0.00-25.04 sec 0.00 Bytes 0.00 bits/sec 0.009 ms 86/2254 (3.8%)

iperf Done.

Appendix 3

 1 (2)

iPerf3 output - SCE / 4% packet loss

Connecting to host xxx.xxx.xxx.xxx, port 5201
[5] local xxx.xxx.xxx.xxx port 58430 connected to xxx.xxx.xxx.xxx port 5201
[ID] Interval Transfer Bandwidth Total Datagrams
[5] 0.00-1.00 sec 116 KBytes 950 Kbits/sec 82
[5] 1.00-2.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 2.00-3.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 3.00-4.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 4.00-5.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 5.00-6.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 6.00-7.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 7.00-8.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 8.00-9.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 9.00-10.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 10.00-11.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 11.00-12.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 12.00-13.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 13.00-14.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 14.00-15.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 15.00-16.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 16.00-17.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 17.00-18.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 18.00-19.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 19.00-20.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 20.00-21.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 21.00-22.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 22.00-23.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 23.00-24.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 24.00-25.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 25.00-26.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 26.00-27.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 27.00-28.00 sec 127 KBytes 1.04 Mbits/sec 90
[5] 28.00-29.00 sec 129 KBytes 1.05 Mbits/sec 91
[5] 29.00-30.00 sec 127 KBytes 1.04 Mbits/sec 90
-
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-30.00 sec 3.74 MBytes 1.05 Mbits/sec 0.032 ms 114/2707 (4.2%)
[5] Sent 2707 datagrams

Server output:
Accepted connection from xxx.xxx.xxx.xxx, port 36898
[5] local xxx.xxx.xxx.xxx port 5201 connected to xxx.xxx.xxx.xxx port 58430
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-1.00 sec 110 KBytes 903 Kbits/sec 7.827 ms 4/82 (4.2%)
[5] 1.00-2.00 sec 117 KBytes 961 Kbits/sec 0.044 ms 8/91 (4.4%)
[5] 2.00-3.00 sec 126 KBytes 1.03 Mbits/sec 0.009 ms 1/90 (3.9%)
[5] 3.00-4.00 sec 124 KBytes 1.02 Mbits/sec 0.012 ms 3/91 (3.7%)
[5] 4.00-5.00 sec 127 KBytes 1.04 Mbits/sec 0.004 ms 0/90 (0%)
[5] 5.00-6.00 sec 123 KBytes 1.01 Mbits/sec 0.033 ms 4/91 (4.4%)
[5] 6.00-7.00 sec 117 KBytes 961 Kbits/sec 0.010 ms 7/90 (4.4%)

Appendix 3

 2 (2)

[5] 7.00-8.00 sec 123 KBytes 1.01 Mbits/sec 0.010 ms 4/91 (4.4%)
[5] 8.00-9.00 sec 127 KBytes 1.04 Mbits/sec 0.008 ms 4/90 (4.0%)
[5] 9.00-10.00 sec 117 KBytes 961 Kbits/sec 0.005 ms 8/91 (3.9%)
[5] 10.00-11.00 sec 124 KBytes 1.02 Mbits/sec 0.007 ms 2/90 (4.1%)
[5] 11.00-12.00 sec 124 KBytes 1.02 Mbits/sec 0.009 ms 2/90 (4.2%)
[5] 12.00-13.00 sec 116 KBytes 950 Kbits/sec 0.007 ms 9/91 (4.2%)
[5] 13.00-14.00 sec 120 KBytes 985 Kbits/sec 0.013 ms 6/91 (2.2%)
[5] 14.00-15.00 sec 126 KBytes 1.03 Mbits/sec 0.019 ms 1/90 (4.3%)
[5] 15.00-16.00 sec 126 KBytes 1.03 Mbits/sec 0.033 ms 2/91 (4.2%)
[5] 16.00-17.00 sec 122 KBytes 996 Kbits/sec 0.026 ms 4/90 (3.8%)
[5] 17.00-18.00 sec 119 KBytes 973 Kbits/sec 0.028 ms 7/91 (3.9%)
[5] 18.00-19.00 sec 122 KBytes 996 Kbits/sec 0.028 ms 4/90 (3.8%)
[5] 19.00-20.00 sec 119 KBytes 973 Kbits/sec 0.038 ms 7/91 (4.3%)
[5] 20.00-21.00 sec 127 KBytes 1.04 Mbits/sec 0.032 ms 5/90 (4.4%)
[5] 21.00-22.00 sec 126 KBytes 1.03 Mbits/sec 0.033 ms 2/91 (3.9%)
[5] 22.00-23.00 sec 112 KBytes 915 Kbits/sec 0.030 ms 9/90 (4.0%)
[5] 23.00-24.00 sec 124 KBytes 1.02 Mbits/sec 0.026 ms 3/91 (4.3%)
[5] 24.00-25.00 sec 127 KBytes 1.04 Mbits/sec 0.026 ms 1/91 (4.0%)
[5] 25.00-26.00 sec 124 KBytes 1.02 Mbits/sec 0.028 ms 2/90 (3.6%)
[5] 26.00-27.00 sec 127 KBytes 1.04 Mbits/sec 0.032 ms 1/91 (4.0%)
[5] 27.00-28.00 sec 120 KBytes 985 Kbits/sec 0.032 ms 5/90 (4.4%)
[5] 28.00-29.00 sec 126 KBytes 1.03 Mbits/sec 0.032 ms 2/91 (3.6%)
[5] 29.00-30.00 sec 122 KBytes 996 Kbits/sec 0.032 ms 4/90 (4.3%)
[5] 30.00-30.04 sec 0.00 Bytes 0.00 bits/sec 0.032 ms 0/0 (0%)
-
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[5] 0.00-30.04 sec 0.00 Bytes 0.00 bits/sec 0.032 ms 114/2707 (4.2%)

iperf Done.

Appendix 4

 1 (1)

iPerf3 output – N91 & SCE / Duplication & Reordering

The following extracts show the iPerf3 output server section summary lines for each test

accordingly.

N91, Duplication 5%:
[SUM] 0.0-25.0 sec 116 datagrams received out-of-order

SCE, Duplication 5%:
[SUM] 0.0-25.0 sec 120 datagrams received out-of-order

N91, Reordering 5%:
[SUM] 0.0-25.0 sec 101 datagrams received out-of-order

SCE, Reordering 5%:
[SUM] 0.0-25.0 sec 115 datagrams received out-of-order

