

DEVELOPING AN INFORMATION SYSTEM

SOLUTION WITH REACT

Case: FPT Information System (FIS)

LAB UNIVERSITY OF APPLIED
SCIENCES LTD
Degree programme in Business
Information Technology
Bachelor’s Thesis
Autumn 2020
Viet Linh Vu

 Abstract

Author

VU, VIET LINH

Type of publication

Bachelor’s Thesis, UAS

Published

Autumn 2020

Number of pages

39

Supervisor

Aki Vainio

Title of publication

Developing an Information System solution with React
Case: FPT Information System (FIS)

Name of Degree

Bachelor of Business Administration, Business Information Technology
Abstract

The subject of front-end JavaScript frameworks has been a popular topic for
discussion within the IT community recently. Over the recent years there has been a
numerous number of frameworks released on the market. These frameworks varied in
terms of features and performances, and they all offer various options and benefits for
front-end development, which can be challenging for new developers to choose the
right framework for their project.

The research presented in this thesis focused on the React JavaScript library,
developed by Facebook. Multiple articles and studies regarding React were used to
demonstrate the unique features and the benefits as well as drawbacks of the library.
Furthermore, the thesis also covered some additional theory on two other equally
popular and frequently used frameworks, Angular and Vue, to provide a comparison
of these frameworks.

A case study was also used for this research to provide a practical example of how
React was implemented for the development of an IT solution. The thesis went
through a detailed process of describing the usage of React in this case study to
provide an evaluation of how React affected the project development. From here the
benefits of using React were analyzed and demonstrated to help differentiate React
from other

Keywords

React, JavaScript frameworks, front-end development

CONTENTS

1 INTRODUCTION ... 1

1.1 Research Background .. 2

1.2 Research Question and Objective .. 3

1.3 Research Motivation ... 3

2 THESIS DESIGN AND STRUCTURE .. 4

2.1 Thesis Structure ... 4

2.2 Research Method ... 5

2.3 Research Approach .. 6

2.4 Data Collection and Analysis .. 6

3 LITERATURE REVIEW ... 8

3.1 JavaScript Frameworks .. 8

3.2 React .. 9

3.2.1 Overview ... 9

3.2.2 Features .. 9

3.2.3 Pros and Cons of React ..14

3.2.4 React Redux ...16

3.3 Other Similar Frameworks ...16

3.3.1 Angular ...16

3.3.2 Vue ...17

3.3.3 Comparison of These Frameworks ...18

4 CASE STUDY ...21

4.1 Project Description and Objectives ..21

4.2 Structure and Design ...21

4.2.1 Structure ...21

4.2.2 Create Stock Export Request ...24

4.2.3 View Stock Export Request ..26

5 DATA ANALYSIS ..29

5.1 Implementation of React ..29

5.2 Effects of React ...32

5.3 Other Choices of Frameworks ...33

6 CONCLUSION ..35

6.1 Results ..35

6.2 Limitations ...35

6.3 Validity ...36

6.4 Suggestions for Future Research ..36

7 REFERENCES ...37

LIST OF ABBREVIATIONS

CSS Cascading Style Sheets

DOM Document Object Model

ES6 ECMAScript 6

HLR Home Location Register

HTML HyperText Markup Language

IT Information Technology

MVC Model-View-Controller

UI User Interface

1

1 INTRODUCTION

As time progresses, web applications using JavaScript have gone a long way in

terms of design. Nowadays with the help of modern JavaScript frameworks we can

create a much more fluid and interactive design that allows users to navigate

through with ease. Making use of JavaScript frameworks can drastically cut down

the development time, while still maintain a functioning software with minimal

errors and hassle.

With the popularity of JavaScript frameworks quickly rising comes the creation of

many JavaScript web frameworks that allows different options for developers to

choose. A quick search on Google will show millions of results about the latest

JavaScript frameworks. One that gathers many attentions within the community is

ReactJS (or React for short) developed by Facebook. React is a JavaScript library

to help creating interactive user interfaces (UI) that can update and render as the

user changes the data in real time (React 2020a).

Among the community, React is considered one of the top choices. According to a

survey conducted by Stack Overflow in 2019, 74.5% of the developers who have

had experiences with React were interested in continue working with it again, and

21.5% of the developers who have not yet tried it were willing to try it out (Stack

Overflow 2019). It is noticeable that React is one of the most favorable choices,

with a thriving community of up to 1500 contributors and growing on GitHub as of

2020 (Facebook 2020).

2

1.1 Research Background

As there are many different choices for JavaScript frameworks it can be

overwhelming for new web developers to choose the right one for their project. It is

crucial to understand that these frameworks are not implemented in the same way

and the benefits they provide depend on the purpose of the project. This thesis will

focus on the React specifically by analyzing how it is implemented in a full-scale

project to demonstrate the advantages and disadvantages it brings.

The thesis project is carried out at FPT Information System (FIS) – located in

Hanoi, Vietnam – as an internship program. The company specializes in system

integration, software development and IT services in many sectors. The project is

to develop a web-based centralized sales management solution for a major

Vietnamese mobile network operator using React. The project was initiated in

early summer of 2019, and development and testing process was completed in

June 2020.

Figure 1: The most favorable frameworks in 2019 (Stack Overflow 2019)

3

1.2 Research Question and Objective

As a demonstration of how React JavaScript library can be utilized, the primary

purpose of this thesis is to answer the following question:

- In what ways can React benefit the development of a web application?

To answer the question above, this thesis will go through the literature review

process of describing the fundamentals of the React JavaScript library along with

other equally well-known and frequently used frameworks, Angular and Vue, to

help visualize the possibilities of said frameworks and how they can be

implemented. The thesis will also investigate a case study where React was used

during the front-end development process in order to provide necessary data and

information regarding the research question.

1.3 Research Motivation

This thesis will be used mainly as an example to demonstrate the capabilities of

React with the intention to differentiate React among other commonly used web

frameworks. Another reason worth mentioning is that the majority of documents

and articles regarding React focuses mainly on development on mobile platform

rather than web-based platform. It should be noted that the case study used in this

thesis is only one example of how React is implemented and preferably be used

as a reference for those who want to learn more about React.

4

2 THESIS DESIGN AND STRUCTURE

This chapter will go through the methods used to form the structure of the thesis

and demonstrate how the data is collected. By going through this process, it will

illustrate the reasoning and effectiveness of the methodology used for this

research.

2.1 Thesis Structure

The thesis will be divided into four main sections with a total of six chapters and an

additional chapter for references and sources. These sections are: Introduction,

Literature review, Case study and finally Conclusion.

Introduction: Provides an insight on the

topic of the thesis and describes the

process to collect the data

Chapter 1: Introduction

Chapter 2: Thesis Design and Structure

Literature review: Theoretical research on

JavaScript frameworks and examples of

them.

Chapter 3: Literature Review

Case study: Practical research on a real-

life case to understand how the web

framework was implemented and the

benefits it brings.

Chapter 4: Case Study

Chapter 5: Data Analysis

Conclusion: Assesses the data collected

and compare to the original findings.

Chapter 6: Conclusion

Table 1: Structure of the thesis

The first section includes the introduction of the thesis topic as well as the methods

and approach used for the research. The second section will cover the theory of

JavaScript frameworks to help familiarize with terminologies of JavaScript

frameworks, followed by documentation on React library which includes its

features and functionalities. This is then followed by the review of other popular

JavaScript frameworks (Vue and Angular) to compare the similarities and

differences between them. The third section will introduce the case study and

describes how React was implemented into the project. This is followed by the

collection and analysis of data from the project. The final section will summarize

the findings by assessing the data collected from the case study and compare

5

them to the data from theoretical study. In addition to that there are also some

insights from the author on the topic as well.

2.2 Research Method

Since the nature of this research is based on theory and case study, the type of

data that will be used for this research will be qualitative. Information for literature

review are collected from online journals and articles and data for the case study

are collected throughout the internship. No survey was required as the research

focus was on a single project.

There are three approaches to research design methods: inductive, deductive, and

abductive approach. The differences between these approaches are shown in the

table below (Table 2). Since the purpose of this thesis is to answer the research

question of how React can benefit a web application development using a case

study as a primary example, an inductive approach is used to achieve this

objective. By choosing an inductive approach, the thesis will create a data-driven

approach and form a connection between the data collected from the objectives of

the research and the data collected from both theoretical and practical research

(Chetty 2016).

Table 2: Differences between deductive, inductive, and abductive approaches

(Business Research Methodology 2020)

6

2.3 Research Approach

The primary focus of this thesis is on the effects of React during the development

of an Information System solution, specifically on performance and workload, and

finally decide whether if React is suitable for developing other applications. As

such it should be treated as a reference for those who are interested in or planning

on using React for their next web application project.

2.4 Data Collection and Analysis

The thesis is divided into two main parts: Theoretical and Practical research.

Theoretical research is done through collection of data from reliable online articles

and journals. Practical research was conducted during and after the development

stage of the project is completed.

For the theoretical research, the thesis includes various materials from different

sources. Articles, studies along with books about React and JavaScript

frameworks as well are collected from LAB’s and Google Scholar online libraries,

while documentation from official websites and developer’s blogs are also included

to help demonstrate the capabilities of these frameworks. Data collected from the

case study consists of screen captures during the development and testing

processes as well as extracts of code from the solution, both are used to

demonstrate how React was implemented and its effects on the project.

The research will be based on one of Alan Hevner’s Design-Science Research

Guidelines, which are shown in the table below (Table 3). According to Hevner, a

research must include at least one of these contributions:

- Design Artifact: The artifact used in the research must enable the solution to

unsolved problems by extending the knowledge base or present existing

knowledge in a new way.

- Foundations: The development of the research must extend and improve

the existing design-science knowledge base.

- Methodologies: The use of evaluation methods and measures are crucial

and must contribute to the design-science research. (Hevner et al. 2004,

87.)

7

Table 3: Guidelines to Design-Science research (Hevner et al. 2004)

Following Hevner’s guidelines to Research Contributions, this thesis will include

the contributions of the design artifact and methodologies for the research. The

design artifact in this case is the web application developed with React which will

be used as an demonstration of how React is utilized for a specific purpose, while

the methodologies consist of the observations and analysis made during and after

the development of the project.

Analysis was done by comparing the data collected from the theoretical study and

case study in order to evaluate the advantages and disadvantages React brings to

the project. In addition to that hypotheses are also made to determine whether the

use of other frameworks would affect the development differently. The analysis

also provides some insights from the perspective of the author as well.

8

3 LITERATURE REVIEW

The following chapter will cover the theoretical background of the research. It will

explain the fundamentals of JavaScript web frameworks, follow by the introduction

to React and examination of the features that React brings to JavaScript

development. It will also cover some additional information on two other popular

and similar JavaScript frameworks (Vue and Angular) to compare the similarities

as well as differences between these frameworks.

3.1 JavaScript Frameworks

JavaScript is the most popular language used for designing and building web

pages. It is a cross-platform, object-oriented language that is mainly used in a

browser environment and sometimes can also be used in a non-browser

environment as well. JavaScript runs on the client side of the web and is used

alongside with HTML and CSS to create web pages and control their behavior on

screen. (Mozilla 2020a.) With the increasing popularity of JavaScript over recent

years, many developers created customized tools that can help with problems and

issues in JavaScript. These tools are packaged into what is called a library. A

JavaScript framework is a library that offers more choices for development in

terms of how the application is built. These choices allow for predictability and

maintainability of the application’s lifespan. JavaScript frameworks are created

with the intention to build code that can update the UI with every changes made in

the application as well as a way to help visualize what the UI should look like

during development. (Mozilla 2020b.)

A feature that is prominent in JavaScript frameworks is the usage of the Document

Object Model (DOM). DOM is a programming interface that offers dynamic access

to the content and structure of a HTML web page. It allows the web page to be

loaded into the browser as a document object and its HTML elements are then

manipulated by JavaScript. Additionally, DOM does not require to be installed

individually and most web browsers implement DOM according to the W3DOM

standard. (Levlin 2020, 16.)

Most JavaScript frameworks follow the principal of the Model-View-Controller

(MVC) design pattern. The pattern involves three elements: the Model which

9

handles the storage and process of data; the View displays the data collected from

the Model to the user; the Controller manages all the data from user inputs and

updates them to the Model (Mariano 2017, 32-33). MVC pattern is primarily used

for desktop application development but it can be utilized for web applications as

well (Levlin 2020, 26-27).

3.2 React

3.2.1 Overview

An early prototype of React, developed by a software engineer at Facebook

named Jordan Walke, was first introduced in 2011 under the name of FaxJS.

Walke finalized the prototype and created React in 2012, which was soon

integrated into Facebook and Instagram in the same year. In 2013 React became

open-source and later became available in Ruby on Rails and Python Applications.

This is followed by the release of React Native, an extension of React for mobile

development on Android and iOS, in 2015. Ever since then React consistently

pushes out many releases throughout the years, improving and introducing new

features for users. (Hámori 2020.)

React is known to be a versatile tool that can be utilized on both desktop and

mobile platforms with many distinct features. One of them is the ability to create

interactive rather than simple static pages that can update and render data after

each input from the user, thus allows for a seamless UI without the need to refresh

the entire page every time a change is made. The reason for this is due to React’s

structure is based on components that allows for the design of complex UIs due to

the component logic is written in JavaScript (React 2020a).

3.2.2 Features

As a JavaScript library, React can be easily integrated into a website or can be

used to build an application from scratch. React only requires a basic

understanding of HTML and JavaScript and are suitable for both beginners and

experienced developers. Many features of React are listed below:

• JSX: JSX is a syntax extension to JavaScript that can be used alongside

with the JavaScript code to help visualize what the UI would look like. Each

10

JSX attributes that are enclosed in quotes will become a string (Singh &

Tanna 2018, 48). Using JSX can help reduce the amount of code needed to

be written, thus allow for a cleaner and more comprehensible code structure

(Mariano 2017, 54).

Figure 2: Example of a JSX element

• React DOM: An alternate version of the traditional DOM, React DOM is

used to handle the rendering of elements in React. These elements are

different from traditional DOM elements, in which React elements are

simple objects used by React DOM for translation purposes. Rendering in

React is done using the ReactDOM.render() command. (Levlin 2020, 45.)

When updating, React compares the elements together in order to ensure

the right element whose content have changed is updated by the DOM,

thus reducing the probability of bugs in the code (React 2020b).

Figure 3: Example of the RenderDOM.render() command

Rendering with React DOM is done by using a form of virtual DOM, which

allows the React elements to be used and updated as DOM nodes every

time changes occur. React DOM can render components as HTML strings

that can be used to generate content on the server side as well as on the

browser side as an HTML file. (Wilson 2018, 219.) Another characteristic of

React’s virtual DOM usage is the minimal DOM manipulation handled in the

11

application, therefore reducing computing resources required and making

React updates faster (Levlin 2020, 44).

• Components: One of the core elements of a React application is

components which are what the application is based around on.

Components are treated as JavaScript functions and they accept inputs and

render them as React elements on screen (React 2020c). The type of

inputs that components receive are called props which will be discussed

later on. There are two types of components: Function components and

Class components, which are shown in the figures below (Figure 4 and 5).

Function components are plain JavaScript functions that receive data from

other components called props, while Class components are defined by

ES6 classes to create Stateful components and render React elements

using the render() method. Components provide a way to divide web

applications into reusable parts of code for easier management and

development. (Wilson 2018, 217.)

Figure 4: Example of a Function Component

Figure 5: Example of a Class Component

React components are consisted of elements which describe the

information on the screen and are rendered by React DOM. Each time an

element is rendered it is passed to ReactDOM.render(). Once rendered its

attributes cannot be changed so to update the rendered element a new

12

element is created and also passed to ReactDOM.render(). This explains

how components rendering work: calling the component using

ReactDOM.render() with the user input as the props, which the component

returns a new element as the result. (React 2020c.)

Figure 6: Example of a Component rendered by the React DOM

• Props: Properties, or props for short, are plain JavaScript objects that

contain raw data from components and help keeping the consistency of the

UI. Props is used along with State to build interactive application and

generally do not change over time. (Singh & Tanna 2018, 59.) A general

rule of React is that props cannot be modified within a component since

function components must always return the same value for the same

inputs they have and as such they are prohibited from changing their inputs

(React 2020c).

Figure 7: Example of Props a and b inside sum function

• State: State is similar to props in terms of functionality – they are both

objects used to store raw data within the component. However, unlike

props, data can be merged into State and re-rendered in the component

13

every time an update is made to the UI, meaning the data in the State can

be changed. (Singh & Tanna 2018, 59.) A State can be modified and

updated by using the setState() method which allows for React to detect

changes in the State and update the component. Components that manage

their own State are called Stateful components and are written using ES6

classes. (Wilson 2018, 228.)

Figure 8: Example of declaring the 2 State posts and comments

When utilizing multiple components in a React application, it is important

that every class components have a life cycle method to prevent resources

being wasted when components are destroyed (React 2020d). Adding a life

cycle method provide control over the creation and termination of the

components as well as their properties, such as when they receive new

properties or when should they be updated. Some commonly used life cycle

methods include:

- constructor(props): This method is used when initializing the first

instance of the component as well as the initial State of the component.

- componentDidMount(): This method is used after the first render call and

is can be useful for accessing the DOM or making HTTP requests.

- componentWillUnmount(): This method is used before a component is

destroyed and is commonly used to clear timers or cancel network

requests.

14

- componentDidUpdate(): This method is used after the render method or

when an update occurs, with the exception of the first render method.

(Wilson 2018, 230.)

When modifying State there are three things to know in order to ensure the

correct usage of State. The first is that State can only be modified using

setState() and also cannot be modified directly. The next thing to know is

that props and State can be updated asynchronously and does not have to

depend on the same update. Multiple setState() calls can be grouped into a

single update by React to preserve performance. Lastly, when calling

setState(), React may merge the component’s object into the current State.

This means that a State with multiple variables can be updated

independently using multiple separate setState() calls. (React 2020d.)

• Hooks: The latest addition in React version 16.8, Hooks allow for the use of

State without the need for a class. In theory, Hooks are functions that can

be used to call for State and life cycle features from function components.

There are two types of Hooks: State Hook and Effect Hook. State Hooks

are used to add State to function components. Effect Hooks are used to

perform side effects in function components, for example data fetching or

manually changing the DOM. Hooks are backwards compatible and can be

integrated into existing code alongside classes without the need to re-write

the components. (React 2020e.)

3.2.3 Pros and Cons of React

The most notable benefit of using React is the ability to re-use components

throughout the application. Applications with React can be split into many

individual pieces of code, which they can be worked with asynchronously (Wilson

2018, 217). By isolating these components React lets developers work on each

part of the application individually, making the process much more efficient and

less opportunities for bugs. In addition to that the usage of a virtual DOM also

helps React with proficient rendering capabilities, allowing it to perform

consistently faster compare to other popular frameworks (Levlin 2020, 65-66). This

enables React to be a powerful tool for developers to create fast and interactive

complex UIs efficiently with less time required. Another benefit of using React is

15

the option for 3rd party extensions thanks to React being open-source, which

allows for even more customizable options for UI design. A few examples include

Ant Design, PrimeReact, react-i18next, and reactstrap. Lastly, React has one of

the largest community on GitHub with over 1500 contributors, including more than

158 thousand Git repository stars and over 4 million active users (Facebook 2020).

This provides React with a strong supporter base that can offer many

improvements to its functionality with new updates as well as providing guidance

to others who are willing to learn React.

As one of the most well-known choice for building web pages and applications,

React still has its own drawbacks, however. The biggest of which is the use of JSX

in React. JSX is a relatively new feature for JavaScript that is still not fully

optimized for many browsers, which causes application that utilizes it to perform

much slower compare to using React without it (Mariano 2017, 76-77). In addition

to that, the lack of clear documentation is another disadvantage of React due to it

still being a fairly new technology, having only been on the market for less than 10

years. Another disadvantage of React is the fact that it is only a JavaScript library

rather than a complete framework. This causes React to lack some features that

other frameworks have to make it a fully equipped tool for front-end development.

Regardless, React is still a powerful tool to consider among other choices in the

JavaScript frameworks landscape that will be discussed next. The table below

summarizes the pros and cons of React that were previously mentioned.

Pros Cons

Re-usable components JSX needs more improvements

Virtual DOM allows for fast rendering Poor documentation

Many options for 3rd party extensions Not a complete framework

Large community

Table 4: Pros and Cons of React

16

3.2.4 React Redux

As UIs become more and more complex, State management can become

increasingly more difficult. As a solution to this issue, React introduces a separate

library called Redux that works as a State manager for React applications. Redux

is designed with the intention to make State mutations become more predictable

by dictating how and when updates should happen. Redux consists of three core

concepts:

• Store: an object that is used as a State container that manages the State

within the application and cannot be manipulated or mutated directly.

• Action: another object that displays the changes within the application and

is used to direct changes to the store.

• Reducer: a function used to combine State and Action together, it takes

State and Action as arguments and returns new State to the application.

(Singh & Tanna 2018, 119-120.)

There are three fundamental principles to remember when using Redux. The first

is each application can only contain a single store which acts as a single source of

truth. The second is that State is read only. This means that State can only be

altered by Actions instead of other functions. Finally, any changes made to the

State must be described using Pure Functions, which are functions that always

return the same value with every set of arguments passed to them. (Singh &

Tanna 2018, 120.)

3.3 Other Similar Frameworks

3.3.1 Angular

Originally created as AngularJS by a Google employee, Miško Hevery, Angular

became open-source in 2010 and was re-written as Angular2+ (Gavigan 2018).

Since support for the original AngularJS has stopped, this thesis will focus on the

newer version which is Angular2+, or Angular. It is a TypeScript-based framework

rather than a pure JavaScript framework like AngularJS, the reason for this is

because of additional technical and performance improvements (Manjunath 2018).

17

Angular utilizes a component-based architecture with a root component in every

application. Each component consists of a class for handling the logic and a

template for the view layer. Angular also includes the template structure which was

brought from AngularJS and reworked with new features. One of which is that

each component has its own template attached to it. Another feature of Angular is

dependencies injection, a design pattern that handles dependencies in the

application and insert them into components. (Manjunath 2018.)

When first released, AngularJS was the top choice for quick prototype building

despite having many issues relating to performance. These issues were soon

resolved in Angular with improvements and changes to the core features of

AngularJS which leads to many switching to Angular for their projects. (Manjunath

2018.) Angular is currently being improved by Google and the community to help

build feature-rich UI components and provide tools to develop custom components

as well. (Angular 2020a)

3.3.2 Vue

A popular JavaScript framework that shares many similarities with React, Vue is

developed by Evan You after working with Google. According to You, Vue was

created as a lightweight alternative to Angular that has many similar features but

with less extra concepts. (Cromwell 2016.) An early version was released around

2013 and followed by an official release in 2015. Vue is a progressive open-source

framework for building UIs and designed to be incrementally adoptable. The core

library of Vue focuses exclusively on the view layer and can be integrated with

other libraries and projects. It also supports development of complex single-page

applications. (Vue 2020a.)

Vue includes an HTML-based template syntax. A signature characteristic of Vue is

the declaration of syntaxes using the “v-“ prefix which is its way of identifying Vue-

specific attributes. Examples of this includes v-bind and v-on, which are two of the

most commonly used commands in Vue. (Vue 2020b.)

18

Figure 9: Example of the v-bind command

Figure 10: Example of the v-on command

Being one of the most recent framework on the market, Vue may seem to have a

moderate community with less than 400 contributors and 100 thousand users, but

it also has over 174 thousand repository stars, showing a significant amount of

attention for Vue (Vue 2020a). With a small but steadily rising community, it is

easy to notice that popularity is increasing fast and this shows that Vue can be an

effective technology for JavaScript development that can rival with older

frameworks on the market.

3.3.3 Comparison of These Frameworks

The most noticeable common feature between these frameworks is that they all

share a components-based structure. By separating the application into various

independent parts, it allows developers to work on each individual functions of the

application asynchronously, thus leading to a more flexible development process.

Each of these components-based frameworks has different ways of utilizing

19

components templates: React uses .jsx files; Angular with a combination of .html,

.css, .ts, and .spec files; Vue uses proprietary .vue files (Levlin 2020, 48,51).

A similar feature that is seen in React and Vue is the use of a virtual DOM. React

utilizes the virtual DOM to handle many of the rendering tasks using as little DOM

manipulation as possible, thus reducing the time and resources needed for

updates. Similarly, Vue handles the management of the real DOM using a

separate virtual DOM. The virtual DOM in Vue consists of multiple virtual nodes

that manage what information should be displayed and interacts with real DOM to

update the data on the HTML page. In contrast, Angular does not make use of

virtual DOM, but instead manages all DOM manipulations directly by converting

components into classes that can be displayed onto the DOM. (Levlin 2020, 44,

47, 50.) Another similarity between React and Vue is that their core libraries both

focus exclusively on the View layer of the MVC model (Mariano 2017, 25),

whereas Angular and Angular JS are based around the MVC architecture, with

Angular’s newer architecture leans towards a component-based architecture more

(Manjunath 2018). This means that React and Vue are best optimized for UI

development while Angular is suited for general web application development.

As for popularity, React is considered to be a well-known library with a large

following. Compared to Angular, both of them share a relatively large community

with thousands of contributors on GitHub (Facebook 2020, Angular 2020b).

Additionally, they are also developed and supported by major leading industries,

with React by Facebook and Angular by Google, respectively. In contrast, Vue is

developed and managed by a community of developer and receives financial

support from donations.

Perhaps the biggest difference that separates React from the other two

frameworks is the fact that React is only a UI library rather than a full-fledged

JavaScript framework. In terms of features, React falls behind Angular and Vue

due to the fact that the other two are complete and packed frameworks. Despite

this React is still a popular choice for front-end development. This is because

unlike large and feature-packed JavaScript frameworks, React only focuses on

building the UI, and as a result makes it an optimal tool for those who wants to put

an emphasis on interfaces (JSComplete 2020).

20

The diagram below (Figure 11) summarizes all the similarities and differences that

were described earlier.

Figure 11: Comparison of React, Vue, and Angular

21

4 CASE STUDY

The following chapter will introduce the client company and the project developed

for the client company using React. It will also demonstrate the structure as well as

functionalities of the solution during development.

4.1 Project Description and Objectives

The project was carried out by FIS, a subsidiary of FPT Group. FPT Group is the

largest IT service company in Vietnam that specializes in ICT-related services. FIS

is a branch of FPT Group that is dedicated in providing IT solutions for many

services and public sectors. The client company that the project was developed for

is MobiFone, a major mobile network operator and telecommunications provider in

Vietnam.

The goal of the project was to create an IT solution that works as a centralized

sales management system. The system is designed for the purpose of managing

the sales along with inventory of products and services related to

telecommunications. The solution is created specifically for the client company as

a new upgrade to their existing system and can be accessed through web

browsers on desktop platform.

4.2 Structure and Design

4.2.1 Structure

When accessing the system, the user will be taken to the login page. The design

of the login page is minimalistic, with the inclusion of 2 input fields for the

username and password, and a sign in button below. In order to access the

system, the user must login by entering their username and password. Due to the

nature of the system designed exclusively for MobiFone, only employees of

MobiFone can use their credentials to login. This means that user information is

entered into the database separately by the administrator rather than directly on

the browser. Users are required to enter their credentials every time they access

the system as well as after a long period of inactivity when using the system, for

the purpose of security.

22

Figure 12: The login page

As a centralized sales management system, it features roughly a hundred different

functions within the system. Each of these functions are contained within several

categories that manage various sectors of the system. These sectors include

inventory, invoice, e-invoice, sales, revenues, distribution channels, and many

more. The categories are shown on a side menu that can be accessed at any time

in the system after logging in by clicking on the list icon located on the top left

corner of the screen.

23

The entire system consists of multiple different categories, each category consists

of a number of functions that serve a certain objective that belongs in that

category. These functions act as multiple smaller application that compose the

entire solution. Users can access them by clicking on a category, which will extend

into a drop-down menu that lists the functions. Some categories can contain a sub-

category or more if they include functions for a specific objective. When the user

Figure 13: The side menu

24

accesses a function, the browser will load a new page and direct the user to the

said function page. Only one function can be worked with at a time.

4.2.2 Create Stock Export Request

An example of a function from the solution is OrderEstablish. This function was

designed to build the Create Stock Export Request page, where users can create

new request for stock exports, or to modify or delete existing requests. The page

can be accessed by the side menu, through the Inventory category and followed

by the Import and Export with Superiors sub-category.

Figure 14: Create Stock Export Request page

The page consists of three main parts: the Request tab, Details tab, and Products

tab. The Request tab is located on top of the page while the other two are grouped

together and placed below, with the Details tab on the left and the Products tab on

the right. At the bottom of the page are 3 buttons. From left to right are the Insert

New button for submitting a new request; the Save button to save the changes

made on the page; and the Print button, which will let the user print out the

document from the page.

Figure 15: The Request tab of Create Stock Export Request page

25

On the request tab are 4 input boxes that receive data from the user. The 3 boxes

on top let the user input the required data for the name and serial code of the

receiving warehouses, the date of request creation, and the reason for the request.

All of these boxes only allow the user to input a fixed type of data using drop down

menus and calendar to prevent the user from inputting invalid data. The bottom

box is a text field which allows the user to insert any additional note to their

request if needed.

Figure 16: The Details tab of Create Stock Export Request page

The Details tab consists of 5 input boxes that let the user to put in the data for

name of product, product’s status, as well as quantity, HLR (Home Location

Register), and additional notes. Each input boxes that contain the data required for

the operation are marked with a red asterisk on the right side of their titles. On the

top right of the tab is the View Inventory button that will display a list of all the

products in the inventory on the Products tab. At the bottom of the tab are 3

buttons, which let the user to add a new product, modify an existing product, and

delete a product from the list.

26

Figure 17: The Products tab of Create Stock Export Request page

All the items that will be used for export will be displayed on the Products tab. This

part consists of a table that shows the order, name, status, quantity, and HLR of

the products. The top row of the table where the headings of each columns are

displayed contains small input boxes for each of the product’s classification, with

the exception of the order column. These boxes receive data from the user in

forms of a string, an integer, or a fixed data from a drop-down menu to help with

searching for a specific product. At the bottom of the table are the total number of

products, page navigation buttons, a drop-down menu to select the number of

items to display on the table and options to expand or extend the table.

4.2.3 View Stock Export Request

Another example of a function is the OrderView. This function was designed to

work alongside with the previously mentioned OrderEstablish function and is used

to build the View Stock Export Request page. Unlike the former, however, this

page is dedicated to viewing and sorting the requests and does not make any

changes to the database of the system. The page shares the same category as

the Create Stock Export Request page and can be accessed by the same

category path.

27

Figure 18: View Stock Export Request page

The page includes 3 main parts: the Search tab, located at the upper part of the

page, and 2 tabs below, both consist of tables that display information regarding

stock export requests which are the Requests List and Products List. There are 2

buttons positioned at the bottom of the page that corresponds to printing the

request or to cancel the request and reset the data on the page.

Figure 19: The Search tab of View Stock Export Request page

The Search tab is used by the user as a tool to fetch the data regarding stock

export requests from the system’s database. It consists of 3 input boxes, 2 of

which are for inputting the start and end date of the desired request, and the other

one includes a drop-down menu for user to select the status of the request. To

search for a request, the user clicks on the Search button located at the bottom

right corner of the tab which will read the input data and filter the results into the

tables below.

28

Figure 20: The Requests List and Products List of View Stock Export Request

page

The other 2 parts of the page are the Requests List and the Products List tabs.

Both are displayed using tables that are formatted to display all necessary

information regarding the inventory of the company. Any changes made to the

database using the OrderEstablish function will be displayed on the Requests List

tab as detailed lists of requests with information regarding names of individuals

who made and accepted or rejected, the dates of creation and/or cancelation, and

current status of the requests. This tab also includes built-in search boxes to look

for specific requests. The Products List tab includes information of products

involved in the requests, such as product’s name, status, quantity, and so on. Both

tables also have a sorting feature that lets users reorganize the lists by the table’s

categories in ascending or descending order that can be access by clicking on the

arrow icon on the top right corner of each category.

29

5 DATA ANALYSIS

The following chapter will examine how React was implemented in the case study

to analyze the importance of React in the project. This chapter also demonstrates

a few hypotheses made by the author to show the differences in the development

process if other frameworks like Vue or Angular were chosen instead of React.

5.1 Implementation of React

The project makes use of React’s re-usable components feature by implementing

various components into the structure of the system. These components comprise

of many React functions and classes that are used for various tasks. These

include formatting input from the user, rendering UI elements such as dialog boxes

and error notifications, adding extra features, for example a date and time picker,

to the UI. These components provide developers with more options to add

customizable features to the UI and they are an integral part to the structure of the

system.

An example of a React component that is prominently used is FTUComponent,

which is a collection of functions and classes that is used frequently during

development. This component was designed by the developers of FIS with the

intention to perform several tasks in terms of functionalities that caters to various

operations of the solution. One of which is formatting user input from Vietnamese

to English text to ensure the data provided by the user can be processed by the

browser. This makes FTUComponent a crucial factor to the operation of the

system and thus it is used in virtually all of functions in the solution.

30

Figure 21: A snippet of the translation function from FTUComponent

The project also implemented several 3rd party libraries that React supports into

the design and development of the UI. One of which is the use of the DatePicker

template by Ant Design, which allows for the input of data as date and time (Ant

Design 2020). With DatePicker, instead of manually input the date into text fields,

users can choose the desired day, month, and years from a mini calendar that

shows up when they click on the input box. Examples of this template can be seen

in the input boxes of the OrderEstablish and OrderView functions in the previous

chapter.

31

Another example of usage of 3rd party extensions is the use of PrimeReact’s

template Fieldset. With this template, each section of the page can be separate

into individual pieces or group together into one general section (PrimeFaces

2020). Using Fieldset helps developers to divide the UI into multiple sections that

can work side by side while still maintaining a clean and functional interface. As

shown in the functions mentioned in the prior chapter, Fieldset was used to

separate the sections of the page by using a thin border surrounding each parts,

with their title shown on the top right corner.

Figure 23: Example of Fieldset used in OrderEstablish function

Due to the high complexity of the solution, React Redux was utilized to help with

State management for the project. An example of React Redux usage can be

shown below (Figure 24). In this example, the mapStateToProps function is called

Figure 22: Example of DatePicker (Ant

Design 2020)

32

every time an update is made to the Store. The connect() command is called to

connect a React component to the Redux store, in this case is the OrderView

function. This is done so that the State inside the OrderView function can pass on

data to other functions such as OrderEstablish when needed as well.

Figure 24: Example of React Redux used in OrderView function

5.2 Effects of React

As a front-end JavaScript library, applications using React can benefit from its

client-side rendering capabilities. It allows the JavaScript elements to be rendered

almost instantaneously in the browser, which lets data to be changed without the

need to reload the entire page. This also puts less pressure on server rendering as

well, especially in the case of multiple users access the system. React’s rendering

capabilities can be seen in the OrderEstablish function where changes made on

the Details tab are updated and displayed immediately on the Products tab,

allowing for faster data processing speed.

Another evident advantage of React is that it is an open-source library. This means

that it can be utilized freely for the project without the need for licensing, and that it

can be freely modified depending on the development status. Being open-source

also means that there are various supported extensions made by 3rd parties that

can help the design of the UI without having to modify the HTML and CSS of the

pages. As demonstrated before, the usage of UI templates provides developers a

short-cut when building pages, therefore requires less time needed for front-end

development and more for debugging and back-end aspects as well.

Furthermore, the use of React components also helps with the development of the

project. It allows developers to work with each pieces of the solution individually

rather than having to worry about the entire solution as a whole, thus leads to a

more efficient working progress and less chance of making errors. Additionally,

these individual pieces can be called into other components as well when needed

33

without having to reprogram them again, which helps with saving time and effort

for development.

As previously described in the case study, the project contains a high number of

functions for multiple different operations of the sales system, which means the

amount of State to manage between these components can be overwhelming.

This is why the utilization of React Redux also holds a crucial role in the

development of the project. By using Redux, developers can always have control

over the State manipulations within the functions and avoid monitoring changes

made in State manually, which can be particularly time consuming and leads to

mistakes.

The usage of React in the project also has a few shortcomings. One of which is

the heavy UI-oriented nature of React. Due to being only a JavaScript library for

front-end development, React does not support additional features in terms of

functionality of the application that can aid the development. This means that while

the design of the UI can be done with ease, the application can still be prone to

errors and bugs. Another drawback is the high usage of extra React extensions

when designing the UI. While rich in features, the aesthetics of the UI lack any

originality due to most of the designs are done by 3rd party libraries. Fortunately,

these downsides of React are not impactful and does not severely affect the

development of the project.

5.3 Other Choices of Frameworks

When looking at other alternative options for JavaScript frameworks that has been

mentioned in this thesis, Vue would be the most suitable choice. Both of them

share many similar characteristics such as components-based architecture, focus

on View, virtual DOM usage and more (Vue 2020c). Vue can theoretically be

implemented the same way as React since they are both heavily UI-oriented

frameworks. However, in terms of popularity, Vue still falls behind React and

therefore it may not have as many extra supported extension as React has. This

means that the selection for UI customizability is more limited and not as diverse

when compare to React.

34

The other option to consider is Angular. Compare to React, Angular is more

feature-rich due to being a complete framework. In terms of functionality, Angular

is suited for large scale application development due to its programming style,

features, and documentation (Levlin 2020, 47). In spite of this, Angular is

developed to be worked better with TypeScript, which requires developers to know

extra knowledge on the TypeScript language to fully utilize it. Furthermore, due to

having more features, Angular has a larger total file size when compare to React,

which could cause the project to be heavier and takes up more resources.

In conclusion, all of the frameworks mentioned earlier are suitable for development

of the centralized sales system and each of them have their own benefits as well

as drawbacks. Regardless, React is still a fitting choice for this project with its

diverse range of choices for front-end development.

35

6 CONCLUSION

This chapter will summarize the findings from the previous chapters. From this, the

research’s validity and limitations are reviewed in order to propose suggestions for

future research.

6.1 Results

As mentioned in the beginning of this thesis, the reason for conducting this

research was to answer the following question:

- In what ways can React benefit the development of a web application?

The thesis was able to answer this question through both a literature review of

documentation and articles regarding the React JavaScript library as well as a

detailed case study of a large-scale project developed with React. From the results

collected, the thesis presented a variety of advantages React brought to the case

study project as a demonstration of the library’s capabilities. In terms of application

quality, React can help design and build interactive UIs that allows for seamless

interactions between the user and the application. React also offers developers

many options to cut down development time with various official and 3rd party

extensions. In addition to this, the thesis also managed to differentiate React with

2 other popular choices for JavaScript front-end development, which are Vue and

Angular, through reviewing additional documents about these 2 frameworks.

6.2 Limitations

A few limitations were present during the research of this thesis. The first is that

the thesis manages to cover only some notable aspects of React that was

implemented for this project. Due to the high complexity of the artifact used for the

research, many other functionalities of the solution could not be demonstrated,

hence the thesis could not display more advanced usages of React. The second is

that the examples used in this research were taken during the early development

process of the project, which made them outdated when compare to the final

completed product.

36

6.3 Validity

Qualitative research was conducted through a combination of scholarly articles,

books and journals, and online documentation and blog posts to achieve the

purpose of this research, which provided a diverse source of information and

detailed analysis on the research topic. The thesis also presented a research

artifact through comprehensive examination of the case study that can be used as

a reference of React’s usages and functionalities. Furthermore, the use of

JavaScript frameworks is also a commonly discussed subject among the

community and the topic of this research will be relevant for many years to come.

6.4 Suggestions for Future Research

The main focus of this research was on the effects of React on the development of

a large-scale IT web solution. A few other topics that can broaden the scope of this

research includes:

• The effects of React on smaller scale web applications development.

• The effects of React on mobile application development.

• Comparison of React with other front-end JavaScript frameworks besides

Vue and Angular.

37

7 REFERENCES

Angular. 2020a. GitHub. Retrieved on 22 October 2020. Available at

https://github.com/angular/components

Angular. 2020b. GitHub. Retrieved on 30 October 2020. Available at

https://github.com/angular/angular

Ant Design. 2020. Retrieved on 3 November 2020. Available at https://ant.design

Business Research Methodology. 2020. Research Approach. Retrieved on 6

October 2020. Available at https://research-methodology.net/research-

methodology/research-approach

Chetty, P. 2016. Importance of Research Approach in a Research. Project Guru.

Retrieved on 9 Nov 2020. Available at https://www.projectguru.in/selecting-

research-approach-business-studies/

Cromwell, V. 2016. Evan You. Between the Wires. Retrieved on 21 October 2020.

Available at

https://web.archive.org/web/20170603052649/https://betweenthewires.org/2016/11

/03/evan-you/

Facebook. 2020. GitHub. Retrieved on 8 September 2020. Available at

https://github.com/facebook/react

Gavigan, D. 2018. The History of Angular. The Startup Lab. Retrieved on 21

October 2020. Available at https://medium.com/the-startup-lab-blog/the-history-of-

angular-3e36f7e828c7

Hámori, F. 2020. The History of React.js on a Timeline. RisingStack. Retrieved on

18 October 2020. Available at https://blog.risingstack.com/the-history-of-react-js-

on-a-timeline

Hevner, A.R. & March S.T. & Park J. & Ram S. March 2004. Design Science in

Information Systems Research. MIS Quarterly. Volume 28 Issue 1. Pages 75 –

106. Retrieved on 24 September 2020. Available at

https://www.researchgate.net/publication/201168946_Design_Science_in_Informat

ion_Systems_Research

https://github.com/angular/components
https://github.com/angular/angular
https://ant.design/
https://research-methodology.net/research-methodology/research-approach
https://research-methodology.net/research-methodology/research-approach
https://www.projectguru.in/selecting-research-approach-business-studies/
https://www.projectguru.in/selecting-research-approach-business-studies/
https://web.archive.org/web/20170603052649/https:/betweenthewires.org/2016/11/03/evan-you/
https://web.archive.org/web/20170603052649/https:/betweenthewires.org/2016/11/03/evan-you/
https://github.com/facebook/react
https://medium.com/the-startup-lab-blog/the-history-of-angular-3e36f7e828c7
https://medium.com/the-startup-lab-blog/the-history-of-angular-3e36f7e828c7
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline
https://blog.risingstack.com/the-history-of-react-js-on-a-timeline
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research

38

jsComplete. 2020. React.js Beyond the Basics. Retrieved on 4 November 2020.

Available at https://jscomplete.com/learn/react-beyond-basics/introduction

Levlin, M. 2020. DOM benchmark comparison of the front-end JavaScript

frameworks React, Angular, Vue, and Svelte. Åbo Akademi. Master’s thesis.

Retrieved on 20 October 2020. Available at http://urn.fi/URN:NBN:fi-

fe2020051838212

Manjunath, M. 2018. AngularJS and Angular 2+: a Detailed Comparison. Sitepoint.

Retrieved on 21 October 2020. Available at https://www.sitepoint.com/angularjs-

vs-angular

Mariano, C.L. 2017. Benchmarking JavaScript Frameworks. Technological

University Dublin. Masters dissertation. Retrieved on 20 October 2020. Available

at https://doi.org/10.21427/D72890

Mozilla. 2020. Introduction. Retrieved on 20 October 2020. Available at

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction

Mozilla. 2020. Introduction to Client-Side Frameworks. Retrieved on 20 October

2020. Available at https://developer.mozilla.org/en-

US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction

Primefaces. 2020. Retrieved on 3 November 2020. Available at

https://www.primefaces.org/primereact

React. 2020a. Retrieved on 17 October 2020. Available at https://reactjs.org

React. 2020b. Rendering Elements. Retrieved on 18 October 2020. Available at

https://reactjs.org/docs/rendering-elements.html

React. 2020c. Components and Props. Retrieved on 18 October 2020. Available at

https://reactjs.org/docs/components-and-props.html

React. 2020d. State and Lifecycle. Retrieved on 18 October 2020. Available at

https://reactjs.org/docs/state-and-lifecycle.html

React. 2020e. Hooks at a Glance. Retrieved on 18 October 2020. Available at

https://reactjs.org/docs/hooks-overview.html

https://jscomplete.com/learn/react-beyond-basics/introduction
http://urn.fi/URN:NBN:fi-fe2020051838212
http://urn.fi/URN:NBN:fi-fe2020051838212
https://www.sitepoint.com/angularjs-vs-angular
https://www.sitepoint.com/angularjs-vs-angular
https://doi.org/10.21427/D72890
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Client-side_JavaScript_frameworks/Introduction
https://reactjs.org/
https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/hooks-overview.html

39

Singh, H & Tanna, M. 2018. Serverless Web Applications with React and

Firebase. Packt Publishing. Retrieved on 29 October 2020. Available at

https://ebookcentral-proquest-com.ezproxy.saimia.fi/lib/lab-

ebooks/detail.action?pq-origsite=primo&docID=5345875

Stack Overflow. 2019. Developer Survey Results 2019. Retrieved on 6 September

2020. Available at https://insights.stackoverflow.com/survey/2019#most-loved-

dreaded-and-wanted

Vue. 2020a. GitHub. Retrieved on 21 October 2020. Available at

https://github.com/vuejs/vue

Vue. 2020b. Template Syntax. Retrieved on 29 October 2020. Available at

https://v3.vuejs.org/guide/template-syntax.html

Vue. 2020c. Introduction. Retrieved on 21 October 2020. Available at

https://v3.vuejs.org/guide/introduction.html

Wilson, E. 2018. MERN Quick Start Guide: Build Web Applications with MongoDB,

Express.js, React, and Node. Packt Publishing. Retrieved on 20 October 2020.

Available at https://ebookcentral-proquest-com.ezproxy.saimia.fi/lib/lab-

ebooks/detail.action?pq-origsite=primo&docID=5405683

https://ebookcentral-proquest-com.ezproxy.saimia.fi/lib/lab-ebooks/detail.action?pq-origsite=primo&docID=5345875
https://ebookcentral-proquest-com.ezproxy.saimia.fi/lib/lab-ebooks/detail.action?pq-origsite=primo&docID=5345875
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://github.com/vuejs/vue
https://v3.vuejs.org/guide/template-syntax.html
https://v3.vuejs.org/guide/introduction.html
https://ebookcentral-proquest-com.ezproxy.saimia.fi/lib/lab-ebooks/detail.action?pq-origsite=primo&docID=5405683
https://ebookcentral-proquest-com.ezproxy.saimia.fi/lib/lab-ebooks/detail.action?pq-origsite=primo&docID=5405683

