
Sonja Malmström 

 

Storing actionable metrics in a graph database  

 

Sonja Malmström 

 

 

Degree Thesis 

Information Technology 

2020 

 



 

 

EXAMENSARBETE 

Arcada  

 

Utbildningsprogram:  Informationsteknik   

 

Identifikationsnummer: 8063 

Författare: Sonja Malmström 

Arbetets namn: Storing actionable metrics in a graph database  

 

Handledare (Arcada): Jonny Karlsson 

 

Uppdragsgivare: Limber AS 

 

Sammandrag:  

Detta examensarbete gjordes i samarbete med det norska företaget Limber AS, som har 

utvecklat den molnbaserade webbapplikationen Limber Projects. Denna webbapplikat-

ion kan användas av företag som arbetar med komplexa och leverantörbaserade projekt. 

Limber intresserade sig av att i framtiden ha möjlighet att kunna undersöka användarbe-

teende i sin webbapplikation genom att lagra relevant användardata i en grafdatabas. 

Grafdatabaser är en typ av NoSQL-databas som huvudsakligen fokuserar på samband 

mellan dataobjekt och lagrar dessa i from av noder och bågar. Målet med detta exa-

mensarbete var att tillhandahålla en översikt över hur användardata kan lagras i en graf-

databas samt hur datamodelleringsprocessen kan utföras för detta syfte. Under datamo-

delleringsprocessen avgjordes vilken data som bildar noder och bågar för att på bästa 

sätt kunna framställa information om hur användaren rör sig under en session i webbap-

plikationen. Den praktiska delen av examensarbetet gick ut på att skapa en prototyp 

som beskriver en fungerande grafdatabas i syfte att lagra specifika användardata. Denna 

prototyp utvecklades i ArangoDB och testdata skapat av skribenten användes för att 

evaluera datamodellens uppsättning. Med hjälp av denna prototyp fick man en uppfatt-

ning om vilken data som kan anses tillräckligt viktig för att skapa egna dataobjekt sam-

tidigt som man hade möjlighet att undersöka prototypens prestationsförmåga med varie-

rande mängd dataobjekt.  

 

 

 

 

 

 

 

 

 

Nyckelord: Grafdatabas, Datamodellering, Limber AS, användarbete-

ende, ArangoDB, NoSQL, webbmätvärden 

 

Sidantal: 59 

Språk: Engelska 

Datum för godkännande: 17.12.2020 

 



 

 

DEGREE THESIS 

Arcada  

 

Degree Programme:  Information technology 

 

Identification number: 8063 

Author: Sonja Malmström 

Title: Storing actionable metrics in a graph database  

 

Supervisor (Arcada): Jonny Karlsson 

 

Commissioned by: Limber AS 

 

Abstract:  

This thesis was done in collaboration with the Norwegian company Limber AS, develop-

er of the cloud-based web application Limber Projects. This web application can be used 

by companies who work with complex and supplier dependent projects. Limber was in-

terested in future possibilities to study and evaluate user behaviour in their web applica-

tion by storing relevant user data in a graph database. A graph database is a type of non-

relational database that mainly focuses on storing information about relationships be-

tween data objects as nodes and edges. The goal with this thesis was to provide an over-

view of how user behaviour data can be stored in a graph database and how the data 

modeling process can be done. During the data modeling process of this thesis it was de-

cided what data would be stored as nodes and edges in order to provide information of 

how users move in the web application during a session. The practical part of this thesis 

consisted of creating a prototype of a working graph database with the purpose of storing 

user behaviour data. This prototype was developed in ArangoDB and test data created by 

the author was used to evaluate the setup of the data model as well as test the perfor-

mance of the database. This prototype made possible an understanding of what data is 

important enough to become its own data object. 

 

 

 

 

 

 

 

 

 

Keywords: Graph database, Data modeling, actionable metrics, Limber 

AS, ArangoDB, user behaviour, NoSQL 

 

Number of pages: 59 

Language: English 

Date of acceptance: 17.12.2020 

 

 



 

 

CONTENTS 

1 Introduction .......................................................................................................... 9 

1.1 Purpose and goal ........................................................................................................ 10 

1.2 Limitations ................................................................................................................... 10 

1.3 Methods ....................................................................................................................... 10 

1.4 Thesis structure ........................................................................................................... 11 

2 Database models ............................................................................................... 12 

2.1 Relational databases ................................................................................................... 12 

2.2 NoSQL databases ....................................................................................................... 14 

2.3 Graph database ........................................................................................................... 15 

2.4 ArangoDB .................................................................................................................... 17 

2.4.1 Data model .......................................................................................................... 18 

2.4.2 Graph database ................................................................................................... 18 

2.4.3 AQL query language............................................................................................ 19 

2.4.4 Indexing ............................................................................................................... 21 

3 Data modeling .................................................................................................... 23 

3.1 NoSQL data model ...................................................................................................... 23 

3.2 Modeling a graph database ......................................................................................... 24 

3.2.1 Creating relationships .......................................................................................... 25 

3.2.2 Relationship types ............................................................................................... 25 

4 Web Metrics ....................................................................................................... 27 

4.1 Actionable metrics ....................................................................................................... 27 

4.2 Vanity metrics .............................................................................................................. 28 

4.3 Transform vanity metrics into actionable metrics ........................................................ 28 

5 Planning the database ....................................................................................... 30 

5.1 Data modeling ............................................................................................................. 30 

5.1.1 Choosing nodes and edges ................................................................................. 31 

5.1.2 Setup for nodes and edges ................................................................................. 34 

6 Implementation .................................................................................................. 36 

6.1 Installation ................................................................................................................... 36 

6.2 Add collections ............................................................................................................ 36 

6.3 Creating nodes and edges .......................................................................................... 37 

6.4 Running AQL queries to get results ............................................................................ 39 

6.5 Performance ................................................................................................................ 41 



 

 

7 conclusion .......................................................................................................... 46 

7.1 Future studies .............................................................................................................. 49 

References ................................................................................................................ 50 

Appendix 1. Summary in Swedish ........................................................................... 55 



 

 

Figures 

Figure 1 Visualization of a table with rows and columns in a relational database. ....... 13 

Figure 2 Visualization of relationship between two nodes............................................. 16 

Figure 3 Example of relationship between two vertices in ArangoDB .......................... 19 

Figure 4 Example of query to return documents in a collection .................................... 20 

Figure 5 Example of an INSERT query, where a document is added to a collection .... 21 

Figure 6 Visualization of sentence "How many sessions have clicked the New Profile- 

button” as nodes and edges ............................................................................................. 31 

Figure 7 Visualization of sentence " How many sessions have moved from the 

Document list- view to the New Profile- button " as nodes and edges .......................... 32 

Figure 8 Visualization of sentence "From where has a session/user moved to get to the 

New Profile- button?" as nodes and edges ..................................................................... 32 

Figure 9 Visualization of the same sentence as given in figure 8, but using "session" as 

an edge ............................................................................................................................ 33 

Figure 10 An example of a session object with test data saved as an edge .................... 35 

Figure 11 Example of how a button object can be stored as a node .............................. 35 

Figure 12 Command to create a new collection with ArangoDB Shell ......................... 37 

Figure 13 A screenshot taken from ArangoDB Community Edition showing how a 

collection can be created inside the webUI .................................................................... 37 

Figure 14 Example of command in Arango Shell when creating a new node object..... 38 

Figure 15 Example of command in Arango Shell to create a new edge object .............. 38 

Figure 16 Screenshot of a query that will return all the session IDs that have at some 

point clicked on the button New Profile. The screenshot is taken from ArangoDB 

Community Edition ........................................................................................................ 40 

Figure 17 Screenshot of a query that will return all the session IDs that have at some 

point moved from the Document list- view to the New Profile- button ......................... 40 

Figure 18 Screenshot of a query that returns all the edges that have the New Profile- 

button as end point. The return value in this query is the session object's _from attribute. 

Screenshot taken from ArangoDB Community edition ................................................. 41 

Figure 19 Example of a JSON list that was imported to the session collection ............. 41 

Figure 20 Query 1 - Similar query as shown in figure 16, except this query returns the 

entire session object ........................................................................................................ 42 

https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450219
https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450222
https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450222
https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450223
https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450223
https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450225
https://arcadauas-my.sharepoint.com/personal/malmstrs_arcada_fi/Documents/examensarbete/thesis_sonja_malmström.docx#_Toc58450225


 

 

Figure 21 Query 2 - Similar query as shown in figure 17 .............................................. 42 

Figure 22 Query 3 - Similar query as shown in query 18, except this query returns the 

entire session object ........................................................................................................ 42 

Figure 23 Query 4 – This is a query that looks for session objects with a specific session 

ID and returns the entire session object .......................................................................... 43 

Figure 24 Example of execution times in milliseconds for four different queries without 

any user-defined indexes added ...................................................................................... 43 

Figure 25 Example execution times in milliseconds for query 4, when the query is 

executed with or without an additional user defined index ............................................ 44 

Figure 26  Example execution times for the queries, when query 4 has an additional 

user-defined index applied.............................................................................................. 45 

Figure 27 Example of movements during a session visualized as a graph, Graph created 

in ArangoDB when executing query 4 from chapter 6.5 ................................................ 48 



 

 

Tables 

Table 1 Examples of vanity metrics vs. actionable metric ............................................. 29 

 

 



9 

 

1 INTRODUCTION 

This study was done in collaboration with the Norwegian company Limber AS. The 

company has developed the product Limber Projects, which is a cloud-based plat-

form/web application that can be used in complex and supplier dependent projects. 

Limber Projects is currently mainly focused on the oil and gas industry. Since the com-

pany is quite new (founded in 2017), it has become more relevant to analyse user behav-

iour by collecting data to improve further development of Limber Projects. 

 

Limber is interested in improving its understanding of how Limber Projects is used by 

its users and to find out whether the product is used as designed or if there are any ir-

regular patterns. This could be done by validating collected data with pre-defined pat-

terns. This thesis worked as a foundation for an upcoming system where user data is 

collected either from the client side or the server side and afterwards stored in a graph 

database. To be able to do the data modeling and plan the graph database, test data was 

used. This test data was created by the author to represent movements between views in 

the user interface and button clicks.  

 

A graph database is a NoSQL database which is built to manage relationships between 

data nodes containing information and used to represent complex networks. A graph 

database is built of “node-edge-node” triples, which means two nodes are connected 

with an edge, that represents the relationship between these two nodes. (Hurlburt et al. 

2017) 

 

Since graph databases focus and provide values from relational data, they are useful in 

finding possible and new connections and relations between existing data which has not 

been visible before. This was the reason why Limber wanted to use a graph database to 

store user behavior data. The interest lies in finding out whether a user has used Limber 

Projects as designed, if there are any strange and irregular behavior or if there are fea-

tures that are seldom or never used.  



10 

 

1.1 Purpose and goal 

The purpose with this thesis was to provide an overview of how data can be stored in a 

graph database and to describe how the data modeling process can be done when the 

purpose is to store specific user behavior data in a graph database. The goal of the prac-

tical work in this thesis was to create a model and prototype for how Limber should col-

lect useful user data, what kind of data is interesting and finally how it should be stored 

in a graph database. The key is to not only store data just because data should be col-

lected and stored, but to collect the right data based on predefined patterns. 

1.2 Limitations  

This thesis focused on graph databases and how data is stored in them. As implied earli-

er, one of the main focuses was to show how and what kind to data should be collected 

to be able to store it in graph database. However, no real user data was collected during 

this study since the goal with this thesis was to create a prototype. The data that was 

used in the data modeling process was created by the author to represent real data. 

1.3 Methods 

In order to reach the goals for this thesis I decided to build a model and prototype of 

how specific user behavior data can be stored in a graph database. It started with the da-

ta modeling process and afterwards moved on to test this data model in a graph data-

base. The prototype was built in ArangoDB, which is a NoSQL database. To use Aran-

goDB was a decision Limber and I made together. In the practical part of this thesis 

ArangoDB’s Community Edition version was used as the test environment and the test 

data was stored locally on a computer. 

 

To be able to test the prototype, the database had to contain some test data. In this the-

sis, all test data was created by the author to represent actual user data for the purpose of 

testing the setup, run AQL queries and test the performance of the database. 



11 

 

1.4 Thesis structure 

This thesis was structured as follows. Chapter 2 provides information about different 

kind of database models and how they differ from each other. This chapter mainly fo-

cuses on relational and non-relational databases. Of all different non-relational database 

models, this chapters emphasizes graph databases. In this chapter there will also be a 

review of the graph databases provider ArangoDB, since it was used for the practical 

part of this thesis.  

 

Chapter 3 is about data modeling and how the data modeling process is usually per-

formed with different kinds of database models. Although, this chapter focuses on how 

data modeling can be done in a NoSQL database, especially a graph database since one 

of the main focuses in this thesis was graph databases.  

 

Chapter 4 contains information about two different kinds of web metrics, actionable- 

and vanity metrics. In this chapter there is a review of these two web metrics and how 

they differ from each other.  

 

The practical part of this thesis is described in Chapter 5 and 6. Chapter 5 presents a 

walkthrough of how the data modeling process for the database was done and what kind 

of data was considered useful. Chapter 6 provides a description of the implementation 

process and how the prototype was created in ArangoDB’s Community Edition version, 

and how it was tested and what the results were. 

 

Finally, chapter 7 is the conclusion of the entire thesis with a summary of the results and 

a discussion of the benefits and challenges of using a graph database for storing action-

able metrics focusing on user behaviour data and what kinds of possible future studies 

there might be based on this thesis. 



12 

 

2 DATABASE MODELS 

In today’s world most of us will probably encounter activities during our everyday lives 

that require some kind of interaction with a database. It is difficult to not see databases 

as an important part of computer usage when living in a modern society. Examples of 

interactions with databases in our everyday life is making an online purchase or making 

a flight reservation. (Elmasri & Navathe 2016:33-35) 

 

Then what is a database? It can be described as a collection that contains data related to 

each other. The word data is used to describe facts, and these facts can be stored, and 

they have some kind of important meaning to why they should be stored. Typically, a 

database stores coherent collections of data. Randomly collected data cannot be men-

tioned or identified as a database. (Elmasri & Navathe 2016:33-35) 

 

In other words, a database can be described as a collection of data that is well organized. 

It is an electronical system that easily gives access to the collected data and is a great 

way for organisations to store and manage information. (Vázques 2019) 

 

There are two common types of databases: Relational databases and non-relational da-

tabases, also known as NoSQL databases. In this chapter, there will be a closer look on 

relational databases and NoSQL databases, with placing focus on graph databases. 

(What is a database in under 4 minutes 2019) 

2.1 Relational databases  

The first person to introduce a relational data model was Ted Codd of IBM research in 

1970. His paper immediately raised attention. This paper describes a database as a col-

lection of relations. The model consists of tables of values containing columns and 

rows. Each row represents an entry, and the columns represent different kind of data 

that are related to each other.  The names of the tables and columns are used to present 

the values so that they are easier to understand. In figure 1 you can see a visualisation of 

a table in a relational database. (Elmasri & Navathe 2016:179-180) 

 



13 

 

 

Users 

Name Age Address 

Person X 29 Address X 

Person Y 32 Address Y 

Figure 1 Visualization of a table with rows and columns in a relational database. 

 

In a table we find a set of columns and rows, and when you look inside a specific row 

and column, you find an entry. Relationships can be found between tables, but these re-

lationships cannot be considered as the most important feature when it comes to rela-

tional databases. In these kinds of databases, we are more interested in the data which 

they contain. (Vázques 2019)  

 

Unlike NoSQL databases, relational databases have relational schemas. The schema de-

lineates the structure and relationships of a relational database i.e., how the data is ar-

ranged. It can for example be graphically illustrated or written in SQL programming 

language, which is described later on in this chapter. A schema usually describes 

whether or not a column in a table requires unique values or if there is a specific column 

that should work as the primary key of the table. With a schema it can also be specified 

if there are columns in tables that have references to other tables’ data. (Melendez 2019) 

 

Since the 1980s, the relational model has been the most significant and used model to 

store and retrieve data. Because relational databases heavily depend on their structure of 

schemas and tables, making modifications and queries out of context from the original 

schema design is very expensive and time consuming. Because of this, relational data-

bases have nowadays become less important. (Benymol & Sajimon 2020) 

 

Relational databases use SQL, which is a shortage of “Structured Quary Language”. 

SQL is a programming language and can be used to manipulate the data stored in a rela-

tional database. In the beginning of the 1970s, IBM was first to develop the SQL lan-

guage. The syntaxes available in SQL are comparable to the English language and are 

easy to read and write. (Bush 2020) 



14 

 

2.2 NoSQL databases 

Hand in hand with the rise of big data and its irregular features, the need of more effi-

cient databases has increased. These kinds of databases are called NoSQL databases and 

they have grown very popular because of their flexibility and robustness. NoSQL data-

bases have dug into bigger industries as a supplement for relational databases. (Abdul-

lahi et at. 2018)  

 

NoSQL was launched in 1998 and its original meaning was “No SQL”, which means 

that the query mechanism that is used is more similar to the source environment that the 

developers use. (Fowler 2015) 

 

There are variations of NoSQL types. Some of the most common types are key-value 

store, document store and graph store. A key-value store uses, as the name indicates, 

keys to access data that is stored in the database. Key-value stores are for example used 

as image stores or as filesystems that are key-based. A document store is commonly 

used when the purpose is to store hierarchical data structures. This type can be used 

with high-variability data and document search. Finally, a graph store is mostly used for 

relationship-heavy data. More information about graph databases is described in the 

next chapter 2.3. (Kelly & McCreary 2013) 

 

There are four features that usually apply to most of the NoSQL databases:  

1. Schema agnostics. In a NoSQL database there is no requirement of using a 

schema, which is used in a relational database. By not using schemas, storing in-

formation is more flexible and you are able to retrieve data without having the 

knowledge of how the data is stored. (Fowler 2015) 

2. Nonrelational. In relational databases the relations exist between tables of data. 

In a NoSQL database the data is stored as an aggregate, which in practice can be 

seen as a single entry where all the information is stored, without any tables. 

(Fowler 2015) 

3. Commodity hardware. When using a NoSQL database, one does not have to 

use specialized storage and processing hardware like servers. (Fowler 2015) 



15 

 

4. Highly distributable. A database that is distributed has the ability to process 

and store information on several devices. When looking at a NoSQL database, 

one can use multiple servers to hold one large database. (Fowler 2015) 

2.3 Graph database  

Over the last years, the term network has become a common word for most people. It 

has been used to refer to electronic transmission systems, but nowadays we find the 

word network everywhere. There are social networks, supply chains and food chains to 

name a few. (Hurlburt et al. 2017) 

 

Graph databases are built to manage information dense relationships to coexist in dy-

namic environments. These relationships are similar to networks and graph database can 

be used to represent and analyse complex networks. Graphs are described as “node-

edge-node triples”, which means that two nodes are connected to each other with the 

help of a relationship (also known as an edge), see a visualization in figure 2 below. Af-

ter all, this is a very straightforward concept of a graph. The nodes in a graph database 

can contain one or many properties. The edges that create the relationships can also be 

given properties. (Hurlburt et al. 2017) 

 

When comparing a graph database to a relational database you realize that a graph data-

base is a collection of nodes and edges instead of tables with rows and columns. Every 

node that exists in a graph database is unique and identified by a unique identifier. This 

identifier indicates key value pairs. An edge is also identified by a unique identifier 

which has details and properties of the starting and ending node. (Vázques 2019) 

 



16 

 

 

Figure 2 Visualization of relationship between two nodes 

 

A graph database is able to store the same kind of data as in a relational database, but 

this kind of database is also able to store and map the relationships between different 

kind of data. Graph databases are useful when you have data that is highly related. 

When you are able to see relationships between data, it is easier to understand what the 

data contains and find useful insights. (Vázques 2019) 

 

Graph databases are a great solution if you want to store and navigate datasets where the 

relationships between the data are equally important as the data. Lately, graph databases 

have been very popular solutions in data management. (What is a graph database 2019) 

 

With graph databases it is easier to make content much more connected and smarter.  

For example, it is easier to create consistency of stories and knowledge and create 

meaning for structures that are interconnected. The output can be, for example, the abil-

ity to design more personalized experiences and enable seamless search and find inter-

actions with the system. (What is a graph database 2019) 

 

In a graph database one can store graphs, and a graph can be criss-crossed along some 

particular edges or across the entire graph. Criss-crossing relationships can be done in a 

very fast pace because the relationships are not calculated according to query times. 

When it comes to recommendation engines and social networks, a graph database is a 

good choice. (What is a graph database 2020) 

 



17 

 

Poorly designed relationships provide vague graph environments. Nodes’, edges’ (rela-

tionships) and properties’ declarations should be clear and should match up to a general-

ized pattern existing in a specific graph model. A graph can easily grow in size and re-

sult in a dilemma regarding magnitude when designing a data model. (Hurlburt et al. 

2017) 

 

Graph databases have grown to be popular variants of a NoSQL databases and they 

have become to be effective tools in visualizing network related relationships. They also 

offer ability to comprehend growing network behaviours qualitatively and quantitative-

ly. (Hurlburt et al. 2017) 

 

Many big technology companies are using graph databases and graph technology to cre-

ate, for example, recommendations of content to its users. Although, it is relevant to re-

member that graph databases do not fit everyone, and other database models will not 

entirely be replaced by graph databases. (What is a graph database 2019) 

2.4 ArangoDB 

In this chapter there will be a closer look at the graph database ArangoDB. It was decid-

ed for the practical part of this thesis that the prototype of a working graph database 

would be designed in ArangoDB. For Limber, it was important that the selected data-

base would offer other database models than simply a graph database, which makes 

ArangoDB a great fit since it is a multi-model database.  

 

ArangoDB can be described as a multi-model database, which is not very common with 

other NoSQL databases. What makes it a multi-model database is that it is equipped 

with graph database, key-value store, and document database. ArangoDB users are able 

to use and combine data models supported by ArangoDB with a single query. Because 

of this, ArangoDB can be called native. When querying data in ArangoDB, the users 

use ArangoDB’s own query language: AQL (Advantages of the native multi-model da-

tabase - ArangoDB 2020) 

 



18 

 

2.4.1 Data model 

When storing documents in ArangoDB, one document may contain several attributes or 

zero attributes. These attributes contain their own values, and they can be a number, 

string, boolean or null. In this case the value is of an atomic type. The other option is 

that a value is of a compound type, which means an array or an embedded document. 

(Concepts 2020) 

 

Once the documents are defined, one can add these to collections. When comparing col-

lections to the setup in a relational database, a collection is the table, and the documents 

are the rows. What makes them different is that in a relational database defining the col-

umns in a table prior to use is required. In ArangoDB defining in advance what attrib-

utes a document and what it may contain is not necessary, which means that ArangoDB 

is schema-less. What this means in practice is that each document’s structure may differ 

from the other but can still be stored together in the same collection and therefore is not 

limited to a specific data structure. (Concepts 2020) 

 

In ArangoDB there are two different kinds of collections. One is called “document col-

lection”, also known as vertex collections, when talking about graphs. The other kind of 

collection is a “edge collection”. Both collections can store documents, but edge collec-

tions have two special attributes: _from and _to. These attributes are used when creating 

relationships between documents. For example, two or more documents are stored in a 

document collection. These documents are linked to each other by another document, 

but this document (or edge) is stored in an edge collection. This is an example of a 

graph data model in ArangoDB. (Concepts 2020) 

2.4.2 Graph database 

As mentioned in the previous section, ArangoDB is a multi-model database and pro-

vides a graph database. By looking at the graph capabilities provided by ArangoDB in 

its graph database, they are very close to a property graph database. (Advantages of Na-

tive Multi-Model 2020) 

 



19 

 

Every document has its own unique identifier, or _id attribute. This attribute is automat-

ically stored. When it is time to create a relationship, or an edge as it is called, between 

two documents, these _id attributes are stored in an edge document with attributes 

_from and _to. These creates a connection between two vertices. Edges will be stored in 

edge collections. See figure 3 for visualization. (Basics and terminology 2020) 

 

 

A revision will be created for every document in ArangoDB. The revision is stored in 

the attribute _rev and is always unique in all collections and documents. Usually, this 

attribute is used together with queries and works as a pre-condition mainly to avoid loss 

of data due to situations where a document update was not executed correctly (Docu-

ment revision, ArangoDB 2020). 

 

There is a wide range of graph database features, for example, shortest_path, pattern 

matching and graph traversals. If graph visualization is desired it can easily be achieved 

within the ArangoDB WebUI, where the graph can also be manipulated. (Graphs in 

AQL 2020) 

2.4.3 AQL query language 

ArangoDB has its own query language AQL, which is a shortage of “ArangoDB Query 

Language”. This query language was designed to be a query language that is readable 

by humans, be able to support complex query patterns, accomplish client independency 

Figure 3 Example of relationship between two vertices in ArangoDB 



20 

 

and finally support all data models that ArangoDB provides without having to use sev-

eral query languages. (Best practices for AQL graph queries 2020) 

 

Looking at AQL one will find two types of queries: Data access and data modification. 

Data access means that one is able to read documents with the help of a query. Data 

modification is when one runs queries to modify data, for example update or create a 

document. (AQL introduction, 2020) 

 

How does a query work in ArangoDB? Usually when a query is executed, the workflow 

follows a couple of steps. The query is sent from a client application (terminal, webUI) 

to the ArangoDB server. Everything the user wants to retrieve from the server should be 

included in the query. If the query contains errors, it will not be executed, and the user 

will receive an error. If the query looks correct, ArangoDB will parse through the query 

that was sent from the client application, execute the query, and finally compile. Once 

the query has been successfully executed, the user will see the results. (AQL introduc-

tion, 2020) 

 

When accessing data from the server, the operation RETURN should always be used. 

The values that are returned as a result are always an array of values. Because there 

usually are several documents in a collection, a FOR loop is usually used along with the 

RETURN operation (see figure 4 below). (Data queries 2020) 

 

 

FOR user IN users 

       RETURN user 

  

Figure 4 Example of query to return documents in a collection 

 

To be able to modify documents, some specific data-modification operations are re-

quired. These operations are INSERT, REMOVE, UPDATE, REPLACE and UPSERT.  

INSERT is used when one wants to add a new document to an existing collection, as 

visualized in figure 5 below. If a document should be deleted, one should use the opera-

tion REMOVE. With the help of the operation UPDATE, parts of an existing document 



21 

 

may be updated. REPLACE will replace all attributes in a document when UPDATE 

only updates specific attributes. Finally, the operation UPSERT is used when docu-

ments need to be updated or added with the help of conditions. (Data queries 2020) 

 

 

INSERT { 

  name: "John Doe", 
  age: "29" 
 

 } IN users 
 
 

 

 

 

Figure 5 Example of an INSERT query, where a document is added to a collection 

 

2.4.4 Indexing 

Indexes are used to gain access to documents faster. ArangoDB provides some indexes 

automatically, but database users are also allowed to create their own indexes. All in-

dexes are created on a collection level. Document attributes _id, _key, _to and _from 

have an index automatically. The _id attribute is not usable in indexes that are defined 

by database users, but all the previous mentioned attributes can be used. (Index basics 

2020) 

 

Primary index is the persistent index for the _key attribute. This primary index allows 

quick selection of documents when using either _key or _id. The primary index cannot 

be modified by a user. The edge index is automatically created in every edge collection. 

This edge index provides fast access to documents stored in an edge collection by using 

either the _from or the _to attribute. Database users do not have the possibility to create 

their own edge indexes. (Index basics 2020) 

 

When it comes to queries and indexes, ArangoDB usually uses only one index per col-

lection when a query is executed. Although, several indexes can be used if there are 

multiple FILTER conditions combined with an OR condition in an AQL query. If a 

FILTER condition is combined with and AND condition, only one index will be used. 



22 

 

The query optimizer has more options to use when picking an index if there are in a col-

lection multiple indexes on different attributes. (Index utilization 2020) 

 

It is often useful to have an index added to several attributes, because the index has now 

more choices and might become more selective when a query is executed. Every index 

has a selectivity estimate. Depending on how selectivity an index is, it will filter more 

documents. The query optimizer usually chooses an index based on its selectivity esti-

mate when the query execution plan is created. Usually are the indexes with the highest 

estimated selectivity chosen. (Index utilization 2020) 

 

As mentioned earlier, users are able to create their own indexes if needed. ArangoDB 

provides users with some index types and they differ from each other and are supposed 

to be used in different scenarios. (Which index to use 2020). 

 

1. Persistent index – this index does not affect the loading time of collections 

since it is persisted on disk and is not needed to be built again in memory if there 

is a restart of the server or a reload of the index collection. 

2. TTL index – this index automatically removes expired documents from a col-

lection. The TTL index consists of an expireAfter value and documents expire 

seconds after their expireAfter value is met. This value can be a numeric 

timestamp or in date string format. 

3. Fulltext index – if what is needed is to index all words in a specific attribute of 

all documents in a collection, fulltext index can be used. The words need a min-

imum length to be indexed. This index is used with complete match queries and 

prefix queries. Fulltext index will only be called by special functions. 

4. Geo index – this index allows the users to search for a document that are close 

to a specific area or coordinate. Like the fulltext index this index will be called 

with the help of special functions or AQL optimization. 

 

 

 



23 

 

3 DATA MODELING  

Today, gathering data from different sources and storing it securely is a major challenge 

for organizations. With today’s technology, data can be gathered from almost anywhere 

and the challenge is to know what data to get. (Kuldeep & Singh 2018) 

 

When designing and developing a database, one of the most important steps is data 

modeling. It is especially important in the logical design process. Data modeling also 

offers support when it comes to requirement analysis, because it is a helpful tool in cre-

ating a structure to the process. In terms of coding and maintenance, data modeling 

gives documentation. (Atzeni et at. 2020) 

 

A data model is built up of entities. These entities are the objects that are interesting to 

track data of. Every entity has attributes. For example, in a relational database these en-

tities are the tables, and the attributes are the columns and rows inside a table. These 

attributes describe details vital to track within every entity. As an example, a person can 

be described as an entity, and the person’s name is an attribute. Entities are connected to 

each other and these connections are described as relationships. (Franklin 2018) 

 

Conceptual and logical data modeling were developed with interest in the relational sys-

tems. After a while, the demand to develop other modeling features begun to increase. 

The result was more complex and flexible models. In this chapter, I will only focus on 

how data modeling is used in a NoSQL database model and in a graph database. (Atzeni 

et at. 2020) 

3.1 NoSQL data model 

Representing a dataset in a NoSQL database often means organizing the data as aggre-

gates. An aggregate is considered a collection of similar objects, for example users or 

players in a game. These collections or groups represent a unit of data access. Aggre-

gates can be seen as complex value objects. NoSQL data models can be different de-

pending on the database system. Because of the wide variations of NoSQL database sys-



24 

 

tems and data models, the data is usually organized differently in every database sys-

tem. (Atzeni et at. 2020) 

3.2 Modeling a graph database 

To be able to do graph visualizations, the first step to take is to do the data modeling. In 

a graph data modelling process, one has to go through all entities of a dataset and then 

decide which entities should become nodes. What you will get from this is a map that 

will help you visualize a model for the charts. (Disney 2020) 

 

In a graph database you have nodes, labels, relationships, and properties, and these are 

used when modeling a property graph. A node is a representation of an entity, for ex-

ample a person or a location. A label represents the role of the node. There can be many 

labels for each node. Relationships are the connections between two nodes. Finally, 

properties are key-value pairs with information of either the node or the relationship be-

tween two nodes.  (Lal 2015) 

 

In a relational database, the data is stored in tables containing columns and rows. When 

changing this kind of relational data to fit graph data format can be a time-consuming 

task. An important thing to consider when deciding what data should be nodes or edges 

is what questions they should answer. Which questions are important enough to become 

nodes, or should they just be a property of a node? (Disney 2020) 

 

The relationship between nodes can be described as edges, and these links can be single, 

directed, multiple or self-linking. A single link represents a flexible relationship, and 

the most important thing is that the link exists. When there is a direct flow of infor-

mation between two nodes, we are talking about a Direct link. If a node has one or sev-

eral links from and back to itself, it is called a Self-Link. When there are several rela-

tionships between nodes and are visualized separately, it is called Multiple. Finally, 

when talking about properties, they represent characteristics of nodes and edges, but are 

not nodes themselves because they lack importance. (Disney 2020) 

 



25 

 

The columns that exist in a relational database table can be represented in a graph data-

base as a property in a node. It is important to include properties that give your graph 

value and try to avoid unimportant data. Understanding what your users wants to 

achieve is a very important step when designing a model for a graph database. Without 

this, the visualization is useless. (Disney 2020) 

3.2.1 Creating relationships  

One way to visualize a relationship between nodes is to transform the possible relation-

ship to a sentence. In this sentence one can see the nouns/objects as nodes and the verbs 

as relationships/edges. So, for example, let us use the sentence “Person clicks on but-

ton”. In this example, person and button are nouns and click is the verb, so in a graph 

database, person and button would be nodes, and clicks would be an edge. (Allen 2019) 

 

There can be several different kinds of relationships. What is interesting is knowing 

which types should be used, i.e., which are the most preferable relationships. Every rela-

tionship has a starting point (where it is coming from), and a range, which represents 

where the relationship is going. A relationship can be seen as a function. (Allen 2019) 

3.2.2 Relationship types 

When deciding which relationship type to use, visualizing of what type of relationship 

this would be in the real world can be very helpful for both oneself and the model users 

since they have a better understanding on what they are allowed do with the data. The 

following relation types are presented in Allen (2019) 

1. “Has a” – relationship, which represents a whole relationship or a part of it. A 

“Has a”-relationship can be, for example, in social media an interest in some-

thing, or in other words a person has an interest in something, and it is typical 

that one person can have many interests.  

2. “Is a” -relationship, which is an inherited relationship existing between a child 

and parent. These kinds of relationships are not that common in property graph 

modeling, because they can be replaced with labels inside a node.  



26 

 

3. “Functional” -relationships are more similar to true functions, which means 

that one node can only have one range node, for example a relationship that co-

vers a home address to a person is a functional relationship, because one usually 

has only one home address.  

4.  “Transitive” -relationships cover related relationships, for example if there is 

a relationship between Node A and B, and there is also a relationship between 

node B and C, then the relationship between A and C is probably also true. This 

can be used when figuring out who is related to each other.  

5. “Reflexive” -relationships are more unusual in property graph modeling. What 

a “Reflexive” relationship means is that a node has a reflexive relationship to it-

self. For example, A person always knows a person, because everyone knows 

themselves. The target label is the same as the source label.  

6.  “Symmetric” -relationship means that if the relationship exists one way, it ex-

ists automatically the other way too. For example, if a node represents Person A, 

and Person A knows person X, one can assume that Person X knows person A 

as well.  



27 

 

4 WEB METRICS 

Web metrics are a subset of broader software metrics with a special importance in mar-

keting development in most organizations. Website activities are usually tracked to bet-

ter understand and to improve their business. For many organizations, identifying and 

observing usability problems are included in the web metrics goals. Usually, these met-

rics are quite basic such as page views and bounce rate. By having the right metrics, you 

are one step further on the right way, but you then need to know how to use this data to 

effectively get insights and do important changes. Web metrics can be divided into two 

groups, actionable- and vanity metrics. In this chapter, I will go through two different 

kind of metrics, actionable- and vanity metrics. (Denley 2013) 

4.1 Actionable metrics 

“An actionable metric is one that ties specific and repeatable actions to observe results” 

(Maurya 2010) 

 

An actionable metric might be seen as less interesting than a vanity metric, which will 

be described in the next subchapter. With an actionable metric, one is able to tie a cer-

tain activity to a transformation which would be hard to do without digging deeper into 

the data. (Reid 2019) 

 

For example, you have a X number of visitors on your website, but the time spent on 

that site is only a few seconds. The number of visitors and the time spent on a site are 

examples of vanity metrics, but what is considered interesting is knowing why the visi-

tors only spent a few seconds on your site and what is needed to resolve this issue. This 

is how vanity metrics and actionable metrics separates from each other. The factors that 

are provided from an actionable metric assists how goals and objectives can be settled. 

(Stains 2019) 

 

With actionable metrics one can more easily discover changes that should be made to 

make significant impacts. Actionable metrics can be found inside vanity metrics, and by 



28 

 

discovering these actionable metrics you have the possibility to get more insights in 

what is currently working and what might need some modifications. (Austin 2018) 

4.2 Vanity metrics 

When considering useful metrics for marketing, vanity metrics are a good way to go. 

These metrics do not usually show real growth or movement in an organization and 

making decisions based only on vanity metrics might not be the best decision, because 

vanity metrics usually measure the marketing activity, but shows seldom what kind of 

result the activity had on the organization. (Reid 2019) 

 

Examples of vanity metrics are page views, email subscribers, trial users and likes on 

social media.  If these kinds of vanity metrics are left without a secondary metric, they 

will remain quite useless if you want some more deeper insights.  For example, without 

knowing for how long a person have actively been using a downloaded app, the number 

of downloads does not give enough information. (Reid 2019) 

 

Page views, traffic and time on a site do show how well a website or an app is doing and 

there is no harm in tracking vanity metrics, but it is important to remember that these 

kinds of metrics do not tell us everything. They mostly control your overall performance 

and describe users’ routines on your webpage or app.  (Stains 2019) 

 

By going deeper into a vanity metric, there is much actionable data to be found. This 

kind of information is, for example, from where the webpage traffic is coming and what 

is driving this traffic. It is relevant to know which vanity metrics that should be un-

locked and dug deeper into (Stains 2019) 

4.3 Transform vanity metrics into actionable metrics 

Examples of vanity metrics and their comparable actionable metrics and why you 

should turn them into actionable metrics and what insights they might give are dis-

cussed in Austin (2018). In this subchapter, these examples are revisited. 

 



29 

 

The number of pageviews is, as mentioned earlier a vanity metric. This metric’s parallel 

actionable metric is the source of the site’s visitors or bounce rate (how many visitors 

enter a website and then leave the site without exploring other pages on the site). By 

finding out the source of site visitors you get insights in what channels get more visitors 

to a website. If a website has a high bounce rate and a high number of pageviews, this 

might tell you that there are issues with the layout or the content.  

 

The time spent on a website is another example of a vanity metric, and its comparable 

actionable metric is time spent on the page and scroll depth. By just looking at the time 

on a site might give some misleading information but looking at the time on a page 

gives more information if a visitor is engaging with the content presented.  When look-

ing at the information that is given by a scroll depth, it shows if a user really reads and 

scrolls through the entire page, instead of just opening the page and leaving it open 

without browsing and scrolling through it, if the time on the page is long.  

 

Finally, another vanity metric turned into an actionable metric is opening of emails and 

email clicks. An email can be opened just to mark it as read, but behind every click is 

usually an intention. If a link has many clicks, this might tell you that the content is in-

teresting and appealing. Some typical vanity metrics and their corresponding actionable 

metrics are shown in table 1 below. 

 

 

Vanity metric Actionable metric 

Pageviews Source of visitors, bounce rate 
 

Time spent on site 
Time spent on a page, how long is the scroll 

depth  

 

 

Number of followers on social media Engagement rate 
 

 

Opening emails How many clicks on link in email 
 

 

Table 1 Examples of vanity metrics vs. actionable metrics



30 

 

5 PLANNING THE DATABASE 

When planning and creating a new database, it is important to make sure that each step 

on the way has been carefully executed. In this case, it was important to figure out what 

kind of data should be gathered and based on this data figure out how it should be stored 

in the database. In this chapter there will be a walkthrough on how the data modeling 

and planning of the graph database was done. 

 

Because this thesis works as a cornerstone for a larger project that will be developed in 

the future, it was relevant to design a working prototype that will work as a base. With 

the help of this prototype, one is able to see how a graph database could look like and 

perform when the purpose is to store user behavior data. The goal was to create a cor-

nerstone and start point for future development in user pattern recognition and product 

development. 

5.1 Data modeling 

One of the first steps of planning a database, especially a graph database, is data model-

ing. In this subchapter a description is provided of the kind of data that should be stored 

and how it should be stored. The aim was to plan a graph database model where one can 

store data that in future would help Limber find relevant insights on how users behave 

in the Limber Projects web application. Limber was interested in figuring out how a 

standard user moves around in the application and whether or not a user moves in a reg-

ular way or if there is any confusion or irregular patterns.  

 

Designing the model for the graph database started with figuring out what data should 

be nodes (vertices) and what data should be edges (see chapters 2.3 and 5 for more in-

formation about nodes and edges). According to Allen (2019) in chapter 3.2.1, during 

the modeling process it is possible to use sentences for choosing what data should be 

nodes and what data should be edges. During the data modeling process of the practical 

part of this thesis, three different sentences were used. These sentences were chosen be-

cause they represent questions whose answers are relevant. The answers are the type of 

insights that Limber would like to get from storing user data in a graph database.  



31 

 

 

In the sentences used, a session represents a user logging in to Limber Projects. Because 

it was important to keep users’ identities anonymous at this point of the development 

process, the decision was taken to use sessions to represent user behavior. These ses-

sions will not be connected to a user. Below are the sentences/questions used in the data 

modeling process: 

 

1. How many sessions have clicked on the New Profile- button? 

2. How many sessions have moved from the Document list- view to the New 

Profile- button? 

3. From where has a session/user moved to get to the New Profile- button? 

 

These are very specific sentences that describe standard actions that can be performed in 

Limber Projects. They were chosen because they can be applied in many different situa-

tions while a user is using Limber projects. By using these questions as a base, they 

would help the data modeling process by making it easier to visualize what the nodes 

and edges would look like. 

5.1.1 Choosing nodes and edges 

Let us start with the first sentence “How many sessions have clicked the New Profile- 

button.”. As described earlier in chapter 3.2.1, one can use sentences to decide what da-

ta should be nodes and what data should be edges. Nouns or objects should be nodes 

and verbs should be edges. By looking at the sentence, there is one verb: have clicked, 

and two nouns: sessions and button.  This means that session and button could be 

nodes and click could be an edge, as visualized in figure 6 below. 

 
Figure 6 Visualization of sentence "How many sessions have clicked the New Profile- 

button” as nodes and edges 



32 

 

Now, let us look at the second sentence “How many sessions have moved from the Doc-

ument list- view to the New Profile- button.”. By looking at this sentence, there is one 

verb: have moved, and three nouns: sessions, view, and button.  Once again, this could  

mean that session, view, and button should be nodes and moves should be an edge, as 

visualized in figure 7 below.  

 

 

Finally, let us look at the third sentence “From where has a session/user moved to get to 

the New profile- button?”.  Like the previous two sentences, there are two nouns: ses-

sion and button and one verb: has moved to, which means that session and button 

could be nodes and move could be an edge. This is visualized in figure 8 below. 

 

 

Figure 8 Visualization of sentence "From where has a session/user moved to get to the New Profile- button?" as 

nodes and edges 

 

Since it is important to find out what has happened during a session, it might not be ad-

visable to have sessions stored as nodes, as tracking how a user has moved during one 

session would be more confusing this way. What is interesting is knowing where a user 

has moved from to get to its destination. To get this kind of information, the data object 

Figure 7 Visualization of sentence " How many sessions have moved from the Document list- view to the New 

Profile- button " as nodes and edges 



33 

 

needs properties that provide information on how the session (user) has moved: from 

where it started and what the destination was. 

 

So, let us look into the possibility of a session being stored as an edge rather than a 

node. If a session object was stored as an edge, it would contain the important attributes 

_to and _from, which are relevant when it comes to finding relationships. In this case it 

is intriguing to discover the actions taken as the user has moved around in Limber Pro-

jects and clicked on different buttons or areas and moved from one view to another. 

 

This edge could have all the same attributes as it would as a node, but what would keep 

every session in Limber Projects unique is that they would have their own unique ses-

sion ID. The _key attribute that is necessary for every document in ArangoDB is always 

unique and is either autogenerated or manually created in ArangoDB. Even though it is 

unique, it would not be optimal to be used as the Session ID, since there are most likely 

many actions during a session in Limber Projects, and these actions will be stored as a 

separate edge object. This is why a separate session ID attribute is needed to make it 

possible to get all the edges that have been created during the session. See figure 9 be-

low for a visualization of this set up. 

  

Since views and buttons are objects that will have relations between each other, it is 

recommended to store them as nodes, as described earlier in this chapter. Unlike the 

edge objects where the _key attribute is automatically generated, I decided with the node 

objects to create the _key attribute manually in the test environment.  Because the 

nodes’ _key attributes are used as the values in the edge objects’ _to and _from attrib-

Figure 9 Visualization of the same sentence as given in figure 8, but using "session" as an edge 



34 

 

utes, they are more readable when running queries if the _key attribute is manually in-

serted. 

5.1.2 Setup for nodes and edges 

In the previous subchapter 5.1.1 a decision was taken to store sessions as edges and 

views and buttons as nodes. To better understand these values, it is important to specify 

how these values are defined in Limber Projects:  

 

- Session: A session represents in this case when a user logs in to the system 

and moves around by clicking on different areas in the web application.  

- Button: A button in Limber Projects is a typical clickable button that either 

opens a small popup view or a completely new view. 

- View: A view represents in Limber Projects the viewing area that a user 

looks at and is working in. It can also be a smaller pop-up view that is 

shown when a particular button is pressed 

 

Because privacy online is important, it is not in this case relevant to track data from a 

user. Instead, every session will have a unique session ID attribute. This attribute will 

not be connected to the user itself and it will not be possible to track a session back to a 

user. In this way it is possible to keep the users’ identities anonymous and the sessions 

will not be used to track users.  

 

An edge object is described in chapter 5.1.2 as holding at least these four meta-

attributes: _id, _key, _from and _to. The _key attribute is unique and either autogenerat-

ed or manually defined, while the _id attribute is a combination of the _key attribute and 

the name of the collection. The _from variable contains information about the starting 

point, i.e., which node the edge started from. This means that the _to variable provides 

information about the end point. Below in figure 10 is an example of what a simple 

“session” object could look like stored as an edge.  

 



35 

 

     

      

                           { 

                                            "_key": "482412", 

       "_id": "sessions/482412", 

       "_from": "views/projectList", 

       "_to": "button/createProject", 

       "_rev": "_bTOq2QO---" 

    } 

 

 

 

 

Figure 10 An example of a session object with test data saved as an edge  

 

A node object always contains two meta-attributes, _key and _id. As with the edge ob-

ject, the _key object is unique and either autogenerated or manually defined. The _id 

attribute is a combination of the _key value and the name of the collection where the 

node is stored. Additional attributes can be added according to interest and need. See 

figure 11 below for an example of how a “button” object can be stored as a node with 

some additional attributes. 
     

      

                           { 

                                            "_key" :  "createProject", 

       "_id" :  "button/createProject", 

       "_rev" :  "_bTOq2QO---", 

       "name" : "Create Project", 

       "type" : "button" 

    } 

 

 

 

 

Figure 11 Example of how a button object can be stored as a node 



36 

 

6 IMPLEMENTATION 

In the practical part of this thesis, ArangoDB Community Edition was used for the data-

base prototype. At this point, it was unnecessary to use any other versions of ArangoDB 

since all data that was used for the data modeling process was test data. As the test data 

was stored locally, there was no need for a cloud version. All the collections and docu-

ments were created manually on one computer.  

6.1 Installation 

ArangoDB Community Edition was downloaded from ArangoDB’s website (Download 

Community Edition 2020) and installed locally on a computer using Microsoft Win-

dows as operating system. The local server run at http://127.0.0.1:8529/. After installing 

ArangoDB Community Edition database working with the database becomes possible 

either through the WebUI or ArangoDB Shell, which is a synchronous shell designed to 

interact with the server. The WebUI, or the graphical web interface (GUI) launches in 

your browser.  

6.2 Add collections 

As mentioned in chapter 5.1.1, there are two possible types of collections in Aran-

goDB’s graph databse. The first one is a document collection, which contains nodes and 

the second one is an edge collection containing edges. In the previous subchapter, it was 

stated that sessions would be edges, and views and buttons would be nodes. Therefore, 

it was necessary to create three collections: 

1. A document collection where nodes containing information about buttons will 

be stored 

2. A document collection where nodes containing information about views will be 

stored¨ 

3. An edge collection where edges with information about sessions will be stored. 

 

Creating a collection in ArangoDB can be done in two ways. A collection can be creat-

ed by using Arango Shell, which is a command-line client tool. After selecting the cor-

http://127.0.0.1:8529/


37 

 

rect database in the Arango Shell a new collection can be created using the command 

shown in figure 12. This command can be used to create both edge and document col-

lections. 

 

  

db_create(name_of_your_collection) 

 
 

Figure 12 Command to create a new collection with ArangoDB Shell 

 

It is also possible to create new collections in the WebUI. You have to log in to the da-

tabase where the collection should be stored by launching the GUI in a browser. Once 

logged in clicking the “Add collection”- button will open the window shown in figure 

13 below. The information needed when creating a collection is a name and type of col-

lection.  

 

Figure 13 A screenshot taken from ArangoDB Community Edition showing how a collection can be created inside the 

webUI 

6.3 Creating nodes and edges 

As mentioned earlier, test data was used to design and test this prototype for a working 

graph database. This test data was created by the author and was manually inserted in 

the database for modeling purposes. One of the main purposes of inserting test data in 

the collections mentioned in the previous subchapter was to have the ability to run AQL 

queries to check whether or not the data was stored in the right way and that the queries 

return desired results. 



38 

 

 

To insert data manually in ArangoDB one can once again use either Arango Shell or the 

WebUI. To insert data with Arango Shell, the first step is to choose which collection the 

data object should be inserted to. As mentioned earlier, depending on whether one’s in-

tention is to create an edge or a node, there are some meta-attributes that must be in-

cluded when creating a new data document. In a node, these are _id and _key,  and in an 

edge there are the additional start and end attributes: _to and _from.  Shown in figures 

14 and 15 are the commands to be used in Arango Shell when creating new data docu-

ments. 

 

 

db.node_collection_name.save( 

    { 

      _key : ”createProfile”,  

      name : ”New Profile” 

      type : “button” 

    }) 

 

 

 

Figure 14 Example of command in Arango Shell when creating a new node object 

 

 

db.edge_collection_name.save( 

    { 

      _key : “5673735”, 

      _to : ”buttons/createProfile”, 

      _from: “views/documentList” 

    }) 

 
 

Figure 15 Example of command in Arango Shell to create a new edge object 

 



39 

 

6.4 Running AQL queries to get results 

In the previous chapter it was concluded that the database would be built using sessions 

as edges while using buttons and views as nodes. Without running any queries in the 

database, the sufficiency of this setup cannot be verified. After all, the data is stored be-

cause we want interesting findings, and to get these results we will have to run queries.   

 

One part of the data modeling process was to store some test data in document- and 

edge collections, then try different queries that will retrieve answers to the three sen-

tences/questions used in the modeling process where nodes and edges were chosen (see 

chapter 5.1 for more information about the data modeling process). 

 

As described earlier, the database consists of three collections of data documents: one 

edge collection containing information about sessions and two document collections 

where one contains information about buttons and the other containing information 

about views. It is necessary to be familiar with the setup of these collections and the da-

ta they contain to be able to run queries that will return valid results. 

 

When running a query to retrieve an answer to the question “How many sessions have 

clicked on the New Profile- button”, the query should loop through the edge collection 

that contains session objects. Since it is interesting to find out how many have clicked 

on the New Profile- button, the query should filter all session objects by their end point, 

the _to attribute. A screenshot of the query is shown in figure 16. The return values are 

always shown in an array. The return values in the query displayed in figure 16 are only 

the session ID of the session object. If one wants to get the entire object, the return at-

tribute should be just “session” in this example.  The same goes for the two other que-

ries that are shown in figure 17 and 18. 

 



40 

 

 

Figure 16 Screenshot of a query that will return all the session IDs that have at some point clicked on the button New 

Profile. The screenshot is taken from ArangoDB Community Edition 

  

The second sentence/question that was used in the data modeling process was “How 

many sessions have moved from the Document list- view to the New Profile- button?”.  

The query was used to retrieve data that would give an answer to the question is shown 

in figure 17 below. Once again, the query loops through all data objects that are stored 

in the Session collection, and filters theses session objects by their _to and _from attrib-

utes. The query in this case only returns the session id attribute of the session object. 

 

 

Figure 17 Screenshot of a query that will return all the session IDs that have at some point moved from the Document 

list- view to the New Profile- button 

 

Finally, the third sentence used in the data modeling process was “From where has a 

session/user moved to get to the New Profile- button?”. Like in the two previous que-

ries, we once again loop through all objects in the Session collection and filter the ses-

sion objects by their _to attribute. Since we are interested in knowing from where this 

session has started to get to the New Profile- button, the query returns the _from attrib-

ute of the session object. In figure 18 below there is a screenshot of the query. 

 



41 

 

 

Figure 18 Screenshot of a query that returns all the edges that have the New Profile- button as end point. The return 

value in this query is the session object's _from attribute. Screenshot taken from ArangoDB Community edition 

6.5 Performance 

To test the performance of the graph database, it was relevant to run queries with a large 

amount of data. The test data was a large JSON dataset (list) with session objects. This 

test data was created with Python, where every session object was generated with ran-

dom button- or view objects as the _to and _from attributes. The session_id was also 

randomly generated by choosing a number between 1-200 (see the example of data ob-

jects that were imported in a JSON list in figure 19 below). Finally, the test data was 

imported to the database by using the Import JSON option in the WebUI in ArangoDB. 

All objects in the button- and view collections were added manually to the database 

since they are specific and limited in amount. Once the test data was imported to the 

database, it was time to test the database’s performance by first running four similar 

queries as in the previous chapter. 

 
     

     [ 

         { 

             "_from": "buttons/projectName", 

             "_to": "views/documentList", 

             "session_id": "100" 

         }, 

         { 

             "_from": "views/profile", 

             "_to": "button/createProfile", 

             "session_id": "110" 

         } 

     ] 

 

 

 

Figure 19 Example of a JSON list that was imported to the session collection 



42 

 

When testing the performance of the graph database, it is important to keep indexes in 

mind. ArangoDB automatically generates two indexes in every edge collection: 

1. Primary index - is added to the _key attribute 

2. Edge index - is added to the _to and _from attributes 

 

The first performance tests were done by using only the primary index and edge index 

i.e., no user-defined indexes were considered. All four queries shown below were exe-

cuted with a different amount of session objects in the session edge collection. The 

amount started with 5000 session objects and ended with 50 000 session objects. The 

queries that were used to test the execution time are shown below in figures 20, 21, 22 

and 23. These queries are later represented as Query 1, 2, 3 and 4. 

 

Query 1 
 
FOR session IN sessions 

    FILTER session._to == "buttons/createProfile" 
    RETURN session 
 

  

Figure 20 Query 1 - Similar query as shown in figure 16, except this query returns the entire session object 

Query 2 
 
FOR session IN sessions 

    FILTER session._to == "buttons/createProfile" 
    RETURN session._from 
 
 

 
 

Figure 21 Query 2 - Similar query as shown in figure 17 

Query 3 
 
FOR session IN sessions 

    FILTER session._to == "buttons/createProfile" 

    FILTER session._from =="views/documentList" 
    RETURN session 
 

 
 

Figure 22 Query 3 - Similar query as shown in query 18, except this query returns the entire session object 

  

 



43 

 

Query 4  
 
FOR session IN sessions 

    FILTER session.session_id == '100' 

    RETURN session 

  

 
 

Figure 23 Query 4 – This is a query that looks for session objects with a specific session ID and returns the entire 

session object 

In figure 24 below there is a visualization of example execution times (in milliseconds) 

for the four queries described in figures 20-23. These queries were executed without any 

additional user-defined indexes, which means that the edge index and primary index 

were active because they are automatically created by ArangoDB. 

 

Figure 24 Example of execution times in milliseconds for four different queries without any user-defined indexes 

added 

 

Queries 1-3 have quite similar execution times, and they increase continuously as the 

number of sessions objects increase. Query 4 differs a lot form the rest of the queries 

when it comes to the execution times. All queries execution times increases as the 

amount of session objects increase, but with query 4 the execution times are significant-

ly higher compared to the other queries. 

 

0

5

10

15

20

25

30

35

40

45

5000 10000 20000 30000 50000

M
ill

is
ec

o
n

d
s

Amount of session objects

Example execution times of queries without any user-
defined indexed

Query 1

Query 2

Query 3

Query 4



44 

 

What is important to keep in mind is that when queries 1, 2 and 3 were executed, the 

edge index was used to decrease the execution time, since it is automatically applied to 

the _to and _from attributes in edge objects by ArangoDB, and in these queries they per-

form a filtering based on the _to or _from attributes. Query 4 uses no index when exe-

cuted, which could explain the much larger execution time. 

 

To speed up the execution time for query 4, a user defined index was added. To the ses-

sion_id attribute in the session objects, a persistent index was added (see chapter 2.4.4 

for more details about index types in ArangoDB). Once this index was added, the query 

was executed again. In figure 25 below the different execution times for query 4 is 

shown. 

 

 

Figure 25 Example execution times in milliseconds for query 4, when the query is executed with or without an addi-

tional user defined index 

 

The difference between the execution times is big. When the persistent index was added 

to the session_id, the execution time decreased significantly. With the index, the execu-

tion time does not increase much as the amount of session objects increase, as in this 

case to the maximum amount of 50 000 session objects. Because this index was tested 

on only 50 000 data objects, it is not possible to conclude that this query (with the in-

dex) would perform in the same way with a much larger data amount. 

0

5

10

15

20

25

30

35

40

5000 10000 20000 30000 50000

M
ill

is
ec

o
n

d
s

Amount of session objects

Example of execution times for query 4 

Query 4 (with index)

Query 4



45 

 

 

Figure 26  Example execution times for the queries, when query 4 has an additional user-defined index applied 

 

In figure 26 above is an updated version of figure 24. This figure shows examples of 

what the queries’ execution times look like with ArangoDB’s automatically generated 

indexes and the user-defined index applied. As mentioned in chapter 2.4.4, several in-

dexes can be used when a query contains multiple FILTER conditions combined with 

an OR condition, but in queries 1-4 there is only on FILTER condition used, which 

means that only one index will be used.  

 

In general, these are good execution times and there is no irregular behavior when the 

amount of session objects increases, instead the execution time increases constantly as 

the data amount increases. It is not a straight line since the time does not increase pro-

portionally. 

 

 

 

 

0

2

4

6

8

10

12

14

5000 10000 20000 30000 50000

M
ill

is
ec

o
n

d
s

Amount of sessions

Example of execution times with additional user-defined 
index

Query 1

Query 2

Query 3

Query 4 (with index)



46 

 

7 CONCLUSION 

This thesis was done in collaboration with the Norwegian company Limber AS, who 

was interested in improving its understanding of how their cloud-based web application 

Limber Projects is used by their users by collecting user behavior data to improve fur-

ther development of the web application. Limber was also interested in discovering 

whether or not Limber Projects is used as designed. This could be done by gathering 

and storing user behavior data in a graph database and compare it to pre-defined user 

behavior patterns. This thesis worked as a foundation for a future system.  

 

The purpose of this thesis was to provide an overview of how data can be stored in a 

graph database and describe how a data modeling process can be done when the aim is 

to store specific user behavior data in a graph database. The goal for the practical part of 

this thesis was to design and create a prototype of a working graph database where user 

behavior data could be stored.  

 

According to Atzeni et al. (2020), the data modeling process works as a helpful tool for 

creating a structure and provides documentation. This thesis can be seen as a documen-

tation for a data model since the goal for the practical part of this thesis was to create a 

prototype of a graph database. A data modeling process can be time consuming and re-

quires a clear picture of what the goal is. In this case, the prototype was supposed to 

represent a graph database model where user data can be stored, which means that this 

prototype is not based on any existing database and therefore this data modeling process 

started from scratch.  

 

Without having any existing data model of how user data could be stored in a graph da-

tabase, the first step was to gather as much information as possible about data modeling 

before starting the process. According to Disney (2020) one way to visualize a graph 

database model is to figure out what questions the relationships should answer and also 

figure out what data is important enough to become their own node and edge objects. In 

this data model process, it was useful to use this set up, i.e., using questions when decid-

ing what data should be nodes and what data should be edges.  



47 

 

Another important part of the data modeling process in this case was testing the data 

model by importing test data to ArangoDB and run AQL queries designed to provide 

answers to the questions used in the data modeling process. Without testing the data 

model in this prototype with queries, it would have been more challenging knowing if 

the setup was right.  

 

During the data modeling process, the modeling idea presented by Allen (2019) where 

one should use sentences for choosing what data should be nodes and what should be 

edges worked as a base. Allen explains that nouns and objects in the sentences chosen 

can be seen as nodes and the verbs are the relationships (edges). In this thesis the same 

principal was used, i.e., the sentences/questions found in chapter 5 were first used with 

the same goal as Allen presents, nouns are nodes and verbs are edges. By having a clos-

er look at this setup, it became clearer that this setup might not give the desired results. 

How a user has moved during a session was the main interest in this data modeling pro-

cess, which ended in the solution that all sessions would be stored as edges, even though 

they are nouns in the sentences used in the data modeling process. If sessions are stored 

as edges, they will contain the important attributes that provides information of start and 

end points, for example from where has a user moved to get to button X. Below in fig-

ure 27 is an example of how movements during a session could look like as a grap when 

sessions are stored as edges and buttons and views are stored as nodes. 

 



48 

 

 

Figure 27 Example of movements during a session visualized as a graph, Graph created in ArangoDB when execut-

ing query 4 from chapter 6.5 

 

With the help of the test data that was created for this prototype, it was possible to both 

evaluate the setup of the node- and edge objects and at the same time evaluate the per-

formance of the database. By running carefully designed queries, it was possible to 

check if the attributes in the nodes and edges were correct and if the outcome provided 

the desired information. By running the queries shown in figures 16, 17 and 18 in chap-

ter 6.4, it was possible to establish that the data model was designed correctly with a 

desired outcome.  

 

The goal with this thesis was to create a prototype for a working graph database model 

where user behavior data can be stored, and after completing the practical part of this 

thesis this task has been completed. By doing this thesis Limber AS has now a data 

model of how user data can be stored and what data should be nodes or edges. The pro-

totype’s performance was also tested by running four different kinds of queries (see fig-

ures 20-23 in the previous chapter 6.5). The execution time (in milliseconds) for the 

queries increased constantly as the amount of data increased in the database. The execu-

tion time was tested with data amount starting from 5000 objects and ending in 50 000 

objects. Once indexes were applied to edge attributes, the execution time was speeded 

up significantly.  

 



49 

 

A shortage in this study is that this is only a prototype and it has not been tested live in a 

real situation with real data, which means there might occur some unforeseen shortcom-

ings in the setup and later need modifications. The performance of the database was 

good when tested with the test data, but it has only been tested on one computer, which 

means that the execution times cannot be seen as final. Also, the amount of test data in 

this thesis was only 50 000 data objects, which means that it is not possible in this case 

to conclude that the database would perform in the same way if the data amount, for ex-

ample, would be several hundreds of thousands or millions. 

7.1 Future studies 

Since the practical part of this thesis was to create a prototype of a working graph data-

base, an interesting future study would be to test this prototype in a real-life production 

environment. Another possible future study would be to use this graph database model 

to study user behaviour and develop a system for user pattern recognition.  

 



50 

 

REFERENCES 

Abdullahi, A.I., Basri, S., Ahmad, R., Watada, J. & González-Aparicio, M.T., 2018, 

Automatic schema suggestion model for NoSQL document-stores databases. 

Journal of Big Data, 5(1), p. 1-17. Available from: ABI/INFORM Global. Ac-

cessed: 28.8.2020 

 

Advantages of the native multi-model database – ArangoDB, 2020, ArangoDB. 

Available from: https://www.arangodb.com/why-arangodb/native-multi-model-

database-advantages/ Accessed: 25.8.2020 

 

AQL Introduction, 2020, ArangoDB. Available from: 

https://www.arangodb.com/docs/stable/aql/ . Accessed: 02.11.2020 

 

Allen, David, 2019, Graph data modeling: All about relationships.  

Available from: https://medium.com/neo4j/graph-data-modeling-all-about-

relationships-5060e46820ce Accessed: 26.7.2020 

 

Atzeni, Paolo. Bugiotti, Francesca. Cabibbo, Luca. & Torlone, Riccardo, 2020,  

Data modeling in the NoSQL world. Computer Standards & Interfaces, 67. 

Available from: ScienceDirect. Accessed: 30.8.2020 

 

Austin, Karissa, 2018, How to turn vanity metrics into actionable metrics.  

Available from: https://www.callrail.com/blog/vanity-metrics-vs-actionable-

metrics/ Accessed: 19.8.2020 

 

Basics and terminology, 2020, ArangoDB, Available from: 

https://www.arangodb.com/docs/stable/data-modeling-documents-document-

address.html Accessed: 8.12.2020 

 

Benymol, Jose & Sajimon, Abraham,  2020,  Performance analysys of NoSQL and  

relational databases with MongoDB and MySQL. Materials today: PROCEED-

INGS, 24(3), p. 2036-2043. Available from: ScienceDirect. Accessed: 30.8.2020 

https://www.arangodb.com/why-arangodb/native-multi-model-database-advantages/
https://www.arangodb.com/why-arangodb/native-multi-model-database-advantages/
https://medium.com/neo4j/graph-data-modeling-all-about-relationships-5060e46820ce
https://medium.com/neo4j/graph-data-modeling-all-about-relationships-5060e46820ce
https://www.callrail.com/blog/vanity-metrics-vs-actionable-metrics/
https://www.callrail.com/blog/vanity-metrics-vs-actionable-metrics/
https://www.arangodb.com/docs/stable/data-modeling-documents-document-address.html
https://www.arangodb.com/docs/stable/data-modeling-documents-document-address.html


51 

 

 

Best Practices for AQL Graph Queries, 2020, ArangoDB. 

Available from: https://www.arangodb.com/2020/05/best-practices-for-aql-

graph-queries/ Accessed: 25.8.2020 

 

Bush, J., 2020, Learn SQL Database Programming: Query and manipulate databases 

from popular relational database servers using SQL. [ebook], Packt Publishing.  

Available at: https://www.perlego.com/book/1484874/learn-sql-database-

programming-query-and-manipulate-databases-from-popular-relational-

database-servers-using-sql-pdf Accessed: 06.12.2020 

 

Concepts, 2020, ArangoDB. Available from: 

https://www.arangodb.com/docs/stable/data-modeling-concepts.html. Accessed: 

5.8.2020 

 

Data queries, 2020, ArangoDB. Available from: 

https://www.arangodb.com/docs/stable/aql/data-queries.html.  Accessed: 

02.11.2020 

 

Denley, Norah, 2013, MISSING the MESSAGE in the METRICS., LIMRA’s  

MarketFacts Quarterly, (2), p. 42-45. Available from ABI/INFORM Global. 

Accessed: 28.8.2020 

 

Disney, Andrew, 2020, The ultimate guide to creating graph data models.  

Available at: https://cambridge-intelligence.com/graph-data-modeling-101/ Ac-

cessed: 24.7.2020 

 

Document Revision, 2020, ArangoDB. Available from:  

https://www.arangodb.com/docs/stable/appendix-glossary.html#document-

revision. Accessed 19.11.2020 

 

Download Community Edition, 2020, ArangoDB, 

https://www.arangodb.com/2020/05/best-practices-for-aql-graph-queries/
https://www.arangodb.com/2020/05/best-practices-for-aql-graph-queries/
https://www.perlego.com/book/1484874/learn-sql-database-programming-query-and-manipulate-databases-from-popular-relational-database-servers-using-sql-pdf
https://www.perlego.com/book/1484874/learn-sql-database-programming-query-and-manipulate-databases-from-popular-relational-database-servers-using-sql-pdf
https://www.perlego.com/book/1484874/learn-sql-database-programming-query-and-manipulate-databases-from-popular-relational-database-servers-using-sql-pdf
https://www.arangodb.com/docs/stable/data-modeling-concepts.html
https://cambridge-intelligence.com/graph-data-modeling-101/
https://www.arangodb.com/docs/stable/appendix-glossary.html#document-revision
https://www.arangodb.com/docs/stable/appendix-glossary.html#document-revision


52 

 

Available from: https://www.arangodb.com/download-major/ Accessed 

20.10.2020 

 

Elmasri, R. & Navathe, S.B., 2016, Fundamentals of Database Systems, Global Edition.  

7th edition, Pearson. Available from: 

https://www.perlego.com/book/812305/fundamentals-of-database-systems-

global-edition-pdf Accessed: 26.10.2020  

 

Franklin, Anna Grace, 2018. Data modeling explained in 10 minutes or less.  

Credera. Available from: https://www.credera.com/insights/data-modeling-

explained-in-10-minutes-or-less/ Accessed: 27.8.2020 

 

Fowler, A., 2015, NoSQL For Dummies. Wiley. Available from: 

https://www.perlego.com/book/1003103/nosql-for-dummies Accessed: 

12.7.2020 

 

Graphs in AQL, 2020, ArangoDB. Available from: 

https://www.arangodb.com/docs/3.7/aql/graphs.html. Accessed: 8.12.2020 

 

Hurlburt, G.F., Thiruvathukal, G.K., & Lee, M.R., 2017, The graph database:  

Jack of all trades or just not SQL?, IT Professional Magazine, 19(6), p. 21-25. 

Available from: ABI/INFORM Global. Accessed: 27.8.2020 

 

Index basics, 2020. ArangoDB. Available from: 

https://www.arangodb.com/docs/stable/indexing-index-basics.html Accessed: 

30.11.2020 

 

Index utilization, 2020, ArangoDB. Available from: 

https://www.arangodb.com/docs/stable/indexing-index-utilization.html Ac-

cessed: 7.12.2020 

 

Kelly, A. & McCreary, D., 2013, Making Sense of NoSQL. [ebook]   

https://www.arangodb.com/download-major/
https://www.perlego.com/book/812305/fundamentals-of-database-systems-global-edition-pdf
https://www.perlego.com/book/812305/fundamentals-of-database-systems-global-edition-pdf
https://www.credera.com/insights/data-modeling-explained-in-10-minutes-or-less/
https://www.credera.com/insights/data-modeling-explained-in-10-minutes-or-less/
https://www.perlego.com/book/1003103/nosql-for-dummies
https://www.arangodb.com/docs/3.7/aql/graphs.html
https://www.arangodb.com/docs/stable/indexing-index-basics.html
https://www.arangodb.com/docs/stable/indexing-index-utilization.html


53 

 

Manning Publications. Available at: 

https://www.perlego.com/book/1469465/making-sense-of-nosql-pdf Accessed: 

06.12.2020 

 

Kuldeep, L. & Singh, S. P., 2019, Modeling big data enablers for operations and supply 

chain management., International Journal of Logistics Management, 29(2), p. 

629-658. Available from: ABI/INFORM Global. Accessed: 28.8.2020 

 

Lal, M., 2015. Neo4j Graph Data Modeling. [ebook] Packt Publishing.  

Available at: https://www.perlego.com/book/4005/neo4j-graph-data-modeling 

Accessed: 23.7.2020 

 

Maurya, Ash., 2010. 3 rules to actionable metrics in a lean startup. 

Available at: https://blog.leanstack.com/3-rules-to-actionable-metrics-in-a-lean-

startup-7cf483b0a762 Accessed: 19.8.2020 

 

Melendez, Steven., 2019, What is relational database schema?. Available from:  

https://www.techwalla.com/articles/what-is-relational-database-schema. Ac-

cessed: 6.12.2020 

 

Reid, Kyle, 2019, Vanity metrics and their actionable metric counterparts.   

Available from: https://medium.com/@mobileontap/vanity-metrics-and-their-

actionable-metric-counterparts-4a877a74ddd5 Accessed: 19.8.2020 

 

Stains, Jonathan, 2019, Turning vanity metrics into actionable marketing metrics. 

Available from: https://www.weidert.com/blog/vanity-metrics-vs-useful-

marketing-metrics. Accessed: 19.8.2020 

 

Vázques, Favio., 2019, Graph databases. What’s the big deal?  

Available from: https://towardsdatascience.com/graph-databases-whats-the-big-

deal-ec310b1bc0ed  Accessed: 11.06.2020 

 

What is a database in under 4 minutes, 2019, Linux Academy [YouTube]  

https://www.perlego.com/book/1469465/making-sense-of-nosql-pdf
https://www.perlego.com/book/4005/neo4j-graph-data-modeling
https://blog.leanstack.com/3-rules-to-actionable-metrics-in-a-lean-startup-7cf483b0a762
https://blog.leanstack.com/3-rules-to-actionable-metrics-in-a-lean-startup-7cf483b0a762
https://www.techwalla.com/articles/what-is-relational-database-schema
https://medium.com/@mobileontap/vanity-metrics-and-their-actionable-metric-counterparts-4a877a74ddd5
https://medium.com/@mobileontap/vanity-metrics-and-their-actionable-metric-counterparts-4a877a74ddd5
https://www.weidert.com/blog/vanity-metrics-vs-useful-marketing-metrics
https://www.weidert.com/blog/vanity-metrics-vs-useful-marketing-metrics
https://towardsdatascience.com/graph-databases-whats-the-big-deal-ec310b1bc0ed
https://towardsdatascience.com/graph-databases-whats-the-big-deal-ec310b1bc0ed


54 

 

Available from: https://www.youtube.com/watch?v=Tk1t3WKK-ZY Accessed: 

27.8.2020 

 

What is a graph database?, 2019, Simple [A]. Available from: 

https://simplea.com/Articles/what-is-a-graph-database Accessed: 20.8.2020 

 

What is a Graph database?, 2020, AWS. Available from: 

https://aws.amazon.com/nosql/graph/ Accessed 23.7.2020 

 

Which index to use when, 2020, ArangoDB, Available from:  

https://www.arangodb.com/docs/stable/indexing-which-index.html Accessed: 

30.11.2020 

 

 

 

 

 

https://www.youtube.com/watch?v=Tk1t3WKK-ZY
https://simplea.com/Articles/what-is-a-graph-database
https://aws.amazon.com/nosql/graph/
https://www.arangodb.com/docs/stable/indexing-which-index.html


 

 

APPENDIX 1. SUMMARY IN SWEDISH 

Detta examensarbete har gjorts i samarbete med det norska företaget Limber AS. Lim-

ber har utvecklat sin egen molnbaserade webbapplikation Limber Projects som huvud-

sakligen användas av företag som arbetar med komplexa och leverantörbaserade pro-

jekt. För tillfället ligger fokus på olje- och gasbranschen. Eftersom Limber AS är ett re-

lativt nytt företag finns det ett intresse att undersöka hur företagets kunder använder 

Limber Projects. Används applikationen enligt syfte, eller framkommer udda beteende-

mönster eller andra avvikelser. 

 

För att kunna undersöka detta önskade uppdragsgivaren att en modell och prototyp 

skulle utvecklas som beskriver hur man kan spara användardata i en grafdatabas. Tan-

ken var att man senare skulle kunna använda denna användardata för att undersöka an-

vändarnas beteende i Limber Projects. Limber och författaren beslöt tillsammans att en 

grafdatabas skulle användas för detta ändamål. För att kunna skapa och designa proto-

typen fattades beslut att använda ArangoDB som utvecklingsmiljö, eftersom ArangoDB 

är en grafdatabas.   

 

Idag kan det vara svårt att undvika databaser i det vardagliga livet eftersom de är en vik-

tig del av datoranvändningen i dagens moderna samhälle. Databaser brukar innehålla 

data som är sammankopplade till varandra. Ordet data brukar används för att beskriva 

fakta, och oftast samlar man in sådan data som anses betydelsefull. (Elmasri & Navathe 

2016:33-35) 

 

Databaser brukar ofta delas in i två olika typer, relationsdatabaser och NoSQL-

databaser. Relationsdatabaser använder programmeringsspråket SQL för att modifiera 

data, medan NoSQL-databaser i större utsträckning är avsedda för dokument och an-

vänder sig av varken tabellformat eller SQL, något beteckningen även hänvisar till. 

(What is a database in under 4 minutes 2019) 

 

I en relationsdatabas är data sparad i olika tabeller, och i varje tabell finns det kolumner 

och rader. Varje kolumn representerar ett visst ämne, som exempelvis ålder eller namn, 



 

 

medan varje rad kan ses som ett objekt. Exempelvis kan en tabell representera använ-

dare där kolumnerna beskriver relevant information kopplat till användare och slutligen 

representerar en rad en användare. (Vázques 2019) 

 

NoSQL-databaser blev aktuella i samband med ökat intresse för big data. I jämförelse 

med relationsdatabaser så använder NoSQL-databaser inga tabeller för att lagra data och 

det är därför möjligt att lagra data mer flexibelt samt behövs ingen information om hur 

datan är lagrad för att kunna interagera med databasen. (Fowler 2015) 

 

Grafdatabaser är en form av NoSQL-databaser och de är skapade för att hantera sam-

band mellan dataobjekt som innehåller mycket information. Dessa samband kan ses som 

nätverk och graferna i grafdatabaserna är uppbyggda av noder (node) och av bågar 

(edge). Dessa bygger upp tripletter bestående av kombinationen ”nod-båge-nod”, vilket 

innebär att två noder är kopplade samman med hjälp av en båge. (Hurlburt et al. 2017) 

 

ArangoDBs Community Edition användes som utvecklingsmiljö för att skapa prototy-

pen. ArangoDB kan beskrivas som en multi modelldatabas. Beträffande NoSQL- data-

baser är detta relativt ovanligt. Vad detta innebär är att den är utrustad med grafdatabas, 

nyckelvärdedatabas samt dokumentdatabas, och alla dessa tre kan kombineras då man 

använder ArangoDB. (Advantages of the native multi-model database - ArangoDB 

2020) 

 

Dataobjekten som sparas i ArangoDB kan delas in i olika kollektioner och varje data-

objekt kan innehålla flera attribut. Då dataobjekten eller dokumenten är definierade lag-

ras de i sina respektive kollektioner. Dessa kollektioner består av dokumentkollektioner 

som innehåller noder samt ”edge” kollektioner, som innehåller bågar. (Concepts 2020)  

 

Datamodellering brukar användas då man planerar en databas. I en NoSQL-databas är 

data oftast sparad som aggregat, vilket gör att datamodellerna hos en NoSQL-databas 

kan se olika ut beroende på databassystem. (Atzeni et at. 2020) 

 

Då en datamodelleringsprocess för en grafdatabas genomförs kan följande princip an-

vändas för att avgöra vilken data som skall vara sparad i noder och vilken som skall 



 

 

vara sparad som bågar. Det väsentliga är att formulera vilka frågor den lagrade datan 

skall kunna ge svar på. Detta innebär att man skall omformulera relationerna till me-

ningar i vilka varje substantiv eller objekt är en nod, och varje verb en båge. (Allen 

2019) 

 

Webbmätvärden brukar oftast samlas in vid utveckling av marknadsföring, men kan 

även samlas in i syfte att förbättra företagsverksamhet. Oftast identifieras två olika sor-

ters webbmätvärde, åtgärdbara mätvärde (actionable metric, författarens översättning 

från engelska) och glädjemätvärden (vanity metric, författarens översättning från eng-

elska). Glädjemätvärden ger oftast mindre information även om värdena kan se positiva 

ut. Exempel på ett glädjemätvärde är antal nedladdningar eller antal besökare på en 

webbsida. (Reid 2019) 

 

Genom en noggrannare analys av ett glädjemätvärde kan åtgärdbara mätvärden upp-

täckas. Med hjälp av åtgärdbara mätvärden kan en viss aktivitet kopplas ihop med en 

förändring vilket underlättar lösningar och därmed har en betydande inverkan på ut-

vecklingen. (Austin 2018) 

 

Den praktiska delen av arbetet gick ut på att skapa en modell (prototyp) för en funge-

rande grafdatabas i ArangoDB. För utvecklingen av denna prototyp användes 

ArangoDB Community Edition och testdata som skapades av författaren för att repre-

sentera användardata. Själva processen började med datamodellering där tre olika me-

ningar/frågor användes som bas, eftersom de insikter Limber var intresserade av kunde 

fås genom att svara på dessa frågor. Nedan är frågorna som användes översatta till 

svenska (originalen är på engelska): 

 

1. Hur många sessioner har klickat på ”New Profile¨ - knappen? 

2. Hur många sessioner har flyttat sig från ”Documentlist” -vyn till ”New Profile” - 

knappen? 

3. Varifrån har en session/användare förflyttat sig för att komma till ”New Profile” 

- knappen? 

 



 

 

Dessa frågor representerar väldigt specifika beteenden, men samtidigt standard beteende 

i Limber Projects som kan tillämpas i många olika situationer. Målsättningen i detta 

skede är endast att hitta en lösning till hur man kan lagra användardata, vilket betyder 

att sessioner istället används för användare i syfte att hålla användarnas identitet ano-

nym. Eftersom integritet är viktigt, så är det i detta fall relevant att det inte skall vara 

möjligt att kunna spåra tillbaka till användaren. Därför användes sessioner istället för 

användare, och varje session blev tilldelad en unik sessionsID som inte skall vara kopp-

lad ihop med användaren. 

 

Frågorna/meningarna nämnda ovan användes inom datamodelleringsprocessen, och i 

början testades en uppsättning där substantiven och objekten i meningarna blev noder, 

och verben blev bågar. Detta innebär att vyer, knappar och sessioner var noder och ver-

ben som ”klicka” var bågar. Eftersom bågar i ArangoDB innehåller de viktiga attributen 

_to och _from, som hänvisar till startnoden och slutnoden, visade sig denna uppsättning 

inte vara den bästa lösningen. 

 

Det slutliga valet och uppbyggnaden av noder och bågar resulterade i följande: 

1. Sessioner – Dessa valdes till bågar och kommer att sparas i en ”edge collection” 

i ArangoDB. Det intressanta med dessa sessioner är att se hur en användare har 

rört sig under en session, vilket gör att det är viktigt att det framkommer i sess-

ionen var man börjat och slutat. Förutom detta kan varje sessionsobjekt innehålla 

ett unikt sessionID- attribut, som genereras då sessionen börjar.  

2. Vyer – Dessa valdes att lagras som noder i databasen och sparas därmed i sin 

egen ”document collection” i ArangoDB. 

3. Knappar – Dessa lagras också som noder i databasen och kommer att lagras i 

sin egen ”Document collection” i ArangoDB 

 

Efter att datamodelleringen var gjord återstod själva implementeringen. Som tidigare 

nämndes användes ArangoDB Community Edition i utvecklingen av prototypen, samt 

installerades på en dator med Microsoft Windows som operationssystem. För att kunna 

arbeta med databasen kan man använda antingen Arango Shell för att integrera med 

servern eller WebUI:n som är ett grafiskt användargränssnitt.   

 



 

 

All data som importerades till databasen var skapad av författaren. Varje vy- och knap-

pobjekt var manuellt insatta i sina respektive kollektioner. En större mängd data behöv-

des för att kunna testa tillgången till information gällande sessionerna, vilket innebar att 

det skapades en betydligt större mängda (ca. 50 000st) av dessa dataobjekt för att kunna 

testa AQL queries samt databasens prestation då dessa kördes. All information var 

slumpmässigt utvald i varje sessionsobjekt som skapades med hjälp av Python. 

 

Körningen av AQL queries var en viktigt för att kunna testa och evaluera om dataupp-

sättningen som skapades tidigare uppfyllde de önskemål som krävdes. Detta testades 

genom att köra queries som i teorin ställde samma frågor som användes i datamodelle-

rings processen. Då detta resulterade i det önskade svaret kunde konstateras att dataupp-

sättningen för detta ändamål var gjort på rätt sätt. 

 

Ett annat sätt att testa uppsättningen i databasen var att undersöka hur den presterar då 

man ber databasen att exempelvis hämta data genom att köra en query med varierande 

mängda dataobjekt sparade och samtidigt se hur exekveringstiden ser ut. Testen kördes 

först på 5000 sessionsobjekt och slutade vid 50 000 objekt. Detta testades genom att 

först köra dessa utan att lägga till något extra index, förutom de som ArangoDB auto-

matiskt skapar. Index används i databaser för att snabba upp exekveringstiden. Noter-

bart var att exekveringstiden blev snabbare då man hade lagt till ett index vid vissa at-

tribut, i detta fall lades det av författaren manuellt till ett index på session_id attributet i 

session objekten. Samtidigt som dessa test utfördes kunde konstateras att exekveringsti-

den ökar samtidigt som datamängden ökar, dock är det inte frågan om en linjär proport-

ionell ökning, men en kontinuerligt ökande linje. 

 

Möjliga brister i detta examensarbete utgörs av att prototypen inte har testats in en verk-

lig produktion med riktigt data. Därmed är det inte entydigt att denna prototyp kommer 

att fungera optimalt samt kan det framkomma oförutsedda brister i datamodellen som 

kräver modifikation. Dock skulle dessa brister kunna utvecklas till en intressant fram-

tida undersökning, det vill säga prototypen kunde implementeras i en verklig produktion 

och därmed påvisa hur datamodellen fungerar i praktiken.  

 

 


	1 Introduction
	1.1 Purpose and goal
	1.2 Limitations
	1.3 Methods
	1.4 Thesis structure

	2 Database models
	2.1 Relational databases
	2.2 NoSQL databases
	2.3 Graph database
	2.4 ArangoDB
	2.4.1 Data model
	2.4.2 Graph database
	2.4.3 AQL query language
	2.4.4 Indexing


	3 Data modeling
	3.1 NoSQL data model
	3.2 Modeling a graph database
	3.2.1 Creating relationships
	3.2.2 Relationship types


	4 Web Metrics
	4.1 Actionable metrics
	4.2 Vanity metrics
	4.3 Transform vanity metrics into actionable metrics

	5 Planning the database
	5.1 Data modeling
	5.1.1 Choosing nodes and edges
	5.1.2 Setup for nodes and edges


	6 Implementation
	6.1 Installation
	6.2 Add collections
	6.3 Creating nodes and edges
	6.4 Running AQL queries to get results
	6.5 Performance

	7 conclusion
	7.1 Future studies

	References
	Appendix 1. Summary in Swedish

