

Victor Tarus

ORDER-NOW SYSTEM

CENTRIA UNIVERSITY OF APPLIED SCIENCES

IT Engineering

December 2020

ABSTRACT

Centria University

of Applied Sciences

Date

December 2020

Author

Victor Tarus

Degree program

IT Engineering

Name of the thesis

Order-Now

Instructor

Pages

23

Supervisor

Jari Isohanni

Computers have become an essential part of the day to day operations in most organizations. Most

cleaning companies have digitized their businesses by investing heavily in developing systems such as

systems recording work hours for employees. However, when it comes to ordering supplies, most com-

panies still use pen and paper. Orders are written down on paper and left at specific collection points,

which require someone to pick them up. The whole process can be cumbersome and time-consuming.

Furthermore, reporting occupational hazards such as broken doorknobs, leaking pipes, or exposed elec-

tric wires can be daunting.

The Order-Now application is a web or mobile-based application that seeks to provide workers in clean-

ing companies with an efficient way of ordering supplies and reporting occupational hazards. This the-

sis aims to explore system design and build a web-based ordering system using React.js. Firebase

Realtime database will be incorporated into the system to provide data storage. Agile methodology is,

however, implemented in the development so that functionality can be delivered quickly to the market.

Keywords

Components, Firebase Realtime Database, React Props

ABSTRACT

CONCEPT DEFINITIONS

CONTENTS

1 INTRODUCTION .. 1

2 PRODUCT VISION ... 2

3 FEATURES, SCENARIOS, AND STORIES .. 3

3.1 Personas .. 3
3.2 Scenarios ... 4
3.3 User Stories ... 5

3.3.1 Cleaner .. 5
3.3.2 Supervisor ... 5

3.4 Features ... 6
3.4.1 Scope of Initial and Subsequent Releases .. 6

4 APPLICATION DESIGN ... 7
4.1 Requirements .. 7

4.1.1 Functional requirements ... 7

4.1.2 Non-functional requirements .. 8
4.2 Use cases .. 8

4.2.1 Use Case diagram ... 9

4.2.2 Description of Use Case diagrams .. 9

5 APPLICATION DEVELOPMENT AND IMPLEMENTATION .. 14

5.1 Software Architecture .. 14

5.2 User Interface Design ... 14
5.3 React Library ... 16

5.3.1 Virtual Dom .. 16

5.3.2 Model View Controller Architecture ... 16
5.4 Development ... 18

5.4.1 Layout Component tree ... 18
5.4.2 Planning the state ... 19

5.5 Server .. 19
5.6 Firebase Realtime Database .. 20
5.7 Authentication .. 21

6 CONCLUSION .. 23

REFERENCES .. 23

1

1 INTRODUCTION

Good data provides a basis for making the right decisions. Without an efficient system of managing data,

it can be hard to monitor the performance of critical systems in any organization. The analog way of

managing data can be useful, but it has its limitations. As the size of an organization grows, it can be

more error-prone compared to digital systems. With a digital system in place backed up by databases, it

is easier to track data and set performance goals that positively contribute to an organizations’ overall

performance.

The analog way of placing cleaning supplies orders is typical in cleaning companies in Finland. How-

ever, the advent of new technologies such as WhatsApp has contributed to modernizing this system;

unfortunately, this ordering system is still inefficient; the same data must be handwritten or typed re-

peatedly, which is tedious. Consequently, upon receiving the data, the person in charge of placing the

orders must also organize the data. This process can be inconvenient, unreliable, and time-consuming

instead of having a centralized database system that is easier to coordinate and as accurate as possible.

The logic behind the development is that data passed on; that is, the types of supplies needed will always

remain constant for a considerable amount of time; hence, this application implements a menu restaurant

setting’s analogy. The menu remains constant, but the orders might differ in terms of quantity and time

of order.

The order-now application aims to tackle a common business problem experienced across cleaning com-

panies: ordering supplies. The application will be a full-stack web application whereby the front end will

implement the react library coupled with a firebase realtime database on the back-end. Data is both

stored and retrieved in JSON format. Subsequently, data retrieved is transformed from json format to

human readable form and then passed as arguments to create views that make up the user interface.

2

2 PRODUCT VISION

A product vision is a statement that defines the essence of the product under development. The product

vision creates a basis for developing more detailed attributes and features. Furthermore, it explains how

the product differs from other competing products. (Sommerville 2019,7-8).

This thesis’s product vision is to develop an application that serves small and mid-sized cleaning com-

panies’ supplies departments that seek an efficient way of managing their supplies inventory and further

enable employees to report occupational hazards. The Order-Now application is a web-based service

that provides a service whereby users can place orders on their phones with minimal need to type in or

write the data. Furthermore, users can report occupational hazards at workplaces using the same appli-

cation. Unlike other means of placing orders, the Order-now application allows for better tracking and

storage of data, making future decisions like predicting order frequency.

Cleaning companies are the target customers for Order-now. For a long time, systems like Duunissa

focus more on recording time used by cleaners, optimizing profits (Korttilinna, 2020). Still, a further

step in improving inventory management will significantly improve company performance. It will col-

lect user analytics, such as ordering patterns for a specific cleaning location, thereby enabling the order-

ing department to predict when to make the next orders. Subsequently, bulk ordering will be feasible

and cheaper than ordering small quantities of supplies in the freight industry.

3

3 FEATURES, SCENARIOS, AND STORIES

Some software products are inspired, and an example of one of them being Facebook, which has been a

marvel of the twenty-first century. Such products do not follow the generic way of developing software

(Sommerville 2019,1-7.). Order-now being such a product solely is inspired by business knowledge in

the cleaning industry, user problems, and user interaction. This chapter presents a run-down of features,

scenarios, and stories.

3.1 Personas

A persona in software terms refers to an ‘imagined user,’ with a character that portrays the user type that

will use the product developed. In this project, personas working in the cleaning industry help imagine

what they want to do with this software. Furthermore, they help to envisage difficulties users might have

in understanding and using some product features. (Sommerville 2019, 53-58.).The personas cited below

provide an insight into the ‘imagined’ potential users of the order now application.

To begin with, a persona for a cleaner. Timo, age 47, is a cleaner in Kokkola, a small town in Northern

Finland. He works in two different places under the same company, a bank in his morning shift and a

fish market in his evening shift. Timo did not get proper access to education while growing up, and that

means he is not confident in all matters of reading and writing. However, he has a smartphone, which

he uses to communicate and access information through social media; hence he has the know-how for

everyday application operations.

Secondly, a persona for a cleaning company supervisor named Kia, age 29, is a supervisor working with

a local cleaning company in Kokkola. Her primary role is to ensure the smooth running of the company’s

cleaning functions and, most importantly, ensure that deliveries of cleaning supplies ordered by employ-

ees are on time to their respective cleaning sites. Kia has experience in web development, which gives

her a head start in matters of IT. To cut the cost of visiting all the cleaning supplies lists, she created a

WhatsApp group whereby employees would put forth orders for cleaning supplies and improve on the

paper-based ordering system. Kia oversees 78 cleaners who work in 118 different client sites, and part

of her job is to compile all the supply orders and pass them to her co-worker Tico who is in charge of

inventory and making orders. Kia envisions the use of modern technology to make the system more

efficient.

4

Finally, a persona for an inventory manager of a cleaning company named Patrick, age 25, works as an

inventory manager at a cleaning company. His main job is to procure orders made by cleaners. Further-

more, making sure the cost of supplies is at an optimum level is part of his job. Consequently, he has to

make sure the transport costs are at a bare minimum too. Procuring goods in bulk has proven effective

in cutting transportation costs; however, the main challenge he faces is spontaneous supply orders made

by cleaners.He is particularly interested in using the order-now application that would enable him to get

a clear picture of the trends in the cleaning supplies’ ordering, and it would be simpler to predict what

type of supply will run out and should be pre-ordered.

3.2 Scenarios

Scenarios describe situations in which users use certain product features to achieve a particular goal.

The Personas identified above provide a basis for writing scenarios; thus, the targeted users can relate to

the various scenarios in real life. (Sommerville 2019,59). The Scenarios explored below help select and

design features by imagining how users could interact with the product.

First and foremost, a scenario of the Timo using the Order-now system to report occupational hazards.

To improve work safety, the head of the safety department has requested all employees to make safety

observations. On a particular workday, Timo notices water leaking from the roof in one of the offices he

cleans. He then uses the report hazard feature, whereby it uses his mobile work phone’s camera resource.

Coupled with that, he adds a short comment on the exact location of the safety observation; however,

the application also uses the GPS location of the phone and tags it on the photo hence providing enough

information for the situation to be remedied.

Similarly, Timo uses the application when there is a delay in the delivery of supplies. Due to unavoidable

circumstances, there has been a delay in the delivery of supplies ordered by Timo. Timo contacts Pat-

rick, the inventory manager, and fills him in on the situation. From home, Patrick logs into his Order-

Now application and uses the inventory manager feature to check which other places among the com-

pany’s cleaning sites still stock the same supplies Timo needs. Having found the most likely cleaning

location that still has a good stock of the supplies needed, Patrick requests one of the supervisors to pick

up the supplies and deliver them to Timo. Consequently, the system stores information on the transaction

and will provide analytics for predicting future orders.

5

3.3 User Stories

User stories are narratives that are set out in a more detailed and structured way to present what the user

requires from a software system (Sommerville, 2019, p. 66). The cleaner represents a user with a basic

account, and the supervisor represents an administrator who has unlimited access to all the system’s data

and settings.

3.3.1 Cleaner

The following user stories present what the cleaner will need from the product for it to be viable.

US-1. The cleaner needs a way to order supplies using a few clicks on their work phone to not write

down every time supplies on a piece of paper or a text.

US-2. The cleaner needs a way to be able to log in to the Order-Now account anywhere using login

credentials provided by the employer that they shall use in all applications and hence not having

to remember a new set of login credentials

US-3. The cleaner needs a way to check if a co-worker has ordered the cleaning supplies to a specific

site.

US-4. The cleaner needs a way to be able to indicate if an order is urgent or not.

US-5. The cleaner needs a way need to report occupational hazards accompanied by pictures.

3.3.2 Supervisor

Subsequently, the system requires an administrator whose job is to do the setup, like adding employees

to the system. For this purpose, the supervisor is the user. The following are the user stories.

US-1. The supervisor needs a way to add new cleaning sites and their respective cleaning supplies into

the system.

US-2. The supervisor needs to check the inventory list if there is a delay in the new orders made sot

that no place misses their cleaning supplies for more than 24 hours.

US-3. The supervisor needs not to have to provide login credentials every time accessing the Order-

Now application

6

3.4 Features

A feature is a unit of the functionality of a software system that satisfies a requirement. In other words,

it is a fragment of functionality that implements some user or system need.

Significant features are as follows:

FE-1: Order cleaning supplies to be delivered.

FE-2: Create, view, modify and delete cleaning sites from the list of cleaning locations

FE-3: Suggest to users to make orders by gathering analytics from previous orders and predict-

ing the average time between orders.

FE-4: Give a rating to different cleaning products.

FE-5: Indicate priority of order

FE-6: Check inventory

FE-7: Report occupational hazards using pictures attached with comments such as broken door

handle

FE-8: Assign cleaners to sites

3.4.1 Scope of Initial and Subsequent Releases

Table 1 below details the scope of initial and subsequent releases of the order now application. Due to

time limitations and the need to quickly release the product to the market, the final product is in three

release phases.

Table 1. Scope of initial and subsequent releases

Feature Release 1 Release 2 Release 3

FE-1 Implemented for a few

cleaning sites

Fully implemented

FE-2 Implemented partly Fully implemented

FE-3 Not implemented Implemented for the

first trial sites

Fully implemented

FE-4 Not implemented Fully implemented

FE-5 Fully implemented

FE-6 Not implemented Fully implemented

FE-7 Not implemented Fully implemented

FE-8 Implemented partly Fully implemented

7

4 APPLICATION DESIGN

In this chapter, the order-now application design is explored, coupled with a run-down through the func-

tional and non-functional requirements. The application design describes the various modules developed

along with their functionalities.

4.1 Requirements

Software requirements are a core part of software development and requirements engineering, which

involves developing services the customer requires from a system and the constraints it operates.

(BUEDE & MILLER, 2016, pp. 145-149.)

4.1.1 Functional requirements

Functional requirements are the system’s behavior, how it should react to inputs, and its services

(Sommerville, 2011) . Functional requirements tell developers what the system should do for the system

to accomplish its purpose.

FR101. The system shall let a user who is logged into the system place an order of one or more

cleaning items

FR102. The system shall allow the user to specify whether the order is urgent or a pre-order.

FR103. The system shall display a list of cleaning sites assigned to the cleaner after successful

authentication

FR104. The system shall allow the user to order multiple identical cleaning items

FR105. The system shall prompt the user to confirm an order

FR106. The user shall either confirm the order or request to edit the order

8

4.1.2 Non-functional requirements

Non-functional requirements refer to how well the system performs rather than what it does (Bennet,

Farmer & Mcrobb 2010, 167). Non-functional requirements define system behavior, features, and gen-

eral characteristic that affect the user experience.

NFR101. The system shall accommodate 100 users during the peak usage time window that is be-

tween 4:00 am to 11:00 am

NFR102. Confirmation messages shall be displayed to the users within 4 seconds after the user

submits information to the system

NFR103. All web pages shall take a maximum of 6 seconds over a 2g network, that is over a

40KBps connection

NFR104. Responses to queries shall take a maximum of 5 seconds to load after the user submits a

query.

NFR105. The system shall make use of database encryption to encrypt personal information

4.2 Use cases

Use case diagrams are behavioral diagrams used to capture, specify, and visualize required system be-

havior: Actors, use-cases, and the relationships connecting them used as the main elements. Actors are

entities used to model users or other systems that interact with the system, such as operators using the

system, sensors providing information, and a client computer in a client-server system. (Software engi-

neering design 2012,55-57.)

9

4.2.1 Use Case diagram

Figure 3 below captures users, functions, and their relationships using use case diagrams. The stereotype

<<include>> represents relationships between use cases and further provides a way to extract common

parts of the behavior of two or more use cases.

Figure 1. Use Case Diagram

4.2.2 Description of Use Case diagrams

Tables 2 to 9 below provide detailed descriptions of the use cases shown in Figure 3 above. Each use

case has a unique id, a use case name, and a description. The other vital parts of a use case description

captured on the tables are pre-conditions, post-conditions, normal-flow and alternative flows. The pre-

conditions refer to conditions that must hold for the use-case to begin, while post-conditions refer to

conditions that must hold once the use case is complete. Furthermore the normal-flow refers to the most

10

frequent use case scenario, while alternative flows refer to less frequent scenarios. Alternative flows

represent flows that not directly in support of the goals of the system.

Table 2. Login Use Case

Use Case ID: 001

Use Case Name: Login

Actors: Cleaner

Description: User can log in with their credentials to use the system

Trigger: User presses login button

Pre-conditions: The admin has registered the user to access the system

Normal Flow: The user is already registered and can access services provided by the system.

Alternative Flows: The user does not have the correct details and is prompted to use the forgot

password pop up window

Exceptions:

Post-conditions:

Includes:

Assumptions: Customer will edit or delete their information once they are beyond what the

system entails

Notes and Issues:

Table 3. Manage Order Items Use Case

Use Case ID: 002

Use Case Name: Manage order Items

Actors: Cleaner

Description: The user selects a site out of the sites automatically enlisted, and another win-

dow pops up with a list of cleaning items for that site coupled with controls.

Trigger: Login

Pre-conditions: The user has been assigned cleaning places by the administrator and has

logged in successfully

Normal Flow: User logs in, and all the cleaning sites are loaded; the user picks one cleaning

site and proceeds to manage the orders

Alternative Flows: The user does not have the correct details and is prompted to use the forgot

password pop up window

Exceptions:

Post-conditions:

Includes: Delete Items, Add Items

Frequency of Use:

Notes and Issues:

Table 4. Place Order Use Case

Use Case ID: 003

Use Case Name: Place Order

Actors: Cleaner

11

Description: The user adds at least one item to the order list and can proceed with placing

an order

Trigger:

Pre-conditions: At least a single item is present in the cart

Normal Flow:

Alternative Flows:

Exceptions: Another user places an order with the same attributes

Post-conditions:

Includes:

Frequency of Use:

Assumptions:

Table 5. Confirm Order

Use Case ID: 004

Use Case Name: Confirm Order

Actors: Cleaner

Description:

Trigger: User presses the confirm order button

Pre-conditions:

Normal Flow: The user confirms the order after going through the list on the modal and pro-

ceeds to checkout

Alternative Flows:

Exceptions:

Post-conditions:

Includes: Checkout

Frequency of Use:

Special Require-

ments:

Assumptions:

Table 6. Register site Use Case

Use Case ID: 006

Use Case Name: Register Site

Actors: Administrator

Description: User registers a new cleaning site using the register button

Trigger:

Pre-conditions: All site details are provided, including the address and cleaning products used

Normal Flow: The new site does not exist in the system and is successfully registered

Alternative Flows: A new site already exists in the system and can only be edited

Exceptions:

Post-conditions:

Includes:

12

Frequency of Use:

Special Require-

ments:

Assumptions:

Table 7. Remove Site Use Case

Use Case ID: 007

Use Case Name: Remove Site

Actors: Administrator

Description: User can remove a site from the system, for example, when a termination of a

cleaning contract occurs

Trigger:

Pre-conditions: The site exists in the system

Normal Flow: The administrator removes the site

Alternative Flows:

Exceptions:

Post-conditions:

Includes:

Frequency of Use:

Assumptions:

Table 8. Register Account Use Case

Use Case ID: 008

Use Case Name: Register Account

Actors: Administrator

Description: Admin registers all the users who can use the system and in turn provides

them with login credentials

Trigger:

Pre-conditions:

Normal Flow: User is successfully registered

Alternative Flows:

Exceptions:

Post-conditions: Users can log in using the credentials handed to them by the admin

Includes:

Frequency of Use:

Special Require-

ments:

Assumptions:

Notes and Issues:

Table 9. Obtain Orders Use Case

Use Case ID: 009

Use Case Name: Obtain Orders

13

Actors: Administrator

Description: The user obtains all orders made for further action

Trigger:

Pre-conditions:

Normal Flow: Orders made by the other actors that are cleaners, successfully, the user gets a

list of all orders made.

Alternative Flows:

Exceptions: No pending orders

Post-conditions:

Includes:

Frequency of Use:

Assumptions:

14

5 APPLICATION DEVELOPMENT AND IMPLEMENTATION

This chapter provides the various steps taken in the development and implementation of the order now

application. It provides an in-depth look at the architecture used in the development and the various

technologies used. Furthermore, it provides an overview of how the user will interact with the user in-

terface by providing a graphical representation of the user interface.

5.1 Software Architecture

According to IEEE, Software Architecture is a broad term that describes a software system’s entire or-

ganization embodied in its components, relationships to each other and the environment, and the princi-

ples guiding its design and evolution. (Sommerville, 2019, pp. 81-84.) This project’s architecture focuses

solely on presenting an interactive user interface even though the process flow and components might

defer slightly depending on the users. The model view controller architecture was chosen for this project

and shall be discussed later after highlighting the user interface for better understanding.

Three main parts make up Order-Now application in its architecture. First and foremost, the database

holds all the essential data from the users and, more importantly, data used to create components that

make up the user interface.

Secondly, the User interface created using components. The user interface is what the user interacts with

within the system. Coupled with that, users can input data into the system using the components in the

user interface.

Furthermore, another vital component of the system is the server. It serves as a communication channel

between the database and the UI.

5.2 User Interface Design

As briefly mentioned earlier, the user interface is a collection of components, which begs the question,

what is a component? A component is an element that implements a coherent set of functionality or

15

features. The order-now application uses a component-based approach, with the first step being the de-

composition of software into several components.

Furthermore, the Order-Now application relies heavily on the react library in its implementation. Sub-

sequently, react is component-based. React is a JavaScript library for building user interfaces that allow

for; passing data through the application and keeping the state out of the Document Object Model. React

allows the rendering of the right components whenever the data changes, thereby creating an interactive

feel.

Figure 5 below shows the user interface in the various stages of interaction by the user. However, this is

the basic version of the first release; more features are underway on the subsequent releases.

Step 1: The user enters their login details and presses the green button to log in

Step 2: The user selects a cleaning site and is lead to the next page

Step 3: The user can choose either one of two buttons, the timer, or place orders. If the user chooses to

place orders, they are lead to the next page.

Step 4: The application generates a unique list of supplies to the UI, depending on the cleaning site.

Coupled with that are buttons to add or remove the quantity of the supplies to the user.

Figure 2. User interface design

16

5.3 React Library

Before taking a deep dive into the react library, an overview of the document object model, commonly

known as DOM, is discussed. DOM is an API for HTML, XML, and SVG. The DOM offers a webpage

as a tree of elements and allows scripting languages such as javascript to access them. Besides, DOM is

used to build documents, navigate their structure, and add, modify or delete elements and contents. In

javascript, which is the primary language of choice in this project, contains a required method called the

DOM interface acts as a gateway to the DOM structure. (Wilton & McPeak, 2009.)

5.3.1 Virtual Dom

Javascript operations are relatively fast compared to the DOM manipulation, which is at the heart of the

modern interactive web. The fact that most Javascript frameworks update the DOM much more than

they have to has not made the situation any better. To circumnavigate the slow DOM manipulation,

developers use a virtual DOM.

The virtual Dom is a JavaScript object that is a representation of the browser DOM. It is fast compared

to the browser Dom. It can produce 200,000 virtual DOM nodes per second; hence it is significant in the

application’s high performance by cutting down on load time; this comes in handy whereby every time

there is a change in the application, creation of a new virtual DOM occurs. (React, 2020).

5.3.2 Model View Controller Architecture

React follows the Model-View-Controller architectural pattern, commonly known as MVC architecture,

which comprises three general components: the Model, the View, and the Controller. The model man-

ages the data and rules of the application. The view refers to what the user interacts with on an applica-

tion. On the other hand, the Controller takes user input and converts it into commands for the Model or

View layers. Figure 6 below shows the implementation of an MVC architecture.

To better understand how the MVC architecture works, a user in the client computer requests a list of

cleaning sites from the database. The client sends a request to the server; the controller component re-

17

ceives the request in the server. In turn, the Controller passes the request to the Controller, which even-

tually communicates with the database. The data is retrieved from the database and through the model

component and forwarded to the Controller. Instead of the retrieved data being sent directly to the client,

it is sent to the view component because the database’s data may not always be in a human-readable

format.

Therefore, the view’s main task is to modify the data into a human-readable format, and style is applied

to the data to make it more presentable to the user. As illustrated, the model oversees interactions with

the database and executing business logic, while the view’s task is what the user sees on the screen and

generating the user interface. Coupled with that, the Controller takes user input and interacts with both

the view and the model. Hence rubber-stamping the idea of having different components with coherent

functionality.

Figure 3. MVC Architecture

18

5.4 Development

The development phase involves laying out a component tree that provides a blueprint of how the com-

ponents will be implemented and enhance reusability, one of the react library’s critical foundation. Each

component’s implementation is as a coherent fragment of functionality that provides a particular service.

When planning components according to the React library, there are two types of components to be

considered, that is stateless and stateful components. Stateful components keep track of changing data,

while stateless components are presentational components in that they print out data given to them via

props.

5.4.1 Layout Component tree

As mentioned earlier, components are vital in creating react applications; the first step is to identify

components and create a component tree. In this subtopic, a component tree for the order now application

shall be explored. Figure 7 below outlines the key components of the application.

Figure 4. Component tree for order-Now application

19

5.4.2 Planning the state

Planning the state gives room for deciding which of the components should be stateful and which ones

should be stateless. Stateless components are merely functional components that do not have a local

state; however, with React hooks’ advent, adding a local state to a functional component is possible. On

the other hand, stateful components, otherwise known as containers, keep track of changing data, unlike

stateless components that print data received via props. Props are arguments passed into react compo-

nents, and this application utilizes them as a cornerstone in building scalable views using data from the

back-end. Data from the back-end transforms and is passed as arguments to create react components,

thereby giving an interactive feel to the application. The state manages the different locations’ cleaning

locations obtained from the database, the cleaning products to be ordered, and the order priority.

5.5 Server

A server can refer to either hardware or software or both working harmoniously. A web server is a

computer that stores web server software and a website’s component files, in this case, the JSON file.

JSON (JavaScript Object Notation) is a data exchange format. It is text-based and lightweight for data

exchange between clients and servers. Figure 8 displays a raw HTTP request from the client. In this case,

it would be a cleaner’s mobile phone to the server. The server serves the requests and responds as ex-

pected. Correspondingly, JSON used as the data format in the two way communication is a serialized

string with a combination of key values enveloped in parentheses. (D’mello & Sriparasa 2018, 8.)

Figure 5. Client-Server Communication

20

5.6 Firebase Realtime Database

For this project, the Firebase Realtime database is the designated database, as it is easy to implement

and is secure. Firebase Realtime Database is a cloud-hosted database that stores data as JSON and syn-

chronized Realtime to every connected client. (Google, 2020.)

The data synchronization of firebase allows for any connected device to receive updates within millisec-

onds every time data changes, which is critical in making the application responsive. Coupled with that,

the Firebase Realtime Database can be accessed directly from a mobile device or a web browser because

there is no need for an application server.

However, implementing other back-end solutions is in the pipeline because of a few shortfalls of the

Firebase Realtime Database. One of the drawbacks is limited querying capabilities since the whole da-

tabase is a huge JSON file, making it difficult to make complex queries. Furthermore, because of its data

modeling,” data as a single file” structure, relations between data items cannot be implemented. (Google,

2020.)

Firebase Realtime database is a NoSQL database that stores data as JSON objects. Adding data to the

database leads to the automatic creation of nodes in the existing JSON structure with an associated key.

FIGURE 9 below provides a visual representation of the database structure. The three small circles rep-

resent objects with multiple instances, while the rectangles with rounded edges represent nodes in the

hierarchy. The first node on the far left represents the parent node as the hierarchy moves from left to

right.

21

Figure 6. Database Structure

5.7 Authentication

Authentication is a process of ensuring anyone who accesses the system is who they claim to be and is

the backbone of any services system which seeks to provide services to the right users. Furthermore, it

ensures that the information providers are the only ones mandated to manipulate the information. Gen-

erally, authentication bases itself on three approaches: User knowledge, user possession, and user attrib-

utes.

User-knowledge-based authentication relies on the user providing private information when registering

to use the system. Subsequently, every time the user wants to use the system, part of the information is

22

requested. On the other hand,possession-based authentication relies on the user having a physical device

connected to the authenticating system. For instance, a user can receive a text message with a code on

their phone and input it to confirm that they possess the device. The user inputs this code and is in turn

compared with a code generated by the authenticating system. Subsequently, Attribute-based authenti-

cation bases itself on unique biometric features of the user, such as fingerprints.

Each of the authentication approaches mentioned above has its advantages and disadvantages. Attribute-

based authentication takes precedence in terms of being more secure while user-knowledge-based com-

ing last. However, new authentication systems use hybrid authentication systems that combine two or

more approaches. Service providers such as Google offer a two-stage authentication method that uses a

password coupled with a confirmation code sent on the user’s phone. Furthermore, when choosing an

authentication method, the product is put into consideration. In the Order-now application, confidential

user information such as financial information is not a requirement from the user. Therefore, knowledge-

based authentication is all that is required. (Sommerville 2019,195-197.)

23

6 CONCLUSION

The product of this work, order now, is a user-friendly web-based service that provides ordering services

to cleaning companies. The purpose of this thesis was to present an opportunity and create a viable

commercial product to be developed and eventually availed to the market. Moreover, the idea came

about through personal experience in the cleaning industry, which exposed the gaps in existing systems

that could be improved using the software.

As more and more companies automate their business, custom software has become less favored con-

sidering its associated costs. It has become clear that most companies face common business problems.

Cleaning companies face the same problem when it comes to ordering supplies. Therefore, the approach

taken for this software was product based engineering as opposed to project-based engineering. It pro-

vided an opportunity to develop features and build on existing systems’ weaknesses, hoping to be a

game-changer in the cleaning industry and potentially have a broad market appeal.

The various phases of this project’s development have been an incredible learning experience and, cou-

pled with the various challenges experienced in solving different problems, brought an insight into the

software development industry. Creation of personas, scenarios, and user stories was the highlight of

this project as it finally made sense of how important they are in feature identification. Some takeaways

are that software development is evolving and should be fully used to solve common business problems.

Furthermore, with the ever-growing desirability towards artificial intelligence, plans are on course to

invest time in finding ways to better this application and the system by utilizing the power of artificial

intelligence. Artificial intelligence, combined with the power of machine learning, have been the two

main components in enabling better predictability in various business entities.

24

REFERENCES

Bennet, S., Farmer, R., & McRobb, S. 2010. Object-oriented Systems Analysis and Design: Using

UML. New York: McGraw-Hill Education.

Buede, D. M., & Miller, W. D. 2016. the engineering design of systems.3rd edition. Hoboken, NJ: John

Wiley & Sons, Inc.

D’mello, B. J., & Sriparasa, S. S. 2018. JavaScript and json essentials.2nd edition. Birmingham -

Mumbai: Packt Publishing Ltd.

Google. 2020, 11, 10. Firebase. Available: https://firebase.google.com .Accessed 11 November 2020

Korttilinna, O. 2020, 11, 2020. Duunissa. Available: https://www.duunissa.fi/ .Accessed 23 November

2020.

React.2020.React.Available:https://reactjs.org/docs/faq-internals.html#gatsby-focus-wrapper

.Accessed 15 October 2020.

Sommerville, I. 2011. Software engineering. In S. Ian. Hoboken, NJ: Pearson.

Sommerville, I. 2019. Engineering software products (1st ed.). Hoboken, NJ: Pearson.

Wilton, P., & McPeak, J. 2009. Begining Javascript. Indianapolis, Indiana: John Wiley & Sons

,Incorporated.

