

Jaakko Nurmi

IMPLEMENTATION OF ARTIFICIAL
INTELLIGENCE-BASED NETWORK

AND SECURITY MONITOR

Master’s Thesis

Master of Engineering, Cybersecurity

2020

Author (authors) Degree title

Time

Jaakko Nurmi Master of

Engineering,
Cybersecurity

December 2020

Thesis title

Implementation of Artificial Intelligence-based Network and
Security Monitor

84 pages
0 pages of appendices

Commissioned by

South-Eastern Finland University of Applied Sciences Ltd.
Supervisor

Vesa Kankare
Abstract

This thesis main topic was to develop a prototype of a real-time, programmable and
modular platform for network monitoring purposes by using agile software development
methods. On the platform, an artificial intelligence-based data analysis processes for
detecting a change in network behaviour and methods for automatic data enrichment were
implemented.

The theory part contains a discussion about the key methods and techniques which was
utilized in the development process and simplified operation principles of each developed
process. Some developed processes were tested practically to evaluate the problems in
the processes.

Modules for automatic processing and data analysis were also developed. These modules
can be connected in case it is needed.

The most important data collection methods were benchmarked to detect problematic
situations in the operation in different realistic situations. With the perception from the
benchmark test, the problematic parts of the data collection were discovered and proposals
for the solution were made which could be developed and tested in the next iterations of
the development process.

Working Artificial intelligence-based detection and data enrichment methods were created.
The results of the thesis allow multiple continuous research and development projects
related to data collection and data analysis with statistical and artificial intelligence-based
methods.
Keywords

Artificial Intelligence, network monitoring, anomaly detection

CONTENTS

1 INTRODUCTION .. 6

1.1 Thesis topic and limitations ... 8

1.2 Background of the thesis and its commissioner .. 9

1.3 Related studies and solutions ... 10

2 RESEARCH PROBLEM, METHODS AND GOALS .. 11

2.1 Research methods .. 12

2.2 Research questions .. 14

2.3 Project and research objectives .. 15

3 THEORETICAL FRAMEWORK OF USED DATA SOURCES AND COLLECTION

TECHNIQUES ... 15

3.1 Simple Network Monitoring Protocol ... 15

3.2 Flow-based traffic monitoring .. 16

3.3 Packet-based traffic monitoring .. 17

3.4 Flow versus packet-based traffic information collection .. 18

3.5 NetFlow protocol ... 18

3.6 Centralized log collection and management ... 22

4 THEORETICAL FRAMEWORK OF DATA PROCESSING AND ANALYSIS METHODS

 23

4.1 Data enrichment ... 23

4.2 Artificial intelligence and machine learning ... 24

4.3 Decision tree algorithm ... 25

4.4 Artificial neural network ... 27

5 DETECTION OF MALICIOUS TRAFFIC WITH ANOMALY DETECTION 29

5.1 Indicators of malware command and control communication in network level 30

5.2 Indicators of network and port scan .. 31

6 OVERALL PICTURE OF THE IMPLEMENTATION.. 32

7 IMPLEMENTATION OF DATA COLLECTION PROCESSES 34

7.1 Real-time network traffic flow capture process and flow collector 36

7.2 Microsoft event log forwarder ... 42

7.3 Syslog server .. 43

7.4 SSH stream reader ... 44

7.5 Selection of database ... 44

7.6 Risk management of the data collection ... 45

8 IMPLEMENTED MACHINE LEARNING AND ENRICHMENT FEATURES 47

8.1 Network behaviour model and anomaly detection module 47

8.2 The regular traffic detection module ... 50

8.3 Automatic data enrichment module .. 54

8.4 Flow classification with artificial neural network .. 57

9 SYSTEM AND FEATURE BENCHMARK TESTS .. 59

9.1 Stress test of data collection ... 60

9.1.1 Test 1: Saturating the collector with large transmission 60

9.1.2 Test 2: Saturating the collector with a high number of packets from a high number

of connections .. 60

9.1.3 Test 3: Saturating the collector with a high number of packets from a single

connection .. 62

9.2 Anomaly detection in network behaviour tests .. 63

9.3 Regular traffic detection .. 64

9.3.1 Test 1: Malware beacon interval 60 seconds, jitter 0% 65

9.3.2 Test 2: Malware beacon interval 60 seconds, jitter 99% 69

9.3.3 Test 3: Malware beacon interval 600 seconds, jitter 99% 71

9.3.4 Test 4: Malware beacon interval 600 seconds, jitter 10% 73

9.3.5 TEST 5: Malware beacon interval 4000 seconds, jitter 50% 78

9.4 Discussion about the tests .. 80

10 DISCUSSION ... 82

10.1 Answers for the defined research questions ... 83

10.2 Future of the project and project proposals .. 83

10.3 Telemetry and user behaviour-based multi-factor authentication for critical network

assets ... 85

10.4 Research about detecting advanced command and control channels and malicious

activity .. 87

10.5 Discussion about the project ... 90

REFERENCES .. 91

LIST OF FIGURES

LIST OF TABLES

6

1 INTRODUCTION

The amount and versatility of different devices connected to the networks have

increased significantly in ten years. Cisco VNI has estimated that devices and

connections per capita will grow from 2.4 to 3.6 between the years 2017 and

2019 (“Cisco Visual Networking Index,” 2019). More than ten years ago, most

devices connected to the network were mostly traditional workstations and

servers. In the 2010s amount of smart appliances such as smartphones &

tablets, TV’s and different IoT Devices has increased Significantly (Hetting, 2019)

The evolution of the IT-industry has caused the trend in Cybersecurity to be

changed. In the Solutions Review article that was written by Ben Canner in

autumn 2019, the five most common attack vectors in endpoint security were

employees, mobile devices, IoT, endpoint ports and applications. (Canner, 2019).

The employees or members of the organization are one of the largest attack

vectors. With a correct education, the risk that an organization gets compromised

because of its employees can be reduced, but the attitude of different humans

may cause difficulties for the educational process. The employees or members

must see security as a component of their work process, not an obstacle.

(Canner, 2019).

Another growing trend in organizations is BYOD (Bring Your Own Device)

culture. The culture gives benefits for both employers and employees. Employees

feel comfortable when using their own devices at work and employers might be

happy that there is no need for the acquisition of dedicated workstations which

costs money. In most of the cases, the employer does not have control of the

security of the employee’s BYOD devices which leads to devices can be

unmonitored for long periods which allows data transfers in and out from the

device without any regulations. (Canner, 2019).

7

The third growing trend in attack vectors in the organization is the IoT, Internet of

Things. IoT devices do not usually include any security protection and after the

installation of the device, it is forgotten causing a blind spot in the network, which

an attacker can penetrate. (Canner, 2019).

The Enterprise Strategy Group has mentioned 5 top challenges in threat

detection and response. Their recent research had 379 respondents mostly in

the fields of cybersecurity and IT-professionals. 36% of the respondents said that

their teams have spent most of the time to address high priority issues causing a

stop for the evolving of strategy and process improvement. 30% said there are

one or several blind spots. 26% said that their threat detection and response is

anchored by manual processes that reduce their ability to keep up with the

threats. (Oltsik, 2019)

Meanwhile, an increasing number of different smart devices and other devices

connected to the network have helped people in their lives, the number of attack

vectors has increased and threats against, cyber-attack have arisen. While one

or more of the employees might make the mistake someday and there might not

be a legitimate possibility for employers to install required security software into

employee’s device, there aren’t many choices as the solution.

An anomaly-based network traffic monitoring solution may help in the detection of

unwanted data transfers inside the organizational networks. Because almost all

malware or intruders cause network traffic at some point of their session, the

network traffic monitoring and analysis is an ideal source for information about

the health of the network or specific device.

With the rise of computational power in the 2010s, artificial intelligence

technologies have started evolving a lot. In 2018, artificial intelligence was

already working in multiple appliances, such as real-time language translation,

chatbots, deep learning and neural networks, autonomous systems, face

recognition. At the same, time there have been development appliances such as

8

AI-assisted healthcare, cognitive cybersecurity, self-driving cars. (Lehto et al.,

2018)

Around 2018 the artificial intelligence, AI in cybersecurity has risen into the

discussion and it has proved to give many improvements to threat detection.

Because the number of cyber-attacks has grown in volume and complexity, AI is

usually helping under-resourced security teams to be ahead of the threats.

Analysis done with the help of AI allows security analysts to respond to threats up

to 60 times faster (IBM, 2019a).

1.1 Thesis topic and limitations

In this thesis, the main topic is to implement the prototype of a real-time network

and security monitoring system or process which gives a lot of visibility from the

network, its systems, its users and events with the help of artificial intelligence. All

collected data is stored in the database for the required amount of time, the

collected data will be enriched with other sources of data that are freely available.

The purpose of this thesis is to address the topic from the viewpoint of the

technical development of the system. The theoretical part of the thesis consists of

the theory about related things such as artificial intelligence, network monitoring

and data collection. The topic is very wide and allocated time resources limit the

project into data gathering and storing, anomaly detection processing and

analysis.

The main focus of the project is to put in anomaly detection from the network

traffic. The other data sources are initially planned to be used only for data

enrichment. The wideness of the topic may lead to multiple follow-up projects

around the topic which can be used to expand the functionality of this system.

The system will utilize universal or standardized techniques for data collection

from various sources to have an easily adaptable solution in most of the cases in

case this project produces a successful prototype of a product.

9

Universal techniques are defined in this thesis as a technique that is available in

most of the devices and systems and the features that are available free for use.

The main goal of this thesis is to have the implemented prototype of a real-time

network and security monitoring system. The designed system has been desired

to be responsive, modular and easily expandable. The mentioned elements for

the system might enable the continuous research development process after this

thesis project.

The results of this thesis are meant to fulfill existing solutions that are available or

in use in the environment, not replace any of them. Results of this project can

also be linked to the planned Security Operations Center -learning environment

and for future education and projects.

1.2 Background of the thesis and its commissioner

In 2015, the education in Kymenlaakso University of Applied Sciences IT-

department started slowly to migrate education from data network technologies

towards cybersecurity. The department has a dedicated IT-environment called

ICTLAB which simulates a medium-size organization with its production network,

datacenter, IT-systems, and its users. Several work-life oriented projects related

to cybersecurity and data networks have been performed in this environment.

In 2017, the fusion of Kymenlaakso and Mikkeli Universities of Applied Sciences

established a new South-Eastern Finland University of Applied Sciences, XAMK

In the year 2018, XAMK was the second largest university of applied sciences in

Finland and the largest in research and development. (“Research and

Development,” n.d.).

The idea of this kind of project has been in mind from around the year 2017-

2018, but because of the time spent on other projects, the implementation of it

has been postponed. At the beginning of this thesis in the year 2019, the

existence of commercial solutions with some similarities with this idea has been

10

or are going to appear in the market around 2020. The products with similarities

are for example Cisco DNA Center, Stealthwatch and IBM Qradar.

1.3 Related studies and solutions

There are available several other products and services that are related to the

topic and which use artificial intelligence for solving related cybersecurity

problems or for finding anomalies in collected data. In the field of AI and

cybersecurity, there are solutions such PatternEX AI2 developed by MIT and

CSAIL, Amazon Macie, Cyberlytinc WWW-threat detection tool, CylanceProtect,

Draktrace, Deep Instinct, SparkCognition DeepArmor and Vectra Network

Cognito. (Schroer, 2020)

Cisco DNA Center, DNAC is a management system for the intent-based

enterprise networks. It uses artificial intelligence and machine learning for

monitoring the network proactively. It also helps in network optimization and

troubleshooting. DNAC leans to group-based policies, micro-segmentation and AI

to improve network security. (“Cisco DNA Center - Network Management and

Automation,” n.d.).

IBM Qradar is a security information and event management, SIEM powered with

artificial intelligence and machine learning. Like most of the SIEM solutions, it

allows centralized insight for the traffic and logs that collect around the devices. It

correlates and aggregates gathered data into single events to accelerate incident

analysis and remediation. (IBM, 2019b).

Network architectures like Zero Trust Networks keep extended visibility of its

users and devices mandatory. It helps security teams to gauge security risk

related to network users and device. (Cisco, n.d.)

Passwords and other authentication methods may not be enough to ensure that

the correct person is using the credentials. A user behaviour analytics is in close

relationship with SIEM and it focuses to determine user activity in the IT-networks

and systems to indicate anomalies in user behaviour. This might be the key thing

11

in the future to detect an intruder in the network. It cannot prevent an intruder

from getting into the system, but it can be useful for quick detection of intrusion.

(Green, 2019).

For software development, there are several libraries available that are useful for

artificial intelligence and machine learning implementation. Few useful ones

would be TensorFlow which is an end-to-end open-source platform for machine

learning developed by Google. NumPy is the fundamental package for scientific

computing for Python programming language. In the field of data collection and

management, there are available solutions like ELK Stack and Splunk. (Upguard,

2020)

In the past the commissioner has attempted to implement SIEM or other security

systems into the network. Most of the implementations with open source

solutions have not ended in production-ready solutions due to lack of

documentation or those that were never in the operational state. Also, most of the

already tested systems have not included required features or have been

unresponsive or hard to use.

2 RESEARCH PROBLEM, METHODS AND GOALS

This thesis project is a functional thesis which is heavily-research and

development-oriented. The topic requires multi processual sub research with

various research methods such as quantitative and qualitative research methods

in order to be able to perform the main project and give meaningful results to the

system that is being designed and developed.

Quantitative research with different observing and statistical methods is used, for

example, in a network traffic analysis. Qualitative methods are used for

understanding the results and the reasons for them.

A research and development model suits perfectly this thesis project because a

new product or process is implemented in this thesis project. The results of this

12

project can also evolve after the thesis is done. The development process is done

by using agile software development methods.

2.1 Research methods

Data collection, analysis, description of collected data and used research

methods are defined in this chapter. Research requires multi-dimensional control

of data, methods and rules. Research must always follow the rules that are

defined in the branch of science. This usually makes research differ from

research-oriented development work which can include research elements but

not how they are understood in academic circles. (Salonen, 2013).

Quantitative research is the orientation of scientific research strategy where the

research target is descriptive and analysed with statistical and numerical data.

Different statistical and computational analysis methods are usually used in this

kind of research. Qualitative research methods are scientific research where the

quality, features and consequences of the research target are tried to be

understood. Quantitative research methods are usually used as the pair with

qualitative research and both methods can be used in the same research.

(University of Jyväskylä, 2019).

In the Investopedia article written by Will Kenton, research and development,

R&D is a term for the activities in organizations that innovate and introduce new

inventions or improvements to the existing ones. The final goal of the R&D

activities is usually to bring new products and services into organizations. It is

usually one of the first steps in the development process. (Kenton, 2019).

13

Figure 1: Cycle of research and development process (Goran tek-en, 2013).

Referring to figure 1, R&D methods are the non-stopping cycle of different

processes. All research and development cycle starts from brainstorming the

ideas. In this Synthesize and Theorize stage project team considers the issue

and the potential of the idea for the specific industry. Each project has challenges

and some of them might be impossible at the specific iteration of the cycle.

(NJRD, 2019).

Explore, Hypothesize and Clarify the stage in the research and development

cycle is the second step. In this step, the research or project team explores the

theory and existing studies around the idea of depending on the development

case, some quantitative research such as surveys or other data collection

method might be required to receive enough theoretical framework for the

development project. Usually, prototypes are started to be developed in this

phase which enables the hypothesis and exploration. (NJRD, 2019).

The third phase is Design, Development and Test, which is the phase where the

road map from the idea to the product is created. This phase is usually full of trial

and error type iterations. Each one of the iterations may improve the design of

the prototype products where flaws and limitations are fixed. (NJRD, 2019).

14

The last phase of the cycle is to Implement, Study and Improve. The product is

usually still improved in the previous phase meanwhile in this phase all required

criterions are checked for final approval and launch of the product. After this the

development process does not end, it usually returns to the Synthesize and

Theorize phase where the development project team gets ready to improve the

developed product (NJRD, 2019).

Agile software development is a group of alternative methods for the traditional

software development method that is called the waterfall model. The aim of the

agile methods is to develop the software quicker and have a faster response to

the requirements and simplifying the development process. (Abrahamsson et al.,

2017)

Common things for different agile software development methods are relatively

short iterations of software development. This helps to reduce risk in the

development process. Each iteration consists of the same elements the usual

software development project plan, requirement analysis, program design,

development, testing and documentation. (Abrahamsson et al., 2017)

Software development is agile when development is done by releasing software

with small changes in rapid cycles, able to make changes in the last moment, the

method itself is easy to learn and to modify for specific needs. It is also common

that the customer and the developer are working together. (Abrahamsson et al.,

2017)

Multiple frameworks for agile software development have been created. The most

common ones are Extreme Programming, Lean and Scrum. Newer agile

methods consist of frameworks such as SAFe, Scaled Agile Framework.

(Abrahamsson et al., 2017)

2.2 Research questions

The thesis research questions come from both a quantitative and a qualitative

side. The questions are at least the following:

15

• Can the system setup and detection process be automated efficiently to
get solutions like this quickly into production?

• How many computational resources would be in this case?
• Is it possible to detect malicious network traffic only from network flow

statistics?
• What is the false positive rate when flow-based traffic statistic gathering is

used as a source for anomaly detection?
• Can detection accurateness and usefulness be improved significantly by

enriching the flow data with other data sources?
• How much machine learning would improve threat detection ratio and its

accurateness?

2.3 Project and research objectives

The thesis is defined to be a functional research development project, which may

give a large number of objectives. In this thesis primary objectives are set to the

following:

• Implement the prototype of a modular framework/core for network and
security monitoring systems.

• Increase the commissioner’s knowledge for using Artificial Intelligence for
cyber threat detection.

• Implement and/or discuss different data collection methods and review the
security of the implementations of them.

• Research by observing common attack patterns from the data that was
collected by the data gathering.

• Initial research and implementation of artificial intelligence and machine
learning algorithms that can automatically learn normal traffic behaviour in
the network and detect possible anomalies in the collected data.

• To have an initial start for Artificial Intelligence research in the field of
cyber-security at the commissioner.

• To increase visibility at the commissioner's network and IT-Systems

3 THEORETICAL FRAMEWORK OF USED DATA SOURCES AND

COLLECTION TECHNIQUES

3.1 Simple Network Monitoring Protocol

Simple Network Monitoring Protocol, SNMP is a versatile and relatively simple

protocol that is used as a communication channel between network management

stations and network elements. Management stations run monitor and control

applications which are controlling and monitoring the network elements via SNMP

16

clients. Network elements are hosts and network equipment that runs SNMP

agents. (Davin et al., 1990).

SNMP is quite an old protocol, it was originally developed in the 1980s to reduce

the complexity of management of different devices. RFC 1157 document defines

the goal of its design to reduce development costs for management agent

software, have a functional paradigm for monitor and control operations, and be

an independent protocol as much as possible. (Davin et al., 1990)

By 2020, the Simple Network Monitoring Protocol is commonly found in most of

the network equipment and servers facility automation and monitoring devices.

3.2 Flow-based traffic monitoring

The network flow is a record of communications between two different points.

The record is bounded by the open and close of the communication session.

Flow monitoring is usually used for network traffic monitoring from the

perspective of traffic analysis and bandwidth monitoring. It can track the flow of

the applications and key services in all areas of the network devices, servers and

links. Common network protocols for network flows are, Cisco NetFlow, IPFIX,

sFlow and JFlow. (Conklin, 2018).

Flow protocols contain at least connection session information about:

• Source IP-Address
• Destination IP-Address
• Layer 4 protocol number
• Source and Destination port in the case connection session was
• OSI-layer 4 (Transport layer) or above.
• Timestamp from the beginning and end of the flow.
• Transferred packets count within the session
• Transferred bytes count within the session

(Muniz and Santos, 2017)

The data provided by flow protocols can be used as a source for anomaly

detection to detect abnormal traffic patterns from the flow. In the year 2004,

17

Myung-Sup Kim and others in various institutes found that it was possible to

detect malicious activities directly from the flow data:

• Denial of service and distributed denial of service
• Network scanning
• Network flooding
• Malicious worms that are spreading from one workstation to another.

(Myung-Sup Kim et al., 2004)

The data might also help you to answer questions like:

• Which device is executing banned application such as BitTorrent
• Who is hogging all the bandwidth and slowing down the connection
• Where a hacked system was connected during an infection.

(Petryschuk, 2019)

Flow-based traffic inspection can be powered by anomaly-based detection.

Anomaly-based detection is usually used in the process to detect new types of

attacks in the networks. An ideal approach is to use artificial intelligence and

machine learning techniques to record the baseline of the network traffic flow and

compare it to the current flow to detect anomalies in the network. (Sadek et al.,

2013)

3.3 Packet-based traffic monitoring

The packet-based traffic capture process allows the inspection of each packet

with its contents that was received. The capturing can be established by tapping

the cable or fiber or by listening to wireless networks. While previously mentioned

methods are used mainly by intruders, it is also possible to use a port mirroring

feature in various switches. The port mirroring feature in the network equipment

forwards all packets from the monitored interface into the mirrored interface.

(Davidoff and Ham, 2012)

This method gives the possibility to inspect the contents of each packet, which

allows a signature-based detection of attacks. The signature-based detection

compares the contents of the packet to a hash or pattern that is stored externally.

18

The signature-based attacks can be only detected if they are known, which

means that it does not allow the detection of new types of attacks. (̈́Douligeris

and Serpanos, 2007).

3.4 Flow versus packet-based traffic information collection

Referring back to chapter 3.2, where it was mentioned that the flow record

contains only specific statistical information from the traffic flow, not any of the

payloads of the recorded flow sessions compared with the packet-based where

the full content of a packet is included. Packet-based captures are precise in

terms of resolution while flow records are only statistical. This leads to packet-

based inspection to require much more computational power compared to flow-

based inspection. However, both methods have their designated use cases and

both methods could be used simultaneously. (Endace, n.d.)

Port mirroring is a common source of traffic for the packet capture process in the

networks. It is difficult and expensive to implement efficiently on larger networks

because traffic volumes are higher. Higher traffic volumes can cause the mirror

interface to be saturated and some packets will not be received in the packet

capture. This may lead to signature-based attack detection not to detect the

attacks. (Wilson, 2019)

While most of the relevant information is encrypted with SSL in the packets that

are transferred through the networks. This means that packet-based traffic

collection does not give more information directly about the contents of packets

either protocols that are above layer 4 in the OSI-model. While traffic encryption

keeps files transferred through the network safe, it also allows the malware to

have safe connections which create challenges for signature-based attack

detection. (Anderson et al., 2016)

3.5 NetFlow protocol

NetFlow is a protocol that is developed by Cisco Corporation for recording

metadata about the IP-traffic. Typical sources of flow information are network

19

devices such as routers and switches but also other appliances such as servers,

firewall and virtual machines. IPFIX and sFlow are the most important variants of

the NetFlow. (Kentik, n.d.) In table 1, a vendor of each flow protocol is listed and

shortly compared against NetFlow protocol.

Protocol Vendor Record / Protocol Features

NetFlow V5 Cisco

A fixed record including IPV4

features, bandwidth and

timestamp for example

NetFlow V9 / Flexible NetFlow Cisco

Template-based with up to 104

standardized features, including

relevant L3 and L4 features,

bandwidth, Application ID,

Protocol, Timestamps

IPFIX IETF Standard RFC 7011

Based on IPFIX, support vendor-

specific and variable-sized

features such as HTTP URL

J-Flow Juniper

Juniper implementation of

NetFlow 5,8 and 9. Cross

compatible with the corresponding

version of NetFlow

NetStream Huawei

Mainly detailed data based on

resource usage including

bandwidth, IP addresses, Time,

ToS, Application

cflowd Alcatel-Lucent / Nokia

Functionally equivalent to NetFlow

with multiple NetFlow version from

5 to 9 and IPFIX

RFlow Ericson NetFlow 5 Based

sFlow
InMon Corporation, sFlow

consortium

Sampled NetFlow, sampled

record containing full packet with

packets header.

Table 1: Short comparison of different flow protocols.

NetFlow implementations have a specific architecture that can be seen in figure

2. Network equipment sends NetFlow packets towards the collector and sends

them to an analyzer. (Davide, n.d.)

20

Figure 2: Typical NetFlow architecture (Davide, n.d.)

NetFlow protocol has nine versions but only two of them are in wide use, version

5 and version 9. NetFlow version 5 is supported in the large numbers of network

gear also from different vendors. Version 5 is limited only to IPV4 fields. (Muniz

and Santos, 2017)

NetFlow version 9 is a template-based implementation of NetFlow protocol which

supports hundreds of features in the flow record compared with older versions,

which supported only specific fields. Version 9 allows more flexible flow records

because. To parse the NetFlow record at the collector, the template must be

received. Figure 3 presents the structure of the NetFlow version 9 template

FlowSet. (Muniz and Santos, 2017)

21

Figure 3: Structure of NetFlow v9 template FlowSet. (Muniz and Santos, 2017)

IPFIX, IP Flow Information Export is the variant of NetFlow protocol that is based

on NetFlow version 9. It is standardized by IETF in RFC7011 IPFIX nearly similar

to NetFlow Version 9, but it has two large features that are not included in

NetFlow Version 9. The first of the differences is that the IPFIX allows a VendorID

field to be specified which allows exporting proprietary features that are not part

of the standard. Another feature is that IPFIX allows variable-length fields that

allow exporting URLs or messages for example. (Trammell and Claise, n.d.).

IPFIX is also known as NetFlow Version 10.

sFlow is the variant of flow protocol that is meant for high-speed networks.

Compared with NetFlow protocol it relies on sampling packets instead of

connection sessions. In practice, it works by selecting random packets from

incoming interfaces and send samples to the collector. (Panchen et al., n.d.)

sFlow uses two sampling mechanism, packet-based sampling and time-based

sampling. Packet-based sampling samples one packet from the specified number

of packets. Time-based sampling samples interface statistics. (Panchen et al.,

n.d.)

22

The architecture of sFlow and sampling techniques provides continuous network-

wide traffic monitoring. The designed addresses the problems that are associated

to monitor network traffic at gigabit speeds and faster and scaling to manage

thousands of agents from single points. (Panchen et al., n.d.)

In the case of this thesis, the NetFlow version 9 was selected as a primary format

for traffic flow source because it provides the most accurate format. It is important

to receive all information to gather enough and accurate information for the

detection. Sampling mechanisms may cause that important packets are not

collected, which may lead to problems in anomaly detection. Also, the developers

of Flowmon software rely on NetFlowv9 or IPFIX formats because those prove

the most accurate and comprehensive information from high-performance

network monitoring appliances. (Listvan, 2018)

3.6 Centralized log collection and management

Centralized log management and log collection is a technique where logs from

multiple sources are stored in a centralized location. It enables an ability to

search quickly relevant events from various logs and allows a single point for the

log retention period. It also enables a single point to define different alert patterns

for specific events. (Morgan, 2016).

Security of centralized log management is one minor thing of concern in this

thesis. Referring to NIST report SP 800-92, Traditional Syslog implementations

are connectionless which makes them unreliable and the server does not perform

any access control. The possible attacker may also monitor logs that are

transmitted over the network and gain sensitive information. (Kent and Souppaya,

2006).

RFC 3195 is a standard for improving the confidentiality, integrity and availability

of the logs. It defines that connection-oriented transmission protocol must be

used as a connection protocol for ensuring the log message reaches their

destination. TLS protocol is recommended to be used to ensure the

23

confidentiality of the logs. To ensure integrity, RFC 3195 recommends the

message digest algorithm to be used. (Kent and Souppaya, 2006)

4 THEORETICAL FRAMEWORK OF DATA PROCESSING AND ANALYSIS

METHODS

4.1 Data enrichment

Single heaps of collected data around the systems may not help to discover the

overall view of the events and the relationship between them. Collected data is

usually dumped into the database. This data is called raw data and it is not often

used in wide contexts. Data enrichment is the way to make raw data more useful

to have a deeper insight into relationships between the datasets. (Todd, 2018).

It has been found that data enrichment is the way to make event data more

meaningful for threat detection, hunting and incident response. In the case of

security, the typical process is to perform data enrichment by adding contextual

information into the events. In the article: Data Enrichment: The Key Ingredient

for SIEM Success following typically used contextual information has been

defined.

• Identity context
• Assets information
• Access privileged
• Non-technical feeds
• Vulnerability context
• Social and online context
• Network maps and geolocation

(Sharma, 2019).

Enrichment of the data provides an additional viewpoint for the data, which is

extremely useful in use cases in the field of cyber-security because when

combining multiple data sources, the big picture of the event is generated.

Security analyst Ertugrul Akbas defines several information sources that can be

used in the data enrichment process in the context of cyber-security. The sources

are the following:

24

• Operating systems
• Logged-in user
• Active Directory memberships
• Resource utilization
• Geographic location
• Associating IP addresses with users, machines, and timelines
• Tracking asset ownership
• Associating user and machine types with activities
• Correlating personal email addresses with employees

(Akbas, 2019)

4.2 Artificial intelligence and machine learning

Artificial intelligence, AI is a common term for the computer application which can

execute tasks that are defined to be intelligent The definition of artificial

intelligence is very wide and it varies in different magnitudes and viewpoints.

(Kaplan and Haenlein, 2019). The four types of artificial intelligence are reactive

machines, limited memory and the theory of mind and self-awareness. (Hintze,

2016)

In the book named Introduction to Artificial Intelligence for Security Professional,

written by the Cylance data science team, three more types of artificial

intelligence are defined. Those are named Artificial Narrow Intelligence, Artificial

General Intelligence and Artificial Super Intelligence. (The Cylance Data Science

Team, 2017)

Reactive machines are the most basic types of AI. They don’t store memories

which lead to that it cannot be improved by practising. It makes its decisions on

current situations that are predefined. A good example of reactive AI is a chess

computer. The chess computer has defined instructions on how each of the

pieces moves and knows where they are located. It does not need the memory of

existing moves, because it only needs to compute the most advantageous

movement for itself. (Hintze, 2016).

The limited memory machines have the capabilities of reactive machines but

have a memory that allows decision-making also from the historical data.

25

Currently, the development of AI is in this stage and most of the AI applications

are of this type. Typical use cases of this kind of AI are chatbots and self-driving

vehicles. (Joshi, 2019)

Machine learning is a specific field of artificial intelligence. It consists of several

methods of data science methods such as clustering, regressions or artificial

neural networks.

Clustering is one of the techniques that is used in the field of machine learning.

Its purpose is to group data with given rules. Generally, data points that are in the

same group have similar properties or features. Unsupervised learning is one of

the use cases of clustering. (Seif, 2019)

Cylance security team mentions that machine learning is raising the bar for

attackers. In response, attackers are also utilizing machine learning technologies

to find new ways to penetrate the target. Because of this machine learning is

needed on the defensive side to maintain parity between attack and defensive

trends. (The Cylance Data Science Team, 2017)

4.3 Decision tree algorithm

Decision trees are one of the most used algorithms that are used in machine

learning. It mimics a human brain mostly for classification and regression-based

problems. Because of its near relationship against human thinking, it is easy to

understand and decision trees are the most popular machine learning algorithms

because of their simplicity. (Grimaldi, 2019).

Decision trees are built from nodes, edges and leaves. Nodes are used to test

the value of a certain attribute. Edges correspond to the outcome of the test

performed in the node and connect the value into the next node of the leaf. Leaf

nodes terminate nodes that predict the outcome of the tree. A simple example of

the decision tree algorithm can be seen in Figure 4. (Chakure, 2019)

26

Figure 4. Example of graphical presentation of simple classification decision tree

algorithm (Mady, 2018)

Referring to Figure 4. The decision tree algorithms are just a set of questions with

conditional answers. In the cyber threat detection process, the decision trees

might come very complex. By looking into the decision tree structure, some input

values might cause unstable results. In some cases, the feedback connection

back to the tree would be desired, but in theory, it might cause a never-ending

loop in the decision tree.

The main types of decision trees are classification trees and regression trees.

Classification trees are used for classification and output is discrete, typically yes

or no. In regression trees, the target variable can take continuous values.

(Chakure, 2019)

An inexpensive construct, high performance when classifying unknown data and

the accuracy is comparable to other classification methods for multiple simple

datasets are the advantages of the decision tree algorithm. As a disadvantage,

the decision tree algorithm is easy to overfit and small changes in the training

data easily result in a large change in the logic of the decision tree. (Chakure,

2019)

27

Decision tree algorithms are used in multiple applications in the fields of

biomedical engineering, financial analysis, astronomy, system control,

manufacturing and production, medicines and psychics, for example. In these

fields, it has been used for things such as galaxy classification, quality control,

diagnosis, cardiology and particle detection. (Chakure, 2019).

4.4 Artificial neural network

This chapter introduces the artificial neural network which is a computational

model that works like the way how human brains process information. The model

consists of neurons that are also called nodes. These nodes receive information

from the input layer and other nodes. (ujjwalkarn, 2016)

Artificial neural networks consist of three types of layers, an input layer, hidden

layers and an output layer. The input nodes provide information for the neural

networks. At the input layer, no computation is performed, it is left for the rest of

the layers. (ujjwalkarn, 2016)

The nodes in hidden layers perform the computation of the data provided by the

input layer. Nodes at this layer do not have a direct connection to the outside.

The artificial neural network model can have multiple hidden layers which enable

the deep learning process. (ujjwalkarn, 2016)

Nodes in the hidden layer get their values by the activation functions. Activation

functions are like a mathematical gate in the current node between the input and

output of it.

28

Figure 5: Activation function in the node. (Missinglink AI, n.d.)

There are several activation functions available. The activation function can be

set in three categories: linear and non-linear activation functions and derivatives

or gradients of activation functions. (Missinglink AI, n.d.)

Binary step function and linear activation function is included in the category of

the linear activation function. In a binary step function, if the value of the input is

above or below a defined threshold the node is activated and sends exactly the

same signal to the next layer. Linear activation function multiplies the weight for

each node and creates output that is proportional to the input signal. (Missinglink

ai, n.d.)

Non-linear activation functions are used in modern neural networks. These

functions utilize complex mapping between the nodes of the network. Common

non-linear functions are Sigmoid, Hyperbolic Tangent, Rectified Linear Unit and

Softmax. (Parmar, 2018)

Loss functions define how the specific algorithm models the given data. The

machine learns by the means of a loss function. Any of the loss functions give

one size fits all. The selection of the loss function depends upon the learning that

is performed. (Parmar, 2018)

These loss functions can be set in two categories, regression losses and

classification losses. Classification losses are used to predict the output of a set

29

of output values that are categorized. Detecting handwritten alphabets from the

given dataset and fitting them into the corresponding category for example.

Regression losses are used when predicting future values from datasets.

(Parmar, 2018)

5 DETECTION OF MALICIOUS TRAFFIC WITH ANOMALY DETECTION

The versatility of ways how malware or even legitimate software communicates

through the network makes the task of detection of malicious traffic difficult.

Known malware can be detected by comparing their signatures with known ones.

However, the signature-based detection would not work in the case where the

malware and command and control channel is designed for a unique target or it is

more advanced and it mutates the way of the communication. New and upcoming

solutions are more based on anomaly detection by using advanced analytic

methods. (Luis and Franklin, 2019)

The malicious anomalies can be found by look for the following things from the

network data:

• Is the protocol expected to see in the current environment?
• Are there unrecognized port numbers in use?
• Is the bandwidth caused by the protocol or destination normal?
• Does the pattern of the traffic or protocol look like it should?
• Are there suspicious destination and source IP combinations?
• Is the behaviour of the protocol different when compared with the other

traffic using similar ports?
• Is there application-level detection that shows the application in the port

where it does not belong?
• Are there some protocols that communicate periodically?
• Is there traffic that looks proportionately the same in the chain of

connections in the same time window?

(Luis and Franklin, 2019)

Above mentioned questions just present the basis of the detection of malicious

traffic. Each of the questions might give sub-questions after the answers have

been given. Any of the questions does not give answers is the communication

legitimate or malicious, because many legitimate communications through the

network might give positive answers to the multiple questions which might result

30

in false-positive results. While there is no direct answer to the question, is the

traffic malicious or not, the enrichment of the data would help to gain more

resolution to filter out the sure false-positive result and reducing the number of

anomalies required to handle manually.

There are various indicators for detection which can be used to detect and

classify malicious events in the network by using the network traffic flow

information.

5.1 Indicators of malware command and control communication in

network level

At the level of network communication, malware communication looks like all

other packets. There are numerous ways of how malware can communicate at

the network level. This chapter only deals with the signatures that have been

researched or utilized in this thesis.

Malware typically uses a particular protocol which behaviour differs from a

legitimate one. The content of the packet may differ from legitimate traffic. The

duration of the connection session might be longer than in legitimate traffic.

Detection of this kind of behaviour can be detected by creating signatures from

the legitimate traffic and compare incoming traffic records to them. (Gardiner et

al., 2014)

Newer techniques of implementing command and control channels having an

ability to hide the detection by causing a little traffic as possible or hide inside the

legitimate traffic. This kind of traffic also has specific behaviour, which can be

detected by looking at the length of the session. For example, typical HTTP

sessions are short and generate many flows to a single destination or multiple

destinations. Malware beacon communication typically spreads over a large

period. (Soniya and Wilscy, 2016)

Another way to detect beacons is to check the uniformity of communication.

Usually, malware beacons exhibit regularity in the packet count and interval in the

31

specific time window. Kolmogorov-Smirnov test is a method for calculating a

maximum difference between empirical distribution and a known cumulative

distribution from the list of data points. (Soniya and Wilscy, 2016)

A more advanced method from the command and control channel is to use

application-level protocol for communication to hide from the network intrusion

detection systems. One of them is called DNS beacon which data travels inside

the DNS queries. The DNS beacon can be detected by tracking the egress DNS

queries and their interval. (Sheridan and Keane, 2015)

5.2 Indicators of network and port scan

A Network and port scan are early indicators of the attack. The scanning helps an

intruder to enumerate the hosts in the network. There are multiple variants of a

different kind of scan having different behaviour in the view of network traffic.

Typical scanning activity can be detected relatively easily because it creates lots

of noise which can be seen in the metrics such as created network flows per host

or created different networks flows per host. Indicators of this kind of activity can

be achieved by tracking the number of connections created by a single host in

the network. (Ring et al., 2018)

Detection of slow-scan methods is more challenging because networks typically

have a high amount of noise generated by other activities which allow slow port

scans to hide into other traffic. Typically, the scanning applications loop through a

specific network range which causes a failed connection establishment in the

case there was no Host IP address or specific port up. (Ring et al., 2018) For

example, in TCP SYN scan, which is the most common TCP port-scanning

method, failed connection establishment indicators are the following:

• There are no traffic flows in the reverse direction
• The TCP RST flag is not set
• The number of packets to the destination is low
• The number of failed connection establishments of the source IP for a

specific time window is higher than in other hosts.

32

The typical behaviour of TCP protocol causes at least SYN, ACK flag pair set in

return traffic in case the connection was successfully established. In case there

was no listener attached to the destination port there will not be return traffic. The

TCP connection is terminated with RST flag. (Postel, 1981) Looking at the

number of failed connections caused by a single host is a good metric because

typically the connections are successfully established if the host is up.

6 OVERALL PICTURE OF THE IMPLEMENTATION

A prototype implementation of the system was created into the ICTLAB research

and education environment of South-Eastern Finland University of Applied

Sciences. The environment consists of Active Directory domain controller,

firewall, a core switches Cisco 4500-X and various amounts of different kinds of

services and servers.

Figure 6 presents the simple logical view of the system. It consists of different

sources of data, such as firewalls, servers and network equipment. All this data is

gathered into a centralized data collection server which has listeners for each

data source for receiving. The network flow information data is generated by a

packet capture device that is attached with 2x 10Gbit/s connectivity to each of the

4500-X switches.

The solution allows a hybrid model of packet-based and flow-based inspection. A

full packet with the payload can be stored in the packet capture device RAM-

memory to allow to return it for deep packet inspection purposes in case the

anomaly detection process finds something suspicious. However automatic

method for this use case was not implemented within this thesis.

33

Figure 6: Overall picture of the system

In the original plan, it was supposed to receive the NetFlow records from the core

switches of the network directly without the dedicated packet capture solution.

VSS, Virtual Switching System feature that is in use in the core switches caused

problems for the integrity of the NetFlow data. About 50% of the traffic flow

information was newer exported by the Cisco 4500-X switches. The reason for

that was that the switch which was in the standby state was not able to export the

flow records of the traffic while another switch was active.

Centralized data collection is one of the core parts of this thesis. It consists of

data collectors and processors. The collected data is used to create a baseline

34

model of the data and detect anomalies from the collected data against the

baseline model and create events from the detected anomaly.

7 IMPLEMENTATION OF DATA COLLECTION PROCESSES

The implementation of the data gathering process is the core part of this thesis.

Data gathering techniques were selected to be universal or freely available to

allow implementation without obstacles caused by financial resources. The data

gathering processes were programmed by using Python3. Each of the processes

was programmed as modules, which allows easy reuse of code in other projects.

For this thesis project, four data collection techniques were implemented. The

methods or techniques are the following:

• Real-time network traffic capture
• Microsoft Windows Event Log forwarder
• Syslog server
• SSH stream reader

Design each of them tries to follow similar design with each other and confidently,

integrity and availability in the case that is reasonable, either possible to

implement with the corresponding technology. Each of the datasets that are

output from the module is in JSON format, JavaScript Object Notation format.

In Figure 7, the operation of the data collection module is presented as a

diagram. The green area is the main application, where the module has been

linked. The blue area is the Python collector module. The red area is the worker

thread inside the module.

35

Figure 7: The design of the data collection module.

In the collector initialization phase, the required variables are set for the module.

After that, the start call initializes the worker thread for the module and it

becomes active. Each of the collectors has collector statistics, which stores the

numerical statistics of the collector. This statistic can be used as data for EPS

(Events Per Second) metric or calculating the latency of the data collector.

The operation of the worked thread is relatively simple: Receive data and fire

callback functions on different events and update collector statistics. Parsing the

36

collected data in the case that is required to do and other data handling is also

done in the worker thread. In the case the ingress volume of the data collector

process is high and the data handling process is relatively heavy, it is

recommended to separate the data handler to another thread to prevent the

saturation of the collector.

This design prevents other collectors from blocking other collectors and the

system operates in non-blocking mode. The modular design also allows easy

integration to the other implementations of AI processes or other data science

projects relating to the topic.

7.1 Real-time network traffic flow capture process and flow collector

Network flow information is a valuable source of data to improve the visibility of

the networks. Due to the problems for implementing NetFlow records and

exporters into the two Cisco 4500-X Switches, this data collection technique

required a different approach to get traffic flow information that is accurate and

real-time. This can also be implemented into other vendor hardware, which

supports port mirroring. Figure 8 presents the implementation.

37

Figure 8: The operation of the traffic capture process.

The traffic is captured from the ICTLAB core switches, where all the network

traffic passes. Traffic is exported by using port mirroring technology called

Remote Switch Port, RSPAN. Each of the switches has a single 10Gbit/s

configured as a mirror interface where all data incoming to other interfaces are

forwarded. The physical mirror interface is bonded with Link Aggregation Protocol

with other mirror ports. The bonded interface is configured for a dedicated Virtual

Local Area Network, VLAN.

This solution was practically the only working method to capture all traffic going

through the two Cisco 4500-X switches without issues in this case. Mirroring is

performed from channel-group interfaces instead of a single interface because

Cisco 4500-X did not allow port mirroring for single interfaces that were a

member of a channel-group.

38

A dedicated computer was used for the traffic capture process. The traffic capture

computer specifications are the following:

• CPU: Intel I7-4790 3600Mhz
• 4 cores with 2 threads in each core
• Memory: 32 GB
• 2x 10Gbit/s Intel X710 Ethernet Adapters

The traffic capture program was written in C-programming language and it utilizes

Libpcap library for packet capture features and nDPI library for deep packet

inspection processes which are used to identify the application of the flow. With

the specs mentioned above, the capture system should be able to handle

28Gbps of data, if every single bit in the packet is being processed and multi-

threading is utilized for the packet capture process. In practice, the

implementation should be able to handle a lot more because mostly the headers

of each packet are processed.

nDPI is an open-source and extensible deep packet inspection library. It allows

application-layer detection for the packet capture processes, which does not

depend on which port the application uses. It enables the detection of sub-

protocols by using string-based matching, which utilizes Aho-Corasick algorithm

for matching thousands of sub-strings efficiently. In case, the deep packet

inspection process fails nDPI tries to guess the protocol by using a heuristic.

nDPI can detect and classify up to 246 different protocols. (nDPI project, 2020)

In the traffic capture phase, the packet is captured and a traffic flow record is

created. The flow record is created from IP, ICMP, TCP and UDP traffic. The

flow record consists of the following features with size:

• Source IP address, 4 Bytes
• Destination IP address, 4 Bytes
• IP Protocol number, 1 Byte
• IP Identification, 2 Bytes
• Source MAC Address, 6 Bytes
• Destination MAC Address, 6 Bytes
• Ethertype, 2 Bytes
• TCP/UDP source port, 2 Bytes
• TCP/UDP destination port, 2 Bytes

39

• TCP Flags, 1 Byte
• Number of bytes, 4 Bytes
• Number of packets, 4 Bytes
• Application ID, 2 Bytes
• Unix timestamp of first packet, 4 Bytes
• Unix timestamp of last packet, 4 Bytes

The total size of each flow record is 48 Bytes. Depending on an installation,

Ethernet layer features, such as the MAC addresses can be unnecessary in the

flow record. After the creation of the flow record, it is pushed into a circular buffer

to wait for the export to a NetFlow collector. In the case the buffer already

included a record with the same IP-addresses and ports, the new flow record is

summed with the existing ones stored in the buffer.

NetFlow exporter is executed in the dedicated thread. It combines flow records

for efficient export to the collector. Exporter pops flow records from the circular

buffer that has been stored in the buffer for a defined amount of time. The time is

by default one second. This feature with the seek function is used to combine

multiple packets of the same connection into a single record. This reduces the

number of records exported towards the collector. The amount of time can be

reduced to have a higher resolution of flow data and reducing the latency

between the traffic capture and flow collector.

The seek function for circular buffer operates by seeking flow records that match

with source and destination IP-address and ports. The seek starts from the tail of

the circular buffer and when the head of the circular buffer has been reached the

seek is ended. This reduces execution time especially in large buffers because

only the used part of the buffer is searched. However, the current implementation

of the seek function algorithm is not optimal in a case where circular buffer usage

is high. This thing can be seen in tests which results are mentioned in chapter

9.1.

The developed capture system has few variables that can be tuned to make the

capture system to fit the environment. These variables are the following:

40

• Flow record cache size
• Flow record cache expiration time
• Flow export rate

Flow record cache size defines the number of flow records that can be stored in

the cache. By default, the size of the buffer is 10000 records. In practice, it

means that there can be up to 10000 concurrent connections within the time

specified in the flow record cache expiration time. The flow record cache

expiration time variable defines the time how long the record stays in the buffer

until it can be exported. Flow export rate defines the interval of how often flow

records are sent to the collector.

Flow export rate defines that how often NetFlow exporter thread pops flows from

the circular buffer for sending them to the collector. By default, the NetFlow

exporter iterates every thousand microseconds and packs the flow records into

optimal packet size, which is by default the same as Message Transfer Unit, MTU

and sends them by using User datagram protocol. The value of MTU is by default

1500 Bytes.

The formula for the theoretical maximum amount of exported flow records per

second is:

𝑀𝑇𝑈

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑟𝑒𝑐𝑜𝑟𝑑
∗

1 𝑠

𝐸𝑥𝑝𝑜𝑟𝑡 𝐼𝑛𝑡𝑒𝑣𝑎𝑙 (µ𝑠)

Which is with default values:

1500 𝐵𝑦𝑡𝑒𝑠

48 𝐵𝑦𝑡𝑒𝑠
∗

1000000µ𝑠

1000 (µ𝑠)
= 31250Flow records ⁄ second

This value can be improved in the limits of hardware by reducing the size of the

record, stripping out unnecessary features, increasing exporter polling interval

and increasing MTU of the network. Gigabit Ethernet connection should be able

to deliver ~81k full-sized packets per second when MTU is set to 1500. (Cisco

41

Security, n.d.). This means that the theoretically Gigabit Ethernet allows

transmitting 2.4 million flow records per second. However, other computational

limitations may limit this number drastically.

Because NetFlow version 9 uses UDP transport layer protocol, high export rates

would require an error-prone network or data path to ensure maximum integrity of

the data. Also, the NetFlow collector must be implemented optimally to be able to

receive and handle a high number of UDP datagrams and parse flow records

from the datagrams efficiently.

At the collector end, in the case where template FlowSet does not exist, it waits

for the exporter to send a template frame for the collector. Depending on the

device this usually takes a few minutes. Unexceptionally the NetFlow exporter in

the developed traffic capture system for the thesis purposes does not have a

template export feature, which means that the template is hand-made on the

collector side. When using the module with a standard NetFlow exporter, the

automatic template collection process works correctly.

NetFlow version 9 protocol does not support any encryption which practically

means that the NetFlow data travels as plain text through the network. The

superior of the NetFlow Version 9 is IPFIX protocol, which provides encryption

support and multiple other improvements such as variable-sized fields and

enterprise-defined fields. IPFIX is an extended version of NetFlow v9 and it is

standardized by IETF. (Zseby et al., n.d.)

The IPFIX protocol was not utilized in the project because the IPFIX records did

not work in Cisco 4500-X which was the original plan for the source of the

network traffic flow. After updating the 4500-X the IPFIX started to operate

correctly, but the main problem of missing flow records caused by the VSS

system was not fixed. Before the update, the NetFlow version 9 collector was

already implemented.

42

Performance of the collector in the test environment could be improved by

running two instances of the capture process, each for a single capture interface

without the interface bonding. Running dedicated capture processes for each

interface multiples the performance. Also, the Linux network stack with bonding

and VLAN interface may cause a bottleneck for the capture process.

Another way to improve performance is to increase the number of worker threads

for the packet capture process. Using multiple processes or threads may cause

misordering in the flow records, but practically that should not be a problem for

the data use case in this thesis.

An extra function in the packet capture process was also developed. The function

is a DNS query-response pair parser and exporter. It exports DNS queries and

answers in JSON format to the centralized data collector. This record contains

the following variables:

• Querier IP
• DNS name
• Resolved IP address
• Nameserver
• Timestamp

This data is useful for determining the hostnames behind the IP-addresses by

enriching this data with the flow record. However, the feature is limited to DNS A

queries so the function is not capable for full DNS logging at this stage.

7.2 Microsoft event log forwarder

The event log of the Microsoft Windows Server Active Directory provides valuable

information about the users of the network and different security events such as

successful and unsuccessful logins on the workstations which are set up into the

domain, but also for the devices, which logon and authentication processes are

set up to use RADIUS protocol.

The practical implementation to forward Microsoft Server Event Logs tried to

keep simple and follow best practices in communication security. The

43

implementation consists of PowerShell script which initiates TCP socket with TLS

1.2 context, reads new events from the security event log, converts it to JSON

format and forwards them to the centralized log management system through the

SSL protected socket.

In the centralized data collector, a simple Microsoft event log receiver over the

SSL python module was implemented. Because the log was possible to convert

directly into the JSON format in the PowerShell environment, no external

processing was not required to do.

This solution is quite useful because the data channel is encrypted and the server

is authenticated with an SSL certificate. The solution allows also a client

certificate to be used to authenticate the client. This can be used to prevent

external sources from spoofing messages into the log. The solution itself is quite

universal and easily adaptable because it does not need any external programs

to be installed into the Windows Server. The only thing that needed to run is the

PowerShell script at the Windows Server.

7.3 Syslog server

A simple Syslog server module was implemented into the centralized log

collection system. Practically It is a simple UDP listener that extracts the facility

code and severity number out from the PRI number, which is located in the front

of each message. After that, facility number, severity code, timestamp and

message are converted into the JSON format and forwarded further in the

process. However, parsers for each type of log messages are required to be

implemented to use the data in the log messages directly in the processes.

The security of Syslog-protocol is quite poor because quite a high number of

devices do not support TLS or DTLS features in their Syslog implementations.

Syslog itself is quite a good source of data because it is widely used. Due to the

lack of security features in Syslog implementations, those were not implemented

for this server module in this project. The Syslog communications were put on a

private subnet in the test environment.

44

7.4 SSH stream reader

The SSH stream reader was created for fetching logs from the servers and

services which do not provide standardized log format and forwarding method.

The solution is relatively simple, it opens an SSH connection into the server and

starts reading a log file. Once a new line appears it is forwarded to the

corresponding parser, which parses defined the entries of the line. From the

entries, a JSON object is created and pushed into the database.

The solution is relatively usable because the SSH communications are strongly

encrypted by default. SSH provides also authentication for communication.

7.5 Selection of database

NoSQL database MongoDB was chosen as the main database for all the

collected data. Originally, it was decided to utilize the MariaDB SQL Server as the

main database. During the project, it was noticed that the content of the data

objects differs a lot from the others which would have required a more specific

database schema design. MongoDB does not require a specific database design,

because it creates the schema of the database dynamically.

The main differences between MySQL and MongoDB are the following:

 MySQL represents the data in tables and rows. MongoDB represents data
as JSON Documents.

 MongoDB does not require the definition of the schema of the database

 JavaScript is used as Query Language in MongoDB, whereas MySQL
uses Structured Query Language

 MongoDB can handle large unstructured data efficiently

(Guru99, n.d.)

The reason for handling large numbers of unstructured data and there is no need

for schema definition makes the choice ideal for development projects using agile

software development methods. It also integrates perfectly with the framework,

because it uses JSON as a document format, which the framework uses as well.

The model of how MongoDB operates also allows a flexible horizontal scaling of

45

the database, which is required if a completely new kind of data is stored in the

database.

MongoDB Inc. defines the six best practices steps for improved security. These

steps are the following:

 Create separate security credentials
 Use Role-Based Access Control (RBAC)
 Limit database connections
 Encryption the data
 Extra encryption for sensitive data
 Audit and logging

By default, MongoDB does not have authentication or other security features

enabled. Role-based access control allows authorization for different roles such

as an application server or a database administrator. Roles can be customized to

fulfil the needs of particular teams and functional areas. Limiting connections to

the database reduces the risk of intrusion and data theft. MongoDB Inc. defines

the white list of allowed IP-address which are allowed to connect into the

database. (MongoDB Inc, 2020)

Data encryption makes data unreadable for users who do not use keys. The

Community version of MongoDB does not support encryption. Alongside the

encryption, MongoDB supports client-side field-level encryption that ensures only

relevant parties have access to read. The audit log keeps track of database

operations and changes to answer questions about what changes and when

those changes were done. The enterprise edition of MongoDB enables extra

features such as LDAP (Lightweight Directory Access Protocol) and Kerberos

authentication. (MongoDB Inc, 2020)

7.6 Risk management of the data collection

The first development iteration was mostly prototyping the system. Because of

this, the used solutions may include risks that must be taken when the system is

taken into production. This chapter introduces the initial risk management for

some recognized risks. Table 2 represents some of the recognized risks,

consequences, controls and mitigation methods.

46

Feature Risk Consequences
Control &

Detection
Mitigation

Syslog message

collector
MiTM attack

Attacker gains visibility of

the system logs in

realtime. Attacker has

possibility to inject

spoofed log messages

into the data collector.

Syslog messages

communicates

trough private

network. Monitor

activity of this

network

Enable encryption and

authentication for the

communication. If device

or system does not

support them, provide

secure tunnel interface for

the communications.

Mitigate MiTM attack

vectors

 Hijack of device sending Syslog

Attacker has possibility to

inject spoofed log

messages into the data

collector.

Monitor activity and

detect anomalies in

the log events

Enable encryption and

authentication for the

Syslog communication. If

device or system does not

support them, provide

secure tunnel interface for

the communications.

Mitigate MiTM attack

vectors

Communication gets disrupted

or blocked

Log messages are not

received at the data

collector. Causes blind

spot of the specific data

source

Monitor data

collector activity and

alert if activity is

reducted.

Cache messages in the

device until collector

acknowledges that the log

messages have arrived.

Enable redundant

communication channel

NetFlowv9 Collector

and traffic capture

appliance

MiTM attack or Hijack of traffic

capture device

Attacker gains visibility of

all network flows. Attacker

has possibility to spoof

flow records to obfuscate

the security team

Use dedicated nic

and network for the

data transmit to the

collector. Monitor

activity of the

collector and detect

anomal network

activities

Change protocol to IPFIX

and enable authentication

and encryption for the flow

record. If this is not

possible, provide

encrypted tunnel interface

for the communications.

Mitigate MiTM attack

vector

Communication or traffic

capture gets disrupted or

blocked

Immediate blind spot in

the data collection.

Intrusion is not detected.

Increased Latency in

collected data

Monitor data

collector activity and

alert if activity is

reducted from the

normal.

Enable redundant

communication channel.

Cache flow records for

specific amount of in order

to fetch them later when

the communication

operates again.

Microsoft Event Log

Collector with TLS

MiTM attack or Hijack of traffic

capture device

Communication or traffic

capture gets disrupted or

blocked

Microsoft events not

getting transmitted

Monitor data

collector activity and

alert if activity is

reducted from the

normal.

Enable redundant

communication channel.

Database Data breach
Outsider has all the

collected data

Detect abnormal

traffic from the

database

Limit the database

connections only for the

IP addresses that is

require. Encrypt the

sensitive data

Database corruption or hard

disk crash
The data is probably lost

Keep track on disk

usage,activity and

health.

Use redundant disk arrays

or hyper converged file

system

Table 2: Table of the risk management plan of the data collection.

47

8 IMPLEMENTED MACHINE LEARNING AND ENRICHMENT FEATURES

During the thesis, there were few attempts to implement machine learning

features to process the data automatically and find unseen things from the

collected data. Two of them, decision tree-based anomaly traffic detection and

regular traffic detection modules were successfully tested and the methods were

proved. One artificial neural network-based traffic classification was only tested

as a proof of concept, but the result of it did not offer anything useful at that time.

8.1 Network behaviour model and anomaly detection module

An anomaly traffic detection module was created to detect anomalies from the

change of network behaviour by comparing them to the pre-built model of the

traffic. A decision tree-based supervised learning method is used to generate the

model from the flow records of the network traffic. The model of the structure is

hierarchical, which allows hierarchical comparison between the data and the

model. The solution allows optimal comparison against the model which improves

the performance of the detection process. High performance of the comparison

process is important because the amount of incoming traffic to the detection

module can be high which may lead to an increased latency of the detection

process.

48

Figure 9: The hierarchical traffic model of the traffic record.

In figure 9, the content of the model is explained. The model is a simple

hierarchical list of traffic flows from the Source IP to the Destination IP with their

corresponding source port and destination ports. At the bottom of the hierarchy,

the application identification number and number of packets and bytes are stored.

The comparison of the incoming flow against the hierarchical model is based on a

decision tree algorithm. Figure 10 present an algorithm for the comparison

process.

49

Figure 10: Simplified Logical presentation of the comparison algorithm.

The algorithm is relatively simple. As seen in figure 10, the tree provides

information of the reason via return values alongside the information was the flow

anomalous or not. The return values can be defined as the following:

• 0: The flow had no significant difference against the model
• 1: The application was different than in the model.
• 2: The destination port was different and the model contained only one

destination port. Did the direction of the connection change?
• 3: The source port was different and the model contained only one

source port. Did the direction of the connection change?
• 4: The destination IP where Source IP sent the packet, did not exist in

the model. A new connection to a new destination was caused by the
source.

• 5: The source IP did not exist in the tree. A completely new source of
traffic appeared.

50

In practice, return values 3 and 2 should never appear unless there is a change

in the direction of the connection. In case the return value is 1 there was a

change in the application. This condition triggers in the case where the

destination runs HTTP server, but the source uses a telnet client without headers

or performs TCP SYN scan against the port for an example.

8.2 The regular traffic detection module

The regular traffic detection module was developed to track and detect regular or

periodic connections from the flow records. This module is used to find possible

command and control channels that are used by malware. This is based on an

automatic observation of traffic flows with the same source and destination and

time between them. The method requires at least three flow records to determine

the flow interval. This interval value can be used to predict the next occurrence of

the flow.

In figure 11, the operation of the module is shown. It practically keeps track of

flow intervals when three or more flows with the same time difference between

the flows it calls a callback function for further processing and saves it to an

output record for post-analysis.

51

Figure 11: The simplified presentation of the operation of the module.

The regular traffic detection module takes four definable variables inside which

are the following:

• Minimum allowed interval
• Maximum allowed interval
• Maximum allowed variance interval
• Minimum required amount of flows

52

Allowed interval variables practically filter out unwanted results with the specific

interval from the output. The variance variable defines the amount allowed jitter in

the interval value. The minimum amount of required amount of flows variable

defines a number of the flows that are required for determining if a specific flow

regular. The minimum value for this variable is three. The regular traffic detection

module outputs the following variables alongside variables defined in the flow

record:

• Minimum interval
• Maximum interval
• First occurrence time
• Last occurrence time
• Flow duration
• Total bytes
• Total packets
• Predicted next occurrence time of the flow

Figure 12 presents the detection method in a time sequence chart. Green

transparent bars present the detected regular flows caused by the flow records of

a possible malware beacon. The transparent blue bar presents detected

regularity in the WWW-browsing 1. Both of the bars visualized the prediction of

the next occurrence time of the flow where small variance in the flow next appear

time is allowed.

The small blue transparent bar visualizes a situation, where the flow was

predicted to appear, but it did not. In this case, the regularity of WWW-browsing 1

stopped. This is typical behaviour for the traffic where a user loads a web page

and some kind of tracker or an API connection stays active until the user closes

the web page. This is a typical cause of false-positive results for regular traffic

detection methods like this. The minimum interval was set to three seconds in

this example, which filters out the transmission caused by WWW-browsing 3 and

2.

53

Figure 12: An example of data shown from one minute. X-axis = Time, Y-axis is

the amount of data transmitted.

Depending on the environment where this method is used, the method causes a

lot of false-positive results caused by protocols such as Network Time Protocol

and the behaviour of applications and services such as Web-trackers, Windows

Update Services or cloud applications such as Microsoft Teams.

The hour of flow records may cause thousands of results when those are driven

through this process for example. When the minimum time is set relatively low,

under ten seconds, for example, the amount of false-positive results increases

because a lot of normal traffic starts to hit against the detection rule. In the case

where the allowed variance is set to high, to minutes, for example, more false-

positive results are caused by activities such as random web browsing.

For the false positive problem, some filtration for the results can be done and the

amount of the results might be reduced significantly. Some applications and ports

such as Network Time Protocol and port 123 causing false-positive results can

be filtered out easily for example. Also, the results that are not present in the

whole given time window could be reduced.

54

The process of the detection module give also a useful method to detect if

legitimate but regular connections such as SNMP poll or periodic data

transmission from IoT Device communication suddenly disappear or change their

transmit interval. These events might mean that the device is broken or it is

malfunctioning. In case it comes back online, it might mean that the device has

been stolen and the software or the content of it has been modified.

8.3 Automatic data enrichment module

The prototype version of the automatic data enrichment module was

implemented to find relations between multiple JSON objects. The enrichment

method works similarly with the Laravel Eloquent Relationships. Laravel Eloquent

Relationships method provides a powerful method for chaining and querying

different objects together. (Laravel LCC, 2020). Relational database systems,

such as MySQL provides similar functionality with JOIN commands.

The operation of this module is relatively simple. It loops through the object keys

and compares them into values in other objects and creates links between the

objects. The process creates a new object which can be iterated again through

the process.

55

Figure 13: Operation of the process in a simple format. The Green box is the

primary object and the yellow ones are secondary objects.

The process shown in figure 13 can be run in sequential iterations where

previously linked objects are included in the primary object.

In figure 14, the example result of the enrichment process is presented in a

graphical format. In this example, a flow record is set as the primary object. In the

first enrichment iteration, a username and MAC address is found from the

records by comparing a flow Source IP address to other objects. By comparing

Destination IP address to various objects, the information of the Geological

location, DNS name, a Network block owner and persistence in Open Threat

exchange could be found.

56

Figure 14: Simulated hierarchical result of the enrichment process.

During the second and the third iterations, newly found variables are iterated

again against the same objects and new information about the source IP is found:

Vendor of the workstation, the network equipment where the device is connected

and its interface. On the destination IP side, information about the owner of the

DNS name and information of the network block for an example.

The process could be started from anywhere. Setting a user record as the

primary object, the output contains everything related to the user: IP addresses,

accessed websites and used devices for example. For another example where

DNS log record is set as the primary object, from the output, which users have

accessed into this website related to the DNS log record can be determined.

The solution for this case is not free from problems. Without filtering or giving

rules for skipping objects or variables the algorithm starts to loop for a long time

and the hierarchical result is massive containing a lot of information that may not

be relevant to the case. For example, if a flow record is compared with another

flow records, the created link will be found between all of them, because there

57

are multiple records, containing the same ports, the same addresses and the

same transmit time for example. The process is computationally quite heavy,

especially if multiple iterations are used and a volume on the input side is high.

8.4 Flow classification with artificial neural network

Traffic flow classification with artificial neural networks was tested for the further

implementation of the traffic behaviour classification process. Due to the time

taken in model compilations, the complete implementation of this process was

moved to the next development cycle. The method uses supervised learning with

predefined datasets. The process automatically classifies the flow behaviour to

categories such as:

• HTTP Large activity
• HTTP Small activity
• SSH small activity
• SSH large activity
• SNMP poll
• ICMP echo/reply

The test implementation of flow classification by using an artificial neural network

was created with Keras library, which is a versatile and simple deep learning

module for Python programming language. Keras library is a user-friendly

interface for the TensorFlow library.

src port dst port octets packets app_id output

49141 22 120 2 (ssh) 1 (SSH small activity, input)

49141 22 140 2 (ssh) 1 (SSH small activity, input)

49141 22 400 3 (ssh) 1 (SSH small activity, input)

22 49141 500 3 (ssh) 2 (SSH small activity, output)

22 49141 620 2 (ssh) 2 (SSH small activity, output)

22 49141 700 3 (ssh) 2 (SSH small activity, output)

48134 443 6000 5 (tls) 3 (TLS small activity, input)

48134 443 12498 8 (tls) 3 (TLS small activity, input)

48134 443 13311 10 (tls) 3 (TLS small activity, input)

443 48134 64234 80 (tls) 4 (TLS large activity, output)

443 48134 341241 50 (tls) 4 (TLS large activity, output)

443 48134 123141 30 (tls) 4 (TLS large activity, output)

Table 3: Short example of contents of dataset

58

Table 3 presents a short example of learn dataset with five inputs at the input

layer and four output values at the output layer. The actual size of the dataset

was much larger, containing thousands of rows. The input layer consists of

source and destination ports, the number of octets and packets transmitted and

the application id.

The type of model shown in figure 15 is sequential. The hidden layer contains a

dense model with seven nodes in the hidden layer using the rectifier function as

the activation function. Categorical cross-entropy was used as the loss function.

With forty iterations the model accuracy was around 82.8%.

Figure 15: Example graphical presentation of used model of artificial neural

network.

The output classification is practically the classification of the behaviour of the

flow. These behaviour classifications are linked to the source to destination

combo of traffic flow during a learning period. This leads to flow such as

59

192.168.100.101 to 192.168.100.105 gets the flag of SSH small activity

classification for an example.

After the learning period, a flow of the source to the destination combo is

predicted towards the model and in the case, the prediction output, the

classification of the flow, is not included in the record of the source to destination,

an alarm is raised because of unexceptionally behaviour.

The traffic flow classification could also be used with the method present in the

regular traffic detector module. The combo of the output of these methods could

be useful to determine the type of flow and monitor the anomalies in that.

Because of the time generating the training dataset and compiling the model

more detailed.

9 SYSTEM AND FEATURE BENCHMARK TESTS

In this chapter, some benchmark tests are performed for evaluating the

implemented system and its features. The test environment, ICTLAB, consists of:

• 60 Users (COVID-19 situation limits users at the lab environment)
o In normal situations, the number is around 180 different users in

one week.
150 Workstations, internal services and servers

• Firewall
• Enterprise Local Area Network, with 10+ switches
• Microsoft AD as a Domain Controller

Due to the privacy of the other users in the ICTLAB network DNS Logging and

Active Directory Security Event Logging were disabled during the tests. Those

two sources would give a good view of what users are doing in the network but it

is not the main purpose of these tests. Enriching IP addresses with DNS record

from the DNS log and enriching the user information from the Event log gives a

good sight of who is accessing a specific website site and when for example.

Due to privacy and security reasons, the dataset with IP-addresses is not shown

in this report. Contents of the datasets are only meant for descriptive use.

60

9.1 Stress test of data collection

In this test, the system was shortly proofed against a high number of events and

collection time and accuracy were measured. The tests were performed with two

dedicated servers with 20Gbit/s connectivity communicating through the network.

The NetFlow collector was used as the collector because it has the highest

volume when compared to other collectors.

During the tests, 50000 echo/reply packets were sent in flood mode from the

server to another server to detect possible packet loss at the collector. Each of

the saturation was executing one minute before sending the test packets.

9.1.1 Test 1: Saturating the collector with large transmission

In this test, it was tried to saturate the network interfaces of the packet capture

device with large file transmission through the network. Two connections

between the mentioned servers totalling up to 14.9Gbit/s of network traffic. The

traffic was generated with the Iperf3 application by generating two parallel TCP

streams between two servers.

During the test, there was no noticeable change in the CPU usage of the packet

capture process. Amount of the captured packets varied from 60k to 75k packets

during the test. On the collector side, there was no change in collector latency

and there was no increase in the flow rate. The detected packet loss of the ICMP

echo reply test was 0%.

9.1.2 Test 2: Saturating the collector with a high number of packets from a

high number of connections

In this test, it was tried to saturate the network interfaces of the packet capture

device with a high number of concurrent connections. The traffic simulating

concurrent connections was generated by using Hping3 application which was

initialized to flood TCP packets to the destination from random source IP-

addresses generating up to 250 000 packets per second.

61

On the collector side, the amount of received flow rate was increased to ~2000

flows per second which is a relatively too low amount when compared with the

packet incoming rate. None of the test packets was detected on the collector

side. Because of this behaviour, a more detailed test was performed to find the

reason for this problem.

The same test was repeated with different size of the circular buffer for stored

flow records. The size of the buffer was changed in every test iteration to detect

that does the size of the buffer affects the packet loss rate. Flow cache expiration

timeout was also reduced from 1000 milliseconds to 200 milliseconds. Table 4

presents the packet capture result of the test with different sizes in flow record

buffer.

Circular Buffer
Size

AVG Measured
Capture packet
rate

Flow export rate Latency (sec)
AVG Measured
Loss %

100000 12154 6457 3 97

50000 13173 7121 2 91

25000 25127 7502 4 82

12500 39625 6369 2 79

6000 63201 6402 1 74

3000 98707 8004 1 60

2000 104275 6382 1 52

1500 119411 6400 0 45

1000 152146 5000 0 44

768 170183 3800 0 60

500 184244 2400 0 72

256 183455 1200 0 80

128 191214 650 1 95

Table 4: The result of the same test with different buffer sizes.

Referring to table 4, the packet capture rate efficiency with different buffer sizes

can be seen. A smaller buffer size allows a higher number of incoming packets.

Buffer sizes from 1000 to 3000 allow the lowest loss in the detection in the

situation where there are multiple connections flooding packets. From 100000 to

2000 buffer sizes the loss was caused by packet loss at the capture interfaces.

The packet loss was caused by the circular buffer seek function which execution

takes a relatively long time in the case the buffer is heavily populated with

62

records. This behaviour practically blocks the capture until the seek function is

executed completely.

The loss that was caused in the situations where buffer sizes were under 2000

was caused by the fact that there was no room for all flow records in the buffer.

This also explains the slow down at the flow export rate.

In the next test, the highest amount of packets in different connections was found

to find the limits of the capture system. The flow record buffer was set to 10000 to

have enough room for the flow records. The amount of sent packets was raised

in steps. The results of this test can be seen in table 5.

Ingress packet

count (different

connections)

AVG Flow export

rate (records)
Latency (sec)

AVG Measured

Loss %

4104 640 0 0

6200 1437 0 0

7100 2044 0 0

9120 3982 1 0

19878 6521 2 0

24512 7995 30 10

Table 5: collector test results with a high number of connections where the packet

count was raised slowly.

The result of the test shows that the current system can handle up to 20000

packets from different connections with stable latency. Packet counts over 20000

caused a slow continuous rise in latency, which was caused when the flow record

buffer started to fill up. The measured loss was caused when the flow record

buffer was filled up and there was no room for new flows.

9.1.3 Test 3: Saturating the collector with a high number of packets from a

single connection

Due to the results of the previous collector saturation tests, the behaviour of the

collector was tested with a high number of packets from a single connection. The

63

test was performed with the same parameters as in test number two. Table 6

presents the results of this test. The result of the test shows that the high packet

count is not itself the reason for the loss in the flow records.

Ingress packet

count (single

connection)

AVG Flow export

rate (records)
Latency (sec)

AVG

Measured

Loss %

5840 450 0 0

17421 471 0 0

26312 441 0 0

112105 434 0 0

144145 432 0 0

220211 436 0 0

Table 6: collector test results with a single connection and a high number of

packets.

9.2 Anomaly detection in network behaviour tests

In this test, the network behaviour anomaly detection module was tested in two

network environments. The test was run for a month to detect a possible amount

of false-positive results. The detection was tested by opening random

connections to the host in the network where the model was applied. This

simulates the unwanted anomalous behaviour that happens in the network.

The model was first applied to a network management network that contains the

management interfaces of the network equipment and some operational

technology of the test environment. The model was built from one week of traffic

flow records coming in and out from the network management network. Traffic in

the management network is known and there should not be anything anomalous.

After one month of testing and after filtering out known management traffic

caused by me, the results showed only the anomalies that were generated as a

test.

64

The same method was tested by creating a model from one of the classroom

traffic going in and out from the network and comparing traffic related to the

classroom network against the model. After one hour of testing, there were nearly

seven hundred false-positive results which were caused by the workstation within

the network. The test was cancelled after that.

9.3 Regular traffic detection

Because of the large amount of malware command and control channel beacons

to home regularly. In this test, the performance of regular traffic detection was

tested in a few different cases.

A Kali Linux with Cobalt Strike application and normal Windows 7 machines were

placed in the ICTLAB network. The Kali Linux simulates the attacker and

Windows 7 the victim. The malware was generated in the cobalt strike and it was

injected into the victim machine. Both of the machines were set up into the Virtual

Laboratory System which allows the remote use of the machines and possible

isolation from the ICTLAB network.

The test goal was to find a command and control channel of the malware that

was generated with Cobalt Strike and injected into Windows 7 in different

situations. The test utilizes the implement regular traffic detection python module,

flows per host gauge and simulated decision trees.

Test numbers four and five were performed first because the beacon was running

already with the correct parameters and the system had gathered data for the

testing. The numbers four and five also includes the more detailed steps of the

analysis and filtration process. The rest of the tests were performed with similar

methods. The only difference in the quality of the output of the regular traffic

detector module was the lack of the output of application detection.

65

9.3.1 Test 1: Malware beacon interval 60 seconds, jitter 0%

In this test, a beacon call home interval value was set to one minute and jitter

was set to 0%. The test simulated the case where malware was active and it was

communicating with its host.

In step one, 1 hour of NetFlow data was fetched from the database

and regular traffic detection was performed in a regular traffic detection module.

Fetching and processing one hour of NetFlow data took 19 seconds which

contained 465667 flow records.

The parameters for the module were set to the following:

• Minimum interval 10 sec
• Maximum variance between intervals 2 seconds

With these settings, 1283 regular traffic flows were detected. A relatively small

minimum interval caused a lot of false-positive results because of a regular web

browsing activity, WWW-trackers and protocols such as SNMP, ICMP and NTP

for example.

66

Figure 16: Scatter of all detected regular flows. X = Amount of flows Y = Interval.

1283 Data points.

In figure 16, the scatter of regular flows in a given time window, a cluster of

regular flows can be seen at the point or near where also the command and

control channel of the malware is located. It is possible to perform some filtration

for the data. Cross marks in the graph present the centre of the cluster of the

multiple points. The mark does not have any actual meaning in these tests.

In the next step, all traffic flows that were not present in the whole time window

were removed. These flows were caused by transient WWW-browsing for

example. Also, the port filter was enabled to filter all ports, except 53(DNS),

80(HTTP) and 443(TLS/HTTPS) away from the dataset.

67

Figure 17: Scatter of regular flow after filtration. X = Amount of flows Y = Interval.

111 Datapoints.

The filtration did not remove the noise around the command and control channel

significantly. After a more detailed look at the data, most of the noise was caused

by Microsoft 365, Microsoft Teams, Windows Telemetry Services and Skype

which all are used in the workstations located in the environment. Due to the lack

of an automatic filtration of IP-addresses with a good reputation, those cannot be

automatically filtered away in this stage. By filtering them out manually the noise

disappears around the command and control channel.

The same test was also performed with 12 and 24 hours of flow records. With 12

hours, the dataset size after filtration was reduced from the previous 111 data

points to 36 data points. The 24 hours reduced the dataset size to 34 data points.

68

Figure 18: Scatter of all filtered regular flows generated from 24 hours of flow

records. X = Amount of flows Y = Interval. 34 Datapoints.

A larger time window reduced the noise generated by Microsoft services in this

window because some of the workstations have been powered off during the

night time. However, the automatic determining is the flow caused by malware or

not, is not possible without automatic data enrichment processes and closer

observation of the results.

Figure 19 shows that there were similar regular flows when compared with the

real command and control channel. The row marked with red text was the traffic

caused by the command and control channel of the malware. The rows in the

greyed area were proved to be false-positive results because of jitter. The

variance was allowed to be two seconds from the calculated interval. Regular

traffic flows with large jitter could be filtered away, because only the regular flows

with the accurate intervals were wanted to be found.

69

Figure 19: Datasets from 24 hours of data after all filters has been applied.

Application detection has worked fine for some flows. The records that the

application has determined as unknown were manually checked and those

belonged to some of the previously mentioned Microsoft services. The reason

why the application has not been recognized is that the flow has been ongoing for

a long time and nDPI library can't determine the application in the middle of the

TLS conservation because the content of it is encrypted.

9.3.2 Test 2: Malware beacon interval 60 seconds, jitter 99%

In this test, the call home interval of the beacon was 1 minute and jitter was set to

99%. The test simulated the case where malware is active and it is

communicating with its host with a large jitter to obfuscate the detector. The test

is similar to test 1.

Parameters for the module were set to the following:

• Minimum interval 0 sec
• The maximum variance between intervals of 100 seconds

Figure 20 shows the results after the same filter that was used in test number

one.

70

Figure 20: Scatter of all filtered regular flows generated from 1 hour of flow

records. X = Interval Y = Jitter. 34 Datapoints.

In this case, the axis in the scatter in figure 20 was set to be Interval and Jitter,

because in this test it was looked to find regular flow which jitters. As can be

seen, there are only several flows which jitter is more than 10 seconds.

Figure 21 shows the content of the filtered datasets.

71

Figure 21: The rest of the dataset of test 2 after filtration

In the data set shown in figure 21, the red coloured text was the command and

control channel of the malware. Greyed out area can be post filtered away

because in this test regular flows whose jitter value was higher than 10 seconds

were looked at. The rest of these results also contained the same false-positive

results caused by Microsoft services than in test 1.

9.3.3 Test 3: Malware beacon interval 600 seconds, jitter 99%

In this test, the call home interval of the beacon was set to 10 minutes and jitter

was set to 99%. The test simulates the case where malware calls rarely home

and uses large jitter in intervals to obfuscate the detector. In this case, the

command and control channel cause very low amounts of traffic in the network.

Parameters for the module were set to the following:

• Minimum interval 60 sec
• Maximum variance between intervals 1000 seconds

72

Figure 22 shows the results of the tests after all filters were enabled. The test

result contained a high amount of false-positive results because a lot of legitimate

regular connections happens in the range of intervals from 60 to 600 seconds.

Figure 22: Scatter of all filtered regular flows generated from 4 hours of flow

records X = Interval Y = Jitter. 60 Data points.

Due to a high number of false positives, post-filtration of the hand was performed.

Figure 23 shows the rest of the dataset after post-filtration.

73

Figure 23: The rest of the dataset.

Like in the previous test here the content of the greyed area was filtered out

manually. Those could be filtered because the top-level application was known or

the flow has not been present in the whole time window.

9.3.4 Test 4: Malware beacon interval 600 seconds, jitter 10%

In this test, the call home interval of the beacon was set to 600 seconds and jitter

was set to 10%. The test simulated the case, where malware calls rarely home

and uses jitter in transmit intervals to obfuscate the detector. In this case, the

Command and Control channel caused very low amounts of traffic in the network.

Because this test was performed first this test contains more detailed steps of the

analysis process.

In step one, four hours of flow records were being fetched from the database

and regular traffic detection was performed in a regular traffic detection module.

Parameters for the module were set to the following:

• Minimum interval 60 sec
• Maximum variance between intervals 600 seconds

The regular traffic detector detected 777 different regular traffic flows, which have

been ongoing in a given time window. Figure 24 presents the scatter of all

detected regular flows.

74

Figure 24: Scatter of all detected regular flows. X = Interval, Y = Jitter. 777 data

points

The cluster at the down left corner in figure 24 was mostly caused by transient

regular transmissions caused by actions such as WWW-browsing or AJAX-

requests. These transients were caused because the variance in the regular

traffic detector was set to relatively high, which means that even unregular flows

that hit in the window, were also put into the dataset.

In this case, it was known that the malware calls home every 600 seconds with

50% jitter. Referring to the scatter in Figure 24, the point of malware traffic was

practically hidden in the noise, but in the case where the parameters of the

malware beacon are not known, it could be any of the points outside or inside the

cluster. While it is nearly impossible to find the Command and Control channel of

the malware from the current data, it was filtered.

In the second step, all detected regular traffic flows that were not present the

whole time window was reduced. This reduces transient activities such as WWW-

browsing out from the data, for example. The filter in this example was configured

75

by the following: flows that exits at least 90% of the given time window was kept

in the dataset. The result after the second step can be seen in figure 25.

Figure 25: Scatter of filtered regular flows. X = Interval, Y = Jitter. 169 data points

In the scatter that is shown in figure 25, can be seen that there were still too

many false-positive results that were required to be handled manually. In the

case where the firewall is properly configured to allow only certain ports to

communicate outside, the malware beacon may also use these ports. In step

three all ports, except 53(DNS), 80(HTTP) and 443(HTTPS) are filtered out. The

results of test three can be seen in figure 26.

76

Figure 26: Scatter of regular flows where the port filter has been applied. X =

Interval, Y = Jitter. 69 data points.

After the port filtration, the amount of data could be handled manually in a

reasonable amount of time. Because it was known or expected that a beacon

command and control traffic has been present for the full-time window, all flows

that have been started in the time window can be filtered out. Figure 27 shows

the results after the regular flow that was not present in the full-time window was

removed.

77

Figure 27: Scatter of regular flows where all started flows in the time window has

been filtered. X = Interval, Y = Jitter. 16 data points.

Filtering flows that were not present in the whole time window reduced the

number of results in the dataset. The amount of results left in the datasets is

shown in figure 28.

Figure 28: The rest of the data set, the red coloured text is the control channel.

The beacon used port 53 (DNS) even though it runs by using TCP protocol and

HTTP protocol inside it. This was caused by an accident in the configuration of

the beacon. The accident does not cause a significant difference in the test

results. In case the beacon has used port 80(HTTP), port 53(DNS) would have

78

been filtered out. All other flows in port 53 are clear false positives or unclear

situations due to the nature of DNS protocol inside the environment where all

queries use the same DNS Servers and port. Because the Regular traffic

detector hashes flow with the following key: SRC_IP->DST_IP:DST_PORT, it

sums all DNS queries caused by the host under the same hash.

If port 53 had been filtered out from the results and beacon would have used TCP

ports 80 or 443, there would have been five flows left more for analysis. To

determine which of them is the malicious flow, information from DNS log, WHOIS

services or IP reputation databases can be utilized to determine if the IP-address

of the flow is known to service or something else for example.

9.3.5 TEST 5: Malware beacon interval 4000 seconds, jitter 50%

In this test, the call home interval of the beacon was set to 4000 seconds with a

50% percentage of jitter. The test was practically the same as test 4, but with

different values. The most significant difference, when compared with test

number 4, is that the malware beacon was active in night hours which caused

some reduction in the noise. Also, the port of the beacon listener was configured

to 80 which is supposed to be also in test 4 as well.

Parameters for the module was set to the following:

• Minimum interval 60 sec
• Maximum variance between intervals 3000 seconds

These options resulted in a high number of false positives. The results can be

seen in figure 29.

79

Figure 29: Scatter of regular flows, unfiltered. X = Interval, Y = Jitter. 16 data

points: 1364.

Like in test 4, high variance caused a high number of false positives which must

be filtered away to have fewer results for manual handling. Also, the relatively

long time window showed the false positives caused by activities such as a

WWW-browsing or Network Time protocol.

In the second step, all detected regular traffic flows that are not present in the

whole time window were reduced. This reduces transient activities such as

WWW-browsing out from the data, for example. The filter in this example was

configured as following: flows that exits at least 90% of the given time window are

kept in the dataset. Also, port filters were enabled for ports 80 and 443. The

result after the mentioned filters can be seen in figure 30.

80

Figure 30: Scatter of regular flows, flows appeared during the time window

deleted. X = Interval, Y = Jitter. Data points: 14.

In figure 30, an empty cap can be seen between 2000 seconds and 3500

seconds. In this case, the command and control channel was one of the two

points on the right side of the scatter. Like in test number 4, the rest of the data

could be enriched with other sources to determine if a source or destination IP-

address malicious or not and filter them away from the results.

9.4 Discussion about the tests

Performed stress tests showed one weak link in the system which could be

improved or fixed in the next development iterations. The high number of traffic

flows from different sources causes a denial of service for the capture process,

but practically this kind of activity can be detected in other metrics such events

per seconds.

However, this kind of behaviour would cause a blind spot for the things that

happen in the network. The one solution for the problem is to start sampling the

flows, but in normal situations, it causes a reduction of data accuracy which leads

81

to possible blind spots. The better solution to this is to make a more optimal seek

function for larger circular buffers that do not take long to execute. Some

slowness in the seek function was noticed during the tests that were performed in

chapters 9.1.2 and 9.1.3. The traffic capture process runs in a single thread

allowing ~225k packets per second to be captured if the capture process does

not contain bottlenecks. Increasing the number of threads to 4 and optimize the

seek function of the circular buffer, capture rates over 1 million packets could be

achieved with used hardware.

The decision tree-based network traffic anomaly detector seems to be good for

networks where the type or content of flows does not often change. These kinds

of networks are industrial OT-networks (Operational Technology) but also

network management networks. The developed model did not operate well

enough in networks that contain workstations with different users, because of the

higher variance of the traffic behaviour, which causes a lot of false-positive

results. The traffic baseline model would work fine in the case where the network

includes users with workstations if the source or destination IP-address could be

replaced with a username and generate a user-based traffic baseline model from

the data by using user behaviour analytic methods.

The regular traffic detector module seems to be a good tool to detect traffic flows

caused by a command and control channels of a specific malware. However, the

method causes a relatively high amount of false-positive results caused by

legitimate services which are currently required to be filtered manually from the

results. Most of the false-positive results could be filtered away easily by the used

protocol or application, but some of them would require a large whitelist of

legitimate IP-addresses. As some services are moving to the cloud, where

multiple service instances could share a single IP-address, the possible intruder

also may have the possibility to move the listener of the beacon into the same

cloud service provider. This would make the determination of malicious flow more

difficult.

82

When using the regular traffic detector module, it requires the definition of the

questions about what kind of traffic is being searched:’

• Are we looking at regular flow with a small interval or a large one?
• Does the interval of the regular flow jitter much or not?
• Which ports does it utilize?

Reflecting on the test results, it seems that the regular flow with a small interval is

harder to detect than the regular flow with a higher interval. The jitter in the

regular flow interval makes detection harder in real-time, but the effect of the jitter

seems to turn against the malware when traffic flow information can be obtained

with a large time window. Unfortunately, the jitter function did not operate fine in

the malware beacon, so there was not much jitter seen in the results, even it was

set to 99%.

Higher intervals may also expose the malware easily because most of the regular

traffic intervals are under 60 seconds, which are caused by regular API calls of

the cloud applications, website trackers or Ajax requests. Intervals higher than 60

seconds contain mostly traffic flows containing NTP and rare calls from the

applications such as checking software updates from the server. This behaviour

should hypothetically apply to most of the enterprise or home networks.

10 DISCUSSION

The topic and viewpoint of this thesis were quite wide, but the prototype of the

system was developed successfully, answers were found for the defined

research questions and main objectives were fulfilled. Some fields, such as data

collection could have been extended easily to another thesis project.

The amount of set research and development objectives was set high which

caused project limitations in project objectives during the project. artificial

intelligence and machine learning processes could have been researched more

but due the time taken in the data collection processes and solving issues

reduced the allocated time for these.

83

The original plan included an initial design of a user interface of the system. Due

to time was taken in other objectives and the wideness of the topic about creating

the user interface, it was moved to further development iterations. However, an

initial dashboard user interface was created as a side project during the thesis.

10.1 Answers for the defined research questions

In this subchapter, the answers to the defined research questions are discussed.

The first question: Can the system setup and detection process be automated

efficiently to get solutions like this quickly into production? The answer is

theoretically yes. The data collection processes can be set up relatively quickly if

all required hardware is available. The time goes for waiting until enough data is

collected for machine learning processes. Machine learning processes reduces

time to define baselines for the data flows significantly.

For the second question: How much computational resources would be needed?

This depends on significantly from the environment where this kind of centralized

data collection system is installed and what data is being collected. Data

collection itself does require much computational power, but processing it may

take. Generating ML models from data can be a heavy task.

For the third question: Is it possible to detect malicious network traffic from

network flow records? Yes, but it requires a lot of processing and enriching the

data to make decisions is some result malicious or not.

For the fourth question: What is the false positive rate when flow-based traffic

statistic gathering is used as a source for anomaly detection? Depending on the

case, the false positive rate can be high, but those can be reduced significantly

by filtering out results that are known to be legitimate.

10.2 Future of the project and project proposals

The developed system requires a lot of development in the anomaly detection

stage. The system itself provides quite a lot of data for telemetry use about the

84

users and the devices of the network. This data could be used for further

research and development of detection modules such as deeper device or

software behaviour analysis and user behaviour analysis. Some sources and

project proposals are outside of the scope of the thesis project but could be

integrated into the project.

Adding new data sources opens new possibilities for data analysis to create

telemetry about network users and devices. Some possible upcoming data

sources are:

• 802.11 Monitor
• Internal honeypots
• External honeypots
• Firewall log
• Electronic lock and access control system

IEEE 802.11 monitoring provides information about the wireless local area

network devices around the monitored area. It could be implemented with a

dense network of 802.11 adapters set up in the monitor mode as a sensor and

send the received data to the centralized data collector. A wireless adapter in

monitor mode provides hardware-level information about the radio interface such

as MAC-address and power levels. From the data, the location of the wireless

device can be calculated and the IP-address and user of the device can be

determined by enriching the MAC address with ARP tables and authentication

logs.

Internal honeypots could be made to detect lateral movement in the internal

network. The data provided by this kind of honeypot can be used for determining

the source and the content of the anomalous lateral movement. However, the

data provided by network traffic capture exposes lateral movement without

external devices.

External honey bots could be implemented to detect malicious IP addresses and

events. This information could be useful to be used alongside the IP reputation

85

database provided by Open Threat Exchange to detect connections which source

or destination IP is known as malicious.

Firewall log provides a good sight of the events that happen at the edge of the

internal networks. All actions that have been denied, could be indexed as

malicious activity. The information might provide valuable information about the

reconnaissance phase, which is the first phase in the cybersecurity kill chain.

(Hutchins et al., n.d.) Further network activity from the internal network to the

destinations that are indexed can be used as one factor to detect a possible

security breach.

Electronic lock and access control systems could be used as a source to

determine a person's persistence in the area. The information could be used for

user behaviour analysis alongside other data.

10.3 Telemetry and user behaviour-based multi-factor authentication for

critical network assets

This chapter introduces a research and project proposal for how telemetry and

user behaviour data could be used to protect critical network assets. One idea for

possible practical implementation is presented.

Encryption in the network protocols and hashed passwords in databases have

made traditional account takeover attacks less common making social

engineering to be the highest attack vector in the account takeover process.

Traditional multi-factor authentication provides an extra layer of security by

sending verification code via short message service and the user must input the

code in the login process. It makes the user account take over difficult, but it does

not prevent social engineering from obtaining the verification code. (Cullen, 2016)

Employees of the organization might complain that they must remember multiple

complex passwords and two-factor authentication takes a lot of time. Adaptive

multi-factor authentication might be a way to solve these kinds of problem. Andy

Zindel at Centrify defines that user behaviour-based adaptive authentication

86

should include a device profile, location awareness and user behaviour. (Zindel,

2017)

If including information from the network traffic with IP-address identity, 802.11

monitoring and electric lock and access control appliance, user behaviour

analysis could also include the following features for an example:

• Which time users usually log on to the workstation and come into the
premises?

• Which is the person's path to its office? How much time does it usually
take from the main door to the office door? Does the time differ from the
normal?

• Does a person have their mobile phone with him?
• What person does in the network? Does it differ from normal activity?
• Was a person on the premises when the logon happened?

Answers to these questions could be used to determine if the user is the user that

it claims to be. Figure 31 presents an idea level implementation.

Figure 31: Idea level solution for telemetry and user behaviour based multi-factor

authentication

87

The user which it claims to be. The information could be given into a network

security appliance that permits or denies the traffic with user-based access lists.

10.4 Research about detecting advanced command and control channels

and malicious activity

Could the collected data be useful for the detection of more advanced command

and control channels of the different kinds of malware that use top-level

applications as communication channels to achieve maximum stealthiness? The

scenario mentioned in this chapter would be theoretically possible, but the

practical implementation of the malware command and control channel would be

complex.

For example, malware named backdoor.makadocs uses Google Docs for

proxying command and control channel communications. It would be difficult to

detect communication of this kind of malware with network-level security

solutions such as next-generation firewalls. (Constantin, 2012)

Could application-level behaviour analytics expose this kind of activity by

comparing activity to record one? Google Docs is used as an example Figure 32

shows differences in network packet count in different cases of Google Docs

events with a resolution of one second. In Figure 32, the blue bar presents a

single keypress in the Google Docs application. A yellow one presents a slow

writing event and the red one fast writing. There is a significant difference in the

shape that is generated from the values of packets per second and time.

88

Figure 32: Three user-made keyboard-based events in Google Docs application.

Malware could also use a cloud-based document as the stealth command and

control channel causing similar activities to happen. An example situation is seen

in figure 33, where malware communicates through cloud office suites.

Figure 33: Example situation where command and control channel is

implemented to communicate trough could office suite.

In figure 33, the situation where the infected workstation is located behind the

next-generation firewall is presented. In this example case, the enterprise allows

Office365 and Google Docs to allow employees to do their work. Because more

people are using cloud applications such as office suites like Microsoft Office 365

and Google Docs, a straight block of these services does not cure the problems.

Practically this is not limited only to cloud office suites, also different kinds of

89

forums or boards would be possible. Communication might be easier to detect

because it is hypothetically easier to find small unique traffic flow records than

flow records that are caused by activity that is normal in the network.

However, the connection speed is not high, especially in the case the malware

emulates human behaviour to be as stealthy as possible. An average human can

write around 40 words per minute, which translates to between 190 and 200

characters per minute. (“LiveChat,” n.d.) ASCII character encoding provides 95

printable characters. To encode one byte at least 2 ASCII characters are required

to perform values in the range of 0-255.

With these values, it is possible to maximum calculate the approximate average

connection speed of 90-100 Bytes/minute. However, no human can write for a

long time without pauses. In this case malware command and control, a channel

could be detected if there is a long period of fast writing activity. To avoid

detection, malware communication must mimic human behaviour, which reduces

the speed of the connection significantly.

The connection speed is way too low to deliver significant information in the

channel of Google Docs in a reasonable amount of time. However, the speed of

the connection would be high enough to trigger some further actions, such as

faster command and control channel through an action such as phone or video

call with Microsoft Teams for example. The audio or even video stream allows

the full-duplex data transmission. With help of steganography, the command and

control channel is theoretically possible to hide into the legitimate data.

Detection of this kind of activity would be difficult to detect from the collected

data. However, using telemetry data mentioned in the previous subchapter and

the method mentioned in regular traffic detection could help to expose the

malicious activity through the mentioned techniques.

For example, it could be analyzed from the telemetry data if the legitimate user of

the infected workstation is present in the area where the workstation is located.

90

Or does a single workstation perform a writing activity when it is not theoretically

possible: the person is at lunch break or somewhere else. The third example

would be the following: does fast writing activity happen regularly? In case it

happens regularly, is there some legitimate reason for that?

10.5 Discussion about the project

In this thesis, the prototype of a modular framework for network security

monitoring was successfully implemented. The implementation requires a lot of

improvements in areas because some features were also implemented partially

just to the needs of the initial research. Also, the codebase would require more

standardization to make this for wider use.

The data collection methods would require more security improvements.

However, some of them are insecure by default and it might not be possible to

improve the security of them without using third party methods to provide a

secure communication channel between the collector and the device.

The thesis project improved the visibility of the commissioner network

significantly and also started research projects and thesis projects around the

system in the fields of data collection and machine learning. A one side project, a

security operations center for research and educational purposes, was built

meanwhile. The environment with this system was piloted in a demo exercise in

the autumn of the year 2020.

91

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J., 2017. Agile Software

Development Methods: Review and Analysis. arXiv:1709.08439 [cs].

Akbas, E., 2019. SureLog SIEM Data Enrichment [WWW Document]. Medium.

URL https://drertugrulakbas.medium.com/surelog-siem-data-enrichment-

7125a5ed27b1 (accessed 11.12.20).

Anderson, B., Paul, S., McGrew, D., 2016. Deciphering Malware’s use of TLS

(without Decryption). arXiv:1607.01639 [cs].

Canner, B., 2019. The 5 Most Common Attack Vectors in Endpoint Security

[WWW Document]. Best Endpoint Security Protection Software and Vendors.

URL https://solutionsreview.com/endpoint-security/the-5-most-common-attack-

vectors-in-endpoint-security/ (accessed 11.23.19).

Chakure, A., 2019. Decision Tree Classification [WWW Document]. Medium.

URL https://medium.com/swlh/decision-tree-classification-de64fc4d5aac

(accessed 11.12.20).

Cisco, n.d, Five Steps to Perimeter-Less Security

Conklin, K., 2018. What is Network Flow Monitoring? [WWW Document]. URL

https://www.whatsupgold.com/blog/network-monitoring/why-you-need-network-

flow-monitoring (accessed 11.27.19).

Constantin, L., 2012. Malware uses Google Docs as proxy to command and

control server [WWW Document]. Computerworld. URL

https://www.computerworld.com/article/2493242/malware-uses-google-docs-as-

proxy-to-command-and-control-server.html (accessed 11.10.20).

92

Cullen, C., 2016. Password security fail? Add multifactor with user behavior

analytics [WWW Document]. TechBeacon. URL

https://techbeacon.com/security/password-security-fail-add-multifactor-

authentication-behavior-analytics (accessed 11.10.20).

Davide, C., n.d. Figure 5.3: NetFlow collector architecture [WWW Document].

ResearchGate. URL https://www.researchgate.net/figure/NetFlow-collector-

architecture_fig8_237812998 (accessed 11.12.20).

Davidoff, S., Ham, J., 2012. Network forensics: tracking hackers through

cyberspace. Prentice Hall, Upper Saddle River, NJ.

Davin, J., Case, J.D., Fedor, M., Schoffstall, M.L., 1990. Simple Network

Management Protocol (SNMP) [WWW Document]. URL

https://tools.ietf.org/html/rfc1157 (accessed 11.25.19).

Douligeris, C., Serpanos, D.N., 2007. Network Security: Current Status and

Future Directions.

Edn, 2009. Improvement of libpcap for lossless packet capturing in Linux using

PF_RING kernel patch - EDN [WWW Document]. URL

https://www.edn.com/improvement-of-libpcap-for-lossless-packet-capturing-in-

linux-using-pf_ring-kernel-patch/ (accessed 11.12.20).

Endace, n.d. NetFlow Versus Full Packet Capture: understand the difference -

Endace [WWW Document]. URL https://www.endace.com/articles/NetFlow-v-full-

packet-capture (accessed 11.21.20).

Gardiner, J., Cova, M., Nagaraja, S., 2014. Command & Control - Understanding,

Denying and Detecting.

Green, A., 2019, What is User Behavior Analytics URL

https://www.varonis.com/blog/what-is-user-behavior-analytics/

93

Grimaldi, E., 2019. Decision Tree: an algorithm that works like the human brain

[WWW Document]. Medium. URL https://towardsdatascience.com/decision-tree-

an-algorithm-that-works-like-the-human-brain-8bc0652f1fc6 (accessed 11.30.19).

Guru99, 2020. MongoDB vs. MySQL: What’s the difference? [WWW Document].

URL https://www.guru99.com/mongodb-vs-mysql.html (accessed 11.2.20).

Hetting, C., 2019. Smart home Wi-Fi devices to grow to 17 billion units by 2030.

Wi-Fi NOW Events. URL https://wifinowevents.com/news-and-blog/research-

smart-home-wi-fi-devices-to-grow-to-17-billion-units-by-2030/ (accessed

11.23.19).

Hintze, A., 2016. Understanding the Four Types of Artificial Intelligence [WWW

Document]. URL https://www.govtech.com/computing/Understanding-the-Four-

Types-of-Artificial-Intelligence.html (accessed 11.30.19).

Hutchins, E.M., Cloppert, M.J., Amin, R.M., n.d. Intelligence-Driven Computer

Network Defense Informed by Analysis of Adversary Campaigns and Intrusion

Kill Chains 14.

IBM, 2019a. Artificial Intelligence for Smarter Cybersecurity [WWW Document].

URL https://www.ibm.com/security/artificial-intelligence (accessed 11.4.19).

IBM, 2019b. IBM QRadar SIEM - Overview - Finland [WWW Document]. URL

https://www.ibm.com/fi-en/marketplace/ibm-qradar-siem (accessed 11.24.19).

Joshi, N., 2019. 7 Types Of Artificial Intelligence [WWW Document]. Forbes. URL

https://www.forbes.com/sites/cognitiveworld/2019/06/19/7-types-of-artificial-

intelligence/ (accessed 11.30.19).

94

Kaplan, A., Haenlein, M., 2019. Siri, Siri, in my hand: Who’s the fairest in the

land? On the interpretations, illustrations, and implications of artificial intelligence.

Business Horizons 62, 15–25. https://doi.org/10.1016/j.bushor.2018.08.004

Kent, K., Souppaya, M.P., 2006. Guide to computer security log management

(No. NIST SP 800-92). National Institute of Standards and Technology,

Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.800-92

Kentik, n.d. NetFlow Guide: Types of Network Flow Analysis | Kentik [WWW

Document]. URL https://www.kentik.com/NetFlow-guide-types-of-network-flow-

analysis/ (accessed 11.12.20).

Kenton, W., 2019. Why Research and Development (R&D) Matters [WWW

Document]. Investopedia. URL https://www.investopedia.com/terms/r/randd.asp

(accessed 11.26.19).

Laravel LCC, 2020. Eloquent: Relationships - Laravel - The PHP Framework For

Web Artisans [WWW Document]. URL https://laravel.com/docs/8.x/eloquent-

relationships (accessed 11.2.20).

Lehto, M., Neittaanmaki, P., Nyrhinen, R., Ojalainen, A., Polonen, I., Rautiainen,

I., Ruohonen, T., Tuominen, H., Vahakainu, P., 2018. Teko¨alyn perusteita ja

sovelluksia 167.

Listvan, R., 2018. Introducing flow formats and their differences [WWW

Document]. URL https://www.flowmon.com/en/blog/introducing-flow-formats-and-

their-differences (accessed 11.12.20).

LiveChat [WWW Document], 2020. . LiveChat. URL

https://www.livechat.com/typing-speed-test/ (accessed 11.10.20).

95

Luis, R., Franklin, S., 2019. Detecting Malicious Traffic on Your Network [WWW

Document]. URL https://www.brighttalk.com/webcast/12099/355279/detecting-

malicious-traffic-on-your-network (accessed 11.2.20).

Mady), M.S.(, 2018. Chapter 4: Decision Trees Algorithms [WWW Document].

Medium. URL https://medium.com/deep-math-machine-learning-ai/chapter-4-

decision-trees-algorithms-b93975f7a1f1 (accessed 11.2.20).

Missinglink ai, n.d. 7 Types of Activation Functions in Neural Networks: How to

Choose? [WWW Document]. MissingLink.ai. URL

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-

activation-functions-right/ (accessed 11.2.20).

MongoDB Inc, 2020. 7 Best Practices for MongoDB Security [WWW Document].

MongoDB. URL https://www.mongodb.com/security-best-practices (accessed

11.2.20).

Morgan, J., 2016. What is Centralized Log Management (CLM)? [WWW

Document]. Mission. URL https://www.missioncloud.com/blog/what-is-

centralized-log-management-clm/ (accessed 11.29.19).

Muniz, J., Santos, O., 2017. NetFlow Versions > NetFlow for Cybersecurity |

Cisco Press [WWW Document]. URL

https://www.ciscopress.com/articles/article.asp?p=2812391&seqNum=3

(accessed 11.12.20).

Myung-Sup Kim, Hun-Jeong Kong, Seong-Cheol Hong, Seung-Hwa Chung,

Hong, J.W., 2004. A flow-based method for abnormal network traffic detection, in:

2004 IEEE/IFIP Network Operations and Management Symposium (IEEE Cat.

No.04CH37507). Presented at the 2004 IEEE/IFIP Network Operations and

Management Symposium, IEEE, Seoul, South Korea, pp. 599–612.

https://doi.org/10.1109/NOMS.2004.1317747

nDPI project, 2020. ntop/nDPI. Ntop.

96

NJRD, 2019. The Research and Development Cycle – NJRD. URL

https://njrd.org/the-research-and-development-cycle/ (accessed 11.26.19).

Oltsik, J., 2019. Examining and Addressing Threat Detection and Response

Challenges [WWW Document]. URL https://www.esg-global.com/blog/examining-

and-addressing-threat-detection-and-response-challenges (accessed 12.1.19).

Panchen, S., Phaal, P., McKee, N., n.d. InMon Corporation’s sFlow: A Method for

Monitoring Traffic in Switched and Routed Networks [WWW Document]. URL

https://tools.ietf.org/html/rfc3176 (accessed 11.12.20).

Parmar, R., 2018. Common Loss functions in machine learning [WWW

Document]. Medium. URL https://towardsdatascience.com/common-loss-

functions-in-machine-learning-46af0ffc4d23 (accessed 11.2.20).

Petryschuk, S., 2019. NetFlow Basics: An Introduction to Monitoring Network

Traffic [WWW Document]. Auvik Networks Inc. URL

https://www.auvik.com/franklymsp/blog/NetFlow-basics/ (accessed 11.27.19).

Postel, J., 1981. Transmission Control Protocol [WWW Document]. URL

https://tools.ietf.org/html/rfc793 (accessed 11.12.20).

Ring, M., Landes, D., Hotho, A., 2018. Detection of slow port scans in flow-based

network traffic [WWW Document]. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156027/ (accessed 11.12.20).

Sadek, R.A., Soliman, M.S., Elsayed, H.S., 2013. Effective Anomaly Intrusion

Detection System based on Neural Network with Indicator Variable and Rough

set Reduction 10, 7.

Salonen, K., 2013. NÄKÖKULMIA TUTKIMUKSELLISEEN JA

TOIMINNALLISEEN OPINNÄYTETYÖHÖN 42.

97

Schroer, A., 2020. 30 companies merging AI and cybersecurity to keep us safe

and sound [WWW Document]. Built In. URL https://builtin.com/artificial-

intelligence/artificial-intelligence-cybersecurity (accessed 11.17.20)

Seif, G., 2019. The 5 Clustering Algorithms Data Scientists Need to Know [WWW

Document]. Medium. URL https://towardsdatascience.com/the-5-clustering-

algorithms-data-scientists-need-to-know-a36d136ef68 (accessed 11.30.19).

Sharma, A., 2019. Data Enrichment: The Key Ingredient for SIEM Success

[WWW Document]. Securonix. URL https://www.securonix.com/data-enrichment-

the-key-ingredient-for-siem-success/ (accessed 11.30.19).

Sheridan, S., Keane, A., 2015. Detection of DNS-Based Covert Channel Beacon

Signals. Journal of Information Warfare 14, 100–114.

Soniya, B., Wilscy, M., 2016. Detection of randomized bot command and control

traffic on an end-point host. Alexandria Engineering Journal 55, 2771–2781.

https://doi.org/10.1016/j.aej.2016.04.004

The Cylance Data Science Team, 2017. Introduction to Artificial Intelligence for

Security Professionals. Cylance.

Todd, H., 2018. What Is Data Enrichment? [WWW Document]. RedPoint Global.

URL https://www.redpointglobal.com/blog/what-is-data-enrichment/ (accessed

11.30.19).

Trammell, B., Claise, B., n.d. Specification of the IP Flow Information Export

(IPFIX) Protocol for the Exchange of Flow Information [WWW Document]. URL

https://tools.ietf.org/html/rfc7011 (accessed 11.12.20).

98

ujjwalkarn, 2016. A Quick Introduction to Neural Networks. the data science blog.

URL https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/ (accessed

11.2.20).

University of Jyväskylä, 2019. Määrällinen tutkimus — Jyväskylän yliopiston

Koppa [WWW Document]. URL

https://koppa.jyu.fi/avoimet/hum/menetelmapolkuja/menetelmapolku/tutkimusstrat

egiat/maarallinen-tutkimus (accessed 11.24.19).

Upguard, 2020. Splunk vs ELK: Which Works Best For You? | UpGuard [WWW

Document]. URL https://www.upguard.com/blog/splunk-vs-elk (accessed

11.17.20).

Wilson, M., 2019. Port Mirroring - A Definition & How It Works,Tutorial Lab

[WWW Document]. PC & Network Downloads - PCWDLD.com. URL

https://www.pcwdld.com/port-mirroring-definition-and-tutorial (accessed

11.21.20).

Zindel, A., 2017. How Can User Behavior Analytics Kill the Password? [WWW

Document]. Centrify. URL https://www.centrify.com/blog/user-behavior-analytics-

password/ (accessed 11.10.20).

Zseby, T., Wagner, A., Mark, L., Boschi, E., Trammell, B.H., n.d. Specification of

the IP Flow Information Export (IPFIX) File Format [WWW Document]. URL

https://tools.ietf.org/html/rfc5655 (accessed 11.2.20).

99

LIST OF FIGURES

Figure 1: Cycle of research and development process (Goran tek-en, 2013).

Figure 2: Typical NetFlow architecture (Davide, n.d.)

Figure 3: Structure of NetFlow v9 template flowset. (Muniz and Santos, 2017)

Figure 4. Example of graphical presentation of simple classification decision tree

algorithm (Mady, 2018)

Figure 5: Activation function in the node. (Missinglink ai, n.d.)

Figure 6: Overall picture of the system

Figure 7: The design of data collection module.

Figure 8: The operation of traffic capture process.

Figure 9: The Hierarchical traffic model of the traffic record.

Figure 10: Simplified Logical presentation of the comparison algorithm.

Figure 11: The simplistic presentation of the operation of the module.

Figure 12: An example data shown from one minute. X-axis = Time, Y-axis is

amount of transmitted.

Figure 13: Operation of the process in simple format. The Green box is the

primary object and the yellow one are the secondary objects.

Figure 14: Simulated hierarchical result of enrichment process.

Figure 15: Example graphical presentation of used model of artificial neural

network.

Figure 16: Scatter of all detected regular flows. X = Amount of flows Y = Interval.

1283 Data points.

Figure 17: Scatter of regular flow after filtration. X = Amount of flows Y = Interval.

111 Datapoints.

Figure 18: Scatter of all filtered regular flows generated from 24 hours of flow

records. X = Amount of flows Y = Interval. 34 Datapoints.

Figure 19: Datasets from 24 hours of data after all filters has been applied.

Figure 20: Scatter of all filtered regular flows generated from 1 hour of flow

records. X = Interval Y = Jitter. 34 Datapoints.

Figure 21: The rest of the dataset of test 2 after filtration

Figure 22: Scatter of all filtered regular flows generated from 4 hours of flow

records X = Interval Y = Jitter. 60 Data points.

100

Figure 23: The rest of the dataset.

Figure 24: Scatter of all detected regular flows. X = Interval, Y = Jitter. 777 Data

points

Figure 25: Scatter of filtered regular flows. X = Interval, Y = Jitter. 169 Data

Points

Figure 26: Scatter of regular flows where port filter has been applied. X = Interval,

Y = Jitter. 69 Datapoints.

Figure 27: Scatter of regular flows where all started flows in the time window has

been filtered. X = Interval, Y = Jitter. 16 Datapoints.

Figure 28: The rest of the data set, the red colored text is the control channel.

Figure 29: Scatter of regular flows, unfiltered. X = Interval, Y = Jitter. 16

Datapoints: 1364. Figure 30: Scatter of regular flows, flows appeared during the

time window deleted. X = Interval, Y = Jitter. Data points: 14.

Figure 31: Idea level solution for Telemetry and User behavior based multi factor

authentication

Figure 32: Three user made keyboard based events in Google Docs application.

Figure 33: Example situation where Command and Controll channel is

implemented to communicate trough could office suite.

LIST OF TABLES:

Table 1: Short comparison of different flow protocols

Table 2: Table of risk management of the data collection

Table 3: Short example of content of learn dataset

Table 4: The result of same test with different buffer sizes

Table 5: collector test results with high number of connections where packet

count was raised slowly.

Table 6: collector test results with single connection and high number of packets.

