

Harto Kuukka

DEVELOPMENT OF PROJECT
MONITORING SOFTWARE

Bachelor’s thesis

Degree Programme in Information Technology

2020

Tutkintonimike Insinööri (AMK)
Tekijä/Tekijät Harto Kuukka
Työn nimi Projektinseurantasovelluksen kehitys
Toimeksiantaja Xamk Informaatioteknologian koulutusyksikkö
Aika marraskuu 2020
Sivut 51 sivua
Työn ohjaaja Niina Mässeli

TIIVISTELMÄ

Opinnäytetyön tavoitteena oli suunnitella ja kehittää sovellus, jolla voi seurata ja
hallita peliprojekteja. Työ toteutettiin Kaakkois-Suomen ammattikorkeakoulun
informaatioteknologian koulutusyksikön toimeksiantona peliohjelmoinnin
opiskelijoille sekä henkilökunnalle.

Teoria osuudessa käsitellään kehittämiseen käytetyt alustat ja ohjelmointikielet,
täsmentäen päätoimintoja, mitkä mahdollistivat lopputuotteen.
Suunnitteluosuudessa korostetaan responssiivisen webbisovelluksen tärkeydestä
nykyaikaisia käyttöliittymiä huomioiden.

Sovellusta kehitettiin ketterällä kehitysprosessilla. Ensin esiteltiin alustavaa
konseptia sovelluksen päätoiminnoista, tuntien kirjaamisesta, asiakkaalle.
Sovellusta lähdettiin rakentamaan toiminto kerrallaan, lisäämällä ominaisuuksia
aina niiden tullessa esille, vahvistamalla projektin suunnan ajoittain kokouksissa.
Sovelluksen siirtyessä tuotantoon, käyttäjien palautteen avulla sovellusta voitiin
optimoida vielä paremmaksi.

Opinnäytetyöllä tuotettiin webbisovellus. Hyödyntäen olemassa olevia
käyttötunnuksia, joita opiskelijat ja henkilökunta ovat käyttäneet, sovelluksella
pystyy kirjaamaan nopeasti projektitunteja ja seurata niiden etenemistä datan
visualisointityökaluilla, tukien projektiluontoista opiskelua. Sovellusta voi myös
potentiaalisesti laajentaa muihin koulutusohjelmiin.

Avainsanat: HTML, JavaScript, ohjelmistosuunnittelu, PHP, projektinhallinta,
tietokantaohjelmat

Degree Bachelor of Engineering
Author (authors) Harto Kuukka
Thesis title Development of Project Monitoring Software
Commissioned by Xamk Department of Information Technology
Time November 2020
Pages 51 pages
Supervisor Niina Mässeli

ABSTRACT

The objective of this thesis was to design and develop a software for managing
as well as monitoring game projects. The work was carried out for the students
and faculty of the Game Programming degree.

The theory section of this thesis covered the platform and tools used, the key
features that made the final product possible. The design aspect was also
discussed, the web application required to be responsive, clear and useable on
modern platforms.

The development process was conducted in an agile manner. First, a proof of
concept of the application’s main loop was demonstrated to the client. From
there, the app was built piece by piece, adding features as they came up and
having regular meetings to confirm fresh implementations and reaffirm the course
of the project. Once the software went into production, live feedback from users
was leveraged to optimize the product.

The result of this project was a web application accessible with the same login
credentials the students and staff already used, offering ease of access to submit
their projects and work hours, as well as supporting their project-oriented studies
with live data visualization tools and potential for expansion to other degrees
programmes.

Keywords: database management, HTML, JavaScript, PHP, project
management, software development

CONTENTS

1 INTRODUCTION .. 7

2 OVERVIEW .. 8

2.1 Xamk .. 8

2.2 Xamk Game Programming – Game Projects .. 8

2.3 Research Problem .. 9

2.4 Similar Thesis ... 10

2.5 Similar Software .. 10

3 PLATFORM AND TOOLS .. 10

3.1 Web Applications .. 10

3.2 JavaScript ... 12

3.2.1 Objects .. 13

3.2.2 Prototyping .. 13

3.2.3 jQuery ... 14

3.2.4 Asynchronous JavaScript ... 15

3.3 PHP & MySQL .. 17

4 DESIGN .. 19

4.1 Responsiveness ... 19

4.2 App structure .. 20

4.3 Dark mode .. 24

4.4 App communication .. 26

5 IMPLEMENTATION .. 28

5.1 Hour logging procedure .. 29

5.2 Flexible code... 32

5.3 Data visualization .. 33

5.4 AJAX in UX ... 40

5.5 Applied MySQL methods .. 41

5.5.1 Date & Time conversions .. 41

5.5.2 Partitioning .. 42

5.5.3 Case statements ... 44

6 RESULTS ... 44

7 CONCLUSIONS ... 47

REFERENCES .. 48

LIST OF FIGURES .. 50

ABBREVIATIONS

 AJAX Asynchronous JavaScript And XML

 CSS Cascading Style Sheets

 CSV Comma-separated values

 DML Data Manipulation Language

 DOM Document Object Model

 HTML Hyper Text Markup Language

 HTTP Hyper Text Transfer Protocol

 JS JavaScript

 PHP PHP: Hypertext Preprocessor

 SQL Structure Query Language

 UX User experience

 XML Extensive Markup Language

1 INTRODUCTION

Wells (2015, 2) defines a project as ”a onetime undertaking that will result in a

new product, event, or way of doing things. It will have a defined start and

finish— though a project’s duration could be anywhere from a few hours to many

years.”

Managing and monitoring projects without a dedicated system can be incredibly

convoluted. If workers are allowed to document their work hours into

spreadsheets in a free-form manner, the staff receiving, reading and managing

these project reports will end up with mountains of tedious (digital) paperwork.

Going through different Excel sheets or text files and checking for errors takes an

unnecessary amount of time from one’s already busy schedule. To make

managing teams and projects easier, businesses can, and often will, resort to

various services dedicated to handling these tasks. Applications such as Zapier

or monday.com offer tools to automate workflow and manage projects in quick

and easy steps. However, while many of these services provide a great deal of

customization, sometimes the best solution is software handcrafted specifically to

meet the organization’s requirements.

This thesis will cover a software for monitoring projects in an organization. The

software was developed for Xamk’s Game Programming degree. The thesis is

divided into the following core sections: defining development platform and tools,

followed by the design procedure including the theory behind it. After these have

been established, the actual developed software is reviewed and finally the

results of the produced application, how it has performed, what has been gained

from it and potential future development.

2 OVERVIEW

This chapter will go over the foundation of this thesis. The background of Xamk,

game projects at Xamk’s Game Programming degree and the research problem

that arose from them.

2.1 Xamk

South-Eastern Finland University of Applied Sciences – Xamk – is an institute of

higher education. Xamk stands as the fifth largest university of applied sciences

in Finland, with four campuses located in Kotka, Kouvola, Mikkeli and

Savonlinna. Xamk offers education in eight fields of study with over 70 degree

programmes. One of the degree programmes at the information technology

department of education (ITY) in Xamk is Game Programming in Kotka. (Xamk

2020.)

According to a survey conducted in 2019, graduated students rated Xamk to

have the best education in the field of Information Technology (Student feedback

for UAS at the graduation phase (AVOP), UAS qualification 2019).

2.2 Xamk Game Programming – Game Projects

The Bachelor’s Degree in Game Programming in Kotka offers an expansive array

of courses, covering multiple aspects of game/software development from

designing, testing, modelling to programming. GameLab learning environment,

located at the Kotka campus, offers industry-standard tools for students to enable

working on games and software at a professional level. One of the core

implementations in this degree programme is titled “Game Projects”. Throughout

the four years / 240 credits of the degree, students work on projects, developing

games and software either for themselves or in a lot of cases to a proper

business or a client. The goal is to build your portfolio with tangible work and

accomplishments during studies. On the education side, this is measured in

credits. A single credit equates to 27 hours of work, and the total required amount

of credits reserved for the game projects is 30, which in turn equates to 810

hours. Traditionally, students have to report their progress in increments of 75

hours of work or every four months. This is how the faculty is able to keep track

of everyone’s progress and yield credits in increments of 5, in other words for

every 135 hours of work. The 30 credits are divided into six Game Project

”courses”, which mainly serve as checkpoints to let the students know how things

are proceeding.

2.3 Research Problem

This thesis aims to explain the process of developing a web application for

project monitoring, define the tools and programming languages used and how

they have been utilized. The subject of database management will also be

discussed as well as the topic of data visualization. The end product will be

software that supports project-oriented studying and improves project monitoring.

Before, the game projects were handled utilizing the university platforms and

Excel spreadsheets or other methods of logging work hours. The issue with these

was that it was difficult for both teachers and students to know whether a student

was actively working on a project, what projects were going on, did anyone need

additional members for their team, and so on, excluding the handful that worked

on their projects at the GameLab. However, a great number of students preferred

to work remotely at home. The global epidemic of COVID-19 that pushed

everyone to work remotely in March of 2020 meant that following everyone’s

progress became even more sparse. To solve this problem, the development of a

custom project monitoring software was initiated. The requirements for this

application were to provide a simple and clean interface for users to manage their

projects and work hours with minimal clicks and hassle. It should be compatible

on desktop browsers as well as mobile devices (Android and iOS respectively).

The user (be it a student or a teacher) should not have to question what the

different buttons or input fields of the system mean and any action the user

performs should be followed by a response from the application that

communicates to the user whether their action has succeeded.

2.4 Similar Thesis

Aadamsoo (2010) wrote a thesis on web-based project management systems, in

which she found that being a programmer and a developer of a web application

for project management, in addition to writing code, it is important to understand

the client’s needs and analyse the requirements to design and develop a high-

quality product that meets their criteria. What she ended up with was a software

built on top of a pre-existing, open-source application called TRAC. Their solution

utilized Python programming language with PHP and HTML.

2.5 Similar Software

Researching into existing applications that would have achieved similar results as

the project monitoring software, the most prominent option was monday.com. An

application that offers a multitude of tools, widgets and integrations to manage

workflows and the ability to develop your own with Node.js. In the end,

developing an entirely new application was decided, removing any additional

costs that would incur from utilizing third-party software and licenses, as well as

retaining the ownership over any data and code in-house.

3 PLATFORM AND TOOLS

While this thesis will not delve into the intricacies of programming and how web

applications function, the following paragraphs will, however, cover some of the

base concepts and utilities of web services and JavaScript.

This project was largely done in Brackets, a lightweight, open-source text editor.

Originally established by Adobe as a community guided project for web

development (Brackets 2020).

3.1 Web Applications

The structure of a web application can be broken down into three layers: client-

side, server-side and database (w3schools). In this sample case (Figure 1), the

client makes an HTTP request to the server, a server returns an HTML file and

the browser renders the file on the screen.

Figure 1 HTTP Request

Of course, that is an overly simplified version of the process. Modern web

development is more flexible and dynamic. Instead of loading entire web pages

with every HTTP request, techniques such as AJAX are used to provide a faster

and better user experience by handling requests in the background without

requiring a full-page load (Joshi 2010, 67). For the software covered in this

thesis, the counterpart on the server-side for these AJAX requests is PHP

scripting language. The strengths of PHP lie in that it can output HTML while

keeping all the executed code on the server side, hidden from the client-side

(Figure 2).

Figure 2 PHP output to browser

If you were to view the source of the page on browser, you would be able to see

the HTML elements (<html>, <body>, <p>), however, nothing encased in

<?php?> will be visible on the client side excluding the contents that the PHP

code prints to the client with the echo statement.

3.2 JavaScript

JavaScript (later JS) is a lightweight, single-threaded scripting language widely

used for web pages, but also non-browser software as well. It contains features

such as object orientation, prototyping and much more (MDN web docs 2020).

This chapter will cover specifically the aforementioned aspects of JS as they will

become relevant later. Single-threaded means that JS executes each command

one at a time, in order. Computers in essence are machines waiting for the user’s

commands, execute the command and then wait for the next one. Programs are

a collection of commands, with a potential for the user to choose which command

to issue. Using the example seen in Figure 3. A user has opened a web page,

and on this web page a script is executed. First, it creates a Date object (objects

covered next), then extracts the day, month and year from it to separate

variables. Next, it checks if month and day -values are below 10, in which case it

adds a “0” in front of them (2 => 02). After this, the code creates a variable today

and forms a string (sequence of characters) as its value out of the previous

variables. And finally, it finds an HTML element on the page with the Id -attribute

“myDate” and grants it the value of “2020-09-11” (if the date in question was

September 11th 2020). To trail back to the concept of single-threaded

programming, while the web page is executing the code sequence above, it

would not be running any other scripts or functions on the page at the same time.

Figure 3 JS sequence of date object

3.2.1 Objects

Objects in programming are essentially capsules of predefined types of

information or functions. When the program creates an object, it generates an

instance of that object. (MDN web docs.) Using the example in Figure 3, Date() is

an object in JS that contains a number that represents the amount of time

elapsed since midnight January 1st 1970 UTC (Coordinated Universal Time) in

milliseconds. The Date object also has several methods that return the date or

specific elements of the date in a more readable format. In the example, the

various get- methods return the day (1-31), month (0-11) and year of that Date

instance. The getMonth() method returns a value between 0 and 11, 0 being

January and 11 being December. Therefore, to avoid confusing the user, the

month value is incremented by one in the above example. There are other ways

to display the date in a more readable format, which will be covered later.

3.2.2 Prototyping

All objects in JS inherit their properties and methods from a model of that object

referred to as a prototype. In a more traditional class-based language such as

C++, the properties and functions are declared in that class script, no new

functions or properties can be added to the class itself afterwards. JS is a more

dynamic language, through prototyping, it is possible to add new properties to

object constructors (MDN web docs). For instance, in Figure 4, new methods are

added to the Date prototype to return the week number, day name and year

based on the week number.

Figure 4 Prototype date

3.2.3 jQuery

jQuery is not a programming language itself, but rather an extensive JavaScript

library designed to make writing JavaScript more efficient. jQuery is a part of the

OpenJS Foundation, a community consisting of 32 open source JavaScript

projects (openjsf.org). Figure 5 demonstrates the effectiveness of jQuery

compared to standard JS. In that code snippet, the program creates an HTML

table element with one row and column, and places the contents within an

element with the Id “SampleID”. The difference in the amount of lines in the code

is evident.

Figure 5 jQuery example comparison

jQuery is easy to tell apart from standard JS. jQuery generally begins the selector

prompt $(), with the selected element or class defined inside the brackets as a

string (such as ”input[type=’text’]”). While a great deal of code in this particular

project has been compressed to use jQuery, there still remains some traditional

JS.

3.2.4 Asynchronous JavaScript

As established, JS is single-threaded. Each task in the program has to finish

before the next one can run. Generally, this works fine, computers are fast

enough to calculate some numbers and create HTML elements on a web page

without hindering the user experience. The problem arises when the program

tries to load an image or connect to a server, tasks that may take a bit longer

than a couple of milliseconds. JS being single-threaded means that the web page

is blocked from doing anything else until the task of loading the image is finished.

To combat this problem, browsers are able to run certain operations

asynchronously. An example of this is the Promise object. A Promise essentially

represents the eventual completion or failure of an operation. It allows the user to

continue with other activities on the page while the browser waits for the Promise

to return its result in the background. (MDN web docs.)

To enable asynchronous operations on a function, the prefix “async” must

accompany the function declaration.

function Test() { => async function Test() {

As an example, we can look at Figure 6. The previous Demonstration function

has been altered to be asynchronous. In between the printing of ”Sample cell 1”

and ”Sample cell 2”, there’s an arbitrary delay in the form of a waitForMe()

function. The waitForMe returns a Promise in which the program waits 2 seconds

using the setTimeout() method. In a browser, ”Sample cell 2” appears 2 seconds

after “Sample cell 1”, during which the user can engage with the other features of

the page. The await operator is used here to achieve the delay properly. The

await pauses the asynchronous function until the Promise is resolved.

Figure 6 async wait example

Again, the Demonstration function requires the ”async” prefix, otherwise trying to

run the program yields an error (see Figure 7 below).

Figure 7 async syntax error

3.3 PHP & MySQL

PHP is an open source, server-side scripting language, programmed in C. To

quote Andrew Caya (2018, 82): “PHP 7 is in itself a major optimization” from his

book on Mastering the Faster Web with PHP… Where it is said that version 7

was significantly rewritten to run faster than previous iterations. The accessibility

of PHP makes it one of the top languages for web developers (Joshi 2010, 21).

PHP, similar to JS, is a fairly loose language, meaning that variables can be

declared without specifying their type. In C++, you would declare an integer with

the “int” identifier or a string variable with “string”. While on PHP you simply

declare a variable and the type is more based on what is on the right side of “=”

(see Figure 8).

Figure 8 PHP variables

As a result, PHP acts as an efficient intermediary between the client and the

server, quickly processing the data client submits and responds back. PHP,

designed as a server-side language, contains effective methods to scrap

unwanted content from the submitted data and prepare query statements for

connecting to the database.

Databases are collections of data, recorded facts of implicit meaning. These days

databases are practically essential, as most of our daily activities rely on having

access to a persistent storage of data. Be it for logging in to email or bank

account or to get your saved data on a mobile game. Database systems are

computerized repositories of data files. Users are able to do requests to the

system to perform various actions such as add new data, update existing data

and so forth. These are done through Data Manipulation Language (DML),

commonly known as queries. Programs can communicate with databases using a

multitude of query languages, depending on the system used. One such

language is SQL or Structured Query Language. A factor that may play into

SQL’s and its many derivatives popularity is the ease of use. Many commands

resemble spoken English, making it very human friendly. (Vidhya 2016.) One of

the derivatives of SQL is an open-source relational database system called

MySQL, which is what the backend of this thesis utilizes.

Here are some examples of MySQL’s syntax:

Let us say we have a DB table called “Sample_table” with the following structure

seen in Figure 9.

Figure 9 Sample database table

In relational databases, data is stored in the form of tables. A table comprises

columns and rows, the columns are defined during the creation of the table

though they can be altered after the fact. Each column requires a name and a

data type. For example, in the sample table above, the id column could be an INT

or integer type, while the ex_name column could be a VARCHAR(255) type.

VARCHAR stands for a variable-length character string where the length of the

string is defined in brackets. In the case of VARCHAR(255), the row in the

ex_name column can have a maximum of 255 characters. (Vidhya 2016).

To retrieve data from this table, a SELECT query must be performed. Figure 10

demonstrates the syntax for the SELECT statement.

Figure 10 SELECT query

The * means that you are selecting all columns from the table, however, it is

possible to select specific columns as well (e.g. “SELECT ex_name FROM

Sample_table;”). FROM is required to state which table the data is retrieved from.

The semicolon indicates an end of the statement. Additionally, it is possible to

provide extra clauses to the statement to perform more specific queries. This is

referred to as the WHERE clause. To expand the Sample_table query, in Figure

11 we request the ex_name column of all rows from Sample_table where the id

column value is below 100. In later chapters, there will be more advanced

MySQL statements, but the basic structure of the query remains the same:

• DML command (SELECT, UPDATE, INSERT, etc.) clause

• FROM clause

• WHERE clause

Figure 11 Sample table query with where clause

The server-side code snippets used in this thesis for PHP and MySQL are not

direct examples of the developed project for security reasons.

4 DESIGN

This chapter will cover the design aspect of web development from picking the

colour choices to the layout of the various elements.

4.1 Responsiveness

When designing a web application, the word responsive is typically one of the key

requirements. Websites are accessed through a multitude of different devices, of

a variety of different sizes. There is no one standard screen size. Neither is there

one standard method of interacting with the site. A web app should accommodate

both mobile and desktop users, and have an interface that suits the input

methods available to those devices. Keyboard and mouse for the computer, and

touch controls for mobile devices respectively. The recommended design

philosophy, referred to as mobile-first, often yields more appealing results than

the alternative. That is due to the single restraint it imposes: keeping it simple.

With the more limited screen space available on a mobile, the designers are

forced to remove all unnecessary clutter and focus only on the essentials. (Carlos

& Carols 2013.)

4.2 App structure

While a mobile application was on the docket for the requirements of this

software, it was clear from the beginning that it would be a more trimmed version.

This is a software where the main operations are submitting data and then read

tables of the submitted data. It was important to establish which features are the

most essential to be functional on a mobile screen, and those would be at the

centre of the design process.

Figure 12 shows the position of different elements on the Log hours page, where

the darker container is the prioritized content. The top and bottom rectangles are

the header and footer sections used for navigation on the site and to access

Figure 12 Mobile layout of Log page

other universal features, while the lighter grey box in the middle is free space the

main content can leverage.

To compare it to the desktop view in Figure 13, the main content takes full

advantage of the extra screen space, some extra features are revealed on the

right-side bar and the navigation tools are taken out of the footer and menu icon

and laid out on the header. The structure of the page reflects this design

mentality, at the root of the body on every page are containers for header,

content and footer. The content has its width property set to 100%, meaning it

takes the entire width of the window, this allows all the child content inside it to

use the parent width as a reference point.

Figure 13 Desktop log page

Figure 14 demonstrates the parent-child method of handling content layout. The

admin page has many functions, each separated into small boxes which

themselves are placed into containers that have a width of 30% relative to the

parent content, with a minimum width defined in pixels. This results in a grid-like

layout with a bit of space between each column. The minimum width is there to

prevent the columns from grouping too closely together. This uses the flex

display property, with the flex-direction being ”row”. The flex results in each direct

child element within the flex parent to be positioned next to the previous without

having to fiddle with exact measurements. On mobile, the rows take 100% of the

screen width, instead of this multi-column structure on a single screen the

interface takes the form of a swipe left and right to navigate between them.

Figure 14 Admin page layout

The projects page, where users can view their own projects, create new projects

as well as view all active projects that others have created and apply for them,

the overall layout is largely the same on any device, shown in Figure 15.

Figure 15 Projects page layout (general)

There are three tabs: All projects -tab, Create New -tab and Your Projects -tab.

Clicking these tabs toggles which content is shown below them. On a wider

screen, however, Your Projects -section is detached from the main content and

aligned to the right of it (Figure 16). As that particular section contains information

about your projects, having it on the side, while you are creating new projects or

applying for someone else’s, is a convenient addition, allowing the user to view

two tabs at once.

Figure 16 Projects page layout (wide screen)

The project approval page and log history page both share a similar function:

viewing data in a table format. As a result, the layout on these pages is largely

the same, just slightly different form of content.

To reiterate, the goal was to define universal CSS classes that could be used on

any page and achieve the same result. For ease of development for any current

or future developer of this software, a stylesheet reference was created. This

reference document essentially lists all the classes and styles that can be used

anywhere, describing which stylesheet to find them on and what each class

achieves, organized by their stylesheet and context.

4.3 Dark mode

In addition to mobile-first, another thing to consider on the design is who the

primary user group is going to be. The Project Monitoring Software is geared

towards game programming students, of which a large portion are gamers. One

common factor in both of these groups is the preference for darker backgrounds,

“dark mode” as it is colloquially known. Dark mode is a theme used in various

applications. Its primary indicators are bright coloured text on a dark background,

the stark contrast to this is known as “light mode”: white background, black text.

Dark mode has become increasingly more popular in the past decade. Most

applications allow the user to toggle between these two modes, but some of the

more popular apps have dark mode on by default, examples of these being the

movie and TV show streaming service Netflix, music app Spotify, PC’s largest

video game digital distribution service Steam and the ever-growing instant

messaging app Discord. The appeal of dark mode is in that it looks sophisticated

and stylish. Eyes are more drawn to highlighted, vibrant content against the dark

background than they would be against the white background. A study conducted

by Aleman et al. (2018) on reading and myopia suggests that reading black text

on white background for prolonged periods of time may risk myopia, while

reading in dark mode might inhibit myopia. Myopia, also known as near-

sightedness, is a condition where the eyes struggle to focus when looking at a

long distance. Bright, white screens may also be quite straining for the eyes. A

Harvard Health Letter (updated in July 2020), though largely focused on the

effects of blue light, states that exposure to bright lights in the evening may

hinder sleep.

A small query was conducted on the game programming students of Xamk on

their preferred theme of choice regarding Light mode and Dark mode for the

common applications used in this field of study. These applications being

Microsoft’s Visual Studio and Teams, Brackets, Discord as well as YouTube was

added for good measure. The results indicate that upwards of 90% of the

students and faculty in Xamk Gamelab use Dark mode for Visual Studio and

Discord. Discord has this on by default and Visual Studio, upon launching it for

the first time, displays a theme selector, which likely factor in why those two, in

particular, had high dark mode usage. Roughly 70% use Dark mode on YouTube

where the toggle for the two themes is displayed under the user’s profile picture

(Figure 17). Teams and Brackets had around 50-50 results. What could be

surmised from this query is that the more effort the user has to put in to change

the theme of an application, the less likely they are to do it. Additionally, Visual

Studio is used significantly more than Brackets (a code editor designed for web

development), which also played a part in users adjusting the visual presentation

of the software to their liking.

Figure 17 YouTube dark theme

To adhere to these modern design concept, the project monitoring software was

designed with a darker colour scheme from the beginning (see Figure 18).

However, it is not as pitch black as some other popular platforms to be suitable

for usage in daytime, but still to be easy for the eyes for those who log in their

work hours late at night. The background colour on the bottom layers is generally

darker than the lighter grey elements containing information for the user to

interact with.

Figure 18 Project Monitoring Software design - background colour scheme

4.4 App communication

Applying the concept of drawing a person’s attention to brighter containers on

dark layouts. The lighter grey containers generally emit a shadow over the darker

background, lifting them off the layout to further pop them out. Input fields then

revert to the darker tone to highlight the white text in them. On the project

monitoring interface, buttons and dropdown selectors portray a bluish colour. All

button instances that submit a form, such as a new project or a work hour

submission, are located on the bottom right corner of their respective containers

for consistency. The reason for this decision is that typically, the text is read from

left to right, from top to bottom. The submit button being located at the bottom

right corner creates a natural flow to filling up a form. The common colour

associations of green = positive, red = negative and yellow = danger. When a

project is active, it has a green “Active” as a status, indicating everything is ok.

The initial pending status for projects has yellow, meaning it is waiting for

approval. Red is reserved for “Rejected” status, something about the project has

not met the correct criteria

and thus needs to be fixed. Similarly, an admin can observe when the users last

logged in their hours (Figure 19, names left out for privacy reason),

and on this list, the colour of the text is highlighted in different colours based on

how many days it has been since the last log:

• Green – logged hours today.

• White – logged within the last 3 days.

• Yellow – logged within the last 3-5 days.

• Orange – logged within the last 6-7 days.

• Red – it has been over a week since the user last logged in work hours.

With this, the admin (teacher) can get an overall picture of students’ activity with

a quick glance at the list, and if needed, notify those in red. The web application

colour scheme was handled by Oiva Kytömäki, another student at Xamk who

also handled the mobile design under the author’s supervision. The colours were

picked utilizing an online tool called Coolors. Coolors can generate colour

palettes, with tones complementing one another (Bianchi 2020). Figure 20

displays the colour palette of the project monitoring software’s interface,

excluding the grey colours used for the containers and background. The six-

figure codes at the bottom of each colour represent the hexadecimal value for the

colour which can be implemented into CSS and HTML.

Figure 19 Last log date

Figure 20 Coolors palette

Layout-wise, the design mentality of the software is that on desktop, the users

have access to the full features of each page, with certain elements adapting to

the extra screen space. To use the earlier example of Figure 18 of the log work

hours template, the Description column stretches out the longer the window is

5 IMPLEMENTATION

Next is the practical application on the programming side of development.

Concepts mentioned in chapter 3 will be applied in practice.

The combination of AJAX and PHP allows the usage of different PHP files as

methods or objects in a way. Figure 21 contains a sample code of this usage. To

break it down line by line, firstly an event listener is created when the page

finishes loading, this event triggers when the Submit Stuff form is submitted. By

default, when a form is submitted on a web page, the page redirects to a new

page or to itself if no specific page is declared. This is referred to as a form

action. The .preventDefault() method stops this action, allowing the custom form

handling to proceed. In this example, a value from an input field is inserted into a

variable stuff_value. The program performs a POST request, sending the data to

the server, loading a php file ”make_stuff”. This file would get the submitted stuff

value, perform some validation methods to make sure the value is safe, follow-up

with a sort of query based on the value and return the results in a readable,

HTML format such as a table. This sequence can be made into a function and

thus would be usable on every page without repeating the same lines of code.

The make_stuff.php file would also need to verify that when it is requested, there

is a valid form submission from a logged-in user, otherwise, it should ignore users

trying to access it.

Figure 21 Example of post stuff

5.1 Hour logging procedure

The default location a student is directed to when signing in is the log hours page,

as it is the most common action students would perform. The page was given a

prerequisite however: having at least one active project. If the user who is trying

to access this page doesn’t have any active projects to their name, they are

directed to the Projects page instead where they may create new projects. Figure

22 expresses the flow of this sign-in process.

Figure 22 Sign redirection

Once the user has created a project and the project is approved, the log page

can be entered. The app will request a list of the user’s projects, setting the one

with the most recent log entry as the default selection. Additionally, the date and

the description from that last entry will be displayed on a hoverable field for the

user to quickly check their recent activity. The table where the user can log hours

has a row with most of the columns prefilled with default values: current date, a

starting time of 8:00, a thirty-minute break and an end time of 16:00. The break

time can alternatively be the most common break time of the user, if such a value

can be calculated from the user’s existing entries. The date field is limited to only

allow dates between current day and 7 days back from it. This was implemented

to encourage students to log their work on at the very least a weekly basis.

Functionally this was implemented both on the HTML input field’s min and max

values as well as in JS. When the user unfocuses the date field, a function is

called to check the date, if it is not within the parameters, the date is set to

current date. Focusing out of the time fields on the other hand updates the total

sum of hours from the table, which is displayed above it.

Adding new rows on the table can be done either by clicking a button assigned to

that function, or via a keyboard shortcut Alt + A. The new row will either

increment the date field by one day or if it were to surpass current date, remain

the same. Rows can be deleted in three ways: removing the last row either by a

button at the end of the table or by Alt + Z shortcut, the third method removes a

row via an X-button at the end of said row. These particular key combinations

were chosen due to the standard Ctrl + A/Z already have common functions

across most software. However, Alt key did not have any shortcuts with the

aforementioned keys in browsers. “A” was used for the add command by first

letter association. In similar vein to Ctrl + Z undoing your last action, Alt + Z

undoes the last row.

All fields must be filled to be able to submit the hour logs. The submitted logs are

validated on the PHP-side and the total hours are calculated there as well. The

server will insert these into the database, logging the submission date as well.

Figure 23 visualizes this procedure.

5.2 Flexible code

When writing efficient code, one should consider if it can be used for one than

one purpose. The project monitoring software has many instances of this. To

examine a few cases, a simple starting point is the pop-up window which is used

for user profiles and project details. The same event handler mediates which

content to load on the pop-up window depending on context, these being clicking

a username or a project name. The draggable windows all start from the same

function, having a window that the user can drag by clicking and holding the top

of the window like most application on computers, and an X-button in the corner

to close the draggable window. Then the specific content is loaded into this

draggable container.

Figure 23 Log work hours - use case

In another case, users can define tags for their projects (such as an application, a

game or C++), who or what is the client as well as roles that the user has had in

projects (a programmer, a designer and etc.). These three categories are

predefined by the admins and functionally it is done using the same method

depicted in Figure 24. If a page utilizes a list of names multiple times, it would be

unnecessary to load said list of names from the server multiple times for different

purposes.

Figure 24 Tags, clients and roles - use case

A few instances allow the user to edit their content. Once again, the context of

what is edited differs, but the same framework is used to handle these functions.

A global edit mode is toggled when the user clicks the appropriate pencil icon,

what they do afterwards depends on the page.

5.3 Data visualization

One of the major benefits of the project monitoring software is the utilities of the

collected data, for both the students and faculty. It can be used to gauge how

actively students work on projects and when as well as to view overall progress.

The data helps teachers know if students are falling behind on their projects.

However, all these utilities and more can be difficult to read in raw form. A table

with raw names and numbers requires more focus and time to comb through, and

that is where the aspect of data visualization comes in. As the main purpose of

visualizing data is to make it simple, quick and intuitive to understand (Thomas

2015).

For instance, a user can view from their profile their total hours worked on

projects and how far they are from the next five credit threshold, shown in Figure

25. As students are aware that five credits equate to 135 hours of work, they

could calculate from 805 hours where the next threshold is, they could also figure

it out from the percentage number given. However, it is more likely, before

they’ve read either number, that they’ll take a second to look at the pie chart and

immediately know that they will reach the next threshold soon.

Figure 25 User profile pie chart

The prior example is in aid of students. Figure 26 displays the average work

amount per weekday over the course of a month for three groups. There are

many ways to adjust the chart data, from total hours per group or by average,

projects by specific tags such as Game Jam projects, grouping the chunks of

data by day, week or month. And in time of writing, available chart formats

include line and bar charts, but to compensate there is the option to download the

chart data in CSV format to open on other applications such as Microsoft Excel. A

user can use the chart feature to view their progress over a course of time,

compare it to their group’s average or to the most active user also referred to as

the ”MVP” of the group or Most Valuable Player in gaming terms. A student can

include themselves in the chart legend but others are displayed anonymously in

groups.

Figure 26 Weekday bar chart

These charts are made with plain CSS and JavaScript. The pie chart consists of

three DIV-elements. The parent is an empty circle, done by giving the element

100% border radius. The fill portion of the pie is achieved with linear-gradient

background-image -property. The linear-gradient() function creates a background

of two or more colours (Figure 27 shows a gradient between red and green). It is

also possible to define the direction of the gradient as well as the stop positions

for the colours, which is the solution to the pie chart.

Figure 27 Example Linear-Gradient

By stacking multiple linear-gradients of which one has 50% grey (the empty area

of the chart) and the other 50% transparent, and the second gradient is 50% fill

colour and 50% grey, modifying the direction of the second gradient in degrees

results in a slice of the pie capable of filling up to half of the chart. Adding a third

gradient of the fill colour makes it possible to fill the rest of the pie. How much of

the pie is filled needs to be calculated. We know the maximum hours and the

angle of the circle (135 hours and 360°) as well as the current number of hours

the user has by getting the remainder (% -operator in programming) of the

current hour value out of 135. Using the example in Figure 25, the calculated

result from 130 current hours (remainder of 805h) would be about 346°. In the

CSS style, another 90° is added to it to set the starting point of the fill to the top

(at 12 o’clock). The code checks if the value is over 180°, and if so it creates a

second slice to fill the second half of the chart by taking the remainder of the

[result divided by 180]. For the final angle of this second result, the program

subtracts 90° to set the starting point to the opposite side of the first half, resulting

in a two-colour pie chart created with plain CSS, JavaScript and math.

The line and bar charts utilize more complex functions, consisting of far more

data and requiring to be significantly more flexible. Line chart essentially forms of

a two-dimensional grid, the y-axis portraying a more fluctuating value while the x-

axis has a more constant unit such as time. The four key values needed for the

line chart were the x and y coordinates, the width of the line from those

coordinates to the next and the rotation angle between the two points.

Figure 28 Line chart with trigonometry

The designing for the chart system began by sketching a coordinate axes and

calculating the angle between two points using trigonometry (shown in Figure

28). Before any calculations could be done, the zero points needed be defined.

Thought the chart displays hours on the y-axis and days on the x-axis, the actual

measurements in the code are in pixels. When the program acquires the data for

the chart, it first iterates the contents to figure out what the minimum and

maximum dates as well as work hours are for the current chart, providing

reference points for the draw function. The query provides the data in order by

date, so in the code we can simply get the first and last entry as the minimum and

maximum points on the x-axis. The coordinates for each point are calculated with

taking the offset width/height (depending on axis) and in the case of the y-axis

subtracting the result of the current hour amount times the offset height divided

by the maximum hour amount, applying the system of equations theory. The

sequence is better visualized in Figure 29.

Figure 29 Point position calculation in chart

The x-axis calculates the position of a point with some additional variables. For all

the calculations, the date values are converted into single numeric values using

the .getTime() method of the Date() object. The y-axis always has 0 as the

minimum value, however, dates cannot follow the same formula. Instead, to

calculate the max point as all as the current date value in relation to 0 as

minimum, the code subtracts the minimum date from them and divides the result

by a single day. Having calculated the x and y points means the code can

perform the operations for rotation and width. For the rotation angle, the inverse

trigonometric function arctan (or atan in JavaScript) is used by taking the

difference of the next y point and current y, divided by the difference of the next x

point and current x. The Math.atan() method yields the result in radians, therefore

to get the angle in degrees, it is multiplied by 180 and divided by Pi. The width of

the line equates to the C side of the triangle in Figure 28, in other words the

hypotenuse of a triangle, calculated with the following equation:

𝑤𝑖𝑑𝑡ℎ = √(𝑥𝑛+1 − 𝑥𝑛)2 + (𝑦𝑛+1 − 𝑦𝑛)2

With the calculations done, the program can insert these four values (x, y,

rotation and width) into the style attributes of the HTML created to visualize the

point on the chart. The y is applied to the top property in pixels (px), x goes to the

left property in px. A child element is created for the point which is given the width

in px. The last value, rotation is assigned in degrees (deg) to the transform

property using the rotate() CSS function. The point is visually represented by a

small circle, therefore a separate element is created underneath it to act as the

line. The end result is demonstrated in Figure 30.

Figure 30 Line chart example

Each chart query is temporarily stored on the page in an object array, allowing

the user to review them without having to request the data again from the server.

The past queries are represented as buttons below the chart form section.

Toggling the edit mode on allows the user to rename these for clarity, as show in

Figure 31. The yellow background on the edit icon indicating that edit mode is

active, during which hovering over one of the stored charts buttons enables

editing the text on them.

Figure 31 Stored charts

These stored chart queries are also used for the slideshow mode available on the

page. Activating this mode hides all the UI from the screen, displaying only the

chart itself and its legend. The program will then start drawing the charts found in

the stored charts array, changing the chart in 10 second intervals. Pressing any

key will end the slideshow and make the interface visible. The purpose behind

this small feature was to provide an automated way to display data.

5.4 AJAX in UX

As it were, the function described above drew the entire chart instantly. To make

the process of drawing a chart more enticing and “cinematic”, the draw function

was given the async declaration. At the end of a loop when iterating the chart

data, an await method is called, waiting for the current line to draw before

continuing the loop. The line is a DIV element with an animation defined in its

CSS class. The animation transitions from 0% width to 100% width, creating the

sense of being drawn from left to right. What is described here is related to the

user experience (UX) of the software. Hodent (2014) aptly defined UX as the

feeling the targeted user gets when they interact with the software. As computers

execute code in very rigid and near-instant manner, the use of animation and

other visual cues is implemented to give the user feedback on their actions.

Ideally these responses would be snappy, for example if a transition from one

menu to another is slow the user may get frustrated and quit. In the project

monitoring software, when HTML tables load they have a quick fade-up

animation to appear as if they loaded up. When the user updates their entries or

project details, the edit window was given a progress bar at the bottom which fills

when the user clicks “Update”, the bar itself serves no actual functionality, it is

merely there to tell the user that their changes are being made, using an async

method it closes the pop-up window once it finishes. The charts page, however,

was more of a tertiary feature, not essential to the core loop of the application, so

it can be afforded a longer animation sequence. Creating a feeling of a

competition of sorts as different colours simultaneously race to the finish line and

perhaps improving the user experience.

5.5 Applied MySQL methods

The project monitoring software’s functions largely weigh around the information

the database can provide. The data is handled on the client side, server side and

database side in different ways.

5.5.1 Date & Time conversions

Being an application for logging work hours, a good bulk of the data is in date and

time units. MySQL offers a large variety of methods to format datetime queries.

The value in a time field in a data table is in the form of “HH:MM:SS”, but in

queries it is possible to format the result in the desired way. For example, to get

the sum of a collection of work hours, the SUM() function can be used. However,

the raw sum of a collection of time columns doesn’t produce accurate results. To

get the accurate sum of time columns, let us use a sample table TimeExample

with a TIME type column Worked_Time. If there was a total amount of worked

hours equating to 819 hours when including minutes. A query requesting

SUM(Worked_Time) would yield a seven-figure number of unreliable amounts. A

query SUM(HOUR(Worked_Time)) requesting the sum of hours specifically

would yield closes to the true value, in the example table printing “805”. For the

result to include the minutes, one solution was to use a combination of

SEC_TO_TIME and TIME_TO_SEC functions. Using the example case, in a

query HOUR(SEC_TO_TIME(SUM(TIME_TO_SEC(Worked_Time)))) the request

first converted the Time values it found into seconds (TIME_TO_SEC), followed

by a calculation of the sum of these values (SUM). This sum of seconds would

then be converted back into a TIME type (SEC_TO_TIME) and the final output

would be the hour part only (HOUR), which in this case would be 819.

Displaying these TIME entries in specific chunks, for example in hours per month,

at the end of the SELECT statement a GROUP BY command can be included,

grouping the rows of the result by the specified parameters. Say this example

table had a column for the date of the entry, let us call it “Entry_Date”, the

grouping by months would be “GROUP BY DATE_FORMAT(Entry_Date, ‘%Y-

%m’)”. DATE_FORMAT function takes a DATE type value and changes the

output of it to the format given in the parenthesis, in which “%Y” refers to year

and “%m” refers to month. The result of the query would separate all entry sums

as rows by the year and month.

5.5.2 Partitioning

In some cases, the data might be requested in increments over time, each entry

adding up to one another. One solution to this is the use of partitioning. The

PARTITION BY clause, similar to GROUP BY, partitions the rows into groups, the

functional difference is that it is utilized within the SELECT statement via the use

of another clause called OVER, which is used to define the method of partition.

The OVER clause is needed here as otherwise the entire table would be

considered as single partition. (GeeksforGeeks, 2019). To build on the example

table, if the table would also contain a column called “User_Class” with rows such

as “2B” or “9S”, the partitioning could be stated as SUM([the select sum

statement]) OVER (PARTITION BY User_Class ORDER BY Entry_Date) FROM

TimeExample [conditions].

The previously made SELECT statement needs to encased in another SUM()

function to properly include the previously partitioned rows. The results of the

example would be like in Figure 32.

Figure 32 Partition Query result

To query the progress of work from a specific timeframe while still accounting for

hours submitted prior to that timeframe, the partitions were added to a sum of

hours that predate the timeframe. This however required a null check, otherwise

if there were nothing to add up to, the entire result would be null. Fortunately,

MySQL has a function for this; the IFNULL(). This function takes two parameters,

being the expression to check and the alternative value to return if the expression

yields null. In the example this value would be 0. The completed query can fetch

data and with it, for example, draw a graph to represent the progression of a

student’s work as seen in Figure 33.

Figure 33 Progress chart

5.5.3 Case statements

CASE is a statement similar to an if-else in other programming languages, where

specific conditions are addressed and if these are met, results are produced.

Developing the table structure from the example above even further, suppose

these worked hours all correlate to projects that they are linked to. The projects

would be in their own table, Projects_Example. Multiple students could be linked

to a same project, needing their own instance of the project, sharing some of the

same details, while having other distinct ones. If a project member wanted to

update some parts of the project unique to them while also updating some shared

data such as the project’s name, a query to update utilizing a CASE statement

could be used in the following manner:

UPDATE Projects_Example SET [the unique column name] = CASE

WHEN [project member column name] = [this member’s name or id]

THEN [new or changed information]

ELSE [unique column name]

END, [shared column name] = [updated or changed content]

WHERE [conditions to apply only to this group’s project entries]

To break down this query, the entries to be updated in the Projects_Example

table are defined in the WHERE part. Of these entries, the unique column is

updated only to the user who is making the query, the ELSE portion makes sure

that the unique column for the other project members is left as is. An alternative

would be to update the shared column and unique column in separate queries,

but with CASE it can be done in one go.

6 RESULTS

The project monitoring software was put into production in September once all

game programming students had resumed their studies and began to work on

their projects again. With this particular userbase, trained to find and report bugs,

helpful feedback quickly accumulated and were handled to with fast response

times, whether they were bugs or feature requests. The application and its data

have made it possible for the teachers to keep track of students’ activity regularly,

especially during the remote working periods of 2020.

The results of the user experience survey suggest that most of the userbase feel

the project monitoring software to be an improvement on the previous system,

finding the new system easier and more coherent, with everything related to

projects being in one place as well as offering live data and automation on some

functions. More importantly the survey allowed for freeform feedback, as

unfiltered criticism and requests lets the developer know what the software could

improve upon to achieve a better user experience.

The software has received small updates throughout the Fall period, adjusting to

the feedback. The designs for a larger update have already begun as well as

training the future developers for this instance of the application, with plans to

make it even simpler and more efficient. Figure 34, Figure 35 and Figure 36 show

how the new interface would transition between mobile, tablet and desktop

layouts.

Figure 34 New Mobile layout

Figure 35 New tablet layout

Figure 36 New Desktop layout

7 CONCLUSIONS

This project offered a great opportunity to develop a software at a full-stack level

from start to finish, delving into each aspect of software development. Initially

most of the frontend code was written with basic JavaScript methods, but

gradually, as jQuery became more and more familiar, the code evolved into more

efficient and cleaner solutions. Some of the earlier implementations were updated

or changed later on as new techniques and features came up. When the task of

creating the charts feature was on the table, initially a pre-existing JS library,

Chart.js, was experimented with. This library was quite expansive and neat

visually, however in the end I found it more convenient and beneficial on an

educational level for myself to write my own chart drawing code.

From the development perspective, being largely a one-man undertaking, this

was developed in a very agile way. Creating incremental minimum viable product

pieces, continuously evolving the application as feedback and new ideas came

in, not holding onto a strict design document. This meant that the documentation

was rarely up-to-date. An alternative that was used was a weekly update channel

on a Microsoft Teams group for the project, where new features and major

changes were explained on a weekly basis. Additionally, having thorough commit

messages for the GitHub project daily created a well-documented timeline for the

development.

The main goal of this project was to create something that would improve the

project-oriented studies for both the students and the teachers alike, accessible

from anywhere. Based on the feedback received from the users, I would say this

goal was achieved, however it doesn’t mean the work is finished. In due time,

whether it be by my hand or any future developers, this software might go

through a complete overhaul, as it can and will continue to be improved until it is

the best that it can be. As the execution methods for these project studies evolve,

so should this software.

REFERENCES

Aadamsoo, A.M. 2010. Web Based Project Management System. Thesis.

Available at: https://www.theseus.fi/handle/10024/16996 [Accessed 7 October

2020].

Brackets. 2020. Brackets – A modern, open source code editor that understands

web design. WWW document. Available at: http://brackets.io/ [Accessed 16

September 2020].

Coolors. 2020. Fabrizio Bianchi. Available at: https://coolors.co/ [Accessed 28

September 2020].

Carlos, G., Carols, G. 2013. Responsive Web Design with jQuery. Ebook. Packt

Publishing, Limited.

Education Statistics Finland. 2019. Student feedback for UAS at the graduation

phase (AVOP), UAS qualification. Available at: https://vipunen.fi/en-

gb/_layouts/15/xlviewer.aspx?id=/en-gb/Reports/Ammattikorkeakoulutus%20-

%20opiskelijapalaute%20-%20AMK%20-%20ohjauksen%20ala_EN.xlsb

[Accessed 14 September 2020].

MySQL PARTITION BY Clause. 2019. GeeksforGeeks. WWW-document.

Available at: https://www.geeksforgeeks.org/mysql-partition-by-clause/ [Accessed

10 November 2020].

Harvard Health Letter. 2020. Blue light has a dark side. WWW-document.

Available at: https://www.health.harvard.edu/staying-healthy/blue-light-has-a-

dark-side [Accessed 16 September 2020].

https://www.theseus.fi/handle/10024/16996
http://brackets.io/
https://coolors.co/
https://vipunen.fi/en-gb/_layouts/15/xlviewer.aspx?id=/en-gb/Reports/Ammattikorkeakoulutus%20-%20opiskelijapalaute%20-%20AMK%20-%20ohjauksen%20ala_EN.xlsb
https://vipunen.fi/en-gb/_layouts/15/xlviewer.aspx?id=/en-gb/Reports/Ammattikorkeakoulutus%20-%20opiskelijapalaute%20-%20AMK%20-%20ohjauksen%20ala_EN.xlsb
https://vipunen.fi/en-gb/_layouts/15/xlviewer.aspx?id=/en-gb/Reports/Ammattikorkeakoulutus%20-%20opiskelijapalaute%20-%20AMK%20-%20ohjauksen%20ala_EN.xlsb
https://www.geeksforgeeks.org/mysql-partition-by-clause/
https://www.health.harvard.edu/staying-healthy/blue-light-has-a-dark-side
https://www.health.harvard.edu/staying-healthy/blue-light-has-a-dark-side

Hodent, C. 2014. Developing UX Practices at Epic Games. GDC. PDF-document.

Available at: https://www.gdcvault.com/play/1020934/Developing-UX-Practices-

at-Epic [Accessed 6 November 2020].

Joshi, Vijay. 2010. PHP jQuery Cookbook. Ebook. Packt Publishing, Limited.

MDN web docs. Available at: https://developer.mozilla.org/en-US/ [Accessed 14

September 2020].

OpenJS Foundation. Available at: https://openjsf.org/ [Accessed 14 September

2020].

Thomas, S. 2015. Datavisualization with JavaScript. Ebook. No Starch Press,

Incorporated.

Vidhya, V., Jeyaram, G., Ishwarya, K.R. 2016. Database Management Systems.

Ebook. Alpha Science International.

Wells, K. & Kloppenborg, T. 2015. Project Management Essentials. Ebook.

Business Expert Press.

W3schools.com. Available at:

https://www.w3schools.com/whatis/whatis_fullstack.asp [Accessed 14 September

2020].

Xamk https://www.xamk.fi/koulutukset/insinoori-amk-peliohjelmointi/ [Accessed

14 September 2020].

https://www.gdcvault.com/play/1020934/Developing-UX-Practices-at-Epic
https://www.gdcvault.com/play/1020934/Developing-UX-Practices-at-Epic
https://developer.mozilla.org/en-US/
https://openjsf.org/
https://www.w3schools.com/whatis/whatis_fullstack.asp
https://www.xamk.fi/koulutukset/insinoori-amk-peliohjelmointi/

LIST OF FIGURES

Figure 1 HTTP Request

Figure 2 PHP output to browser

Figure 3 JS sequence of date object

Figure 4 Prototype date

Figure 5 jQuery example comparison

Figure 6 async wait example

Figure 7 async syntax error

Figure 8 PHP variables

Figure 9 Sample database table

Figure 10 SELECT query

Figure 11 Sample table query with where clause

Figure 12 Mobile layout of Log page

Figure 13 Desktop log page

Figure 14 Admin page layout

Figure 15 Projects page layout (general)

Figure 16 Projects page layout (wide screen)

Figure 17 YouTube dark theme

Figure 18 Project Monitoring Software design - background colour scheme

Figure 19 Last log date

Figure 20 Coolors palette

Figure 21 Example of post stuff

Figure 22 Sign redirection

Figure 23 Log work hours - use case

Figure 24 Tags, clients and roles - use case

Figure 25 User profile pie chart

Figure 26 Weekday bar chart

Figure 27 Example Linear-Gradient

Figure 28 Line chart with trigonometry

Figure 29 Point position calculation in chart

Figure 30 Line chart example

Figure 31 Stored charts

Figure 32 Partition Query result

Figure 33 Progress chart

Figure 34 New Mobile layout

Figure 35 New tablet layout

Figure 36 New Desktop layout

