

Son Chu Hoang

Shopify Upsell App: Using Next.js,
React.js to boost sale

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

10 October 2020

 Abstract

Author(s)
Title

Son Chu Hoang
Shopify Upsell App: Using Next.js, React.js to boost sale

Number of Pages
Date

34 pages
10 October 2020

Degree Bachelor of Engineering

Degree Programme Degree Programme in Information Technology

Specialisation option Software Engineer

Instructor(s) Janne Salonen, Head of Department

This paper covers the build of a Shopify upsell app, with a purpose of increasing
sales, specifically AOV (Average order value). The app is integrated and used by an
ecommerce sneaker brand, Rens. Rens is making 700,000 euros in 2019 and look-
ing forward to making 1 million euros in by the end of 2020. With the installment of
the Shopify Upsell App, Rens seek to reach that goal faster.

Keywords NextJs, ReactJS, Javascript, Shopify, eCommerce, Upsell

Contents

1. Introduction 1

1.1. Introduction to upsell in ecommerce 1
1.2. Introduction to Shopify 2
1.3. Introduction to Rens 2
1.4. Introduction to Shopify Upsell App 3

2. Problems and Solutions 3

2.1. Problems 3
2.2. Solutions 3

3. Core Technologies 4

3.1. Program Languages 4
3.2. Core Libraries 4
3.2.1. Node.js 5
3.2.2. Next.js 5
3.2.3. React 5
3.2.4. @shopify/polaris 5
3.2.5. @shopify/app-bridge-react 5
3.2.6. handlebars 5
3.2.7. dotenv 5
3.2.8. ngrok 5

4. Design and Implementation 6

4.1. Designs 6
4.1.1. Merchant UI 6
4.1.2. Upselling Section on the Shopify store 7
4.2. Create Upsell App 9
4.2.1. Basic Server Setup 9
4.2.2. Set up Upsell app on Shopify Partner 11
4.2.3. UI Interface of Upsell Up for Merchants 13
4.2.5. Modifying merchant’s store 19

References 29

Appendices 30

Appendix 1. package.json 30

Appendix 2. upsell-in-cart.liquid.js 31

1

1. Introduction

1.1. Introduction to upsell in ecommerce

According to [1] Investopia, upselling is a sale technique where company’s staff, mer-
chants or sellers offer customers another product, an upgrade, a more expensive ver-
sion of what they’re buying, in order to increase the basket value of their purchase. Up-
selling is very commonly seen in online retail stores. Take Amazon for example, after a
product is added to cart, they are shown other products that customers who bought the
same item usually buy with, or sometimes, product bundles, which offer other items but
save customers monetary value.

Figure 1. Amazon bundle offer

2

Figure 2. Amazon upselling extra items to go with the main product

1.2. Introduction to Shopify

[2] Shopify is an e-commerce online service that helps merchants launch their online
businesses in a fast, reliable and scalable way. Until now, there have been over 1 mil-
lion businesses powered by Shopify and Rens is no exception.

1.3. Introduction to Rens

[3] Founded by 2 founders, Hoang Son Chu and Bao Khanh Tran, in Helsinki, Finland
in 2019, Rens aimed to make athleisure sneakers from eco-friendly materials, particu-

larly used coffee grounds and recycled plastic. Rens!s demographic is from 20 to 35

years old, living in the US, UK, Finland and Germany.

Main revenue channel of Rens is through online eCommerce Direct-To-Consumer
store and the company is currently hosting its web store powered by Shopify.

3

Figure 3. Rens Product

1.4. Introduction to Shopify Upsell App

Shopify Upsell App allows merchants to pick their upsell strategy to optimize sales.

2. Problems and Solutions

2.1. Problems

Though Shopify provides different discount types, it natively doesn't provide options to
post upsell offers on merchants’ store. In order for Rens to boost sales, it wants to up-
sell 1 extra pair of shoes every time a customer adds 1 product to their cart.

2.2. Solutions

Rens will install Shopify Upsell App and through the app, Rens can select what prod-
ucts to upsell once customers have added at least one item in their cart. The upsell
suggestion will be placed at the bottom of the cart drawer.

4

Figure 4. Upsell placement on a Shopify store

3. Core Technologies

This section provides insights into the techniques and technologies used during the
development of Shopify Upsell App.

3.1. Program Languages

Shopify Upsell App is primarily a web app and written in Javascript, abbreviated as JS.

Javascript is initially used on web browsers, but it has been embedded in servers, usu-
ally via NodeJS. Javascript is commonly used with CSS and HTML.

3.2. Core Libraries

This section provides a brief description about different libraries and frameworks used
during the development of Shopify Upsell App.

5

3.2.1. Node.js

Node.js is an event-driven and asynchronous JavaScript runtime environment built on
top of Chrome V8 engine. Node.js compiles JavaScript to machine code in order to
build the back-end in JavaScript. [4]

3.2.2. Next.js

Next.js is a React framework with a structure that allows you to build a frontend React
application, and transparently handles server-side rendering. It solves the problem of
React apps, which commonly load the content after javascript is loaded, resulting in
poor SEO and customer experience. Next.js provides server rendering, allowing the
app to display its initial state before any javascript script is loaded. [5]

3.2.3. React

React is a javascript library for building user interfaces. It allows developers to design
simple views for each state and React will efficiently update components when data
changes. [6]

3.2.4. @shopify/polaris

Polaris is a CSS Library with premade layout and components that goes with the
Shopify design styling system. [7]

3.2.5. @shopify/app-bridge-react

Shopify App Bridge offers React component wrappers for some App Bridge actions. [8]

3.2.6. handlebars

Handlebars is a javascript library to build semantic templates effectively.

3.2.7. dotenv

Dotenv is a zero-dependency module that loads environment variables from a . env file
into process

3.2.8. ngrok

ngrok secure introspectable tunnels to localhost webhook development tool and de-
bugging tool.

6

4. Design and Implementation

This section provides the details about the development of the application including UI
design for both the merchants and the customers.

4.1. Designs

4.1.1. Merchant UI

The Upsell App will have mainly 3 states:

State 1 - Initial state: This is when customers haven’t selected any products to upsell,
which will be the default state of the app.

Figure 5. Upsell App initial state

State 2 - Select product state: This is when customers will have to select the prod-
ucts they would like to offer upsell.

7

Figure 6. Select product state

State 3 - Publish state: This is when customers have selected at least 1 product to
offer upsell.

Figure 7. Publish state

4.1.2. Upselling Section on the Shopify store

After the merchants have selected and published the upselling products, when a cus-
tomer adds 1 product to their cart and opens it, the upselling section will be shown to
them at the bottom of the cart drawer.

8

Figure 8. Upselling section on merchant’s store

And once they click button ADD, the selected upsell product will automatically inserted
to their cart and the corresponding discount will be applied.

Figure 9. After customer select an upselling product

9

4.2. Create Upsell App

4.2.1. Basic Server Setup

Bootstrapped with NextJs and Koa, package.json is setup according to Appendix 1.

Figure 10. Server.js

When registering a private Shopify app, Shopify will give developers a API_KEY and a
API_SECRET_KEY string. They are used to authenticate the app for the requested ac-
cess right to merchants’ stores.

10

Figure 11. .env

Being stored in .env file, while using dotenv.config() in server.js, SHOPIFY_API_KEY
and SHOPIFY_API_SECRET_KEY can be retrieved as environment variables, particu-
larly process.env.SHOPIFY_API_KEY and process.env.SHOPIFY_API_SECRET_KEY.

In Upsell App, it needs 3 access rights from the merchants:

1. read_products: to be able to retrieve product information from the app. The app
will then use that information to display upselling product options for users to
choose from.

2. read_themes: Upsell App updates merchant’s theme, therefore, needs this right to
properly modify the theme.

3. write_themes: Upsell App modify merchant’s theme to inject component that offer
the upsell to merchant’s customers

These 3 rights are defined in the scope property in createShopifyAuth function

Figure 12. Required fields of createShopifyAuth

4.2.2. Basic Frontend Setup

With NextJS, to define what to display in the root page of the app, simply create a Re-
act component in pages/index.js.

11

Figure 13. pages/index.js - First React UI Component

4.2.3. Set up Upsell app on Shopify Partner

To be able to run our app on Shopify Partner Platform, ngrok is needed. Ngrok will tun-
nel securely to the developer's localhost, making it public for internet users.

Running npm run dev will run the application at port 3000. Then run ngrok http 3000
will tunnel the application from local to a random domain.

Figure 14. Result of running ngrok http 3000

In the setting of Upsell App in Shopify, the forwarding address is entered in App URL
and Allowed Redirection URL(s):

12

Figure 15. Upsell App Setup

In this paper, a Shopify development store, https://rens-disposable.myshopify.com, is
created and installs the Upsell App. What merchants can see from the app now is this:

Figure 16. Upsell App with a simple view

13

4.2.4. UI Interface of Upsell Up for Merchants

By default, the merchants will have 0 products offering for upsell. Upsell will initially
display an empty state with a button for users to click. To do this, we will use React.
NextJS framework allows developers to render pages written with React. By creating a
React component in pages/index.js, it will be rendered at the root page of the app. See
the content of the file in Appendix 2.

When creating a Shopify app, it!s very important to create a feel and look like a Shopify

interface so that merchants would quickly get familiar with the tool. Shopify Polaris is a
CSS library that provides pre-made styles following the Shopify styling guidelines.

To apply polaris styles, we create pages/_app.js. NextJs will use this file to define a
React component, which plays a wrapper containing individual react components of
each page.

Figure 17. pages/_app.js - Wrapper component of the whole React app

14

The hereby additional code will apply polaris styling to the Upsell App.

Figure 18. pages/_app.js with polaris integration

The layout of the app should now look like this:

Figure 19. Upsell App initial layout

However, clicking the Select products button doesn!t do anything yet. The app will need

a bridge between the frontend and the merchant!s shop information, like their products.

@shopify/app-bridge-react will then be used for that purpose.

15

Shopify App Bridge is a JavaScript library that seamlessly integrates your app into
Shopify user interfaces, including the web admin, mobile app, and POS. In this tutorial

we!ve focused primarily on the web admin, but App Bridge will ensure your app name,

logo, and navigation menu appears reliably across all of Shopify!s interfaces. Keeping

your look and feel consistent with Shopify!s UI also makes it faster and easier for mer-

chants to start using your app. When building with React, you can use the Shopify App
Bridge React library to initialize the library by passing your app's Shopify API Key and
the shop origin to the App Bridge Provider component.

To use Shopify App Bridge, in server.js, we need to share the shop!s origin via cookie.

Figure 20. Set up Shopify App Bridge in server.js

In _app.js, the hereby code will integrate Shopify App Bridge to our frontend

16

Figure 21. Set up Shopify App Bridge in pages/_app.js

Now that we have successfully integrated Shopify App Bridge, we should be able to

have access to merchant!s shop information, especially their products. Up next, Upsell

App will allow merchants to select which products to offer upsell to. ResourcePicker will
be used to serve that purpose.

Figure 22. Use ResourcePicker from Shopify App Bridge in pages/index.js

17

As seen, ResourcePicker will only be displayed when the value of its open attribute is

true, and that relies on this.state.open. In <EmptyState> component!s action value,

when EmptyState button is clicked, it will trigger onAction handler and make this.s-
tate.open true, therefore, open ResourcePicker. The UI then will be shown as the fol-
lowing:

Figure 23. ResourcePicker UI

Some crucial steps to implement this UI are:

1. Only show <EmpyState> when this.state.selectedProducts is empty. Therefore, the
following code will be added.

{!selectedProducts.length &&

 <EmptyState …

2. To display products once selected, the app will utilize a number of Polaris’s compo-
nents: Layout.AnnotatedSection, Card, ResourceList, ResourceItem. Next to <Emp-
tyState>, as the following

18

Figure 24. Define components in the page in Index component

The result display is like the following screenshot:

19

Figure 25. Screen after upsell products are selected

This is as far as the user interface of the Upsell App needs to be. From here, mer-
chants would expect that after selecting the products and clicking the Add button, the

upsell section will appear in their website!s cart drawer.

4.2.5. Modifying merchant!s store

To be able to modify merchant!s store, the Upsell App must be granted read_themes

and write_themes access, which has been defined in the scopes of shopify authentica-
tion in server.js

Figure 26. Required scopes for the app to work defined in createdShopifyAuth in server.js

After the user is authenticated, Upsell App server will receive accessToken via ctx.ses-
sion in afterAuth(ctx) callback. It will then be stored in the cookie to be easily shared to

all routes!"handlers.

20

Figure 27. Share shopOrigin and accessToken across the whole application

Next.js!s dynamic routes will be applied here to build a proxy to Shopify Admin APIs.

For example, making a request to https://rens-disposable.myshopify.com/admin/apps/
upsell-57/api/shopify/themes/112204841120/assets.json will be equivalent to make a
request to https://rens-disposable.myshopify.com/admin/api/2020-07/themes/
112204841120/assets.json. The only difference is that when making a request to
https://rens-disposable.myshopify.com/admin/api/2020-07/…, it will attach the access-

Token in the request!s headers.

To implement the logic of dynamic routes or redirecting, in pages/api/shopify/[...slug].js,
the app will have the code as the following:

Figure 28. Set up Shopify App Bridge in server.js

21

To test if the redirection works, open https://rens-disposable.myshopify.com/admin/
apps/upsell-57/api/shopify/themes/112204841120/assets.json in the browser, the mer-
chant will then see:

Figure 29. Result screen of https://rens-disposable.myshopify.com/admin/apps/upsell-57/api/
shopify/themes/112204841120/assets.json

With the redirection working, the Upsell App can make requests from the frontend to

Shopify Admin APIs without having to include the access token in the request!s head-

ers.

Upsell App will create a snippet in the merchant's published theme, containing the up-
selling section and its javascript to handle the event of adding an upselling item to the
customer's cart.

components/upsell-in-cart.liquid.js is then created.

22

Figure 30. components/upsell-in-cart.liquid.js

23

The syntax of the first highlighted block belongs to handlebars. The compile function
from handlebars will render the template string upsellTemplate depending on variables
appearing in the block. For example, {{#upsellProducts}} ... {{/#upsellProducts}} will
loop through array upsellProducts variable. Or {{images.0.originalSrc}} will interpo-

late an item of upsellProducts!s value of its images[0].originalSrc.

The second highlighted block is the snippet!s javascript to handle the event of adding

the selected upsell product to customers' carts. Notice that it makes requests to /cart/
add.js, this belongs to Shopify Cart API and will add an item to the cart and activate
various events in the background, for example, sending customers abandonment
emails if they abandon their cart, etc… Shopify Cart API is universal and can be used
in any Shopify theme.

In the callback of the request, window.ajaxCart.load() is called to refresh the cus-

tomer!s cart with the newly added item. The window.ajaxCart.load function, however,

exists in the majority of Shopify!s public themes, but not in all themes.

In the publish method in Index Component, it will do 2 things:

1. Modify snippets/ajax-cart-template.liquid, an existing snippet containing HTML of

the theme!s cart drawer, to include the snippet template upsell-in-cart.liquid, creat-

ed by the Upsell App.

2. Create or update if exists snippets/upsell-in-cart.liquid

In order to do so, the app needs to know what theme it should update. The component

will need to retrieve the published theme!s id. The following code will do so:

24

Figure 31. Retrieve the live theme’s ID

Now that themeId is retrieved, what method publish will do is the following:

1. Generate the template string for snippets/upsell-in-cart.liquid with the selected-
Products injected in the template.

Figure 32. Generate template for snippets/upsell-in-cart.liquid

2. Make request to Shopify Update Asset API to update snippets/upsell-in-cart.liquid
in the live theme.

Figure 33. Update snippets/upsell-in-cart.liquid

3. Retrieve snippets/ajax-cart-template.liquid

Figure 34. Retrieve snippets/ajax-cart-template.liquid

25

4. Make sure that a liquid snippet include exists in the right place, which is right before
the ending </form> tag in snippets/ajax-cart-template.liquid.

If the template already contains the liquid snippet include {% endraw %}{% include

'upsell-in-cart' %}{% raw %}, the job here is done. The hereby code will imple-

ment so:

Figure 35. Retrieve the live theme’s ID

5. If not, In snippets/ajax-cart-template.liquid, the file needs to have this exact code
right before the closing tag </form>. Since what the app receive after the request to /
api/shopify/themes/${themeId}/assets.json?asset[key]=snippets/ajax-

cart-template.liquid is of type string, it’s impossible to use html dom manipula-

tion. Therefore, string queries manipulation and regular expression will be useful
here.

/\<\/div\>[\n]+<\/form\>/g is the regular expression that is used to detect the last clos-
ing div tag of any closing form tag. Noted that in most Shopify themes, ajax-cart-
template.liquid only contain 1 form.

Assigned the regular expression to a variable, regEx, to find the the last closing div
tag of the closing form tag, do originalTemplate.match(regEx)[0]. Concat with the liq-
uid include string, `{% endraw %}{% include 'upsell-in-cart' %}{% raw %}`, we will
have a new string to replace the origin to form a whole new template for snippets/
ajax-cart-template.liquid:

Figure 36. Use regular expression to check if the snippet is included in ajax-cart-template.liquid

26

And now, the Upsell App is completed and after the merchant hits the Publish button, it
will create an upsell section in the cart drawer.

Figure 37. Merchant!s store with the upselling section

5. Results

The upsell app has been installed on Rens store: rensoriginal.com since the beginning
of September until the present (October 14, 2020), the brand witnessed a doubled
amount of orders with 2 items.

27

Figure 38. Pie chart of numbers of pairs in an order in August 2020

Figure 39. Pie chart of numbers of pairs in an order in September 2020

This has demonstrated that buyers are a lot more encouraged to buy multiple pairs at
once when introduced with upsell items.

28

With the sale season coming up, especially Black Friday, Christmas and New Year,
where consumers will be looking forward to bundle sales to prepare gifts for friends
and families, Upselling App is proven to help Rens offer discounts for bundle, raise the
chance of increasing the sales. And when Rens introduces new products, they can
easily offer upsell items that go with the shoes, for example, offering socks while buy-
ing shoes, or offering track pants while buying hoodies.

6. Conclusion

The number of eCommerce businesses is increasing day by day and there are various
ways to increase sales through websites. Upselling is only one of the tactics, but an
easy one to gain significant revenue that is being missed out on by a lot of brands, es-

pecially small and medium ones. That!s why there!s a need for Upsell App to be intro-

duced to the market, making it easier than ever for merchants to upsell products direct-

ly in customers!"cart and increase their revenue.

For further development of the Upsell App, we could introduce more variations of com-
bo discounts and different placements of where the discounts will be shown to mer-

chants!"stores. Those placements could be right on the product page, home page, or

on the post-checkout page. The app could also be developed not only for the small and
medium merchants but can be adapted by big retailers where they would have more
than 20 SKUs in-store. Then the backend of the Upsell App could utilize more user

data and personalize the upsell items based on customers!" preferences. There!s so

much potential to what Upsell App can do and only the sky is the limit.

29

References

1. Suggestive Selling (Upselling) by Adam Hayes. Available from https://www.in-
vestopedia.com/terms/s/suggestive-selling.asp

2. Introduction to Shopify, by Shopify. Available from https://www.shopify.com/about

3. Rens’s featured in Ilta-sanomat. URL: https://www.is.fi/taloussanomat/
art-2000006185488.html. Accessed 10 Oct 2020.

4. Herron D. Node. Js Web Development. 4th edition. Birmingham: PACKT Pub-
lishing; 2018: 7-24

5. Next.js. URL: https://nextjs.org. Accessed 10 Oct 2020.

6. React.js. URL: https://reactjs.org. Accessed 10 Oct 2020.

7. Shopify polaris. URL: https://polaris.shopify.com. Accessed 10 Oct 2020.

8. Shopify App Bridge React. URL: https://www.npmjs.com/package/@shopify/
app-bridge-react. Accessed 10 Oct 2020.

https://www.shopify.com/about

30

Appendices

Appendix 1. package.json

{

 "name": "upsell-metropolia",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1",

 "dev": "node server.js",

 "build": "next build",

 "start": "NODE_ENV=production node server.js"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "@shopify/app-bridge-react": "^1.27.2",

 "@shopify/koa-shopify-auth": "^3.1.70",

 "@shopify/koa-shopify-graphql-proxy": "^4.0.1",

 "@shopify/polaris": "^5.3.1",

 "@zeit/next-css": "^1.0.1",

 "apollo-boost": "^0.4.9",

 "axios": "^0.20.0",

 "dotenv": "^8.2.0",

 "graphql": "^15.3.0",

 "handlebars": "^4.7.6",

 "js-cookie": "^2.2.1",

 "koa": "^2.13.0",

 "koa-session": "^6.0.0",

 "next": "^9.5.3",

 "react": "^16.13.1",

 "react-apollo": "^3.1.5",

 "react-dom": "^16.13.1"

 }

}

31

Appendix 2. upsell-in-cart.liquid.js

import { EmptyState, Layout, Page, TextStyle, Card, Button, Resource-

List, ResourceItem, Thumbnail } from '@shopify/polaris';

import generateUpsellSnippet from '../components/upsell-in-cart.liq-

uid.js';

import axios from 'axios';

const img = 'https://cdn.shopify.com/s/files/1/0757/9955/files/empty-

state.svg';

class Index extends React.Component {

 state = {

 open: false,

 selectedProducts: []

 }

 render() {

 const { selectedProducts } = this.state;

 return (

 <Page>

 <Layout>

 {!selectedProducts.length &&

 <EmptyState

 heading="Choose products you want to upsell."

 action={{

 content: 'Select products',

 onAction: () => {

 this.setState({ open: true })

 },

 }}

 image={img}

 >

 <p>Select at least 1 product.</p>

 </EmptyState>

 }

 </Layout>

 </Page>

)

32

 }

}

export default Index;

	Contents
	Introduction
	Introduction to upsell in ecommerce
	According to [1] Investopia, upselling is a sale technique where company’s staff, merchants or sellers offer customers another product, an upgrade, a more expensive version of what they’re buying, in order to increase the basket value of their purchase. Upselling is very commonly seen in online retail stores. Take Amazon for example, after a product is added to cart, they are shown other products that customers who bought the same item usually buy with, or sometimes, product bundles, which offer other items but save customers monetary value.
	Introduction to Shopify
	[2] Shopify is an e-commerce online service that helps merchants launch their online businesses in a fast, reliable and scalable way. Until now, there have been over 1 million businesses powered by Shopify and Rens is no exception.
	Introduction to Rens
	[3] Founded by 2 founders, Hoang Son Chu and Bao Khanh Tran, in Helsinki, Finland in 2019, Rens aimed to make athleisure sneakers from eco-friendly materials, particularly used coffee grounds and recycled plastic. Rens’s demographic is from 20 to 35 years old, living in the US, UK, Finland and Germany.
	Main revenue channel of Rens is through online eCommerce Direct-To-Consumer store and the company is currently hosting its web store powered by Shopify.
	Introduction to Shopify Upsell App
	Shopify Upsell App allows merchants to pick their upsell strategy to optimize sales.
	Problems and Solutions
	Problems
	Though Shopify provides different discount types, it natively doesn't provide options to post upsell offers on merchants’ store. In order for Rens to boost sales, it wants to upsell 1 extra pair of shoes every time a customer adds 1 product to their cart.
	Solutions
	Rens will install Shopify Upsell App and through the app, Rens can select what products to upsell once customers have added at least one item in their cart. The upsell suggestion will be placed at the bottom of the cart drawer.
	Core Technologies
	This section provides insights into the techniques and technologies used during the development of Shopify Upsell App.
	Program Languages
	Shopify Upsell App is primarily a web app and written in Javascript, abbreviated as JS.
	Javascript is initially used on web browsers, but it has been embedded in servers, usually via NodeJS. Javascript is commonly used with CSS and HTML.
	Core Libraries
	This section provides a brief description about different libraries and frameworks used during the development of Shopify Upsell App.
	Node.js
	Node.js is an event-driven and asynchronous JavaScript runtime environment built on top of Chrome V8 engine. Node.js compiles JavaScript to machine code in order to build the back-end in JavaScript. [4]
	Next.js
	Next.js is a React framework with a structure that allows you to build a frontend React application, and transparently handles server-side rendering. It solves the problem of React apps, which commonly load the content after javascript is loaded, resulting in poor SEO and customer experience. Next.js provides server rendering, allowing the app to display its initial state before any javascript script is loaded. [5]
	React
	React is a javascript library for building user interfaces. It allows developers to design simple views for each state and React will efficiently update components when data changes. [6]
	@shopify/polaris
	Polaris is a CSS Library with premade layout and components that goes with the Shopify design styling system. [7]
	@shopify/app-bridge-react
	Shopify App Bridge offers React component wrappers for some App Bridge actions. [8]
	handlebars
	Handlebars is a javascript library to build semantic templates effectively.
	dotenv
	Dotenv is a zero-dependency module that loads environment variables from a . env file into process
	ngrok
	ngrok secure introspectable tunnels to localhost webhook development tool and debugging tool.
	Design and Implementation
	This section provides the details about the development of the application including UI design for both the merchants and the customers.
	Designs
	Merchant UI
	The Upsell App will have mainly 3 states:
	State 1 - Initial state: This is when customers haven’t selected any products to upsell, which will be the default state of the app.
	State 2 - Select product state: This is when customers will have to select the products they would like to offer upsell.
	State 3 - Publish state: This is when customers have selected at least 1 product to offer upsell.
	Upselling Section on the Shopify store
	After the merchants have selected and published the upselling products, when a customer adds 1 product to their cart and opens it, the upselling section will be shown to them at the bottom of the cart drawer.
	And once they click button ADD, the selected upsell product will automatically inserted to their cart and the corresponding discount will be applied.
	Create Upsell App
	Basic Server Setup
	Bootstrapped with NextJs and Koa, package.json is setup according to Appendix 1.
	When registering a private Shopify app, Shopify will give developers a API_KEY and a API_SECRET_KEY string. They are used to authenticate the app for the requested access right to merchants’ stores.
	Being stored in .env file, while using dotenv.config() in server.js, SHOPIFY_API_KEY and SHOPIFY_API_SECRET_KEY can be retrieved as environment variables, particularly process.env.SHOPIFY_API_KEY and process.env.SHOPIFY_API_SECRET_KEY.
	In Upsell App, it needs 3 access rights from the merchants:
	read_products: to be able to retrieve product information from the app. The app will then use that information to display upselling product options for users to choose from.
	read_themes: Upsell App updates merchant’s theme, therefore, needs this right to properly modify the theme.
	write_themes: Upsell App modify merchant’s theme to inject component that offer the upsell to merchant’s customers
	These 3 rights are defined in the scope property in createShopifyAuth function
	Basic Frontend Setup
	With NextJS, to define what to display in the root page of the app, simply create a React component in pages/index.js.
	Set up Upsell app on Shopify Partner
	To be able to run our app on Shopify Partner Platform, ngrok is needed. Ngrok will tunnel securely to the developer's localhost, making it public for internet users.
	Running npm run dev will run the application at port 3000. Then run ngrok http 3000 will tunnel the application from local to a random domain.
	In the setting of Upsell App in Shopify, the forwarding address is entered in App URL and Allowed Redirection URL(s):
	In this paper, a Shopify development store, https://rens-disposable.myshopify.com, is created and installs the Upsell App. What merchants can see from the app now is this:
	UI Interface of Upsell Up for Merchants
	By default, the merchants will have 0 products offering for upsell. Upsell will initially display an empty state with a button for users to click. To do this, we will use React. NextJS framework allows developers to render pages written with React. By creating a React component in pages/index.js, it will be rendered at the root page of the app. See the content of the file in Appendix 2.
	When creating a Shopify app, it’s very important to create a feel and look like a Shopify interface so that merchants would quickly get familiar with the tool. Shopify Polaris is a CSS library that provides pre-made styles following the Shopify styling guidelines.
	To apply polaris styles, we create pages/_app.js. NextJs will use this file to define a React component, which plays a wrapper containing individual react components of each page.
	The hereby additional code will apply polaris styling to the Upsell App.
	The layout of the app should now look like this:
	However, clicking the Select products button doesn’t do anything yet. The app will need a bridge between the frontend and the merchant’s shop information, like their products. @shopify/app-bridge-react will then be used for that purpose.
	Shopify App Bridge is a JavaScript library that seamlessly integrates your app into Shopify user interfaces, including the web admin, mobile app, and POS. In this tutorial we’ve focused primarily on the web admin, but App Bridge will ensure your app name, logo, and navigation menu appears reliably across all of Shopify’s interfaces. Keeping your look and feel consistent with Shopify’s UI also makes it faster and easier for merchants to start using your app. When building with React, you can use the Shopify App Bridge React library to initialize the library by passing your app's Shopify API Key and the shop origin to the App Bridge Provider component.
	To use Shopify App Bridge, in server.js, we need to share the shop’s origin via cookie.
	In _app.js, the hereby code will integrate Shopify App Bridge to our frontend
	Now that we have successfully integrated Shopify App Bridge, we should be able to have access to merchant’s shop information, especially their products. Up next, Upsell App will allow merchants to select which products to offer upsell to. ResourcePicker will be used to serve that purpose.
	As seen, ResourcePicker will only be displayed when the value of its open attribute is true, and that relies on this.state.open. In <EmptyState> component’s action value, when EmptyState button is clicked, it will trigger onAction handler and make this.state.open true, therefore, open ResourcePicker. The UI then will be shown as the following:
	Some crucial steps to implement this UI are:
	Only show <EmpyState> when this.state.selectedProducts is empty. Therefore, the following code will be added.
	To display products once selected, the app will utilize a number of Polaris’s components: Layout.AnnotatedSection, Card, ResourceList, ResourceItem. Next to <EmptyState>, as the following
	The result display is like the following screenshot:
	This is as far as the user interface of the Upsell App needs to be. From here, merchants would expect that after selecting the products and clicking the Add button, the upsell section will appear in their website’s cart drawer.
	Modifying merchant’s store
	To be able to modify merchant’s store, the Upsell App must be granted read_themes and write_themes access, which has been defined in the scopes of shopify authentication in server.js
	After the user is authenticated, Upsell App server will receive accessToken via ctx.session in afterAuth(ctx) callback. It will then be stored in the cookie to be easily shared to all routes’ handlers.
	Next.js’s dynamic routes will be applied here to build a proxy to Shopify Admin APIs. For example, making a request to https://rens-disposable.myshopify.com/admin/apps/upsell-57/api/shopify/themes/112204841120/assets.json will be equivalent to make a request to https://rens-disposable.myshopify.com/admin/api/2020-07/themes/112204841120/assets.json. The only difference is that when making a request to https://rens-disposable.myshopify.com/admin/api/2020-07/…, it will attach the accessToken in the request’s headers.
	To implement the logic of dynamic routes or redirecting, in pages/api/shopify/[...slug].js, the app will have the code as the following:
	To test if the redirection works, open https://rens-disposable.myshopify.com/admin/apps/upsell-57/api/shopify/themes/112204841120/assets.json in the browser, the merchant will then see:
	With the redirection working, the Upsell App can make requests from the frontend to Shopify Admin APIs without having to include the access token in the request’s headers.
	Upsell App will create a snippet in the merchant's published theme, containing the upselling section and its javascript to handle the event of adding an upselling item to the customer's cart.
	components/upsell-in-cart.liquid.js is then created.
	The syntax of the first highlighted block belongs to handlebars. The compile function from handlebars will render the template string upsellTemplate depending on variables appearing in the block. For example, {{#upsellProducts}} ... {{/#upsellProducts}} will loop through array upsellProducts variable. Or {{images.0.originalSrc}} will interpolate an item of upsellProducts’s value of its images[0].originalSrc.
	The second highlighted block is the snippet’s javascript to handle the event of adding the selected upsell product to customers' carts. Notice that it makes requests to /cart/add.js, this belongs to Shopify Cart API and will add an item to the cart and activate various events in the background, for example, sending customers abandonment emails if they abandon their cart, etc… Shopify Cart API is universal and can be used in any Shopify theme.
	In the callback of the request, window.ajaxCart.load() is called to refresh the customer’s cart with the newly added item. The window.ajaxCart.load function, however, exists in the majority of Shopify’s public themes, but not in all themes.
	In the publish method in Index Component, it will do 2 things:
	Modify snippets/ajax-cart-template.liquid, an existing snippet containing HTML of the theme’s cart drawer, to include the snippet template upsell-in-cart.liquid, created by the Upsell App.
	Create or update if exists snippets/upsell-in-cart.liquid
	In order to do so, the app needs to know what theme it should update. The component will need to retrieve the published theme’s id. The following code will do so:
	Now that themeId is retrieved, what method publish will do is the following:
	Generate the template string for snippets/upsell-in-cart.liquid with the selectedProducts injected in the template.
	Make request to Shopify Update Asset API to update snippets/upsell-in-cart.liquid in the live theme.
	Retrieve snippets/ajax-cart-template.liquid
	Make sure that a liquid snippet include exists in the right place, which is right before the ending </form> tag in snippets/ajax-cart-template.liquid.
	If the template already contains the liquid snippet include {% endraw %}{% include 'upsell-in-cart' %}{% raw %}, the job here is done. The hereby code will implement so:
	If not, In snippets/ajax-cart-template.liquid, the file needs to have this exact code right before the closing tag </form>. Since what the app receive after the request to /api/shopify/themes/${themeId}/assets.json?asset[key]=snippets/ajax-cart-template.liquid is of type string, it’s impossible to use html dom manipulation. Therefore, string queries manipulation and regular expression will be useful here. /\<\/div\>[\n]+<\/form\>/g is the regular expression that is used to detect the last closing div tag of any closing form tag. Noted that in most Shopify themes, ajax-cart-template.liquid only contain 1 form. Assigned the regular expression to a variable, regEx, to find the the last closing div tag of the closing form tag, do originalTemplate.match(regEx)[0]. Concat with the liquid include string, `{% endraw %}{% include 'upsell-in-cart' %}{% raw %}`, we will have a new string to replace the origin to form a whole new template for snippets/ajax-cart-template.liquid:
	And now, the Upsell App is completed and after the merchant hits the Publish button, it will create an upsell section in the cart drawer.
	Results
	The upsell app has been installed on Rens store: rensoriginal.com since the beginning of September until the present (October 14, 2020), the brand witnessed a doubled amount of orders with 2 items.
	This has demonstrated that buyers are a lot more encouraged to buy multiple pairs at once when introduced with upsell items.
	With the sale season coming up, especially Black Friday, Christmas and New Year, where consumers will be looking forward to bundle sales to prepare gifts for friends and families, Upselling App is proven to help Rens offer discounts for bundle, raise the chance of increasing the sales. And when Rens introduces new products, they can easily offer upsell items that go with the shoes, for example, offering socks while buying shoes, or offering track pants while buying hoodies.
	Conclusion
	The number of eCommerce businesses is increasing day by day and there are various ways to increase sales through websites. Upselling is only one of the tactics, but an easy one to gain significant revenue that is being missed out on by a lot of brands, especially small and medium ones. That’s why there’s a need for Upsell App to be introduced to the market, making it easier than ever for merchants to upsell products directly in customers’ cart and increase their revenue.
	For further development of the Upsell App, we could introduce more variations of combo discounts and different placements of where the discounts will be shown to merchants’ stores. Those placements could be right on the product page, home page, or on the post-checkout page. The app could also be developed not only for the small and medium merchants but can be adapted by big retailers where they would have more than 20 SKUs in-store. Then the backend of the Upsell App could utilize more user data and personalize the upsell items based on customers’ preferences. There’s so much potential to what Upsell App can do and only the sky is the limit.
	References
	Rens’s featured in Ilta-sanomat. URL: https://www.is.fi/taloussanomat/art-2000006185488.html. Accessed 10 Oct 2020.
	Herron D. Node. Js Web Development. 4th edition. Birmingham: PACKT Publishing; 2018: 7-24
	Next.js. URL: https://nextjs.org. Accessed 10 Oct 2020.
	React.js. URL: https://reactjs.org. Accessed 10 Oct 2020.
	Shopify polaris. URL: https://polaris.shopify.com. Accessed 10 Oct 2020.
	Shopify App Bridge React. URL: https://www.npmjs.com/package/@shopify/app-bridge-react. Accessed 10 Oct 2020.
	Appendices
	Appendix 1. package.json
	Appendix 2. upsell-in-cart.liquid.js

