

Dominic Travis Kudiabor

STATE MANAGEMENT WITH REACT-REDUX

Thesis
CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology
December 2020

ABSTRACT

Centria University
of Applied Sciences

Date
December 2020

Author
Dominic Travis Kudiabor

Degree program
Information Technology
Name of the thesis
STATE MANAGEMENT WITH REACT-REDUX.
Centria supervisor
Jari Isohanni

Pages
25

State management is the most essential characteristic of developing scalable web or native applications.

The objective of the thesis was to establish the significance and practicality of utilizing React-Redux as

a state management library in React. The architecture of React-Redux can be divided into three main

sections: store, actions, and reducers. The store encompasses the global state of the application. The

actions are descriptive plain objects. The reducers contain the main business logic of updating the store.

This thesis elaborates on the functionality of these three sections and how they are interconnected with

each other.

The thesis further elucidates the flow of data within the application and the efficacy of React- Redux in

managing the global state. The login feature of an application with React-Redux is utilized for the ana-

lytical explanation of the core concepts and the data flow within the application. The thesis aims to

demystify the complexity of implementation and also to improve personal comprehension of the Redux

library. The future of state management is discussed with suggestions for improvement. This thesis

would enable React developers to optimize their applications by using global state management. Ap-

plications with several asynchronous actions would benefit significantly from state management.

Keywords
Component, ES6, Props, React, React-Redux, Redux, Scalability, State

CONCEPT DEFINITIONS

Component

A compact reusable piece of code that is essentially a JavaScript function or ES6 class that returns a

React element to be rendered on the user interface.

ES6

ECMAScript 6 also referred to as ECMAScript 2015 is a JavaScript language specification standard that

defines the functionality of its usage.

Props

Props is the term used to describe inputs being passed from a parent component to a child component.

They are read-only.

React

A JavaScript library for developing interactive user interfaces.

React-Redux

The official React library for managing the global state of a React application.

Redux

A predictable state management library for managing the global state of a JavaScript application.

Scalability

The efficacy of an application to accommodate growth without disrupting the end-user.

State

A user-defined plain JavaScript object which holds information specific to a component in an applica-

tion.

ABSTRACT
CONCEPT DEFINITIONS
CONTENTS

1 INTRODUCTION .. 1

2 STRUCTURE AND DESIGN ... 2
2.1 The MVC software design pattern ... 2
2.2 The Flux software design pattern ... 3
2.3 The Redux software design pattern .. 4

3 DATA FLOW .. 6
3.1 Store ... 7
3.2 Actions ... 8
3.3 Reducer ... 9

3.3.1 Unit Reducer ... 10
3.3.2 Root Reducer ... 10

4 ASYNCHRONOUS ACTIONS .. 11
4.1 Redux-Thunk .. 12
4.2 Redux-Saga ... 13

5 EVALUATION AND DISCUSSION ... 17

6 CONCLUSION .. 24

REFERENCES .. 27

FIGURES
FIGURE 1. The MVC design pattern ... 3
FIGURE 2. The Flux design pattern ... 3
FIGURE 3. The Redux design pattern .. 4
FIGURE 4. The flow of data in an application using Redux .. 6
FIGURE 5. The Redux Store .. 7
FIGURE 6. The Store Provider ... 8
FIGURE 7. Redux Action process .. 9
FIGURE 8. JavaScript Runtime Architecture ... 11
FIGURE 9. A Redux Flow with Middleware ... 12

PICTURES
PICTURE 1. Redux Developer Tools ... 5
PICTURE 2. A Unit Reducer .. 10
PICTURE 3. A Redux-Thunk example .. 13
PICTURE 4. A Redux-Saga Generator function .. 14
PICTURE 5. A Google Sign-In Saga .. 15

Picture 6. The Sign-In Functional Component ... 17
Picture 7. The User Reducer Function Returning New State ... 18
Picture 8. The Sign-In Actions .. 18
Picture 9. The Fetch-User Service Function ... 19
Picture 10. The Email Sign-In Saga .. 20
Picture 11. The User Reducer ... 21
Picture 12. The ‘UseEffect’ Hook ... 22
Picture 13. The App State ... 23

1

1 INTRODUCTION

React applications consists of several isolated components, which by design can control their state. The

concept of a global state combines the individual states of the components into a single large state. Data

from this state is accessible to all components within the application. There are many libraries created

specifically to manage the global state. Examples of such libraries are Redux, MobX, and RxJs The

React team introduced React-Redux as the state management library exclusively for React applications.

The structure and design chapter of the thesis explains the origins of the Redux concept and inspiration

from its predecessors.

The global state is governed by three major principles. First, it is a single source of truth. Debugging the

application is relatively easier and features such as persistence and hydration are easily implemented.

Secondly, the global state is read-only. The immutability of the global state prevents unexpected errors.

The only way to effect a change in the store is to dispatch an action. Actions, in Redux, are objects that

describe the change that needs to occur. Lastly, changes occur only with pure functions. A reducer is

required for a state update to occur. Reducers are pure functions that take a previous state object and

return an entirely new state object. It is pure because it does not mutate the existing global state. These

processes would be explained further in the data flow chapter of the thesis.

React- Redux is not without flaws. There are a couple of improvements which could enhance its ability.

Overall, the library is extremely versatile, but it has a few limitations. Developers who are new to the

concept of state management might have to consider these tradeoffs before opting to use the library. The

conclusion of the thesis discusses these tradeoffs and the future iterations of the library. The figures and

pictures used throughout the thesis originate from my personal educational projects therefore I own the

rights to use them without providing references.

2

2 STRUCTURE AND DESIGN

The state of an application contains locally created data and responses from a remote server. As the

application grows in complexity, the state must be managed efficiently because it changes intermittently.

Having multiple states in an application can increase the difficulty associated with keeping track of the

data contained in them. (Voorhees 2020, 141.) Various software design patterns were introduced to pro-

vide a solution to this problem. Before the launch of JavaScript libraries, most applications were devel-

oped using the MVC (Model, View, and Controller) software design pattern. As the popularity of Ja-

vaScript libraries increased, React developers invented the Flux design pattern to provide a modern so-

lution to managing states. (Garreau & Faurot 2018, 170.)

2.1 The MVC software design pattern

In the MVC model, the application is split into three separate parts, which allows the programmer to

organize code according to functionality. The model contains the data that the user sees on the front end,

the view is the user interface, and the controller is the business logic that interprets data to be displayed

in the view. (Voorhees 2020, 218.) There can be multiple MVCs in an application. In a large application,

sharing data between controller requires developers to introduce complicated logic which can be tedious

to comprehend. This design pattern can be very difficult to debug due to the multiple models present in

the application. Voorhees (2020, 223) considers this pattern as unpredictable because changes made in

a model by its controller does not reflect in the other models unless an event listener is set to listen for

changes in that particular controller. FIGURE 1 describes the data flow logic of an MVC application.

The model never interacts directly with the view, the user requests are routed to the controller which

performs data manipulations on the model and returns a response to the view. The model contains the

data pertaining to that specific view. Controllers can modify the same data that is displayed in separate

views; however, this can cause errors in the application if the logic pertaining to the data manipulation

is not synchronized.

3

FIGURE 1. The MVC design pattern

2.2 The Flux software design pattern

The Flux software design pattern offers a much simpler and well-architected solution to the errors caused

by controllers modifying the same data in different views. The Flux design pattern follows a unidirec-

tional data flow approach as seen in FIGURE 2. The entire data flow procedure is repeated each time an

action is executed by the user. (Garreau & Faurot 2018, 175.) The term “action” refers to the activity

performed by a user of an application such as clicking a button, uploading a photo, and sending an email.

FIGURE 2. The Flux design pattern

In the Flux pattern, an action is dispatched to the store by a dispatcher and the store performs the action

and returns the response to the view. If the view gets updated, it creates an action that is dispatched to

the store and then displayed on the view. (Garreau & Faurot 2018, 180.) This pattern was a revolutionary

improvement to the MVC design. In React applications, a component by default can manage its local

state. In a large application , these components might share data which can pose a problem. One solution

would be moving the state to a higher parent component and passing data down to all the children com-

ponents via props, however, this would result in prop-drilling. Prop-drilling refers to the passing down

4

of props from a parent component to a deeply nested child component. To avoid this situation entirely

would require the data being moved to the root of the application and only fetched when needed (Garreau

& Faurot 2018, 191). The Flux model centralizes data by creating a store from which the view update

logic is regulated. This model prevented the code in the different parts of the application to directly

mutate the store but rather describes the mutation as a plain object termed an action. The Flux model

uses the concept of a dispatcher to execute these actions. (Garreau & Faurot 2018, 195.)

2.3 The Redux software design pattern

The architecture of Redux is inspired by the Flux design pattern. Its primary objective was to manage

applications with a large global state and to facilitate the sharing of data between components. The global

state of the application is located in the store (Lee, Wei & Mukhiya 2019, 21). When a user clicks on an

action, it goes through a reducer which takes the previous global state and the action and returns the next

global state. When the store is updated due to the reduce function, it triggers a re-render of the DOM

(Document Object Model) which is simply a change in the user interface. The actions are descriptive

objects that can be logged, serialized, and saved for debugging and testing purposes. Redux developer

tools can replay action sequences to track the flow of data in the application as seen in PICTURE 1. The

global state is altered by actions, this is to ensure that network callback functions can never directly

mutate the global state (Lee, Wei & Mukhiya 2019, 30). The Redux architecture ensures all changes in

the store occur one after the other in a strict sequential order as illustrated in FIGURE 3.

FIGURE 3. The Redux design pattern.

5

PICTURE 1. Redux Developer Tools

6

3 DATA FLOW

In a React application with Redux state management, the data flow is unidirectional and the components

which require the same data retrieve props from the global state (Banks & Porcello 2017, 184). When a

user logs in, the user credentials might be displayed in the header component. The user dashboard might

also require access to the same credentials to display purchasing stats such as previous orders. When an

action is dispatched from a component, the reducer listens for the type of action and informs the corre-

sponding unit reducer that matches the action type. Multiple reducers can exist in an application, each

handling a specific section of the application. These multiple reducers combine to form a large state in

the root reducer. The individual states are referred to as slices of the global state. The Reducers are split

up to ensure the immutability of the entire state upon the execution of an action. The unit reducers listen

to every action. Actions are only executed by the reducers which match the exact type of action. The

root reducer updates the store which in turn supplies data to components in the form of props. (Banks &

Porcello 2017, 234.)

FIGURE 4. The flow of data in an application using Redux

In FIGURE 4, the application has three state slices present in the store: ‘userState’ , ‘shopState’, and

homeState. Each state stores data pertaining to its description. Without Redux these states would exist

in separate components. Sharing data between these components would be much easier if the states were

7

centralized (Banks & Porcello 2017, 180). With Redux, these states are moved up into the store and only

updated if necessary. The home page can display data from the user state, such as the profile photo and

login status. The shop page can display the contents of a shopping cart based on the user's login infor-

mation. The shop reducer can only update the shop state and the same applies to every slice of state in

the application. It is evident from FIGURE 4, how Redux makes sharing of data between components

easier. The functionality of Redux is governed by three main terminologies: store, reducer, and actions.

(Banks & Porcello 2017, 184.)

3.1 Store

The terms state and store are mutually exclusive. The global state lives in a store. Banks & Porcello

(2017, 192) describe a store as a large object that encapsulates the global state tree as illustrated in

FIGURE 5. There can be only one store in a React application. The store contains the individual states

existing in the application. The components of the application must be nested inside a provider. The

provider is a React element which enables components to access the store. Components which are not

nested within a provider cannot access data from a store as illustrated in FIGURE 6. The provider is

usually placed at the top level of the React application, with the entire app component tree nested within.

FIGURE 5. The Redux Store

8

FIGURE 6. The Store Provider

3.2 Actions

An action is a plain JavaScript object which describes the objective of the change of state. Only actions

can update a Redux store. They consist of two properties. The first is the “type”, defined as a constant

and usually imported from another module. The type is descriptive of the action being dispatched. They

are defined as strings because they must be serializable. The second property is the optional payload.

The payload contains the data that would be updated in the store as illustrated in FIGURE 7. A payload

is always an object. The content can be of any type. (Banks & Porcello 2017, 205.)

9

FIGURE 7. Redux Action process

3.3 Reducer

The Reducer is the most significant aspect of Redux. The functionality of a reducer is not unique to

Redux. It is associated with the reducing method in JavaScript that accepts an accumulation and a value

and returns a new accumulation. Reducing functions is a core concept of functional programming (Simp-

son 2016, 96.) In Redux, the accumulated value is the slice of state object and the value being accumu-

lated is the actions. The reducers determine a new state based on the given action and its previous state.

The reducer must be a pure function, free of side effects. Side effects are actions that change a variable

from outside its scope (Garreau & Faurot 2018, 15.) It is imperative to note that reducers should never

make API calls. Reducers have advanced features such as hot reloading and time travel. Hot reloading

is a process of replacing pieces of code without restarting the entire application. (Banks & Porcello 2017,

220.) Time travel in Redux enables actions to be reversed or repeated without rewriting the logic that

created the action. For instance, a list of items in the state can be removed by dispatching an action, this

action can be reversed to recover the removed items and vice versa. (Geary 2018, 67.)

10

3.3.1 Unit Reducer

In large applications, the reducer is split up into multiple functions, each managing its slice of the global

state. From FIGURE 4, three separate unit reducers are combined in a root reducer. Each unit reducer

handles logic pertaining to the slice of state in question. For instance, the shop reducer only handles

logic pertaining to shop actions such as add to cart, filter by a category, and pagination of shop content.

The separation of the unit reducers prevents errors associated with updating the parts of the global state

which do not need to be updated. Each unit reducer is independent and does not interfere with the login

of the other unit reducers. It is worth to note the unit reducers are named after the slice of the state they

manage. (Banks & Porcello 2017, 235.)

3.3.2 Root Reducer

The root reducer also known as the combine-reducer converts the unit reducing functions into a single

function which returns the global state which is then passed to the store. Its primary function is to pre-

serve the logical separation of the unit reducers. The core functionality of Redux revolves around the

reducer and therefore there are two general strict rules to be adhered to when creating a root reducer.

Firstly, for action to be executed, it must return the state given to the reducer function as a first argument.

Secondly, the reducer must never return undefined (Banks & Porcello 2017, 240.)

PICTURE 2. A Unit Reducer

11

4 ASYNCHRONOUS ACTIONS

JavaScript is a single-threaded language, which essentially means it executes code in sequential order.

It has a single call stack and memory heap, with the functionality to execute a single task before moving

on to the next. The call stack performs the code operations, and the memory heap stores all the variables.

(Simpson 2016, 124.) This explanation covers synchronous operations, however, asynchronous opera-

tion are executed differently Asynchronous actions such as an API call or a timer can take a while to

complete. In the JavaScript engine, these operations first go to the call stack just like the synchronous

actions but are redirected to WebAPI’s to handle the task. The event loop moves the completed task to

the call stack only if it is empty. The event loop runs continuously, checking to see if the call stack is

empty before picking up a newly completed task in the callback queue. (Burnham 2012, 4.)

FIGURE 8. JavaScript Runtime Architecture

If a script takes a very long time to complete, it blocks the others. To ensure non-blocking code execu-

tion, the JavaScript engine has WebAPIs that handle multiple tasks concurrently. These WebAPIs are

asynchronous, which essentially means they can run several tasks in the background and return a re-

sponse once it is completed. Asynchronous code execution prevents the browser from freezing when a

task takes a long time to complete. A callback function is always provided when making an asynchro-

nous request. The function of the callback is to execute JavaScript code in the main thread once the

WebAPIs completes its task. The event loop ensures only a single callback runs at any given time. The

12

subsequent callbacks in the queue would have to wait until the current one is completed. (Burnham 2012,

9.)

Upon execution of an asynchronous action, other synchronous tasks can occur simultaneously without

affecting the user interface. When an asynchronous action such as an API call is executed, a change

occurs in the application’s state. The first change occurs immediately after the action is executed and

when the second occurs when the task is complete. To trigger state changes, actions are dispatched to

the reducers and they would be processed as synchronous requests. The first change informs the reducers

that the action has begun. The second change notifies the reducers upon completion of a task. The re-

ducers update the store depending on the success or failure of the task. To leverage asynchronous actions,

middlewares are introduced in the Redux data flow to intercept every action before they reach the re-

ducer. A middleware can be used for logging actions, dispatching new actions, reporting errors, and

triggering subsequent asynchronous requests. There are two main middlewares used in Redux: Redux-

Thunk and Redux-Saga. These middlewares are available as libraries that can be imported into any ap-

plication with Redux functionality. (Dinkevich & Gelman 2017, 45.)

FIGURE 9. A Redux flow with Middleware

4.1 Redux-Thunk

This is a type of middleware that enables the developer to write Thunk action creators that return a

function instead of an object as in the case of a regular Redux action. When an action is dispatched,

Redux-Thunk can either delay this dispatch or cancel the dispatch if it does not meet certain requirements

(Salcescu 2020, 52.) PICTURE 3 is a snapshot of a dispatch action. This action fetches the data of the

products in the backend, and this could take some time depending on the size of the data. The action

returns another dispatched action that activates the fetch and depending on the response, it dispatches a

success action with a payload of the data received or an error action describing what might have gone

wrong. It is worth noticing that fetchCollectionsStartAsync is a Thunk action creator, which returns a

dispatch function. On the other hand, fetchCollectionsStart is an asynchronous action that dispatches an

13

API call. The fetchCollectionsSuccess/Failure actions are synchronous actions that are dispatched to the

reducer to update the Redux store.

PICTURE 3. A Redux-Thunk example

4.2 Redux-Saga

Asynchronous actions can cause side effects in the application. Side effects occur when a variable in a

state is changed outside its scope of usage. When the application grows in complexity, the user actions

increase exponentially. Moreover, if these actions were asynchronous the completion of each action

must be intermittent. Redux-Thunk middleware utilizes callbacks, which makes the code hard to read.

In some cases, these callbacks might also have callbacks, which adds to the complexity of data flow in

the app. This peculiar situation is termed ‘callback hell’. The Redux-Saga middleware eliminates

callback hell and coordinates the data flow in a readable and systematic order. Testing and error handling

are relatively simpler in Redux-Saga. (Garreau & Faurot 2018, 220.)

Redux-Saga’s functionality is implemented using an ES6 feature called Generator functions or genera-

tors. They are based entirely on the concept of iteration. These functions can halt the execution of a task

and resume execution from the exact point it was halted. It can return multiple values based on the

14

context of execution. The iterator has to be activated to fetch data from a generator. This is done by

using a method called ‘next’. When the ‘next’ function is called, the execution continues until it encoun-

ters the keyword ‘yield’. ‘Yield’ halts the execution process. The output of a ‘yield’ can be passed to the

‘next’ function. If there are multiple functions to be executed, the ‘next’ method must be called. This

renews the execution process until the next ‘yield’ is encountered. The ‘next’ method is called repeatedly

until the desired outputs are obtained. Generators cannot be interrupted by an external function during

task executions. It only halts mid-execution if a ‘yield’ is encountered. If there are no ‘yields’ present it

continues execution until completion, similar to the execution of a regular function. (Garreau & Faurot

2018, 225.)

Implementing Redux-Saga requires special helper functions that, encapsulate generator functions to

spawn new tasks when an action is dispatched. These functions are called effects. There are over 20

effects found in the Saga library. The ‘takeEvery’ effect, which is most commonly used allows multiple

instances of the dispatched action to be executed. The ‘call’ effect, which provides a gateway for API

requests to be executed, and the ‘put’ effect dispatches an action to the Redux store. The ‘takeLatest’

effect that only executes the latest dispatched action. (Garreau & Faurot 2018, 230.)

PICTURE 4. A Redux-Saga Generator function

In reference to PICTURE 4, each time the ‘FetchLoadOne’ action is dispatched, it is intercepted by the

‘loadOne’ Saga and the API request is made using the ‘call’ Effect. If the request is successful, a new

action is dispatched with a payload to update the store using the put Effect. Failed requests move to the

catch block and a failure action is dispatched with the error payload also using the ‘put’ Effect.

15

The functionality of Saga to spawn multiple functions when a single action is dispatched makes this

library very powerful and dominant over Redux-Thunk. Multiple asynchronous actions can occur with-

out side effects in the application. A simple Saga function can execute multiple tasks in a single function,

whereas achieving the same result without Sagas would require writing a significant amount of code.

(Garreau & Faurot 2018, 238.)

The concept of implementation can be convoluted but the benefits are innumerous as discussed by Gar-

reau & Faurot (2018, 250.) PICTURE 5 is an example of a Saga function which executes multiple tasks

when the user signs in with Google. The Saga intercepts the sign-in action and sends a request to the

backend to fetch existing user credentials or create a new one if it does not exist. If the response is

successful, it is dispatched as a payload to the reducer. The user interface is refreshed with data from the

new payload. The session of the user is activated and the token from the backend is saved in local storage

and his token is checked periodically for validity. Requests made by the user require a valid token, if the

server rejects the request the user is automatically logged out. When the sign-in is successful, the user

interface displays a notification alerting the user of a successful sign-in. These notifications are cleared

momentarily. All these processes occur in the same manner, each time another user logs into the appli-

cation.

PICTURE 5. A Google Sign-In Saga

16

Without using Sagas for this task, it would be difficult to track the data flow and debug errors if one of

the tasks fails. In this instance, if the API request were to fail, the Saga moves the flow into the catch

block. The catch block handles errors such as error server responses and dispatches a message to the

reducer informing the user the server is unavailable. This advanced approach of state management can

save a developer from encountering side effects in the application and helps other developers to under-

stand the flow of data immediately. Garreau & Faurot (2018, 215) describe Sagas as a way to visualize

asynchronous code as synchronous. Sagas enable developers to circumvent writing hardcoded compli-

cated promises. It results in a cleaner and well-structured code. The only downside of using Sagas is the

arduous learning curve that precedes proficiency.

17

5 EVALUATION AND DISCUSSION

To analyze the functionality of state management, the email login feature of an e-commerce store I built

for educational purposes is examined. Access to the entire codebase is available on my personal GitHub

account at https://github.com/dominickudiabor/clothing-store-frontend. The project was built using Re-

act with Typescript and React Hooks. In React, functional components can perform side effects using

an ‘Effect Hook’. Hooks were introduced in React version 16.8. Local state in a component can be

accessed using a ‘useState’ Hook. The local state can be updated using the ‘setState’ function. The sign-

in component as seen in PICTURE 6 has an input for email and the password of the user. This input data

is kept in the local state for validation purposes. The component also has redirected routes to the signup

and password reset page. When the validation of the input is successful, the form submission dispatches

an ‘emailSignInStart’ action with a payload of the email and the password. The ‘useDispatch’ Hook is

used for dispatching actions.

PICTURE 6. The Sign-In Functional Component

18

The reducers are informed of the start of the action as seen in PICTURE 7. The reducers are notified

when the action type matches the case type of the reducer. User reducers have multiple cases, each with

a specific action type. This is to prevent the occurrence of mutating the wrong state. The reducers update

the user state by toggling the loading status of the sign-in request. The loading state displays a spinner

animation on the user interface.

PICTURE 7. The User Reducer Function Returning A New State

PICTURE 8. The Sign-In Actions

The actions are defined in a separate file. Each has a definitive type and is written in capital letters for

debugging purposes. The payload is optional. The actions, responsible for the sign-in feature are seen in

19

PICTURE 8. The dispatched action is intercepted by the user Sagas. There are multiple user Sagas, each

responsible for a specific action. The Saga responsible for email sign-in takes the payload from the form

submission as an argument. The try-catch block is used because the action is asynchronous. In the try

block, the call effect attempts an API request with the help of a service function as seen in PICTURE 9.

PICTURE 9. The Fetch-User Service Function

A successful response from the API returns the user credentials as an object. This triggers the next ac-

tion which takes the response as a payload and dispatches it to the reducer. The reducer updates the

store, which triggers the next action in the Saga. This action re-renders the user interface to display the

logged-in user's credentials. The next function in the Saga is an action that triggers the session duration

of a user. Finally, all the notifications on the user interface are cleared. Errors with API requests are

directed to the catch block. If the API is unresponsive it dispatches an action to the reducer with a pay-

load of the network error. It also handles custom error responses from API requests by dispatching an

action to the reducer with a payload of the error message. The Saga actions are illustrated in PICTURE

10.

20

PICTURE 10. The Email Sign-In Saga

The user reducer handles all state mutations concerning the user state. The user state contains proper-

ties associated with the user. Reducers take two parameters: the slice of state, in this case, the ‘us-

erState‘, and the action. It always returns a new state if there is an update, else it would return the pre-

vious state as illustrated in PICTURE 11. Since there are multiple user actions, a switch statement is

often used to make the reducer logic more readable. For every case in the switch statement, the current

state must always be returned in addition to the properties that have to be updated. The action-type de-

termines which case must occur. The state must always be returned if there are no matching cases. The

sign-in success action has a payload of the user credentials and the authentication token. The token is

for identification when API requests are made, and it also contains the session time. In the user state,

the loading state is toggled to false to deactivate the spinner animation. The current user object is up-

dated with the newly logged-in user. And the token is also updated to begin the user session.

21

PICTURE 11. The User Reducer

22

The’ useSelector’ Hook from React-Redux is used to access properties of the state in a functional com-

ponent. The properties required from the state are destructured as a best practice. Destructuring assign-

ment is a JavaScript syntax that enables properties of an Array or Object to be assigned to separate var-

iables. It is worth noting that only the properties required are destructured. The’ useEffect’ Hook has a

callback function as its first argument, this function is called each time the application renders. Ren-

dering occurs when React performs a DOM update. The callback runs only after the update is com-

plete. The second argument is an array that contains active subscriptions. When the subscription

changes, the callback function is called. By default, this Hook runs after each render, but the subscrip-

tion controls the frequency of its execution. If there are no subscriptions, then it runs each time there is

a change in the React DOM. PICTURE 12 shows the ‘useEffect‘ Hook used for listening to changes in

the session expiry time. The Hook checks the validity of the session by comparing the session expiry

time to the current time. An expired session dispatches a sign-out action. The subscription is referred

to as a dependency in the Hook. This is because the function only runs if the session expiry time exists.

PICTURE 12. The ‘UseEffect ‘Hook

23

The ‘AppState’ also is known as the state tree represents the global state of the application. It is man-

aged by the Redux store. By convention, it is a Map which is an object with key-value properties. This

enables the data to be serializable. As a rule of thumb, data cannot be stored in the state object if it can-

not be turned into JSON data. It is considered a best practice to label the keys as the corresponding

slices of state. In PICTURE 13, there are four slices of state. The keys represent the name of the indi-

vidual state slices. The values contain properties that store data accessible by the entire application.

The slices of state are managed independently by unit reducers.

PICTURE 13. The App State

24

6 CONCLUSION

The thesis focused on the structure and data flow process of React-Redux and provided a deeper under-

standing of state management. Applications are built primarily to control the flow of data from one

component to the other. It is imperative to ensure the data flow is consistent to avoid unexpected errors

in production. When applications are designed, the user experience has the highest priority. Large appli-

cations such as, an e-commerce store, display a colossal amount of data. This data is manipulated in

multiple ways depending on the features and functionalities of the application. For instance, if the user

is on the shop page, they can filter out options or use the sort and search functionality. If the user clicks

to add a product to the cart, the cart items should be accessible on any page the user is currently on. State

management enables data to be readily available to every component within an application. Shared data

cannot be kept in a single view. Localizing the data is the most efficient way to provide access to all

components in the application.

Many state management libraries can be used in a React application, such as MobX, apolloGraphQL,

ContextAPI, Pullstate, and RxJs. Each has unique perspectives on state management; however, the most

recommended library is React-Redux, which was built by React developers specifically for React appli-

cations. The terms React-Redux and Redux have been used interchangeably throughout the context of

this thesis. Contrary to the similarity in terminology, they are not the same. To dispel the discrepancies,

it is important to state that Redux is a library for managing application state but React-Redux is a library

for managing React application state. Redux can be used in Angular, Vue, Ember, and vanilla JavaScript

applications. It is not limited to only React; it manages state in all JavaScript-based applications. It fol-

lows the flux architecture. React- Redux on the other hand is designed specifically to work with React

applications. It creates containers that listen to changes in the store and updates the components that

display the updated data.

There are many tradeoffs associated with React-Redux, the most prominent is the boilerplate required

for it’s setup is extremely complicated and intricate. Wiring a React application to use Redux might

require a major refactoring of many components. The data flow logic must be reconstructed to fit the

Redux model. The official documentation can seem overwhelming to a beginner. It is an advanced con-

cept and the requisite for comprehension is based on the familiarity with writing code in React. There

are three major limitations a developer might encounter when working with Redux. Firstly, it requires

the application state to be described only as an object or array. If a developer chooses to store data

25

differently, then Redux might not be a suitable option. Secondly, changes that occur in the store can only

be described as plain objects. And finally, the logic pertaining to handling these changes must be pure

functions. There is no workaround to these limitations, they must be simply followed and strictly adhered

to.

These limitations are not required when building a React application, they are only enforced when the

developer decides to opt for React-Redux. These tradeoffs must be considered when designing an appli-

cation because the entire workflow of the application depends on it. On the plus side, Redux can enhance

user functionality and dramatically increase the performance of an application. It leverages local storage

to persist data and it loads the app from the initial launch with this data. Circumstances, which require

data refresh such as accidentally closing a browser or losing connection momentarily to the backend,

can be resolved by using Redux persist, a great feature of Redux. Persistence enables Redux to retrieve

previously saved store data from the browser and rehydrates the store upon launch of the application.

There is no need to send API requests to the backend to retrieve data that has previously been loaded.

State management can occur in a component, this is referred to as local state management and it can co-

exist with Redux. Implementing global state management does not necessitate the elimination of all local

state. The local state can be useful for components that control their data and do not have to share the

data with any other component. A good example would be the profile update component of the applica-

tion. Updating a profile requires a form which has multiple inputs depending on the changes required.

When the user enters information, there could be a data validation logic to check the input. The input is

usually controlled by the local state. If the validation passes, the component dispatches an action with

the form data which is intercepted by Redux middleware. The middleware sends a request to the backend

to implement the change and the response updates the store with the new user credentials. The compo-

nents that display user properties are automatically re-rendered to display the new data. This is an in-

stance of how the power of Redux can be leveraged with the local state.

Redux is an incredibly useful library for React. Providing an easier way to manage the convoluted state

within an application. React was built specifically for creating user interfaces, so it is advantageous if a

separate library managed the data flow. This way, the logic of the application is easier to understand,

and errors are easier to find. However, the most prevalent drawback faced by developers is the amount

of boilerplate code required to set up Redux. With the introduction of Hooks, it cuts down the boilerplate

code by a substantial percentage. React is preparing to roll out a package called the "Redux Toolkit" to

enable developers to configure Redux without the complicated boilerplate code.

26

27

REFERENCES

Banks, A., Porcello, E. 2017. Learning React. Functional Web Development with React and Redux.

California: O’Reilly Media.

Burnham, T. 2012. Async JavaScript: Build more responsive apps with less code. Pragmatic Bookshelf.

Desjardins, P. 2018. .Net Knowledge Book: Typescript, React, and Redux. Depot – Legal Bibliotheque

et Archives national du Quebec.

Dinkevich, B., Gelman, I. 2017. The Complete Redux Book: Everything you need to build real projects

with Redux. Second Edition. Self-published.

Garreau, M. Faurot, W. 2018. Redux in Action. First Edition. Manning Publications.

Geary, D. 2018. Building React.js Applications with Redux. First Edition. Pearson Technology Group

Canada.

Lee, J., Wei, T., Mukhiya, SK. 2019. Redux Quick Start Guide: A beginner’s guide to managing app

state with Redux. Packt Publishing.

React Official Documentation 2020. Available: https://reactjs.org/. Accessed 17 October 2020.

React-Redux Official Documentation 2020. Available: https://react-redux.js.org/. Accessed 28 October

2020.

Redux Official Documentation 2020. Available: https://redux.js.org/. Accessed 20 October 2020.

Redux-Saga Official Documentation 2020. Available: https://redux-Saga.js.org/. Accessed 26 October

2020.

Salcescu, C. 2020. Functional Architecture with React and Redux. Amazon Digital Services LLC.

28

Simpson, K. 2016. You Don’t Know JS. ES6 and Beyond. O’Reilly Media.

TypeScript Official Documentation 2020. Available: https://www.typescriptlang.org/. Accessed 12 Oc-

tober 2020.

Voorhees, D. 2020. Guide to Efficient Software Design. An MVC approach to concepts, structures, and

models. Springer publishing.

Wieruch, R. 2020. The Road to React. Your journey to master plain yet pragmatic React.js. Self-pub-

lished.

