

Van Chau Dao

THE NATURE AND EVOLUTION OF JAVASCRIPT

THE NATURE AND EVOLUTION OF JAVASCRIPT

Van Chau Dao
Thesis
Autumn 2020

 Information Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology

Author: Van Chau Dao
Title of Bachelor's thesis: The Nature and Evolution of JavaScript
Supervisor: Kari Jyrkkä
Term and year of completion: 2020 Number of pages: 57

This thesis documented the essential natures of JavaScript as a programming language and revied
the language's evolution, including the purpose of creation and historical events impacted on the
language's characteristics. This thesis aimed to be a research paper by extracting the findings from
multiple text-based sources and present them in two parts: the foundational definitions of
JavaScript and its deposition in computer sciences and a timeline of changes in its usage, related
progress, and setback from its conception point of the mid-1990s until the present day.

The materials that contribute to the thesis are internet-based articles providing accurate details
about historical events and factual, technical information. The author then edits the materials to
convey the thesis and the basis for the author's arguments of JavaScript's importance as a
programming language. Many of the technical information came from the author's knowledge
through education and working experiences.

The profile of JavaScript's technical characteristics is analyzed in a decrement at the abstract level.
The history of JavaScript is featured according to its timeline. The result is a researched document
with coherent evidence to support JavaScript's progress as a programming language. The
conclusion is that JavaScript is a rich language and has the sustainability to surpass any limitations
it faced to reach new technical horizons.

Keywords:

Browsers
ECMAScript
JavaScript
JavaScript Engine
Web Development

4

TABLE OF CONTENTS

ABSTRACT .. 3

TABLE OF CONTENTS ... 4

VOCABULARY .. 7

1 INTRODUCTION ... 8

2 WHAT IS JAVASCRIPT .. 9

2.1 A high-level and interpreted language .. 9

2.2 Prototype-based and multi-paradigm ... 11

2.2.1 What is prototype-based? .. 11

 Objects in JavaScript .. 12
 Prototypal Inheritance .. 12

2.2.2 Different paradigms in JavaScript ... 14

 Object-Oriented Programming ... 14
 Functional programming .. 15
 Event-driven programming ... 16

2.3 Single-threaded and non-blocking .. 16

3 THE COMMENCEMENT OF JAVASCRIPT ... 18

3.1 First launch .. 20

3.2 ECMAScript and the effort to standardize the language ... 21

3.2.1 ES1 & ES2 .. 21

3.2.2 ES3 ... 22

3.2.3 ES4 abandonment and the great halt .. 23

4 JAVASCRIPT RENAISSANCE ... 25

4.1 jQuery ... 25

4.1.1 Cross-browser compatibility .. 25

4.1.2 Separation from HTML .. 26

4.1.3 Short and clear syntax .. 27

5

4.1.4 Extensive extensions .. 28

4.2 Second generation browsers ... 29

4.2.1 Google Chrome's V8 engine .. 29

 Abstract Syntax Tree (AST) .. 29
 Just-In-Time (JIT) .. 30

4.2.2 The second generations of browsers ... 32

4.3 Node.js ... 32

4.3.1 The event loop ... 33

4.3.2 npm ... 35

5 ECMASCRIPT COMEBACK & UI LIBRARIES EXPLOSION .. 38

5.1 ES5 ... 38

5.1.1 Strict mode .. 38

5.1.2 Array and object methods .. 39

5.1.3 JSON support .. 40

5.2 Single Page Application ... 40

5.3 SPA UI libraries ... 42

5.3.1 2010: The beginning ... 42

5.3.2 React and many others ... 43

 React ... 43
 The other UI libraries .. 44
 UI libraries' libraries .. 44

6 JAVASCRIPT EVERY YEAR AND JAVASCRIPT EVERYWHERE 46

6.1 ECMAScript updates .. 46

6.1.1 ES 2015 .. 46

 New variable declare keywords: let and const 46
 A new way of coding ... 48
 Promise .. 51

6.1.2 Annual updates ... 51

6.2 Usage in non-web applications ... 52

6.2.1 Mobile development .. 52

6.2.2 Desktop .. 53

6

7 CONCLUSION ... 54

REFERENCES ... 55

7

VOCABULARY

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

ES ECMAScript

HTML Hypertext Markup Language

IE Internet Explorer

JS JavaScript

OOP Object-Oriented Programming

SPA Single-page Application

8

1 INTRODUCTION

When it comes to developing a website, JavaScript is an essential programming language that
powered most of the modern web's view and interaction. While there are many choices to
construct a server, most client-side interaction is implemented in this language, with 96.8% of the
client-side programming done in JavaScript.[1] For this reason, along with many others,
JavaScript has been ranked the most popular technology for eight years consecutively by Stack
Overflow - an online coding exchange platform.[2]

JavaScript is a forerunner of front-end development and it became a robust, flexible tool that one
might claim every type of developer can use. At the time of writing, it is entirely manageable to
create any application purely with JavaScript. With just one language, one can create a server
with a database and choose the front-end on multiple platforms such as web, mobile, or even
desktop applications. It is even possible to create a machine learning application using
JavaScript.

From those statistics, it is understandable that JavaScript has a tremendous influence on
technology, and the language itself remained at the heart of the field's innovation throughout the
years. Despite its humble beginning, twenty-five years ago, as a prototype scripting language, it
has grown to be a giant that powers many other new technology fields of the Internet. It has also
transformed into a practical tool employed outside its original purpose, branching out to different
programming aspects.

For these reasons, it is worth reviewing the creation timeline of JavaScript and its characteristics
to explain its phenomenon of success in the technology industry. JavaScript is undoubtedly the
face of the Internet's development. It is possible that by understanding its origin story as well as
its advancements after each period of time, one can gain a deeper comprehension of the
landscape of the Internet's development from its debut to ultimately make a forecast of its future.

9

2 WHAT IS JAVASCRIPT

A web page, at its core, consists of Hypertext Markup Language (HTML), Cascading Style Sheets
(CSS), and JavaScript components. No matter how complicated and complex and architect the
applied technologies are, everything will all be translated into HTML, CSS, and JavaScript blocks
after the compilation phase. HTML is the blueprint of the web page giving it the structure and
content, CSS to create the look of the components. And most importantly, JavaScript is a tool to
manipulate all of the webpage components.[3]

The most frequently found definition of JavaScript as a programming language is that JavaScript
is a high-level, multi-paradigm, non-blocking, asynchronous language. Those particular words
and others, such as garbage-collected, interpreted, single-threaded, or concurrent, definitely
summed up JavaScript's characteristics. However, they are often too abstract, and for the
average reader, or someone new to programming, it can be hard to have a full perspective of the
language.

Therefore, this chapter aims to analyze the main characteristics of JavaScript represented by the
vocabulary mentioned.

2.1 A high-level and interpreted language

Looking at JavaScript from the utmost abstraction, it is usually regarded as a high-level
programming language because of its minimal interaction with the operating system or the
hardware. High-level programming languages such as JavaScript are the least complicated
programming languages as they use abstraction, e.g. a garbage-collector or dynamic typing to
simplify the programmer's programming concept. In contrast to this, the machine code languages
use the binary expression that can be executed directly by the computer's central processing unit
(CPU). When building an application in this language, a programmer does not need to manage
memory or processor information and does not have to be concerned about concepts, such as
pointers.[4]

10

The fact had posed some limitations to JavaScript. For example, it cannot read/write and copy
arbitrary files on the machine's hard disk or execute any program. There is also no direct
interaction with the computer's hardware, i.e. microphone or camera.[5] These limitations exist
due to the usage of JavaScript on the client-side and its dependent nature on its environment it
operates in. The browser plays the middleman's role between JavaScript and the machine,
redirecting the user's request for permission to make use of the machine's equipment.[5] Due to
JavaScript's original purpose, these limitations were imposed, creating a dynamic interaction with
the user for very static web pages in the 90s. Nevertheless, as JavaScript progressed beyond the
boundary of a browser, with the development of a runtime environment that executed JavaScript
code in the server and overcame the obstacles stated above.

Figure 1. The Netscape/Spider Monkey JavaScript engine.[6]

JavaScript is also an interpreted language. The source code is interpreted into bytecode and
executed at runtime, unlike in compiled languages, compiled during the build time. As seen in
Figure 1., the Netscape browser converts JS with Spider Monkey JavaScript engine in the early
days. In this fundamental process, the JavaScript engine has a baseline compiler to compile the
source code into bytecode – an intermediate representation. From there, the interpreter would
churn this bytecode into binary machine code that can be executed by the CPU.[6]

The problem with the rudimentary JavaScript is that it would parse all the code and hence, slow
down the performance significantly when there are many codes to convert. As JavaScript and its
application grew in complexity, so does the JavaScript engine that processes the source code. In
chapter 4, the more JavaScript engine will be examined to highlight how the language has scaled
up to accommodate its heavy usage in the future. Since each browser has a different JavaScript
engine, one can deduce the JavaScript industry standard and the current practice trend. One can
also cast a future prediction by having a peer review of these engines.

11

2.2 Prototype-based and multi-paradigm

When debating about the practical aspects of JavaScript, many refer to the language as a multi-
paradigm. JavaScript does not restrict how a programmer should approach a problem when
writing a JS program.

It is because of JS's unique prototype-based feature that gives the language the freedom to be
non-restricting on the coding paradigm. This particular quality has allowed any developer from
any programming background to migrate to systems using JavaScript with their current coding
knowledge. JavaScript is so accommodating that Jeff Atwood, the founder of Stack Overflow,
made a comment about it, now known as the Atwood's law:

Any application that can be written in JavaScript will eventually be written in JavaScript.

2.2.1 What is prototype-based?

Being prototype-based is the unique characteristic of JavaScript about the object inheritance
behavior. The object in JavaScript is the very foundation of any JavaScript application.

Figure 2. An example of an object in JavaScript.

12

 Objects in JavaScript

There are eight data types in JavaScript. There are numbers, string and large integer or BigInt,
logical Boolean, null, undefined, object, and symbol used to create unique identifiers.[7] Out of
the listed group, the object is an exceptional stand out as it is the only data type in JavaScript that
has more than one single value, making it non-primitive.

In Figure 2., a structure of an object in JavaScript consists of properties, each property being a
pair of a type string key and a value of any data type. An object can also have a method, which is
a function that can be executed elsewhere during the program. Everything that does not belong to
the primitive data types group above is an object, including function, array, JavaScript Object
Notation (JSON) data.

 Prototypal Inheritance

Figure 3. Creating the Monkey object by animal function constructor.

13

It is a fact that code recycling is an essential part of programming, especially in a large scale
project. A programmer would often have an original block of code outlining its purpose, methods,
and features, e.g. a class in object-oriented programming (OOP). They then copy it in its origin or
apply extension logic to modify it according to their needs.

In JavaScript, all the objects have a hidden [[Prototype]] property pointing to another

object referencing from or a null value.[8] Figure 3. described the animal function as a

constructor taking in the name and the food and eats that would output to the browser console.

It should be noted that this is one of many methods to instantiate an object.

In this example, by creating a new Monkey object inline 26, it inherits the method eats and,

when executed, produced a text' Monkey eats Banana'. This relationship is prototypal

inheritance. Hence, the animal function is the prototype object of the Monkey object,

evidenced by Figure 4.

Figure 4. Prototype relationship demonstration.

By instantiating a new object on an existing object, as demonstrated in the example in Figure 3.,
an inheritance relationship is set automatically. However, an object can also be assigned of
prototype object by __proto__ getter/setter, or modern

Object.getPrototypeOf/Object.setPrototypeOf functions.

This prototype inheritance can be chaining; object A can have a prototype object B, object B, in
turn, has a prototype object C. When a property of an object is in demand and does not exist, JS
will try to shift through the prototype objects to locate the property and only returns undefined

when the search finds nothing.[8]

14

2.2.2 Different paradigms in JavaScript

As the title has characterized, multiple programming paradigms can be used in JavaScript. These
are JavaScript's most fashionable programming schemes at the time of writing. The following
sections specify each paradigm approach, uses, and relates to JavaScript.

 Object-Oriented Programming

Thanks to the prototypal inheritance, programmers from the OOP background can effortlessly
adopt JavaScript for their projects. However, despite the similarity of 'inheritance', JS's prototypal
inheritance still has a few critical differences from the class inheritance of a proper OOP
language.

The first difference is in the concept of the original code block itself. A class in OOP is not a direct
object; it represents a blueprint of an object. It provides the base properties and the methods that
an object, when instantiating from it, would have. A class is an abstraction of an object.
Therefore, when a class inherits from another class, the class itself becomes an abstraction of an
object.[9] Class inheritance is truly an immutable inheritance. An object cannot modify any
methods at runtime. The many levels of inheritance in OOP are many layers of abstractions of the
object. This tightly coupled subclass relationship is costly in the development, particularly in the
debugging process.

In contrast, every complex structure element in JavaScript, despite its declaration notation being
a function, is merely an object. An object can have multiple prototype objects, and those objects
can be chaining, as explained in the previous section. Those prototype reference layers will just
be purely objects. Compared to this, prototypal inheritance is more flexible for its nature as a
prototype object. Without the heavy abstraction concept of a class, the programmer can
customize their implementation of the 'class' regarding mutability and the object's complex
structure.

15

 Functional programming

Functional programming is a paradigm that belongs to the declarative category. It has not been
as popular as OOP in the early days but it has since caught on with JavaScript's prominent
usage. Especially, since the debut of JS User Interface (UI) libraries such as React or Angular. It
is a design based on mathematical functions, applying these so-called pure functions solely
based on the input and producing the same output whenever given the same input.

Functional programming promotes the concept of modularity, generating small blocks of pure
functions to comprise the more prominent application.[10] A hierarchy of a functional
programming system is exhibited in Figure 5. This hierarchy can be found in many UI libraries
where they construct the application using mainly functions to build the HTML elements.

Figure 5. The functional Flowchart.[10]

Compared with OOP, which has a more rigid structure, creating a tightly coupled system through
abstraction inheritance, functional programming is quite the opposite with a more directive
approach. Its purpose is to answer to the question what the data is and transformed it
independently. A functional programming system is less coupled and produces fewer side effects
by not having a shared state between each component. It also accepts a function as an input; the
concept is referred to as a higher-order function, whereas only data or objects can be passed
through in OOP.

16

 Event-driven programming

The flow of event-driven programming is essentially based on user interaction. It is different from
the two previous programming paradigms. It always listens to the user's events, namely
onClick or onChange, as a trigger to the performed intended action. The jQuery library

popularizes it.

The HTML element will be tagged with JavaScript events with a task function stand by. Once the
user commits the event, the callback function is executed. Event-driven programming is a user-
centered approach and often uses for web pages with existing HTML code based.

2.3 Single-threaded and non-blocking

JavaScript is a single-threaded runtime language. It can only process one task at a time. This
main execution thread supervises all the events when the website is opened on the browser.

Figure 6. The JavaScript Runtime Environment.[6]

The runtime process is exemplified in Figure 6.; the functions are queueing up in the JavaScript
Runtime Call Stack. It is a last-in-first-out data storage.[6] When the foo function is being called,

it appears in the stack and then continues to run bar. bar would then trigger baz that finally

has a console logging task.

17

Until a function returns a value, it will not be considered completed and it remains in the stack by
the code's order. In each stack frame, the stack will conduct one single action, taking an entry of
the signal's function in the codebase or processing the return.[6] When the console finishes
logging out the text, it is marked as completed as the returned value, i.e. it has been consumed.
The console.log(…) task would disappear from the stack, consequently ending the baz,

bar, and foo functions.

When the JavaScript Runtime encountered a never-ending task, notably a while (true) {}

loop, or a time consuming one such as fetching the server's data, it would block all the other
remaining tasks – a clear example of blocking code. As modern JavaScript is often referred to as
non-blocking or asynchronous, there is a way to combat these recursive functions call blocking
the programming and using up all the system's resources.

To simplify, for the function that requires more time, the later version of JS would create another
thread for that function to wait out until it is completed with a returned value. Afterward, the thread
will be closed, and it will collide into the main thread. Any other function required to run when the
task is completed will be pushed to the main thread. This concurrent process will be further
clarified in chapter 4 with the introduction of the event loop.

18

3 THE COMMENCEMENT OF JAVASCRIPT

The history of JavaScript began shortly after the establishment of the Internet. Despite the
invention of the first browser – the WorldWideWeb – in 1990 by Tim Berners-Lee, the Internet
remained an unfamiliar concept to the mainstream.[11]

However, in 1993, when the commercial Mosaic browser was released, the Internet began to
flourish. Marc Andreessen and Eric Bina created the Mosaic browser while working at the
National Center for Supercomputing Applications. It was first released in January 1993 for the
UNIX system and later in September 1993 for the Macintosh and Windows system. It featured a
graphical interface that allowed the image to be displayed 'inline' with the document text. It also
introduced the concept of the Document Object Model (DOM) structure in the browser.[11]

Figure 7. A representation of the HTML Document Object Model hierarchy.

19

When a website is loaded, the browser created the DOM tree using the HTML file code as the
blueprint. In Figure 7., the webpage is the 'Document', which has the root element represented by
the <html> tag. The <html></html> tags enclosed all the other elements that marked up

the webpage. In this example, the webpage hierarchy showcased how the element's position
made up the DOM tree.

Figure 8. The Mosaic Browser for the Macintosh system.[11]

At the time, Mosaic was very well-known and praised for bridging the gap between internet
multimedia and non-technical users. (Figure 8.) Nevertheless, as Marc Andreessen established
Netscape Communications Corporation, the Mosaic browser quickly lost its market share to the
new innovative Netscape Navigator browser in 1995.[12] Netscape introduced various

20

monumental concepts in its product, such as rendering as the page is loaded, cookies, animation
frames, proxy auto-config, and the significant JavaScript.

3.1 First launch

Until this point, a standard website was only a static product. A non-technical user was able to
view the site with ease but was completely unable to interact with it. It was clear that the next
evolutionary step in the field was to deliver dynamic content to the end-user.

To fulfill this request, Netscape naturally gravitated towards the popular programming language at
the time – Java. In the beginning, the plan was that Java would be the leading 'professional'
choice for a more complex embedded web system and a scripting language whose codes would
be placed inside the HTML document for the casual scripters and amateurs as a 'companion'
language.[13]

This approach soon proved to be fruitless for the following reasons. When considering the user
experience, it required the user to have a Java Virtual Machine, handle Java's security prompt,
and boot the corresponding Java program when visiting a particular website.[13] When
considering the development process, if Netscape were to develop their own Java Virtual
Machine, it would “never achieve perfect bug-for-bug compatibility” with Java's original virtual
machine by their company Sun Microsystems.[14]

Netscape called off cooperating with Sun Microsystems and famously employed Brendan Eich to
complete the latter goal: creating a glue-like scripting language to enhance the webpage
experience on an extreme deadline of ten days. This time restrain led Eich to create the multi-
paradigm, flexible programming language to let the developers, including the non-engineers,
apply their programming pattern. Syntactically, Mocha was a curly bracket language similar to
Java at the request of Netscape's executives. However, Mocha has many characteristics of a
modern-day JS inspired by different programming languages. It has first-class functions like
Scheme, dynamic typing like Lisp, and prototype inheritance like Self. JavaScript made a
tremendous impact on the web browsing experience from the beginning. The websites became

21

strikingly lively with animation enhancements, and the most notable change lasting until this day:
popup advertisements.

The language and its interpreter soon changed the name to Live in September 1995 upon the
launch of Netscape 2.0 but changed it to JavaScript three months later.[15] Brendan Eich
continued working for Netscape following the release of JavaScript, overseeing the
implementation of SpiderMonkey. Eich reportedly refactored most of Mocha's codebase to settle
the technical debt left behind when rushing Mocha to release a year ago, including the JavaScript
engine renamed SpiderMonkey.[14] (Figure 1.)

In 1995, an increasingly popular Microsoft launched its browser program named Internet Explorer
(IE). To compete with Netscape Navigator on JavaScript, Microsoft reverse-engineered
JavaScript into Jscript and premiered in August 1996.[15]

3.2 ECMAScript and the effort to standardize the language

The Internet started to proliferate, going from just 3,000 websites to 258,000 by 1996.[16] With
two similar browser scripting languages JavaScript and JScript, there was a clear need to
standardize JavaScript. In November 1996, Netscape submitted JavaScript to the European
Computer Manufacturers Association (ECMA) – a neutral organization founded in 1961 for the
sole purpose of standardizing the computer systems. [17, 18]

3.2.1 ES1 & ES2

By June 1997, the Standard ECMA-262 or the first edition of ECMAScript's specified document
(ES1) was introduced. It established the programming language itself as ECMAScript, the
standardized name of JavaScript.[18] This document provided the browser vendors and server-
side applications a consistent set of specifications, guidelines on the implementation of
JavaScript. Both JavaScript and Jscript were guaranteed to follow the principles set forth by the
ES1 with added features.

22

In June 1998, the second version ES2 was published with editorial changes to align with the
ISO/IEC 16262 international standard specification.

3.2.2 ES3

The first version of JavaScript was undoubtedly an awe-inspiring invention for its time in its core
value and its applications. It was a magnificent achievement, considering the limitation in labor
and time resources. However, the infamous ten-day creation process unavoidably led to errors
and shortcomings in the language.

The ECMAScript version 3 (ES3), released in December 1999, addressed these problems. It
featured better error handlings, including a tighter definition of errors.[18] It also introduced new
control statements, such as if statement, do-while, and try/catch blocks, and covered

the definitions of functions and data types, numeric output formatting.[19]

Figure 9. The difference between equality operators in JavaScript.

Moreover, especially, it presented the regular expressions, with the much-needed strict equality
operator. Some of the early JavaScript testers proposed the first equal operator in the first version

23

of JavaScript (demonstrated by line 35 in Figure 9.) based on convenience if a number were to be
directly equal to a string. In the beginning, JavaScript was destined to be accessible to a non-
programmer audience, and therefore, it implemented this lenient abstract equality proposal. The
new ES3 offered the strict quality operator that would compare based on value and type, as seen
in line 40 in Figure 9., making the system more coherent and versatile.

3.2.3 ES4 abandonment and the great halt

With the release of ES3, JavaScript was on its way to advancement, and the work for ES4 started
in February 1999. This newer version, alongside fixing the occurring bugs from ES3, also aimed
to better support programming-in-the-large.[18] The proposing features listed to attain this
ambition grew immensely through the years, including but not limited to: classes and interface
implementation, module system, optional types annotation, destructuring assignment, constant
bindings, array comprehensions.[18]

ES4 would have brought significant changes to JavaScript compared to ES3. Its proposal was
growing in scale to serve its ambition of being an enterprise-level programming language. The
features bear a resemblance to the modern-day TypeScript, and the changes would have left a
mark on JavaScript. Unfortunately, such greatness did not come to fruition because of the
political differences in the field.

Despite the Netscape Navigator standing position in the browser marketplace in the mid-1990s, it
lost its dominance to Microsoft by the end of the decade. During the first 'Browser Wars', IE had
claimed the superior position by 2002, taking almost 90% of the overall market share. (Figure 10.)

After AOL acquired Netscape in November 1998, Netscape Navigator released a new version in
Standard and Gold Edition with the latter version packed full of e-mail, newsreaders
functionalities. These functionalities resulted in costing the browser its performance with constant
crashing and incomplete render.[12] The Netscape browser also lost its edge by not supporting
CSS – a feature developed by Microsoft Internet Explorer that soon became a new foundational
pillar of a website. Microsoft had Internet Explorer built into every Windows and MacOS computer
as a standard browser due to a deal worth 150 million dollars with Apple in August 1997.[12]

24

Figure 10. The market share for several browsers between 1995 and 2010.[20]

The combination of low performances and Microsoft's tremendous influence terminated Netscape
Navigator by the early 2000s. (Figure 10.) With the newfound victory of the first 'Browser Wars',
Microsoft pushed Jscript forward to its separate agenda by creating its unique JavaScript
extensions. One notable extension was a function that allows a browser to perform an
asynchronous HTTP request called XMLHttpRequest. This technique, later known as AJAX,

created the opportunity to have content updated on-the-fly.[14]

Upon reviewing the proposal of ES4, Microsoft concluded that the plan was too complicated and
withdrew from the development process.[18] This discontinued collaboration created multiple
disputes between Brendan Eich and the creative force at IE and it was carried on until 2008,
when all effort to construct ES4 ended for good. Part of the ES4 proposal, mainly the fixes and
JSON support, was made into the latter ECMAScript version 5.

25

4 JAVASCRIPT RENAISSANCE

Following the previously mentioned events, JavaScript's innovation came to a halt when
Netscape lost its success to Microsoft Internet Explorer and because of the dispute between the
ES4 contributing parties. This dark age slowly faded as breakthroughs in the industry emerged.
This chapter will review the three most historic achievements that took JavaScript to a new
renaissance horizon.

The first is the jQuery library, the earliest JavaScript library that unified and empowered the web
applications by enhancing their architecture complexity, interaction, and user accessibility with
minimal development efforts. The second is the next generation of browsers whose JavaScript
engine optimization speeded up the JavaScript's performances by a landslide. Finally, the
chapter will study Node.js and how it transcended JavaScript into a language that can exist
beyond the front-end frontier.

4.1 jQuery

jQuery is a lightweight JavaScript library which was created in 2006 by John Resig. It has been
the most used library since its release. As of February 2020, jQuery is used by 74.4% of the top

10 million websites.[21] jQuery rose to the top of the stardom for serving the fundamental need of
'write less, do more' in JS applications. jQuery's core values are all aimed to smoothen the
process of web development to deliver a more dynamic product with less time and coding effort.

4.1.1 Cross-browser compatibility

After Mosaic's success, many different web browsing products entered the market though they
only managed to have an insignificant portion of the market share. The second generation of web
browsers started with the remanence of the first 'Browser Wars'. When Netscape lost its part to
Microsoft and the funding for its commercial activities, it turned the product into an open-source
version named Mozilla in 2002. Mozilla managed to produce a stable internet and a spinoff

26

project which eventually became the Mozilla Firefox browser, in the same year. [22] Along this
time, Apple ended the deal with Microsoft and launched its web browser product Safari. These
browsers and Opera – a popular browser for handheld devices, had the market share fight as IE
peaked at more than 92% in 2004. The widespread use of these different browsers created the
compatibility issue for the developers. Since each browser had its version of a JavaScript engine,
the same script code would deliver inconsistent results across different browsers.

jQuery offered an interface that guarantees to eliminate the particular problem.[22] Using jQuery,
developers do not need to research the differences and rewrite the JS code multiple times.

4.1.2 Separation from HTML

Figure 11. An example of a traditional approach using JavaScript.

In Figure 11., a traditional HTML code block with a script element co-exist in the same document.
For an alert to trigger when clicking the button element, the button tag must declare the

onclick event handler and the function sayHi in line number 9.

27

jQuery promotes the separation of HTML by providing the syntax to add the event handlers to the
DOM element by using JavaScript. Figure 12. presents an example of an application using
jQuery.

First, the jQuery code was added in line 3. In the script, jQuery identifies the element button

and triggers the alert when the element is clicked. This separation often resulted in better

readability and over code hygiene.

Figure 12. An example of jQuery with a click function.

4.1.3 Short and clear syntax

At its core, jQuery is a DOM manipulate library which provides normal or static utility functions
and jQuery object methods to a selected element. jQuery's primary identifier received the CSS
selector string argument with the $ alias and reference through the DOM to find all the matching

elements. For example, upon calling $("li.number").hide(), jQuery would locate all the

list elements with the class name of number and apply the hide animation effect.

In comparison to vanilla JavaScript’s document.getElementsBy…/document.get-

ElementBy… methods, the selector alias is much shorter and more effective at spotting the

HTML element.

28

The jQuery selector's return value is always a jQuery object able to chain different methods.
Figure 13. analyzes the process of the method chain.

Figure 13. An example of jQuery method chains.

4.1.4 Extensive extensions

Over the years, jQuery has built up a thorough supported method list. It has a variety of methods
to change visual aspects, such as animation effects and direct CSS manipulation. It has robust
methods for completing DOM structure manipulation, such as element insertion, removal, or
replacement, and traversing the DOM tree to find other elements. jQuery also has events and
form handling properties and the well-implemented AJAX request handler for asynchronous
programming. Some of these methods were so outstanding that many of today's browser vendors
standardized them into their products.

There is also an abundance of plugins libraries to support jQuery further. An average website
developer can choose the plugin – a ready-made method – that best serves their purpose instead
of building the feature from scratch with JavaScript code.

On these four principles, jQuery was revolutionary to front-end development across different
browsers. It was comfortable to learn and even more comfortable to use with the meticulous
documentation. It has a substantial built-in set of methods that speed up the progress
signification. Furthermore, the quick adoption from the community, in turn, supplies new
extensions that enrich its ecosystems.

29

4.2 Second generation browsers

The invention of jQuery has led to an increase of JavaScript usage both at number and
complexity levels. While jQuery is not hard to use, it is hard to parse to the machine code level,
particularly with its famous DOM elements selector. Facing this problem is the second generation
of browsers in the late 2000s.

These browsers came with the improved JavaScript engine that provided a better loading and
overall processing experience on the client-side. The transformation in these JavaScript engines,
especially the V8 engine from Google's newly released Chrome browser, drastically accelerated
JavaScript performances and ushered into a new Renaissance era.

4.2.1 Google Chrome's V8 engine

In 2005, Google launched Google Maps, an online global mapping service. The nature of the
product required the platform to have the power to handle the heavy interaction from the users. It
was undoubtedly a complicated and grand coding construction project. However, when it was
brought into use, Google quickly realized that the limited browser hindered Google Maps'
performances. In particular, the traditional method of the JavaScript Engine used at the time to
parse the code was not efficient enough to handle such an enormous site as Google Maps.[6]

In 2008, Google presented its browser, Google Chrome, with the brand new V8 engine to solve
this problem. The engine's main improvement laid at the core of its working principle: delivering
the code promptly and heavily optimizing the frequently executed code.

 Abstract Syntax Tree (AST)

The engine first parsed the source code into an Abstract Syntax Tree (AST) – a tree branch
representation. Figure 14. describes an example of AST representation. The code can be a

30

function call, a class representation or a code module. The branches split to the most detailed
representation of the code line, such as a declaration and an assignment statement.

Figure 14. An abstract Syntax Tree Example.

By having the source code mapped out in the AST model, the system can identify the priority of
compilation of different code blocks, contributing to an overall faster application bootstrap.[6]

 Just-In-Time (JIT)

Essentially, V8 used the Just-In-Time compilation process to boost up the performance. First, the
base compiler would kickstart the pipeline by quickly generating the non-optimized machine code
from the JavaScript source code. The V8's base compiler is well run and produces 30% less code
than the last-generation browser's base compiler.[23] When the application has started, the
runtime compiler will surveil the system to pinpoint 'hot code'. This code spent a significant
amount of time running either complicated or frequently used code. These profiled hot codes will
be recompiled and optimized by the optimization compiler.[23] A visualization of this JIT process
can be found in Figure 15.

31

Figure 15. The V8 JavaScript Engine Pipeline.[6]

This JIT compilation approach replaced the interpreter found in the earlier version of the
JavaScript engine. JIT happened during the runtime, in Figure 15., when it started simultaneously
at the time of the initial baseline compiler. JIT allows the runtime compiler and optimization
compiler to access the dynamic runtime information to make better optimizations, such as inline
function–positioning the compiled function in the main body (Figure 16.) and casting types for
variables based on declared values during compilation.

Figure 16. A comparison between the normal function and the inline function.

32

The main disadvantage of this process is its operational cost of CPU and memory resources
because the optimization and surveillance occur at runtime. Furthermore, the Crankshaft would
often result in slower initial rendering, and often the Full-code generator (full-codegen) would not
meet up the compiling expectation in larger applications. Moreover, despite its impressive initial
architect, Crankshaft was not sustainable since it was only created to optimize a subset of the
JS.[24]

4.2.2 The second generations of browsers

V8's cutting-edge approaches powered the Google Chrome browser to rise among its
competitors. However, the impact it had made spread beyond its product. It had inspired the
advancement of using the Just-In-Time compilation, the Abstract Syntax Tree, and a different
compilation to machine code models by other browser vendors.

Netscape's protégé Mozilla also made advancements with the traditional SpiderMonkey JS
engine incorporating the JIT compiler into its pipeline to compile the source code to the native
code. The Chakra engine of Internet Explorer, Safari's JavaScriptCore engine, and many others
followed the initiative to adopt the same optimization model of V8, producing the strong second
generation of browsers with a noticeable productivity improvement. The performance progress
across the browsers led to Microsoft losing its dominance in the early 2010s, dropping below the
50% mark for the first time in October 2010 with 49.87% of the market share. [20]

The V8 engine is also the inspiration and the foundation of Node.js – the invention that brought
JavaScript to a new frontier.

4.3 Node.js

When Netscape was launched in the mid-1990s, it also formulated a server-side JavaScript
service called Netscape's LiveWire Pro Web. Ryan Dahl took the lead of the project's
development and maintenance team.[25] Even though LiveWire did not meet any success, Ryan
Dahl continued pursuing server-side scripting and created the runtime environment Node.js.
Most popular website servers at the time were implemented in sequential programming. They

33

lacked the scalability to handle a large volume of concurrent connections limited by blocking
codes that ran in sequence.

Dahl invented the Node.js in 2009 as an open-source, single-thread, non-blocking, and cross-
platform back-end solution to address this problem.[25] Despite his experience with Netscape,
Dahl did not initially aim to write the program in JavaScript. Nevertheless, with the advanced V8
engine's release, it was an epiphany for him to combine the project with JavaScript.[26]

Node.js became a sensation in web-programming upon its debut for being the first representation
of JavaScript outside the browser's scope, pioneering in asynchronous programming with the
breakthrough event loop concept as its core. It also featured a package manager npm that
productively control the project's module dependencies.

4.3.1 The event loop

Figure 17. Code demonstration for the event loop.

34

Whenever a Node.js application executes a time-consuming Input/Output (I/O) operation, such as
fetching data from the servers, it will be set aside along with its callback function to avoid blocking
the main thread. Once the task finishes, the process will resume, and the callback function will
execute. The Node.js has a built-in set of asynchronous I/O primitives to prevent any blocking
task that would interfere with the application and waste the CPU cycles.[25] The event loop is the
queuing mechanism that manages the call stack as well as the message queue. It ensures that
the Node.js application can be asynchronous and have a non-blocking I/O.[27]

A code example to demonstrate this concept can be found in Figure 17. There are three
functions: bar, baz, and foo that output the name of their function when activated. The foo

function also activates the bar function as a callback function in a setTimeout function and

then executes baz. The execution order of the main call stack is visualized in Figure 18.

Figure 18. The execution order for the functions in Figure 17. code demonstration.[27]

35

In the first iteration, the foo function enters the stack and executes the output control in the

second iteration (Figure 17., line 69). Next, the setTimeout function enters the stack with the

bar function and timeout period of zero seconds (Figure 17., line 70). Since the setTimeout

requires the stack to wait for a declared amount of time to pass before executing the callback
function, the main call stack immediately moves the setTimeout function aside to await its

completion. The baz function follows with the output to the console. The foo function at this

point reaches the end, exiting the call stack.

Once the setTimeout function waits for the specified time, the call back function bar is

moved to the message queue. In this example, the waiting time is set to zero seconds, which
should be done instantly. The event loop only refers to the message queue once the main call
stack is empty as it always prioritizes every task in the main call stack first.[27] Therefore, in the
last three frames of Figure 18, after the foo function disappears entirely, it demonstrates the

bar function's entry and its execution.

This unique event loop concept recognizes all the time-consuming functions and removes them
from the main call stack to eliminate any possible blockage. The message queue is also known
as the callback queue for receiving the callback functions when the main task completes. The
event loop would first go through the main call stack and clear them before introducing the
callback functions or microtasks from the callback/message queue and clearing them on the main
stack.

The concept of event loop gave rise to Node.js. Its outstanding success led to adoption within the
browsers where they embrace the message queue and repetitive event loop to manage the front-
end actions.

4.3.2 npm

Another concept introduced that became extremely popular with the Node.js debut is the Node
package manager, frequently known as npm. Isaac Z. Schlueter, the npm's creator, disapproving
how the dependencies were managed and packaged at the time, wrote npm in JavaScript as a
proper package manager for Node.js.[28]

36

npm features a command-line client that allows the user to manage the module dependencies in
their project. It connects to a remote module registry allowing easy access to download and
update dependency. The details of the project are stored in the package.json file, including

the record of the dependencies.

Figure 19. An example of a package.json file.

In Figure 19., an anatomy of a package.json file is exhibited. The file acts as the blueprint of

the project. It details the descriptive information with data fields such as name, version,

description, engines. More importantly, it lists all the modules used in the project's

dependencies and devDependencies (for the development environment only) fields with

37

the name and the minimum or specific version that the application required. Every time a module
is added or removed, the package.json will update itself to keep track of the changes.

npm revolutionized the delivery of applications in both development and production environment.
The package.json file can be deposited in the repository along with the rest of the

application's source code. The developers can simply run npm install in the project folder's

command prompt to install all the modules with the up-to-date version with the blueprint file. The
command would also add, update, and remove the dependency modules exactly outlined by the
details in the package.json. This method ensures consistency between the development

environment, contributing to the coherence and overall productivity, especially in larger-scale
programming. The deployment process also benefits from the npm's dependency list, installing
the dependencies sufficiently.

npm was widely famous for its launch with the advantages cited above. It provides a better flow
for the development process, especially with the remote registry collection of modules. This
popularity of the module library and its easy implementation has led to malicious code laced into
the modules. Thus, the developers ought to have a careful curation of the dependencies.

38

5 ECMASCRIPT COMEBACK & UI LIBRARIES EXPLOSION

The innovations in the past decade powered the rise of JavaScript. Its popularity had brought the
community together to collaborate towards ECMAScript's comeback and they continued pushing
the web-constructing boundaries with JavaScript.

This chapter concentrates on adding the next version of ECMAScript and the critical feature list
that gave JavaScript a shift in flexibility as the web development process moved towards a single-
page application with a new generation of JavaScript-based UI libraries.

5.1 ES5

The ES4 was a bold step up but it was never public with a lack of support. The committee's
corporate members released an ECMAScript 3.1 later as an update of ES3 focusing on security,
library updates, and compatibility.[18] Brendan Eich announced that the Ecma TC39 committee's
unanimous effort would be spent on the further development of ECMAScript 3.1, which was later
named the ECMAScript 5th Edition.

The ES5 was published in December 2009, exactly ten years from the last version, the ES3.[18]
This version certainly did not carry all of the ES4 draft's potential. However, it still presented many
salient changes to the language and became the cornerstone of the next innovation wave of
JavaScript.

5.1.1 Strict mode

The ES5 introduced a strict mode declaration "use strict" for code to be used in strict

mode.[18] It is a string expression which assists the developers in writing cleaner, more secure
code. JS has the reputation of being a 'too-easy' programming language that lacks coding
discipline since the code would still run even with less than appropriate syntax. The strict mode

39

would turn the sloppy syntax or coding choices into actual error signals, such as the usage of
undeclared variables, mistype variables, and deleting variables.

5.1.2 Array and object methods

There are many excellent methods put forth in the 5th version of ECMAScript for array and object
manipulation. As JavaScript usage increased in volume and complexity, these methods
shortened the developing time and were excellent tools for developers.

For the array, there are an Array.isArray() method for type verification,

Array.indexOf() and Array.lastIndexOf() for an element’s index identification.

Especially, for the array iteration purpose, there are a wide range of methods to choose from
such as Array.map(), Array.forEach(), Array.reduce(). Another useful method

is Array.filter() which incorporates iteration into filtration.

Figure 20. Property Getter and Setter in ES5.

40

For the object, the ES5 provided the syntax to have a getter and setter function. Figure 20 is an
example of a pet object with a getter method name that returns the name with the animal breed

and a setter method animal that changes the breed.

5.1.3 JSON support

After the ES5 had been added, the JSON started to gain popularity as a data communication
format between the server and the front-end. The server would send the data as a string to the
client-side, with the JSON method JSON.parse(), and the string would turn a JS object.

There is also the JSON.stringify() to turn a JS object into a plain string for sending data

back to the server.

5.2 Single Page Application

At the end of the 2000s, there is an incredible number of web-applications. What used to be a
portal to display description text and images to give a virtual representation, has been engineered
to become highly interactive applications like Google Maps. Behind this web-applications
phenomenon was the concept of single-page application – an invention that marked the rebirth of
JavaScript and solidified its leading position for the next decade to come.

Figure 21. Traditional Multi-Page Lifecycle.

Traditionally, each website view is a single HTML file. When the user inputs the URL, the browser
will process URL requests with the server, and in response, the server will send back the HTML

Client Server

initial GET request

POST request

html

html

41

file for the browser to render. When the client submits a POST request to send out an update
form, the server will return another HTML file for render. (Figure 21.)

This traditional method would require the website to reload multiple times whenever it receives a
new HTML file to render the name multi-page application. This approach is a lamentable option
for more ambitious web projects due to its absolute sending/receiving mechanism and front-
end/back-end decoupling by responding with an entire HTML file. A single HTML file will have to
carry many static asset files, such as CSS, images and JS codes, making it bulky to transfer and
hinder the overall performance.

A Single-page Application (SPA) is the agile solution embraced by the JS developers to
overcome these limitations. A SPA is an application that only has a single loaded page
responsible for all of the interaction.

Figure 22. The lifecycle of Single-Page Application.

In Figure 22., the demonstration shows that when the browser sends the first initial URL request
to the server, it responds by sending the webpage's 'Static Assets’–building blocks of the UI.
However, the JavaScript will handle the interaction and simultaneously request the server's data
using AJAX requests. This initial data is stored temporarily (this is also known as caching). If
there are changes triggered by the server or recognized by the JavaScript, the JavaScript will

User Interface

Static Assets

JavaScript

Browser

User

html/css

rendering
updates

URL input

URL request

data
request/response

Server

42

activate the rendering updates. The UI will stay-up-date, flexible, responsive, and highly
interactive.

When compared to the traditional approach, the SPA presents many superior advantages. The
first and most important is the product quality: re-rendering only happens when necessary, the UI
update is noticeably faster because of the lightweight JSON-formatted string response from the
server, the UX is greatly improved with less interruption of reloading. The second is the
development quality with a better separation between front-end and back-end, and easier
debugging process.

5.3 SPA UI libraries

The adoption of SPA in web development overgrew regardless of its flaws (length initial loading
time, CPU process requirement) exclusively with JavaScript.

5.3.1 2010: The beginning

AngularJS and Backbone.js were the first significant SPA JavaScript front-end solutions. Both
debuted in October of 2010 and made a dramatic impact upon their release.

Backbone.js is a lighter front-end library using a RESTful JSON interface and it practices the SPA
in a Model-View-Controller dynamic. It was a popular choice for smaller projects with less data
traffic.

AngularJS is a framework which extends HTML with new attributes for a two-way data binding,
which essentially means to create a connection between the HTML element and the data from
the server. It was geared towards enterprise-level programming projects with supported unit
testing and a two-way data-binding activity for faster updates.

43

5.3.2 React and many others

Despite SPA's frameworks/libraries using JavaScript were the first-generation, they were
extremely successful. They paved the way for an explosion of the JavaScript-based UI libraries in
the following five years.

 React

React is a one-way data flow UI library created in 2003 by Jordan Walke – an engineer working
for Facebook.[29] React was considered a game-changer for many groundbreaking concepts,
including the virtual DOM. The virtual DOM is an in-memory UI representation of the actual DOM
tree which acts as a reference for React to calculate and compare the exact change and
selectively trigger rerender in the real DOM through the ReactDOM library.[29] A React
application comprises pure JavaScript components which will be rendered to a DOM element
through the ReactDOM library. These components can have values that are passed down to
them, known as props. They make up the node in the virtual DOM tree. If there is a change, for
example, a change of prop value text line in the <p> element, only the <p> element in the real

DOM would rerender with the changed value. This use of virtual DOM resulted in the ultra-fast
performance over React's UI library peer that only uses regular DOM updates.

Another reason for its acclaimed reputation is the promotion of functional programming with pure
JavaScript components. The front-end development becomes less tangled in a complicated DOM
tree by isolating the components to their single functionality or purpose. The code leans on a
single purpose. This approach means less code, easier maintenance, less repetition with a high
capability of code recycling.

React won the favor of the developers with its premiere which led to substantial support from
Facebook. It snowballed in a short period from the number of developers using React to
contribute to React by building specialized library extensions for it.

44

 The other UI libraries

Single-page applications UI libraries soon exploded with different frameworks that cater to
different programmers' coding styles and requirements. Under the hood, they are practicing SPA
philosophy. However, they are distinct from one another based on their paradigm approaches,
their built-in functionalities' extensiveness, and their aim of the production scale.

AngularJS favors a declarative logical/functional programming style, while Backbone.js prefers an
imperative structured/procedural programming paradigm. Many libraries adopt the virtual DOM
following React's footsteps, e.g. Vue and Ember, and many still use the regular DOM. The
abundance of choices gave the developer the freedom to choose the best tool that best meets
the project and their preferences.

 UI libraries' libraries

The success of the SPA UI libraries is measured in the usage and great amount of the UI
components libraries and in the variety of their corresponding supporting libraries.

If considering the Vue framework as an example: there are standard libraries from the same
development company recommended for different assistance purposes. VueX for the state
manager, a centralized store that keeps track of all the data changes that a component can
connect to, retrieves and stays current with the relevant data. For UI elements, such as a tooltip,
there are many libraries for Vue alone that can be easily installed through the module manager
npm. These open-source libraries are an incredible time-saver as the mundane UI elements or
more functional libraries such as map rendering, are much harder to create from scratch.

The wide acceptance from the SPA front-end libraries system's programming community has
brought JavaScript to another milestone. It accelerated the development process and fueled a
new era of large-scale interactive web applications.

The early 2010s witnessed a new beginning of JavaScript. It had been at the heart of internet
innovations for more than a decade and became an essential tool that powers modern-day
webpages. The language had surpassed its existence creation purpose of being an optional

45

temporary scripting language between the DOM elements. It had become indispensable for web
development and would continue to thrive thanks to the massive developer audience that had
adopted its extension application.

46

6 JAVASCRIPT EVERY YEAR AND JAVASCRIPT EVERYWHERE

In web development, the standing position of JavaScript after the appearance of Angular and
jQuery is deep-rooted. The technology is continuously evolving, and yet JavaScript has remained
in the center position of internet building from its starting days. JavaScript has advanced
tremendously in the past decade, with more frequent ECMAScript updates, a growing number of
JavaScript-based libraries/frameworks and helpers, and an ever-increasing number of developers
learning, using, and expanding the language.

JavaScript has transformed into an industry of its own. This chapter will browse through all the
annual updates of the ECMAScript and the critical features with the industry's adoption response
of what each version provides. Finally, it will examine the concept of 'JavaScript Everywhere'.

6.1 ECMAScript updates

6.1.1 ES 2015

The 6th version of ECMAScript was published in June of 2015. The six-year gap from the last
ECMAScript and the rise of the SPA UI libraries made this a lengthy revision in functionality and
coding styles.

There are new methods for the array, such as the find and findIndex function. For the

Number object, and the global scope: isFinite and isNaN. However, the most significant

changes are the new keywords for the variable, an introduction of a new syntax set for a new
wave of coding and an excitingly new concept of Promise.[30]

 New variable declare keywords: let and const

JavaScript had only had one keyword to declare a variable so far: var. It is a function and global

scoped variable. When declared without a default variable, it has an undefined value. In the
example of Figure 23., the variable year is first declared in line 102 with a 2020 value. It is then

47

redeclared in line 106 with a 2021 value. When the variable is logged in, and outside of the code
block (from line 106 to 110) in line 113, the logging value is 2021, the last to be declared.

 Figure 23. A comparison of var and let.

However, with the month variable, the let keyword, acting as a local declaration, assigns the

month variable to another value, but only in the block scope, resulting in the logging value

unchanged outside of the block scope on line 114. The main difference between var and let is

in their changes in the perspective scopes. var can be redeclared multiple times, as

demonstrated in Figure 23., while let can only be declared once in each scope, the variable

exists in.

Another new keyword is const, which stands for constant and is similar in the scope scale, like

let. It is meant for elements that are never changing in value, it can only be instantiated once

with a value, and most importantly, it cannot reassign.

48

These new keywords would give out an error notice when the usage is outside of the outlined
specifications. With this new addition, the ES6 aimed to promote a more structured coding pattern
throughout the development process.

 A new way of coding

The ES6's most defining modifications are the cleaner solution to construct more complex coding
projects.

Figure 24. Spread operator example.

One of these expressions is the spread operator (…) or the rest parameter that gathers the

elements and combine them into an array. Figure 24 shows that the function toArray uses the

spread operator in the input parameter next to the elems parameter. This spread operator would

merge all the inputs into an array.

It is also possible to do the opposite to split the array and object parameter. This expression helps
the code block employ the specific variable immediately without accessing the array or object and
its index. In the example of Figure 25., the function takes in the array and splits it into two first
individual elements of a and b when the rest of the elements in the array are now in a rest

49

array. a and b are now can be called immediately exhibited in line 162 (Figure 25.) instead of the

traditional method of accessing through the array index.

Figure 25. An example of array destructuring.

Another unique expression is the arrow function. (Figure 26.) It is a short-handed syntax for the
function. The arrow function leaves out the function and the return keywords as well as the curly
brackets.[30] It is a more minimal method to write functions that would consume lesser code
lines, especially in layering callback functions inside the running function. The arrow function
works in conjunction with the new variable keyword const in promoting a superior coding pattern.
In line 167, the const declaration can apply to the function since the function's mechanism once
declared is mostly unchanged afterward.

Finally, the ES2015 offers the syntax for classes which have a background or reference for OOP.
Figure 27. describes a simple class of Pet with a constructor that receives a name and an animal.
The syntax is simple and bears a close resemblance to the OOP style in other OOP languages.

The expression update of the 6th ECMAScript is a turning point for JavaScript. The syntax and
variable keywords accommodate different coding styles and thus inspired a new range of
developers from different corners of the programming world to take up the language. Sadly, these
advancements are too cutting-edge for the browsers, and some browsers are just not as adaptive
as others. Therefore, this browser limitation has sparked the growth of the transpiler library, such
as Babel. This translation tool can take in any JavaScript version to turn the code into any version

50

of JS. Figure 27 is an example of a class declaration in the ES6 and a translated version of the
same code in the ES3 – the most supported JS version among the browsers.

Figure 26. The arrow function demonstration.

Figure 27. The ES6 class declaration and compiled code.

51

 Promise

The Promise is another meaningful innovation from the ES2015. It is the concept in response

to the asynchronous efforts from the popular usage of jQuery's AJAX calls and Node.js. The
Promise consists of two parts: the asynchronous action and the callback function after the first

asynchronous action is completed.[30]

Figure 28. A demonstration of the Promise function.[30]

In the an example of Figure 28., the function myPromise creates a Promise executor and would

process the "Producing Code" (line 185). myPromise would also take in myResolve and

myReject functions. These callback functions are to be executed based on the result of the

"Producing Code" which usually are time-consuming tasks, such as fetching data.

6.1.2 Annual updates

After the publication of the ECMAScript 6th version, JavaScript has grown beyond the influence of
the industry's forces. Most of JavaScript's most prominent library frameworks became open-
source–maintained and are developed mainly by the community on the Internet. This peaceful

52

development of JavaScript and its sub-branches products are not confined to any political
opinions. ECMAScript has since arrived annually, without much interruption.

The priority is developing more extending methods based on the community of JavaScript usage.
For instance, in the more complicated application with a more layered data scheme, there is a
need to have the array 'flatten'. The flatten method must be coded by the developer from scratch
or it must be taken out from a utility library, e.g. underscore.js. Despite their lightweight size,
these utility libraries require to be fully installed even if there is only a need for a couple of
methods. For this reason, the ECMAScript developers usually take note of the most used
methods to include in the official JavaScript for better performances, such as the
Array.flat() method debut in the ECMAScript 2021.[31]

Another improvement that ECMAScript frequently features in the annual updates is in the syntax.
With JavaScript being the most malleable programming language that caters to a whole range of
coding styles, the coding convention upgrade is as important as the functional ones. The
async/await syntax introduced in the 7th Edition of ECMAScript 2016 improves the Promise

function's readability and writability. [18]

6.2 Usage in non-web applications

JavaScript exists everywhere in the technology ecosystem. It has undoubtedly outgrown its
designated HTML markup script tag. While in newer ventures such as machine learning,
JavaScript is still in its early phase, with TensorFlow.js launched in March 2018.[32] In native
mobile and desktop development, however, JavaScript is relatively well-established, making the
'JavaScript everywhere' ideology going beyond web development.

6.2.1 Mobile development

The first framework to use JavaScript for native development is React Native – an open-source
application framework started by Facebook. The first release of React Native was around the
same time as Facebook's sibling product React in 2015.[33]

53

React Native has the same working principles as React, with the exception of DOM manipulation
through the virtual DOM. Instead of the index HTML file, there is a main.js file as the root place to
ignite the application from there; it followed the same nested JavaScript architect as React on the
web client-side.

Figure 29. A comparison between the React Native and web-based application process.

The main difference between React Native and React/normal JavaScript is the middleman
Bridge. The JavaScript React Native is interpreted and communicates to the native device system
through the middleman with serialized native modules, asynchronous data in JSON format, and
batch processing–a queue of jobs to be run in the background with the users' permission.

6.2.2 Desktop

The desktop application is made possible with the Node.js server runtime and Electron – a
JavaScript framework that renders the Graphical User Interface (GUI) with Google Chrome's
Chromium rendering engine.[34] Essentially, it used the minimalist version of Chrome, the
Chromium, to act as a mini browser in the desktop application to render the GUI and to handle
the client interaction while communicating to the server with Node.js.

React Native

Native System

Bridge

JavaScript

Browser

React Native Web based

54

7 CONCLUSION

Back from its creation date in 1995, the potential of JavaScript's success was dimmed. It was a
language that was crafted in ten days facing many limits and challenges that were not only
technical.

While reviewing the language's characteristics, JavaScript is a rich and flexible language with a
soft learning curve but powerful performance. JavaScript gave the developers the luxury of
building any application in any platform with their most comfortable coding styles. Its continued
flourishment expands the language to be more capable, more accommodating towards many
more generations of developers, and to conquer different programming fields.

Moreover, by going through the history, a comprehensive perspective of JavaScript’s evolution is
revealed. The progress of JavaScript appears both fortuitous and expected at the same time.
JavaScript started as a project backed by a large corporation, but it carried on even when the
supporting forces died out. Despite its questionable features in the early days, it is still the
foundation of many groundbreaking technology innovations. The language has single-handedly
transformed the landscape of webpage technology in the past decade. It gave rise to many
libraries and frameworks that, in turn, became the building blocks to many impressive software
projects. In the past 25 years of JavaScript, it has gone from a secondary choice to web-
programming to an absolute pillar of it..

JavaScript's widespread adoption and the contribution effort from the worldwide community of
developers has accelerated JavaScript's growth as a programming language. The JavaScript
language is a rare programming language which continually redefines its role, purposes, and
capability. It did the unthinkable jump to the server-side in the late 2000s and outlived its creative
purpose of a glue language in the front-end. JavaScript has also pushed to the native device
application in recent years, bringing a new dimension to the concept 'JavaScript Everywhere'.

55

REFERENCES

1. Web Technology Surveys. Usage statistics of JavaScript as a client-side programming
language on websites. Date of retrieval 07.10.2020.
https://w3techs.com/technologies/details/cp-javascript

2. Stack Overflow Insights. 2020 Developer Survey. Date of retrieval 08.10.2020.
https://insights.stackoverflow.com/survey/2020.

3. MDN Web Docs. What is JavaScript. Date of retrieval 10.10.2020.
https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/First_steps/What_is_JavaScript.

4. Tom McFarlin. What is JavaScript. Date of retrieval 10.10.2020.
https://code.tutsplus.com/tutorials/what-is-javascript--cms-
26177#:~:text=JavaScript%20is%20a%20high%2Dlevel,the%20server%2Dside%2C%20
too.

5. JavaScript.Info. An introduction to JavaScript. Date of retrieval 10.10.2020.
https://javascript.info/intro.

6. Uday Hiwarale. How does JavaScript and JavaScript engine work in the browser and
node? Date of retrieval 11.10.2020. https://medium.com/jspoint/how-javascript-works-in-
browser-and-node-ab7d0d09ac2f.

7. JavaScript.Info. Data types. Date of retrieval 11.10.2020. https://javascript.info/types.
8. JavaScript.Info. Prototype Inheritance. Date of retrieval 12.10.2020.

https://javascript.info/prototype-inheritance.
9. Cris Hanks. Classical vs. Prototypal Inheritance. Date of retrieval 13.10.2020.

https://dev.to/crishanks/classical-vs-prototypal-inheritance-2o5a.
10. Navneet Sahota. Why Functional Programming Matters. Date of retrieval 13.10.2020.

https://dev.to/navi/why-functional-programming-matters-2o95.
11. History-Computer.com. Mosaic Browser. Date of retrieval 14.10.2020. https://history-

computer.com/Internet/Conquering/Mosaic.html
12. Wikipedia. Netscape Navigator. Date of retrieval 15.10.2020.

https://en.wikipedia.org/wiki/Netscape_Navigator.

56

13. Gabriel Lebec. JavaScript: A History for Beginners. Date of retrieval 16.10.2020.
coursereport.com/blog/history-of-javascript

14. Sebastian Peyrott. A Brief History of JavaScript. Date of retrieval 16.10.2020.
https://auth0.com/blog/a-brief-history-of-javascript/

15. Wikipedia. JavaScript. Date of retrieval 20.10.2020.
https://en.wikipedia.org/wiki/JavaScript.

16. Martin Armstrong. How Many Websites Are There? Date of retrieval 20.10.2020.
https://www.statista.com/chart/19058/how-many-websites-are-there/.

17. Wikipedia. Ecma International. Date of retrieval 21.10.2020.
https://en.wikipedia.org/wiki/Ecma_International.

18. Wikipedia. ECMAScript. Date of retrieval 21.10.2020.
https://en.wikipedia.org/wiki/ECMAScript.

19. ECMA Standardizing Information and Communication Systems. ECMAScript Language
Specification 3rd Edition. December 1999.

20. Wikipedia. Browser Wars. Date of retrieval 25.10.2020.
https://en.wikipedia.org/wiki/Browser_wars.

21. Wikipedia. jQuery. Date of retrieval 26.10.2020. https://en.wikipedia.org/wiki/JQuery.
22. Wikipedia. History of the Web Browser. Date of retrieval 27.10.2020.

https://en.wikipedia.org/wiki/History_of_the_web_browser.
23. Kevin Millikin, Florian Schneider. A New Crankshaft for V8. Date of retrieval 30.10.2020.

https://blog.chromium.org/2010/12/new-crankshaft-for-v8.html.
24. V8 Team. Launching Ignition and TurboFan. Date of retrieval 30.10.2020.

https://v8.dev/blog/launching-ignition-and-
turbofan#:~:text=Crankshaft%20can%20only%20optimize%20a%20subset%20of%20the
%20JavaScript%20language.&text=TurboFan%20was%20designed%20from%20the,pla
nned%20for%20ES2015%20and%20beyond.

25. Wikipedia. Node.js. Date of retrieval 2.11.2020. https://en.wikipedia.org/wiki/Node.js.
26. Node.js Contributors. Introduction to Node.js. Date of retrieval 2.11.2020.

https://Node.js.dev/learn/introduction-to-Node.js.
27. Node.js Contributors. The Node.js Event Loop. Date of retrieval 2.11.2020.

https://Node.js.dev/learn/the-Node.js-event-loop.

57

28. Wikipedia. npm. Date of retrieval 12.11.2020.
https://en.wikipedia.org/wiki/Npm_(software).

29. Wikipedia. React. Date of retrieval 26.11.2020.
https://en.wikipedia.org/wiki/React_(web_framework).

30. W3Schools.com. ECMAScript 2015 – ES6. Date of retrieval 26.11.2020.
https://www.w3schools.com/js/js_es6.asp#mark_class.

31. ECMA Standardizing Information and Communication Systems. ECMAScript 2021
Language Specification. December 2020.

32. Wikipedia. TensorFlow. Date of retrieval 6.12.2020.
https://en.wikipedia.org/wiki/TensorFlow.

33. Wikipedia. React Native. Date of retrieval 6.12.2020.
https://en.wikipedia.org/wiki/React_Native.

34. Wikipedia. Electron. Date of retrieval 6.12.2020.
https://en.wikipedia.org/wiki/Electron_(software_framework)

