
Thomas Nylund

Developing a cross-platform MVP app with
React Native
A niche smartphone app to help aspiring hunters prepare for
the Finnish hunting exam

Thomas Nylund

Degree Thesis
Information Technology

2020

EXAMENSARBETE
Arcada

Utbildningsprogram: Informationsteknik

Identifikationsnummer: 24605
Författare: Thomas Nylund
Arbetets namn:

Handledare (Arcada): Pekka Buttler

Uppdragsgivare:

Sammandrag:
Detta examensarbete beskriver utvecklingen av en minimum-viable-product (MVP) ap-
plikation (app) med React Native ramverket för Android och iOS plattformarna. Dessa
plattformar dominerar mobilappekonomin och för att nå så många användare som möj-
ligt måste utvecklare skapa en app för varje plattform, vilket kräver att de lär sig två
olika utecklingsekosystem, med olika programmeringsspråk och verktyg. Detta höjer
utvecklingstiden och kostnaderna och gör apputveckling orimligt för många individer
och småföretag. Men, cross-platform-ramverk erbjuder en lösning då de möjliggör ut-
vecklingen av en app som kan distribueras till flera plattformar. Under utvecklingspro-
cessen stöder sig utvecklare ofta på mjukvaruutvecklingsteori, men hur bra stöder
egentligen denna teori små mjukvaruprojekt med bara en utvecklare. Genom att ut-
veckla en app försöker vi ta reda på hur bra mjukvaruutvecklingsteorin tillämpar sig till
utvecklingen av en MVP app av en ensam utvecklare, hur användbart React Native
ramverket är för en ensam utvecklar som bygger sin första cross-platform app, och hur
mycket av appkoden som delas mellan de två plattformarna. Teoretiska delen diskuterar
mjukvaruutvecklingsprocessteori, med en närmare titt på två utvecklingsmodeller: plan-
driven- och inkrementell utveckling. Dessutom, diskuteras MVP sättet och hur det på-
verkar produktutveckling. Vi diskuterar också mobilapputveckling och tittar närmare på
cross-platform-apputveckling och mer specifikt, React Native, för att ge läsaren insikt i
teknologier inom området och varför ett ramverk valdes över ett annat. I praktiska delen
diskuteras MVP appens utveckling och dess viktigaste delar, samt olika beslut som
gjorts under utvecklingsprocessen. Arbetets resultat visar att mjukvaruutvecklingsteori
har begränsat värde för små mjukvaruprojekt i stil med projektappen och att mjukvaru-
kokböcker är mer nyttiga för oerfarna utvecklare. Dessutom, visade sig React Native
vara ett mycket bra ramverk för en ensam utvecklare med tidigare erfarenhet av Java-
Script och React. Ramverket låter en utvecklare utnyttja mycket av sin existerande kun-
skap för att kostnadseffektivt utveckla en MVP app som kan lanseras nativt på två platt-
formar, vilket gör det möjligt för lönsam utveckling av även nischappar. Till slut så de-
lade projektappen nästan all kod mellan plattformarna.
Nyckelord: Cross-platform, React Native, Expo, minimum viable pro-

duct (MVP), mobilapplikationer, mjukvaruutvecklingspro-
cessen, mjukvaruutvecklingsmodeller

Sidantal:
Språk: Engelska
Datum för godkännande:

DEGREE THESIS
Arcada

Degree Programme: Information Technology

Identification number: 24605
Author: Thomas Nylund
Title:

Supervisor (Arcada): Pekka Buttler

Commissioned by:

Abstract:
This thesis describes the development of a minimum-viable-product (MVP) app with the
React Native cross-platform framework for the Android and iOS platforms. These plat-
forms dominate the app economy and to reach as many users as possible, developers have
to create one app for each platform. This requires them to learn two very different devel-
opment ecosystems, with different programming languages and tools. This increases de-
velopment time and cost, making it unfeasible for many individuals and small businesses.
Cross-platform frameworks offer a solution by allowing developers to create one app that
can be distributed on multiple platforms. When developing apps, developers often rely on
software development theory to support them during the development process, but how
well does the theory support smaller projects that might only have one developer. By de-
veloping an app, the objective of this thesis is to find out how well software development
theory supports a sole developer building an MVP app, how useful the React Native
framework is for a sole developer building their first cross-platform app, and how much
of the code can be shared across the two target platforms. The theoretical part of the the-
sis will look at software development process theory, with a closer look at two software
development models: plan-driven and incremental development. In addition, we will dis-
cuss the MVP approach and how that influences product development. We also discuss
mobile app development, with a closer look at cross-platform apps and React Native to
give the reader an understanding of the available technologies in the space and why one
framework was chosen over another. In the practical part, we will walk the reader
through the development of the app and its key elements, and many of the decisions that
were made in the process. The results of the work show that software development theory
has limited value for small-scale software projects, like the case app, and that software
cookbooks are more helpful to inexperienced cross-platform app developers. In addition,
we found that React Native is a great framework for a sole developer familiar with JavaS-
cript and React. It allows the developer to leverage much of their existing knowledge to
develop a low-cost MVP smartphone app that can be published natively to two platforms,
allowing the development of even niche applications to be profitable. In the end, the case
app shared almost all of the codebase between the two target platforms.
Keywords: Cross-platform, React Native, Expo, minimum viable prod-

uct (MVP), mobile applications, software development pro-
cess, software development methodologies

Number of pages:
Language: English
Date of acceptance:

CONTENTS
List of abbreviations .. 7

1 Introduction ... 8

1.1 Background .. 9
1.2 Objective / Purpose .. 10
1.3 Structure of the thesis ... 11
1.4 Limitations and delimitations .. 12

2 Software Development Process ... 12

2.1 Software specification (requirements engineering) .. 13
2.2 Software design and implementation ... 15
2.3 Software validation ... 18
2.4 Software Process Models ... 19

2.4.1 Plan-driven development .. 20
2.4.2 Incremental development ... 21
2.4.3 Minimum viable product (MVP) .. 24

3 Mobile Application Development ... 25

3.1 Native application development .. 27
3.2 Cross-platform application development .. 28
3.3 Cross-platform vs. native development .. 29
3.4 Cross-platform technologies ... 30

3.4.1 Hybrid cross-platform apps ... 30
3.4.2 Cross-platform native apps ... 31

3.5 Why I chose React Native for developing the app .. 33
3.5.1 A closer look at React Native ... 33

4 Building The MVP With React Native .. 34

4.1 Preparation ... 35
4.1.1 Requirements ... 35
4.1.2 Tools ... 35
4.1.3 Installation and setup .. 36
4.1.4 The beginning ... 37

4.2 Development .. 38
4.2.1 Buttons ... 38
4.2.2 Styling the components .. 39
4.2.3 Screens and navigation .. 39
4.2.4 Quiz logic and questions .. 41
4.2.5 ResultsList .. 43
4.2.6 State ... 43

4.2.7 User experience-enhancing functionality .. 44
4.3 Testing .. 46
4.4 Code sharing between platforms .. 47
4.5 Reflecting on my development process .. 47

5 Conclusion ... 49

References .. 53

Appendix ... 56

6 Swedish Summary .. 56

Figures
Figure 1. The requirements engineering process (Sommerville 2016, p. 55). 14

Figure 2. A general model of the design process (Sommerville 2016, p. 56). 16

Figure 3. The waterfall model (Sommerville 2016, p. 47). .. 20

Figure 4. Incremental development (Sommerville 2016, p. 50). 22

Figure 5. How hybrid cross-platform frameworks work (Duffy 2018). 30

Figure 6. Hybrid app architecture (Duffy 2018). .. 31

Figure 7. How cross-platform native frameworks work (Duffy 2018). 32

Figure 8. Two types of cross-platform native apps (Duffy 2018). 32

Figure 9. Screenshot of app buttons. .. 38

Figure 10. Example of React Native core component importing. 38

Figure 11. Screenshot of button styling. ... 39

Figure 12. A few screenshots of screens from the app. From left to right, Menu,

ImageQuestions, and ResultsView. .. 39

Figure 13. Sequence diagram of the app navigation flow. ... 40

Figure 14. Image of NavigationBar component. .. 41

Figure 15. ResultsView component and its props. ... 41

Figure 16. Data structure of text-based question. ... 41

Figure 17. Data structure of image-based question. ... 42

Figure 18. Network connection notification. .. 44

Figure 19. Image of ActivityIndicator. ... 45

Figure 20. Image of app icon on iOS. ... 46

Figure 21. Image of iPhone SE and Nexus S emulators ... 47

Tables

Table 1. The principles of agile methods (Sommerville 2016, p. 76). 24

Table 2. The difference between native and cross-platform app development

(Manchanda 2019). ... 28

LIST OF ABBREVIATIONS

API Application Programming Interface

AWS Amazon Web Services

CLI Command-line Interface

CSS Cascading Style Sheets

HTML Hypertext Markup Language

IDE Integrated Development Environment

MVP Minimum Viable Product

NPM Node Package Manager

OS Operating System

OTA Over-The-Air

SDK Software Development Kit

UI User Interface

UX User Experience

8

1 INTRODUCTION

If there is a simple everyday problem that could be solved by technology, then consumers

can probably find a smartphone app that tries to offer a solution. This is why Apple filed

to trademark the slogan “There’s an app for that” (Chen 2010) in 2009. Ten years later

(2019) the app economy has exploded with consumers downloading a record 204 billion

apps during the year, with worldwide App Store spending reaching $120 billion, up 2.1x

from 2016.

Over the past decade, consumers have gotten more and more used to looking for an app

no matter how niche the desired service might be, further fueling demand. One such niche

could be an app that helps aspiring hunters prepare for the Finnish hunting exam, the

passing of which is required to legally hunt wild game in Finland. However, for such a

niche app to make business sense, the development would need to be low-cost and simple.

While the iOS and Android app stores allow apps to be distributed to billions of consum-

ers at very low additional cost after creation, product development bears a lot of risk

because of the time and resources it requires, further exacerbated by the unpredictable

nature of how consumers might receive a product. To reduce such risk, simple working

prototypes are often developed and released to market quickly. This allows users to test

the product early and provide real feedback, which then guides further development in

small increments, thereby ensuring that the final product meets the users’ requirements.

However, such an approach creates a need for both development tools that facilitate fast

delivery of working software, and a software development process able to support it.

Cross-platform development frameworks promise to allow the development of an app

that can run on several platforms, cutting down on needed technological know-how and

development time, thereby also promising to make app development more accessible to

smaller teams.

But would such a cross-platform development framework allow a single relatively inex-

perienced programmer to produce a cross-platform mobile app and publish it on both the

iOS and Android app stores. Could such a development project be sufficiently low-cost

for targeting even small niches? Can there really be an app for even that?

9

1.1 Background

In the summer of 2007, Apple launched the iPhone with the iOS operating system (OS)

(Clark 2012). One year later, Google launched its own smartphone OS called Android.

Shortly after, in July 2008, Apple launched the App Store with 552 apps (Strain 2015).

Many consider this having given birth to the so-called app economy (Strain 2015, Wik-

ipedia 2020a). In the following years, several smartphone manufacturers, like Google,

RIM, and Microsoft, launched their own app stores to make their devices more attractive

to consumers (Clark 2012). Today, Apple iOS and Google Android dominate the market

for smartphones and apps with 99% of devices using one of their OSs (O’Dea 2020).

Hence, covering these two platforms is essentially sufficient to reach the whole market.

Today, no-one doubts the crucial role apps play in allowing users to make maximum use

of their smartphones. On average, people use their smartphones for three hours and forty

minutes per day (App Annie 2020). That time is split among the following categories:

social media and communications 50%, video and entertainment 21%, gaming 9%, and

other 19%. Gaming also accounted for 72% of app store spending, which indicates that

smartphone users are quite willing to pay for something which amuses them or allows

them to pass the time (App Annie 2020). Increasing usage, spending, and app downloads

tell us that users prefer to use services that are made specifically for handheld devices.

The app economy’s large potential market, low barriers to entry, almost free distribution,

and frictionless consumption are the main arguments for why an app idea with a sound

business case should be strongly considered. Moreover, a ‘sound business case’ need not

be big business – even a relatively niche product can be lucrative if costs can be kept low.

All these factors contribute to creating opportunities for small businesses which, despite

their scarce resources, can employ technologies facilitating fast and efficient delivery of

software to multiple platforms. Together with production philosophies like Agile and

Lean, that embrace incrementally building out product features in order of their necessity,

it is possible to create cost-efficient products that offer clear utility to their users – no

matter whether the potential user base is numbered in millions or mere thousands.

Annually, over 6000 people pass the Finnish hunting exam (Riistainfo s.a. a). Taking the

exam costs 20€, and it consists of 60 questions, out of which 15 are image-based animal

10

identification questions and 45 are text-based multiple-choice questions (Riistainfo s.a.

b). Passing the exam allows for no more than 8 wrong answers. In 2017 and 2018 the

success rate of the exam was 55% and 69%, which indicates that many people have to try

multiple times in order to pass (Mikkola 2018).

For years I have studied languages on my smartphone because it is so convenient. There

is no need to carry around any books and I can easily study with the help of a device I

almost always have with me. This inspired me to look for an app to help me study for the

hunting exam, but I was disappointed when I did not find one. There is a variety of learn-

ing material available, both digital and print, but no smartphone app. This simple but

unmet need coupled with the requirement of a final project gave me the idea to develop

an app and use it as a case for my thesis.

1.2 Objective / Purpose

The objective of this thesis is to utilize cross-platform technologies together with agile

product development philosophies to test their suitability for a business case that requires

app development to be low-cost, quick, and simple. To test this, we are going to build a

minimum viable product (MVP) app that is intended to be released in the iOS and Android

app stores. “Unlike a prototype or a concept test, an MVP is designed not just to answer

product design or technical questions. Its goal is to test fundamental business hypotheses”

(Ries 2011, pp. 93-94). The app would initially be a free quiz style app that mimics the

structure of the hunting exam. Based on the feedback gathered on the app it would then

be further developed. If it proves valuable to its users, it could then be monetized.

The most practical way to target both the iOS and Android platforms is to use a cross-

platform framework. Cross-platform frameworks allow the development of one app that

can run on several platforms, cutting down on needed technological know-how and de-

velopment time. This will be discussed in more detail in section three.

The goal is to develop an MVP app for the earlier described business case. By developing

this app, we will investigate how well the React Native framework is suited for this case

and if it fulfills its promise of “learn once, write anywhere”, allowing for lower develop-

ment time and needed know-how to build native smartphone apps (React Native s. a. a).

11

We will investigate how much of the case apps codebase is shared across the platforms.

And, we will also examine how well the existing software development theory supports

the development of a simple MVP, like the case app, that is built by a sole developer.

The questions answered in this thesis are:

Can a sole developer utilize a cross-platform framework to develop a low-cost MVP app

for both the iOS and Android platforms?

How much of the codebase in the MVP is shared across the iOS and Android platforms?

How well does existing software development process theory support the development of

an MVP by a sole developer?

1.3 Structure of the thesis

This thesis is divided into a theoretical and a practical part. The theoretical part of the

thesis is divided into two sections. Section two, which is the first of the theoretical sec-

tions, will look at the three main stages of the software development process: require-

ments specification, software design and implementation, and software validation. After

that, we will touch on two software process models, plan-driven and incremental. Finally,

we will look at the how, why, and when of the MVP approach. This section forms the

underlying theoretical foundation for the development of the app.

Section three introduces mobile application development, explains the differences be-

tween native and cross-platform mobile development, and then focuses on different types

of cross-platform apps, with a closer look at the React Native framework. This section

covers the technologies that have influenced and been used in the development of the

MVP.

The practical part of the thesis focuses on the development of the MVP app using the

React Native framework. This part will not be a step-by-step guide of the development

process. Instead, it will showcase the app and give an overview of the development pro-

cess by discussing the tools and libraries that were used in the implementation, and the

technological decisions that were made to arrive at the final product.

12

1.4 Limitations and delimitations

The thesis focuses on the three first stages of the software development process, the de-

velopment of a cross-platform MVP app, and the technologies involved. As mentioned

earlier, the app will be developed with React Native and other smartphone development

technologies will only be discussed briefly. This does not mean that React Native is the

best framework for developing the case application, but rather that it was the best option

in light of the specific skills, background, and preferences of the author.

The thesis covers the development process of the case app to the stage where the app

could be released to the app stores, but it will not cover how an app is released to app

stores, the subsequent feedback that is gathered, or the evolution of the app after the

launch. The evolution of an app can take much longer than developing the initial version

and it is therefore out of the scope of this thesis.

* * *

Aside from building a simple web page with a personal blog on it, building software

products can quickly become a very complex task that takes several weeks or months,

and hundreds of man-hours to complete. To better understand how software products are

built, we should start by looking at the software development process and the common

stages developers go through when building software products. This is what we will cover

next.

2 SOFTWARE DEVELOPMENT PROCESS

The process used when developing software from concept to product is called the soft-

ware development process (Sommerville 2016, pp. 22-23). This process involves a sys-

tematic execution of activities that help developers create high-quality software. Som-

merville (2016, p. 23) lists four activities involved in all software development processes:

1. Software specification, where customers and/or end-users together with engineers

define the software that is to be developed. They specify what the software should

and should not do.

2. Software development, where the software is designed and implemented.

13

3. Software validation, where the software is inspected to ensure that it meets all the

requirements of what has been ordered.

4. Software evolution, where the software is maintained and improved to meet the

changing needs of the customer and the market.

The above-mentioned activities can be very complex and greatly vary in workload de-

pending on the project. They often also involve many sub-activities such as project plan-

ning, architecture design, and unit testing. (Sommerville 2016, p. 44)

In practice, most software companies tailor the development process to fit their organiza-

tional characteristics, like the skills and knowledge of their software developers, and the

requirements of the projects that they usually develop. But they largely still rely on the

same process, executing the same fundamental activities in the same order. Next, we are

going to look at these activities in more detail. (Sommerville 2016, p. 45)

2.1 Software specification (requirements engineering)

Software specification is the process of gathering information about the end-users’ and/or

customers’ wants and needs through discussions, investigation of tasks, workflows, pro-

cesses, and existing technological solutions (Sommerville 2016, p. 54, Stephens 2015).

The information is then analyzed with the objective of figuring out what services are re-

quired from the software and identifying restrictions for its development and operation

(Sommerville 2016, p. 54, Stephens 2015). Both Sommerville (2016, p. 54) and Stephens

(2015) emphasize that this is a crucial part of the software development process as a whole

because any mistakes at this stage will affect the design and implementation of the soft-

ware.

For a requirement to be useful, it should be expressed in a statement that is clear and easy

to understand, with an explicit and verifiable request so that everyone involved easily

comprehends what it is about. Stephens (2015, chapter 4) explains “They[requirements]

can’t be open-ended statements such as, "Process more work orders per hour than are

currently being processed." How many work orders is "more?"[…]”. This can be achieved

by avoiding unnecessary use of technical terms, abbreviations, management speak, and

14

open-ended statements, so that there is little room for misinterpretation on the individual

level.

The specification process (see image below) aims to produce a requirements document

that specifies a software system that meets the needs of the customers and end-users. The

requirements are usually documented on two levels: the end-users and customers want to

know the high-level requirements, while the developers need more detailed documenta-

tion. (Sommerville 2016, p. 54)

Figure 1. The requirements engineering process (Sommerville 2016, p. 55).

According to Sommerville (2016, p. 55) the software specification process includes the

following three main activities:

1. Requirements elicitation and analysis. This entails the collection of software re-

quirements by researching existing systems, discussions with customers and sup-

pliers, workflow analysis, and so on. System models and prototypes are often de-

veloped at this stage to get a better understanding of what the users really need.

2. Requirements specification. This requires that the information that was collected

and analyzed in the previous activity is transferred to a document that defines a

set of requirements. The document often contains two types of requirements. The

first type is user requirements, which are descriptions of what the end-users and

customers want and need from the software. The second type is system require-

ments that describe, in detail, the features that the system should have.

15

3. Requirements validation. This encompasses that the requirements are checked to

confirm that they are realistic, consistent, and complete. This activity often reveals

errors that then have to be corrected.

New requirements can come to light at any stage of the requirements specification process

(Sommerville 2016, p. 55). Figure 1 provides an overview of the entire requirements

specification process and clearly shows how one moves back and forth between the dif-

ferent activities. The process results in a requirements document that supports the design

and development of the software system (Stephens 2015). The format and level of detail

of the specified requirements depend on the size and complexity of the project. Stephens

(2015, chapter 12) explains:

For a large traditional project, the specification might include hundreds of pages of text, charts, dia-
grams, and use cases. For a small project that you are writing for your own use, the specification might
be all in your head, and you might "write" it while walking the dog or singing in the shower.

In agile development methods, requirements specification is not considered a separate

activity from development. At the beginning of each cycle of the development process,

requirements are informally specified before developers start programming. Require-

ments are collected from end-users who also prioritize them. The development team ac-

tively communicates with the end-users throughout the development process to make sure

the requirements stay up to date and that they are interpreted correctly. (Sommerville

2016, p. 55)

2.2 Software design and implementation

Software development can be seen as a process where an idea or concept is broken down

into ever smaller parts until the parts are so small that they can easily be programmed

(Stephens 2015). The goal of the design and implementation stage is to develop a working

piece of software that can be delivered to the customer (Sommerville 2016, p. 56). Plan-

driven development methods treat design and development as separate activities often

conducted by different people, whereas Agile development methods see them as being

interleaved. Sommerville defines software design as (Sommerville 2016, p. 56):

A software design is a description of the structure of the software to be implemented, the data models
and structures used by the system, the interfaces between system components and, sometimes, the al-
gorithms used.

16

Software programming often starts before the design is finished. A group of developers

and designers develop the design in a step-by-step process. Each step brings more detail

to the design, and it is not uncommon to have to repeat design activities since they are

interconnected and interdependent (see figure 2). As the design work progresses, new

information is generated, which might affect earlier design decisions and details. This

leads to a lot of rework during the design process while working toward completeness.

Figure 2 provides an overview of what a design process might look like (Sommerville

2016, p. 56)

Figure 2. A general model of the design process (Sommerville 2016, p. 56).

Software systems rarely operate in a silo, but instead, they usually interface with other

software systems, e.g., OSs, databases, middleware, and software applications (Sommer-

ville 2016, p. 57). Together, they make up what Sommerville calls the software platform,

which is the environment where the software system will be run. A good understanding

of the software platform is vital to the design process because developers have to decide

how the system should integrate with its environment.

Sommerville (2016, p. 57) highlights that design process activities vary depending on the

type of software system, but he describes four common activities as follows:

17

1. Architecture design. The system structure is visualized as a whole: what are the

main components that make up the system, their relationship to each other, and

how are they distributed.

2. Database design. During this process, data structures of the system and how they

should be defined in the databases are designed.

3. Interface design. The interfaces of the different system components are defined.

Sommerville emphasizes that the interface specification has to be unambiguous.

A component with a well thought out interface can be used by other components

without them knowing how the component will be implemented. Components

with well-defined interface specifications can be designed and developed sepa-

rately.

4. Component selection and design. In order to save time, one might look for reusa-

ble components. However, if they cannot be found, then new components have to

be developed. At this stage the design might be a simple component description,

which means that the implementation details are left for the developers. There

might also be a list of modifications that have to be made to a reusable component.

The above-mentioned activities result in formal or informal design documents or some-

times directly in written code, which might be the case with Agile development methods.

Agile methods seldom use formal design documents. Instead, the design might be written

on whiteboards, or in developers’ notebooks or laptops. These formal/informal docu-

ments work as the foundation for software programming. (Sommerville 2016, 56-57)

Programming is a separate activity, and Sommerville (2016, p. 58) accentuates that there

is not a set process that developers would usually follow. Some start with the components

they are familiar with, while others start with the unfamiliar components because they

already have an idea of how the familiar components work.

The next activity in the development process, which is testing, starts before programming

has finished (Stephens 2015). When a developer has finished programming a component,

they test the code to check it for errors (Sommerville 2016, p. 58). Sommerville (2016, p.

58) highlights the following difference between testing and debugging:

18

Finding and fixing program defects is called debugging. Defect testing and debugging are different
processes. Testing establishes the existence of defects. Debugging is concerned with locating and cor-
recting these defects.

Stephens (2015) emphasizes that it is best to test the code early and often, because it is

easier to find and fix problems right after the code has been written.

2.3 Software validation

The objective of software validation is to demonstrate that the software system conforms

to the specifications, meets the requirements of the customer, and works under the speci-

fied circumstances. (Sommerville 2016, p. 58, Stephens 2015)

Typically, software systems are validated through tests with test data. Alternatively, one

might schedule controls that include inspection or review of the system or code at differ-

ent stages throughout the development process. (Sommerville 2016, p. 58)

Small software systems can easily be tested as a whole. However, larger systems have to

be tested in phases (Sommerville 2016, p. 58). Sommerville describes three testing phases

in more detail (Sommerville 2016, p. 59):

1. Component testing. The developers test the components that make up the system.

Each component is tested independently. A component might be a function, a

class, or some sort of system feature that uses several functions and/or classes.

2. System testing. The components are put together to create a complete system. The

system is then tested as a whole to check if the different components have been

integrated correctly. The objective is to demonstrate that the system works and

meets the requirements specification.

3. Customer testing. At this phase, the customer tests the software before finally ap-

proving it for real use. The customer performs real work tasks with the software

and flags any inadequacies that weren’t discovered during tests with test data. This

phase might reveal faults in the requirements specification, which could result in

functionality that does not meet the customers’ needs.

In the first phase, the components of the system are tested separately, after which the

system is tested as a whole, and finally, the customer tests the system with real work tasks

and customer data. The aim is to discover errors and inadequacies as early as possible,

19

which is why most software development methods plan testing phases into the develop-

ment process beforehand. Component testing is usually part of the daily work of a devel-

oper as they test code snippets while programming a component. This is a natural solution

since developers know how a component should work when they have programmed it.

(Sommerville 2016, p. 59)

When an error is discovered it has to be fixed. But this can have an unforeseen negative

impact on other system components, which means that one might have to redo tests that

were completed earlier in the process. This leads to a naturally iterative process where

information is discovered that then has to be considered in the context of earlier stages of

the process. (Sommerville 2016, p. 59)

With Agile development methods that develop software in versions, it is not uncommon

that each version of the software would go through all of the three above-mentioned test-

ing phases. This lowers the risk of the final software product not satisfying the customer’s

needs. (Sommerville 2016. p. 59)

2.4 Software Process Models

Software process models, more commonly referred to as software development method-

ologies, represent the activities included in the process in a simplified abstract manner.

These models aim to clarify in what order the different development activities are carried

out, but they do not specify who executes them. (Sommerville 2016, p. 45)

A variety of different process models exist, and they all have their specific strengths and

weaknesses depending on the circumstances. Therefore, it is important for a developer to

be able to pick the right model for the prevailing situation (Sommerville 2016, p. 22).

“The right process depends on the customer and the regulatory requirements, the envi-

ronment where the software will be used, and the type of software being developed”

(Sommerville 2016, p. 46).

Stephens (2015) emphasizes that the models are similar in many ways, but the differences

arise in how they handle the development activities. Based on these differences, the mod-

els can be divided into categories. Stephens (2015) splits them into predictive and iterative

20

models. Poppendieck & Poppendieck (2006) define them as being deterministic or em-

pirical. Sommerville (2016, p. 46) describes two types of general process models that fit

custom software projects: the waterfall model and incremental development. We have

chosen to categorize them as plan-driven and incremental development approaches. Next,

we will look at the general idea behind these two approaches, how they differ, what their

advantages and disadvantages are, and then we will discuss how they might work for a

single person or small development team with scarce resources.

2.4.1 Plan-driven development

In practice, a plan-driven process entails that one would prepare and schedule all the de-

velopment activities before the actual programming of the software is started (Sommer-

ville 2016, pp. 47-48). During the development process, each activity is seen as its own

phase (see figure 3). The completion of a phase results in a document, code, or graphics

that then have to be approved by the customer before moving on to the next phase. This

type of approach works well for hardware with high manufacturing costs. However, with

software the development activities often mingle and exchange information, and Som-

merville emphasizes that the process is seldom linear.

Figure 3. The waterfall model (Sommerville 2016, p. 47).

Problems with the plan-driven process arise from its requirement to plan and decide things

beforehand, which works under the assumption that software developers have all the nec-

essary information early in the development process (Stephens 2015). Stephens points

21

out that it is often hard to know exactly how the software should work, what functionality

it needs, and how those features should be built. Combined with new technology, a plan-

driven approach is even more difficult to apply. However, a plan-driven approach can

work really well in some situations. Stephens (2015, chapter 12) explains:

For example, predictive models work well when the project is relatively small; you know exactly what
you need to do, and the timescale is short enough that requirements won't change during development.

While a development activity is underway, it continuously generates new information.

This information might have unintended consequences for earlier activities, which then

lead to modifications in earlier plans and possibly rework. If the modifications are not

approved by stakeholders, programmers are forced to circumvent or avoid an issue alto-

gether, which leads to a sub-optimal solution. (Sommerville 2016, p. 48)

Sommerville (2016, pp. 48-49) highlights that rework is always required at the final stages

of the development process when errors, inadequacies, and needs for additional features

arise after the software is tested or in use. Also, to ensure that the software remains useful,

it will have to be maintained and expanded. This, in turn, means that several of the devel-

opment activities have to be repeated, which is why the plan-driven process is not suited

for situations where the requirements change quickly and there are several unknown var-

iables.

2.4.2 Incremental development

Incremental development builds on the idea of an early implementation or prototype that

is used to gather feedback from stakeholders (Sommerville 2016, pp. 49-50). Stephens

(2015, chapter 4) describes a prototype as follows:

A prototype is a mockup of some or all of the application. The idea is to give the customers a more
intuitive hands-on feel for what the finished application will look like and how it will behave than you
can get from text descriptions such as user stories and use cases.

The feedback then guides the development of additional versions of the software until the

system meets all requirements. Instead of executing development activities separately,

they actually coincide with rapid information exchange between them (see figure 4).

(Sommerville 2016, pp. 49-50).

22

The concept of using a prototype to gather feedback is closely related to the approach of

using an MVP to test a business hypothesis. MVPs are covered in chapter 2.4.3 later on

in this section.

Figure 4. Incremental development (Sommerville 2016, p. 50).

Typically, the first versions of the software contain the functionality that is most valuable

to the customer (Sommerville 2016, p. 50). Each round of development goes through

requirements specification, development, and validation that then lead to new functional-

ity and a new version. Stephens (2015) points out that functionality is often developed in

small steps, which keeps the increments short and allows the stakeholders to see and pos-

sibly test the software multiple times throughout the development process. This leads to

frequent feedback and modifications that facilitate iterative improvements, which in-

creases the likelihood of the software creating value for the customer (Sommerville 2016,

p. 50).

Sommerville (2016, p. 50) highlights three benefits of incremental development com-

pared to the waterfall model:

1. Compared to the waterfall model, incremental development encourages continu-

ous refinement of the requirements specification. This reduces the amount of re-

work and lowers the implementation costs.

2. Having a working prototype or implementation of the software makes it easier to

collect feedback from stakeholders. A lot of people might find it hard to give feed-

back based on written documents or static graphics.

3. As soon as a version of the software is considered to be valuable enough, it can

be delivered to the customer for use. This allows the customer to gain value from

the software much earlier than would be possible with the waterfall model.

23

Incremental development does not imply that a complete enough version of the software

has to be delivered to the customer so they can start using it right away. The functionality

in a new version of the software is often demonstrated with the sole purpose of gathering

feedback from the end-users, which then allows development to continue.

Incremental development is not without its risks. Sommerville (2016, p. 51) brings forth

two problems from a leadership perspective:

1. The process is often informally documented and difficult to follow. Management

requires consistent deliverables to measure progress. However, sometimes it is

not worth putting down too much time on documentation for each version if it

does not support the development work.

2. The quality of the system architecture has a habit of degrading as the program

versions increase. Simultaneously, continuous changes and additions of new func-

tionality can lead to messy code. This makes the implementation of subsequent

versions more difficult and expensive. To counteract this, it is recommended to

regularly refactor the code, which means engineers would dedicate time specifi-

cally to improve code structure and readability.

Incremental development is a fundamental part of Agile development methods (Sommer-

ville 2016, p. 50). Agile methods rely on a shared set of principles (see table 1) to guide

the development process in the fast-paced, ever-changing business environment (Som-

merville 2016, pp. 75-76). They are best suited for situations with high uncertainty, where

software requirements often change during the development process. This is common in

business application and software product development, which is why incremental devel-

opment has become so popular (Sommerville 2016, p. 50). Agile works best when devel-

oping new software in small co-located teams where the focus is more on design and

implementation and less on documentation (Sommerville 2016, p. 89). However, many

modern software companies have development teams that are distributed across the globe.

In addition, Agile methods are harder to adapt to “the legal approach to contract definition

that is commonly used in large companies” (Sommerville 2016, p. 89).

24

Table 1. The principles of agile methods (Sommerville 2016, p. 76).

Small start-up companies can work informally with short-term plans, but larger compa-

nies must have long-term plans and budgets for investing, personnel, and business devel-

opment. This pushes software development in larger companies to also think more long-

term. To address these challenges, many large Agile software development projects have

combined elements of the plan-driven and the Agile approach. If they end up being more

plan-driven, or more Agile, depends on the characteristics of the organization. (Sommer-

ville 2016, p. 91)

2.4.3 Minimum viable product (MVP)

An MVP is the simplest version of a product that is deemed good enough to be released

to customers so they can provide feedback on the product through their usage (Ries 2011,

pp. 93-94). “Unlike a prototype or a concept test, an MVP is designed not just to answer

product design or technical questions. Its goal is to test fundamental business hypotheses”

(Ries 2011, pp. 93-94). If the product proves valuable to its users, their feedback is then

used to improve existing features and add new ones (Baker 2018).

In general, product development is seen as a risky process because of the costs accrued

during development and the unpredictable success after a product launch. An MVP tries

to reduce this risk with an early release to quickly test customers’ reactions and gather

feedback. By using this approach, businesses can avoid a scenario where a product is

developed to perfection at a high cost, but then ends up getting rejected by the customers

when released to the market. (Baker 2018)

25

For a few reasons, the MVP approach suits small businesses and entrepreneurs especially

well. First, an MVP does not require big resources, brand recognition, or reach into mul-

tiple markets, all of which small businesses and entrepreneurs rarely have. Second, a

competitive advantage of small businesses is that they can often adapt to feedback and

changes quicker. Third, a good MVP might generate revenues at an early stage, which

can be crucial for a cash strapped small business or entrepreneur to be able to continue

improving the product. (Baker 2018)

* * *

There are common activities that individuals and teams execute in the process of devel-

oping software products. And, the approach used for executing these activities depends

on the circumstances of the situation at hand, including the resources of the organization,

the characteristics of the product, and more. But, are there also common technologies that

developers use to build their software products? The short answer is no. There are many

different tools and languages available that a developer might consider, all of which come

with their own circumstantial strengths and weaknesses. In the next section, we will take

a high-level look at some of the technologies that relate to the context of an MVP

smartphone app.

3 MOBILE APPLICATION DEVELOPMENT

Mobile app development refers to the process of developing an application that targets

mobile devices, this includes smartphones and tablets but not laptops. From an app de-

velopment perspective, a device with a small screen that is almost always with the user

and is operated mostly with fingers comes with its own set of challenges. These mainly

relate to user experience, user interface, user input technology, and differences in plat-

form technologies (Mushtaq et al. 2016, Hansson & Vidhall 2016, p. iii).

1. The user experience on a mobile device is much different than on a laptop or

desktop. While computers and laptops are used for longer periods of time to do

complex work, mobile devices are often used in short spurts to kill time, look up

information, communicate, and so on. When the user interacts with the device,

they want to do something specific, very quickly, without having to jump through

26

too many hoops. The way that the user interacts with the device has a strong in-

fluence on how apps are designed. (Mushtaq et al. 2016)

2. User interface. Navigating and reading content is much harder on smaller screens,

so it is common that menus have to be redesigned and content thinned out and

restructured to make it more readable. The mobile app user interface should be

simple, intuitive, and easy to use, with the most relevant features highlighted and

easily accessible. Maximizing the use of the limited screen of mobile devices

gives user interface design on mobile apps greater importance and difficulty.

(McWheter & Gowell 2012, Mushtaq et al. 2016)

3. User input technology on mobile devices is usually restricted to a few buttons and

a screen. “Mobile devices have pioneered the use of non-keyboard “gestures” e.g.,

touch, shake and pinch as effective and popular methods of user input” (Mushtaq

et al. 2016, p. 1098). High-quality apps need to support the different methods of

user input to stand out and provide a great user experience. (Mushtaq et al. 2016)

4. Platform differences. The mobile application market is dominated by two plat-

forms, Google's Android and Apple's iOS. A platform refers to “the hard-

ware/software environment for laptops, tablets, smartphones, and other portable

devices” (PC Mag s. a.). Each platform uses different programming languages,

development tools, design guides, and app stores (Abbott & Djirdehh 2020 p. 8,

Android s. a., Apple s. a.). Users are split between the two platforms so reaching

the maximum number of users requires that an app is developed for both plat-

forms. However, the platform differences make the development of two separate

apps time-consuming and costly. Both Hansson & Vidhall (2016, p. iii) and Ab-

bott & Djirdehh (2020, p. 8) highlight the differences between these platforms as

a major challenge for mobile app developers.

When a mobile app is developed using one of the programming languages and dedicated

tools of the platform, it is considered a native app. But to simplify mobile app develop-

ment and reduce costs, technologies have been developed that make it possible to create

one app that can be distributed on multiple platforms (Hansson & Vidhall 2016, p. 1).

Such apps are called cross-platform apps. We will cover both native and cross-platform

app development in the following chapters.

27

3.1 Native application development

Traditionally, apps have been developed using tools that target a specific platform, like

iOS or Android (Bjørn-Hansen et al. 2019, p. 1). This is called the native development

approach, and Bjørn-Hansen et al. explain it is “pointing to the use of development envi-

ronments, Software Development Kits (SDKs), and programming languages native to the

target mobile platform” (Bjørn-Hansen et al. 2019, p. 1). If developing for iOS, one can

program in languages Swift and Objective-C, and for Android, using languages Java and

Kotlin (Abbott & Djirdehh 2020, p. 8).

Different platforms use different programming languages, but the differences do not end

there. Abbott & Djirdehh (2020, p. 8) emphasize that one of the biggest challenges for

native app development teams is to get familiar with all the differences in technologies.

They reiterate that (Abbott & Djirdehh 2020, p. 8):

These platforms have different toolchains. And they have different interfaces for the device’s core func-
tionality. Developers have to learn each platform’s procedure for things like accessing the camera or
checking network connectivity.

As a result, companies usually need separate teams with specialized knowledge for each

platform (Duffy 2018). This would make the development of an app for multiple plat-

forms time-consuming and expensive - and creates the need to be able to develop apps

that work on multiple platforms (Hansson & Vidhall 2016, p. 1). This is possible with

cross-platform development technologies, which we will discuss in chapter 3.2.

As we can see from table 2, the high cost of development and reduced code usability are

the main drawbacks of native apps. If the team has the knowledge, time, and resources to

develop native apps for each platform they want to target, then the platform software-

development-kit (SDK) will ensure that they can access all device APIs that they need.

They will also be able to utilize the user interface components of the device to its fullest

and keep the app consistent with the guidelines and latest functionality of the platform.

In addition, native apps always have the upper hand when it comes to performance, even

though it might not be noticeable to the human eye, as they can access the device API

directly without going through an additional software layer.

28

Table 2. The difference between native and cross-platform app development (Manchanda 2019).

3.2 Cross-platform application development

In general, cross-platform development aims at simplifying app development by reducing

the required knowledge needed for development, the number of development tools used,

and the number of codebases that have to be developed and maintained. In cross-platform

development, developers can use the same programming language and toolset for devel-

oping an app that can be distributed on multiple platforms. This allows for smaller teams

and makes development more affordable. The codebase is shared between platforms and

that makes it easier to update and maintain as developers only need to “modify a single

set of assets and those assets are propagated to each platform your app supports” (Duffy

2018). (Duffy 2018)

Cross-platform technologies are not maintained by the platform companies themselves

but by third-party organizations. There are more than a dozen different technologies and

they all work differently, however, the apps they produce are generally one of two types:

"those that use web technologies, and those that are translated to native apps" (Duffy

2018). We will take a closer look at different types of cross-platform apps in chapter 3.4.

The shortcomings of cross-platform technologies generally relate to app performance,

look and feel, and access to native features (Hansson & Vidhall 2016, p. 2). The perfor-

mance can suffer because the apps are not utilizing the OS’s native environment but ac-

cessing it through an additional layer (Hansson & Vidhall 2016, p. 6). Apps that rely on

29

the OS’s core libraries, like the graphics system, might be better to develop natively to

ensure access to all graphical components the OS has to offer (Duffy 2018). If the app

needs to access the device’s low-level hardware such as the camera, GPS sensors, or ac-

celerometer, there are often inadequacies in cross-platform technologies, and unrestricted

access is not guaranteed.

Cross-platform technologies offer a lot of flexibility when it comes to development tools,

but they often have dedicated tools for building the app when the app has been completed

and is ready to be launched (Duffy 2018).” In software development, a build is the process

of converting source code files into a standalone software artifact that can be run on a

computer, or the result of doing so” (Wikipedia 2020b).

Testing cross-platform apps is naturally more complex than the testing of an app that is

targeting only one platform. A cross-platform app developed with React Native, for ex-

ample, has to be tested on both iOS and Android emulators. An emulator makes it possible

to test mobile apps on computers. Wikipedia (2020c) defines emulators as follows:

In computing, an emulator is hardware or software that enables one computer system to behave like
another computer system. An emulator typically enables the host system to run software or use
peripheral devices designed for the guest system.

At the final stages of the development process, the app should also be tested on as many

real devices as possible for each platform that the app targets to ensure that it functions

properly. (Duffy 2018)

3.3 Cross-platform vs. native development

Before starting the development of the case app, I needed to decide if I wanted to develop

a cross-platform or a native app. For me, it was important that I would be able to launch

the app on multiple platforms while still building the app on my own. The mobile OS

market in Finland is ¾ Android and ¼ iOS (Liu 2020). Because the case app is targeting

such a niche segment, I felt strongly that I did not want to shrink an already small cus-

tomer base by targeting only one app platform. The benefit of needing fewer program-

ming languages and tools and being able to develop one app that can be published on

multiple platforms, made it clear to me that cross-platform would be the better choice.

30

When reflecting on my skills it became even clearer. Through various university courses

I had been able to familiarize myself with many different languages, frameworks, and

technology tools, including JavaScript, React, Java, Android Studio etc. However, I had

no experience in Swift or Objective-C. This meant that developing a native iOS app was

out of the question as I would have needed to start learning from scratch. Then I had to

consider if I wanted to develop an Android app using Android Studio and Java, or a cross-

platform app using React Native, Xamarin, or another framework. Through my studies

and personal development, I had become quite familiar with JavaScript and React, the

language and library used in React Native, and C#, which is the language used for Xama-

rin, both of which are cross-platform frameworks.

3.4 Cross-platform technologies

Largely all cross-platform technologies strive to make the development of smartphone

apps that target multiple platforms more efficient, but there are considerable differences

in how different technological approaches achieve this goal. Next, we are going to look

at the two general types of cross-platform apps. (Duffy 2018)

3.4.1 Hybrid cross-platform apps

Hybrid cross-platform apps are basically web apps built with HTML, CSS, and JavaS-

cript, that are converted to native apps with a hybrid framework (see figure 5). The con-

version creates an app that contains all resources needed for it to be downloaded and run

locally on a smartphone. The downloaded app uses the WebView component of the

smartphone’s internet browser to run. This is different from how normal web apps work

since they typically require an internet connection to work and are run on servers in the

cloud, not locally. (Duffy 2018)

Figure 5. How hybrid cross-platform frameworks work (Duffy 2018).

31

Figure 6 provides a simplified overview of the architecture of a hybrid app. The OS loads

the web app in the WebView component of the device, which is normally used for ren-

dering resources on the internet. The WebView is a native component, so it has access to

the OS native services, like sensors, graphics system, etc., and can receive input from the

user. In cases where the WebView component is unable to access a specific native service,

hybrid frameworks often supplement with plug-ins. (Duffy 2018)

Hansson & Vidhall (2016, p. 5) highlight the following regarding the performance and

the look and feel of hybrid apps:

Hybrid applications can reuse interface components, like a mobile web application, however it is hard
to achieve an actual native feeling. Further drawbacks from using a web browser as core component in
hybrid applications includes lower performance compared to native applications.

Figure 6. Hybrid app architecture (Duffy 2018).

3.4.2 Cross-platform native apps

Cross-platform native apps are written in a programming language that is not native to

the OS of the smartphone. The cross-platform framework compiles and translates the

written code to apps that can be downloaded and run natively on the device (see figure

7). The result is an app that is very similar to a native app written in the native language

of the OS. (Duffy 2018)

32

Figure 7. How cross-platform native frameworks work (Duffy 2018).

Similar to hybrid apps, the performance of cross-platform native apps can suffer because

the apps are not utilizing the OS’s native environment but accessing it through an addi-

tional software layer. (Hansson & Vidhall 2016, p. 6)

Because every OS is different, some OS-specific code is also required. If the cross-plat-

form native app uses a lot of OS-specific features, it will reduce the amount of shared

code across platforms and make the apps more distinctive. Writing OS-specific code also

requires some special knowledge about the native API. (Hansson & Vidhall 2016, pp. 5-

6)

From an architecture perspective, there are two types of cross-platform native apps. The

first type has the same code for business logic, which might include making calculations

or calling a database, for all platforms but separate code for the user interfaces (see figure

8). Xamarin is one example of such a framework. The second type shares the business

logic and user interface for all platforms. React Native works this way. (Duffy 2018)

Figure 8. Two types of cross-platform native apps (Duffy 2018).

33

3.5 Why I chose React Native for developing the app

Hansson & Vidhall (2016, p. 2) emphasize that React Native reduces the needed techno-

logical know-how regarding iOS and Android to mostly React, and that saves time and

resources. My research into React Native had shown mostly advantages and few disad-

vantages from the perspective of an individual developer with scarce resources. I had tried

learning Xamarin a while ago but found it to be unfamiliar, which made the learning curve

feel quite steep. Seeing as I have past experience with React, and I really liked working

with the library, made it an easy choice.

3.5.1 A closer look at React Native

React Native is an open-source cross-platform framework created by Facebook in 2015

(React Native 2020). React Native uses the JavaScript programming language and the

React web development library, which is meant for creating interactive web apps, to cre-

ate native cross-platform apps for iOS and Android (Abbott & Djirdehh 2020, p. 9).

React Native apps are a little bit faster than hybrid cross-platform apps because the frame-

work creates an app that is run natively on the device. This is different from hybrid cross-

platform apps that run within the native web component of the device. React Native also

comes with some very useful features. One of them is called “Hot Reload” and it allows

developers to run the app while they are developing it and almost instantly see what they

are implementing. When new functionality has been programmed, and the code file is

saved, “Hot Reload” will rebuild the app and integrate the new functionality, which makes

it quick and easy to see and test new functionality. The framework also makes it easy to

integrate native code with React Native. If a certain component needs to be optimized, it

can be written in the OS’s native programming language. Thanks to the popular React

web development library, React Native also has a large and active developer community

that supports its ecosystem and development tools. (Duffy 2018)

Many big companies, for example, Tesla, Pinterest, Uber Eats, and Discord, use React

Native (React Native 2020a). However, it is unclear if the framework can support very

complex and ambitious apps. Peal (2019) recently reported how Airbnb is going to

34

transition away from React Native after working with the framework for many years.

There are many reasons for this, both organizational and technological, but in a nutshell,

they could no longer harness the strengths of the framework because they were develop-

ing so much OS-specific code. Peal (2019) explains further:

Even though code in React Native features was almost entirely shared across platforms, only a small
percentage of our app was React Native. In addition, large amounts of bridging infrastructure were
required to enable product engineers to work effectively. As a result, we wound up supporting code on
three platforms instead of two.

* * *

Choosing the technological tools to build with often comes down to a mixture of the cli-

ent’s needs, the requirements, and the preferences and know-how of the developers. If the

requirements allow, as they do in this case, choosing a framework really is at the discre-

tion of the developer. Now that we have decided what framework we want to use to de-

velop the MVP app, we will need to drop down a level in detail and actually start using

the framework, implementing the app, and making low-level decisions that directly affect

how the app looks and feels. The next section is going to focus on the development of the

app.

4 BUILDING THE MVP WITH REACT NATIVE

This section gives an overview of how the MVP was built and the technological decisions

that were made in the process. It explains the functionality of the app in a broad sense and

assumes some prior programming knowledge and familiarity with React and React Na-

tive.

First, we will look at requirements, tools, and installation and setup to let the reader know

where the development process started. Then we will cover the main building blocks of

the app in the order that they were programmed. Finally, we will look at the functionality

that was added to improve the user experience of the app. The app development is largely

based on the book Fullstack React Native by Abbott & Djirdehh (2020), and a few online

resources, like Stack Overflow posts and Github repositories.

35

4.1 Preparation

4.1.1 Requirements

The requirements were approached in a humble manner because I was only a third-year

IT engineering student when starting this project, and I had never built a smartphone app

before. The goal was for the app to mimic the structure of the hunting exam and take

inspiration from other interactive learning material. Essentially, this means that the app

should have two different types of questions: text-based questions with multiple-choice

answers, and image-based animal identification questions with multiple-choice answers.

The animal identification questions can be split into two broad categories: birds and mam-

mals, which is also what I chose to do in the app. To allow the users to learn, the app must

tell them what went right and what went wrong. So, the app needed to have a results page

that shows information about how the user performed.

4.1.2 Tools

On the hardware side, I used an iPhone 7 Plus and a 2019 MacBook Air with a 13.3-inch

display. On the software side, I used Visual Studio Code as my integrated development

environment (IDE). Visual Studio Code is a free open-source editor developed by Mi-

crosoft.

Developing an MVP is not costly, the only essential tools for writing code, publishing the

app, searching for information, and learning are a decent laptop and internet connection.

The biggest and only barrier to entry is time - the time it takes to learn to code and build

something by utilizing existing technological tools and frameworks. Technological ad-

vancements have made computers more affordable and the internet more widely accessi-

ble. This means that anyone who has access to a computer and the internet and is willing

to invest their time and energy can become an app developer. This is most likely one of

the reasons why there are so many different apps available, and why competition among

those apps is so fierce.

36

4.1.3 Installation and setup

4.1.3.1 Yarn
To install the necessary libraries and packages needed for developing the app, I chose to

use the yarn package manager. Abbott & Djirdehh (2020, p. 20) recommend yarn as they

have found it produces more consistent builds for React Native than npm, which is an-

other common package manager. Abbott & Djirdehh (2020, p. 20) explain how yarn

works:

yarn is a JavaScript package manager – it automates the process of managing all the required
dependencies from npm, an online repository of published JavaScript libraries and projects, in an
application. This is done by defining all our dependencies in a single package.json file.

4.1.3.2 Expo
After I had installed yarn, I moved on to Expo. React Native documentation recommends

the use of Expo when first getting familiar with the framework (Abbott & Djirdehh 2020,

pp. 20-21). Expo is a platform that offers various tools that are designed to build fully

functional React Native apps without having to write any native code. The Expo com-

mand line interface (CLI) makes it very easy to start a new React Native project, with one

command, without spending time on build configuration. Expo also offers a smartphone

app that makes it easy to run the app on a device while programming. This made it quick

and easy to see and test the app in small increments as I was programming it.

Expo has two disadvantages. First, if the project requires native code, one must eject from

Expo to implement it. Second, if Expo is used for building the app, Expo will include

every device API in the final build of the app, regardless if it is used or not, resulting in

the size of the final app build being larger than it needs to be (Abbott & Djirdehh 2020,

672).

Expo offers one great advantage that comes into play after initial development has been

completed and the first version of the app has been published. Publishing the app with

Expo makes it possible to update it “over-the-air” (OTA) (Abbott & Djirdehh 2020, p.

850). Abbott & Djirdehh explain: “By default, applications published with Expo will al-

ways check for updates when launched”. If a new version of the app has been published,

it will automatically be fetched and loaded the next time the user restarts the app. This

makes it possible to make small changes and fix certain errors without submitting a new

37

build to the app stores and going through the iOS or Android app review process. How-

ever, OTA updates only work when JavaScript code is modified (Abbott & Djirdehh

2020, p. 896).

4.1.3.3 Babel
React Native uses Babel as it is JavaScript compiler (Abbott & Djirdehh 2020, p. 18).

Babel compiles code written in newer JavaScript versions so that it is backwards compat-

ible and works on machines that use older JavaScript versions (Wikipedia 2020d). This

allowed me to write code according to the latest JavaScript version syntax and use the

newest functionality that the programming language has to offer.

4.1.4 The beginning

To get myself warmed up and to learn about the different features that the React Native

framework has to offer. I first went through some of the example projects in the book by

Abbott & Djirdehh (2020) that I had bought. Then I went for some walks and had some

coffee and visualized what the app might look like in my head. I had been thinking about

the app for weeks before I actually started developing it.

Developing a cross-platform smartphone app was new to me, and that made me unsure if

I should start by writing down requirements, creating a mockup of the app in a graphics

program, or jump straight into coding. I had recently read some of Sommerville’s (2016)

and Stephens (2015) Software Development theory, but it felt overly complex for my type

of app. Abbott & Djirdehh (2020, p. 111) introduced a seven-step process for building

React Native apps that felt more approachable. They advised to start by first breaking the

app into components and then building a static version of the app. Somewhat influenced

by this I decided to start. I initiated a new React Native project with Expo, which provided

me with a blank screen. Then, I decided I would start by building a static menu, with the

first thing being the button components. The development process was very informal and

incremental as I moved from one component to another slowly building out the app, al-

ways keeping the MVP approach at the back of my mind when making any decisions.

38

4.2 Development

4.2.1 Buttons

In React Native, it is possible to create buttons in a few

different ways. Abbott & Djirdehh (2020) use Button,

TouchableHighlight, and TouchableOpacity core compo-

nents in their example projects. You can create “buttons”

with all of them with a slightly different syntax. I decided

to use TouchableOpacity because the component incorpo-

rated a fade effect when interacted with. The component I

choose to create the buttons with did not seem like a very

critical decision, so I did not spend much time comparing the three alternatives. I did try

to use Button but for some reason found it hard to style it consistently, so it looks the

same on Android and iOS.

On the React Native website, TouchableOpacity is described as “a wrapper for making

views respond properly to touches. On press down, the opacity of the wrapped view is

decreased, dimming it” (React Native 2020b).

All React Native core components that are used need to be imported at the top of the file.

This includes things like View, Text, StyleSheet, and TouchableOpacity, which were

used a lot.

Figure 10. Example of React Native core component importing.

After I had my first TouchableOpacity component created, I could then copy and paste

the component to create two more buttons, swapping out the content of the child text

element for the other two (see figure 9). Next, I had to think about styling the buttons.

Figure 9. Screenshot of app buttons.

39

4.2.2 Styling the components

Not all components in React Native accept

styling, but most do (Abbott & Djirdehh

2020, pp. 37-38). Styling in React Native is

very similar to styling with Cascading Style

Sheets (CSS) and easy to learn for someone

who has done some web development (see

figure 10). However, Abbott & Djirdehh

point out that even though the syntax looks

similar to CSS, it is not CSS.

To layout and align items, React Native uses

Flexbox. The column layout is the default for

Flexbox, so the buttons were automatically stacked vertically (see figure 9). Styling is a

very complex topic in itself, so I won’t go deeper into it as it would become too detailed.

4.2.3 Screens and navigation

Once I had the buttons done and styled, I had to create the different screens that the but-

tons would open up when they were tapped. Figure 11 gives an overview of what

the screens in the actual app look like. I will cover the screens for the two question cate-

gories, and the results list in the upcoming chapters of this section. The final application

Figure 11. Screenshot of button styling.

Figure 12. A few screenshots of screens from the app. From left to right, Menu, ImageQues-
tions, and ResultsView.

40

contains four different screens: Menu, TheoryQuestions, ImageQuestions, and Re-

sultsView. TheoryQuestions and ImageQuestions are basically the same screen with mi-

nor differences.

4.2.3.1 Modal
A screen combines different components and a user can only see one at a time. Abbott &

Djirdehh (2020) present two options for navigating a user between screens. You can use

a navigation library or the Modal component. Abbott & Djirdehh (2020, p. 284) recom-

mend the Modal component for simple apps, so I decided to go with their recommenda-

tion, with the option of changing to a navigation library if I felt Modal was inadequate. I

did not expect the app to have many screens so I felt Modal would be good enough.

The Modal component allowed me to open and close different screens by linking them to

buttons. React Native describes Modal as “[…] a basic way to present content above an

enclosing view” (React Native 2020c). When a button in the menu screen is tapped, it

will open up a new screen in front of the menu screen. Figure 12 is a sequence diagram

of the app. It illustrates how the user can move between the different screens. Next, I

needed to figure out a way for the user to close the screen, mid quiz, if they wanted to.

Figure 13. Sequence diagram of the app navigation flow.

4.2.3.2 NavigationBar
The NavigationBar is a component that Abbott & Djirdehh (2020) introduced in one of

their example projects. I felt it would fit well in this application, so I decided to implement

it. The NavigationBar contains a title and a button that can be used to close the current

screen and get back to the menu screen (see figures 13 and 14). In the end, the Naviga-

tionBar component was used on three screens; TheoryQuestions, ImageQuestions, and

ResultsView.

41

Figure 14. Image of NavigationBar component.

4.2.4 Quiz logic and questions

After I had figured out how to enter and exit a question category, I then needed to build

out the question screens, figure out how the questions should work, and what the under-

lying logic would be for checking if an answer was right or wrong.

I was not sure how I would build out the quiz logic, so I did some googling and found a

quiz app example by Spencer Carli (2020) on Github. I investigated the code and decided

to implement a part of his example, with some small modifications. This example helped

me decide on the data structure for the questions. It also allowed me to add a counter at

the bottom of the question screens to give the user an idea of how many questions had

been answered and how many were remaining.

Once a category of questions is finished, the Quiz

component sends four properties to the ResultsView

screen. One function, one object with the wrong an-

swers, and two variables. Then, the ResultsView

screen opens up on top of the current question

screen. When the ResultsView screen is closed, it

also closes the underlying question screen, returning the user to the Menu screen. This

happens so fast that the user does not have time to notice that two Modals are closed by

the tap of one button.

4.2.4.1 Text-based questions
The text-based questions were stored in

an array of objects (see figure 16) that

were then made available to the rest of

the program by exporting. The questions

are imported to the Menu screen and

from there passed down as properties to

Figure 15. ResultsView component and its
props.

Figure 16. Data structure of text-based question.

42

the other screens and components. The Quiz component goes through the question object,

rendering each question one by one, registering which questions are answered incorrectly,

and counting how many are answered correctly.

4.2.4.2 Image-based questions
The image-based questions work the

same way as the text-based questions,

although they have a slightly different

object structure due to the object that is

stored as the value for the source key.

The image-based questions and the

text-based questions share most of the same code, but I use conditional rendering to check

if the question object has a source key, and if it does, I render an image between the

question and the answers.

The images are hosted on an Amazon Web Service (AWS) S3 bucket. They have been

resized to make them smaller which will allow them to load quicker. Originally, I was

hoping to store all of the images in the assets of the application, which means they would

be available offline, and would be downloaded to the smartphone when the app is in-

stalled. However, I did not find an easy solution for this that would have worked together

with the quiz logic and the shuffle algorithm, which will be discussed in chapter 4.2.4.3,

that I use to shuffle the questions. Finland has great 3G and 4G networks across the whole

country, so I did not see any reason why the images could not be fetched from a cloud

server. Therefore, I decided to move forward with using images hosted on a cloud server

and try to figure out how to make the app work offline later on.

4.2.4.3 Shuffle
To avoid the user memorizing the answers to the questions due to their order, I needed to

come up with a way to shuffle the array of objects before I pass it down to the Quiz

component, which takes care of the rendering. Writing an algorithm that shuffles an array

of objects is not something I was sure I would be able to do, and even if I did, I would

still need to compare it with other algorithms online to make sure I did not make any

mistakes and that my solution was appropriate. I also felt this is a problem that must have

been solved before. To avoid wasting time, I decided to do some googling and then found

Figure 17. Data structure of image-based question.

43

a solution on Stack Overflow that was approved by 1611 other users (Stack Overflow

2010). The algorithm presented in the solution was the Fisher-Yates algorithm. I imple-

mented the algorithm in my code, did some testing, and it worked well.

4.2.5 ResultsList

All three question categories have over 30 different questions and one of them has close

to 50. It’s possible that a user answers all questions incorrectly, which means they then

need to be able to review the correct answers to all questions. Abbott & Djirdehh (2020)

introduced two list components in their book, ScrollView and FlatList. Abbott & Djirdehh

(2020, p. 274) explain that ScrollView works best for smaller lists with less than 20 items

as it renders every item in the list even if most of them are outside of the screen. FlatList

is a better solution if the list might have more than 20 items since it does not render all of

the items at once. FlatList leaves some of the items that are outside of the screen unloaded

until the user swipes closer to those items (Abbott & Djirdehh 2020, pp. 250-251). Since

the ResultsList component might have up to 50 items with images. I decided to use Flat-

List for the ResultList component on the ResultView screen. Figure 12 illustrates what

the ResultsView screen looks like.

4.2.6 State

In React, states are used to keep track of changes in components, and whenever a value

stored in a components state is changed, the component re-renders (React s. a.). In the

case app I have state in four places: in the Menu screen, the Quiz component, the Status

component, and the Card component. In their seven-step process, Abbott & Djirdehh

(2020) recommend that developers decide where state should be early on in the develop-

ment process. Due to lack of experience, I chose not to follow their advice. Instead, I

developed the app incrementally and added state to a component whenever I needed it.

The state of the quiz component is the most complex. It contains Booleans, some num-

bers, and an array that makes the quiz logic work, and it collects data to be passed to the

ResultsView screen. The state of the Menu screen is very simple and only contains a

Boolean and a number that helps manage the screens or Modal components. The purpose

of the state in the card component is to help with the loading indicator, which is described

in detail in section 4.2.7.2. The Status component handles the network connectivity indi-

cator and its state has one Boolean value for that purpose.

44

4.2.7 User experience-enhancing functionality

This section will discuss some additional features that I considered low-hanging-fruit,

meaning I was familiar with them from Abbott & Djirdehh’s (2020) examples and, there-

fore, knew how they could be implemented to improve the user experience.

4.2.7.1 Network connection alert
An internet connection is necessary for the app to work because the MVP fetches the

images for the image-based questions from a server in the cloud. People often use their

phones in areas with spotty service, so I wanted to create an alert that warns the user if

there is no internet connection, in which case the image-based questions would not work.

To know if the device has an internet connection, I needed to use the NetInfo API, which

is a React Native core API, that allowed me to easily access lower-level native APIs for

iOS and Android. When calling the NetInfo API, the function returns a Boolean that tells

us if the device is connected to the internet or not. You can attach an event listener to

NetInfo so that we can get continuous updates regarding the network connection. I im-

plemented the network connectivity indicator in a component called Status. I then used

this component on all five screens of the app. Figure 18 illustrates what the network con-

nectivity alert looks like when triggered, the example in the image was triggered manually

and not by a real network issue, hence the full bars. (Abbott & Djirdehh 2020, pp. 307-

322)

Figure 18. Network connection notification.

4.2.7.2 Loading
Before a user’s device loses its internet connection, the connection might just get very

slow. In anticipation of this, I wanted to implement a loading indicator for the image-

45

based questions and the ResultsList, if the list

was showing image questions. The ActivityIn-

dicator, shown in figure 19, appears when an

image is loading. The component is triggered

by a Boolean in the state of the parent compo-

nent. To let the ActivityIndicator know when

an image has finished loading, we use the on-

load property of the image component. The

ActivityIndicator is shown until the onload property is triggered to indicate that the asset

has loaded completely.

4.2.7.3 Animations
I wanted to enhance the Menu screen for when the user opens up the app, so I looked into

animations. Abbott & Djirdehh (2020) introduced two React Native animation APIs. One

of them is called LayoutAnimation and the other Animated. I tried out both of them but

decided to do the animations with Animated as I felt I had a better understanding of how

it worked. Also, Abbott & Djirdehh did not recommend LayoutAnimation for moving

around objects on the screen. One of the animations I wanted to do was to move the logo

from the middle of the screen to the top, and then, when the logo was out of the way I

would fade in the menu buttons from the white background. The Animated API made it

possible to create these animations and to adjust durations and delays for the animations

as needed.

4.2.7.4 Splash screen
Expo has a lot of helpful documentation and guides about creating and publishing apps

to the app stores. One of the things they mention there is the splash screen (Expo s.a. a).

The splash screen comes up after the user has tapped the app icon and stays visible while

the app is loading. Reading through the Expo documentation, it seemed like something

worth implementing as all professional apps have splash screens. I bought an image from

a stock image site and then added my app logo to it. I then placed the splash screen image

in the assets folder and specified the path for the image in the correct property field in the

app.json file. The app.json file has a special purpose for the app. Expo documentation

explains that “app.json is your go-to place for configuring parts of your app that do not

belong in code […]” (Expo s.a. b). “app.json configures many things, from your app name

Figure 19. Image of ActivityIndicator.

46

to icon to splash screen and even deep linking scheme and API keys to use for some

services […]” (Expo s.a. b).

4.2.7.5 App Icon
To make sure the app looks professional it has to have an app icon. This is the icon the

user will see on their device screen and then tap with their finger when they want to launch

the app.

Expo provides great documentation on creating an app icon

for iOS and Android devices (Expo s.a. c). The documentation

explains that it is possible to use the same image for the app

icons on both platforms. iOS requires the app icon to be a .png

file with a size of exactly 1024x1024, the same size image will

also work on Android. I created the icon image and placed it

in the assets folder of the app. Then I specified the path to the

image in the correct property field in the app.json file. You only need to specify it in one

place for Expo to then use the same image on both platforms.

4.3 Testing

Throughout the development of the app, I was continuously testing the app on my iPhone

7 plus, but once I got to the stage where I felt I had done everything that was required, I

needed to test it on devices with different screen sizes. Abbott & Djirdehh (2020) do not

really mention this in their book, so I was not sure if the layout of the app would work on

all screen sizes since I had been adopting many of their examples in the app. I feared this

part of the development process might create problems because of how big the differences

are between the really big smartphones and the small ones.

I decided I would test the app on three different screen sizes for both iOS and Android by

using their respective emulators. I chose a big and a small screen and one in between.

Figure 21 displays the small screen sizes that I chose, the devices from left to right are

the iPhone SE with a 4.7-inch screen, and the Nexus S with a 4-inch screen size. With

small adjustments, I was able to make the app look good on all devices that I tested on.

Figure 20. Image of app icon on
iOS.

47

However, even though the app might look good on an emulator it does not guarantee that

the final build of the app that will be distributed in the app stores will look the same.

With React Native and Flexbox, it is

straightforward to build responsive lay-

outs. Abbott & Djirdehh (2020, p. 210)

explain that:

The flex style attribute gives us the ability to de-
fine layouts that can expand and shrink automati-
cally based on screen size. The flex value is a num-
ber that represents the ratio of space that a compo-
nent should take up, relative to its siblings.

Adopting many of the examples by Ab-

bott & Djirdehh (2020), I naturally used

the flex style attribute throughout my app.

As a result of this, the app looked okay

enough, with elements a tiny bit too big on smaller screen sizes and a tiny bit too small

on larger screens, but overall still very functional. Because of this, I felt it was worth

improving the responsiveness of the app at a later stage if it seemed valuable to its users.

4.4 Code sharing between platforms

One of the main benefits of the React Native framework is the possibility of creating an

app with one codebase that can be distributed on the two largest smartphone platforms.

In the end, the case app was able to take full advantage of this benefit as almost all of the

code was shared between the platforms, the small amount of platform-specific code that

was incorporated was UI related. It might very well be possible to avoid any platform-

specific code in the case app if it was prioritized.

4.5 Reflecting on my development process

Looking back at the activities of my app development process, one could definitely char-

acterize them as informal and incremental. Requirements engineering entailed me com-

bining my short list of wants and needs for the app’s functionality with observations of

hunting exam related online learning environments and quiz-style smartphone apps, and

Figure 21. Image of iPhone SE and Nexus S emulators

48

then constructing a mental image of what I wanted to build. This was a very quick process,

and I felt I was ready to start designing and implementing the app immediately.

I started design and implementation, based on my mental image, from the first component

I felt the user would interact with. Then I iterated my way through the project, one com-

ponent at a time. Visualizing what the component would look like, thinking about the

underlying system functionality, and looking at the examples in the React Native book I

had bought. After a component was complete, I then tested it and styled it. My incremen-

tal and informal approach worked out well because the list of requirements was not very

long, I was developing the app alone, and the app only contained the most essential func-

tionality, as an MVP should. However, in regard to the app working offline, I think my

lack of formal requirement specification had a negative impact. I think I might have been

able to make the app work fully offline if I had prioritized it as a must-have requirement

from the start and not a nice-to-have requirement as I did now. Because I did not prioritize

it, I was not able to implement it at the moment when I felt I would have liked to because

it did not fit easily into the functioning code I had already built. Reflecting on the process

overall, I think there were four main things that significantly helped in successfully com-

pleting the first version of the app:

1. I’m happy I took my time to get properly familiar with examples in the book Full-

stack React Native by Abbott & Djirdehh (2020), even though I was familiar with

React and JavaScript, instead of rushing into development. Completing many of

the example projects helped me to get familiar with the framework while building

up my confidence before I started working on my own app. The example projects

used many different React Native components and whenever I was about to start

the development of a new component in my app, I could go back to the book to

get inspiration and see all the different ways it could be done. Had I started devel-

oping the app right away without getting familiar with the framework, there would

have been a much higher risk of problems and churn.

2. Before I started the project, I considered the MVP approach to be simple and prac-

tical. I then got even more excited about the approach as I read about Agile and

discovered that that approach also uses a very similar method to gather early feed-

back to guide development and ensure that the product meets the needs of the

customer/end-user. The aforementioned approaches helped me keep my require-

ments for the initial version of the app humble and supported me in my decision

49

making when faced with alternatives or problems during design and implementa-

tion. Deciding not to implement all imaginable features in the first version of the

app, allowed me to keep the app simple and the goals attainable, which I think is

important when working alone and without much experience with the technology

being used.

3. React Native is a great fit for a developer with prior knowledge of JavaScript,

React, and CSS. This made it very familiar and easy to develop functionality and

style it. I also felt React fit really well with the incremental development approach

I used as it is a component-based library.

4. Expo made the app development straightforward in a few different ways. First,

Expo makes it simple to start a React Native project without spending much time

on configuration. Second, the hot reloading feature made the development of the

app very convenient, because it allowed me to quickly see and test the function-

ality I was building during design and development. This made coding more fun,

helped me iterate my way forward while coding components, and encouraged me

to test and locate bugs early on.

* * *

With the development of the MVP finished, the next steps would be to launch the app in

the app stores. The development of the app would then continue based on user feedback

if there are enough active users to justify its existence. But, the publishing of the app to

the app stores and the its post-launch evolution is outside the scope of this thesis and will,

therefore, not be covered in the upcoming section. Instead, I will conclude the thesis by

discussing what I learned while creating the case app and writing this thesis. I will also

discuss the research questions and examine how well I was able to answer them. Finally,

I will evaluate the thesis as a whole in order to identify areas of improvement that might

be of help to other future engineers that are developing and researching cross-platform

apps.

5 CONCLUSION

This project has shown that it is very possible for an inexperienced sole developer to build

a low-cost app that can be released on multiple smartphone platforms and potentially

50

reach billions of consumers. Making it possible for even niche app ides to have a sound

business case and be potentially profitable. In addition, it demonstrates that improved

technological tools, like cross-platform frameworks, have made app development in-

creasingly easier and almost anyone with some thought and effort can develop an app. It

also demonstrates that the skills needed for app development can be easily learned and

that there are no real barriers to entry for smartphone app development.

After working with React Native throughout this project, I have grown to like the frame-

work a lot and am thoroughly impressed by it. I think the framework is really successful

in making developers more productive by allowing someone with prior knowledge of web

development with React to leverage their skills to develop apps for multiple platforms,

without sacrificing the quality of the app. The case app shares almost all code between

platforms, the small amount of platform-specific code that was incorporated was UI re-

lated. This demonstrates that MVP development with React can be really practical. This

is especially valuable for entrepreneurs and small businesses that have scarce resources

and really need to maximize their time, effort, and money. It provides an opportunity for

them to explore new ideas on mobile that they might have thought previously unfeasible,

because of the amount of knowledge needed to create an app for several platforms.

Now that I have firsthand experience from the MVP approach, I can say it is a powerful

concept, and especially useful for developers who are at the start of their careers and hope

to build production level apps for their portfolio, or small teams who are looking to try

out a new app related business idea. I think it is most important to keep the requirements

simple and reasonable for the first versions of the app, in order to get to a functioning

prototype quickly and build up momentum for the project.

Whenever I am learning something new, I find it increasingly important to first find good

learning resources. In my early research, I began looking for theory to support me in my

development of the MVP app. The software development theory that I studied from Som-

merville (2016) and Stephens (2015) was comprehensive and of high-quality, but I had a

hard time relating most of the theory to the issues I was pondering around my project, as

it was clearly meant for projects of greater scale and complexity. I found myself spending

a lot more time with the book from Abbott & Djirdehh (2020), which was less theoretical

and more like a cookbook, containing many code examples and more detailed

51

descriptions of what components to use and why. For anyone considering developing a

simple MVP app, alone or in a small team, I would recommend getting familiar with

software development theory and incremental development models, but more important,

I think, would be to find a good software development cookbook that is closely related to

the technology being used in the project, and really studying it thoroughly, in order to

leverage the strengths of the technology and easily use the components it offers. I feel the

importance of software development theory and a proper process, meaning, for example,

a more formal and documented waterfall approach or an informal but more structured

agile approach, will increase as the scale of a project grows and more people get involved.

However, as long as the project has the scale of a prototype, I think it is more valuable to

focus on the development of the app and less on documentation. As one can easily build

something with a short list of requirements and an incremental development process. In-

cremental development being the key in this case as it takes the project through multiple

loops of design and development. Allowing developers to continuously adjust the require-

ments of the project throughout the development process.

As I'm looking to take my next step in my professional journey as a software developer,

I'm often surprised by the amount of name dropping of different programming languages,

frameworks, and libraries in job advertisements, even for entry-level positions. As

demonstrated in this thesis, React Native at least tries to counter this as it extends the

React library to mobile development for multiple platforms, which I find is really valuable

for aspiring developers who might feel overwhelmed by the number of programming lan-

guages they can choose to learn, or the thought of having to choose which part of the

stack they want to specialize in before they even know what it entails. With JavaScript,

React, and React Native one can build for web and mobile, one can build frontends and

backends, and this makes it a great bundle of technology to choose, with confidence, to

kick-off ones learning as a hobbyist or someone who is aspiring to become a professional

developer because the technologies cover the whole stack and make it possible to build

almost anything.

Reflecting on this project as a whole I’m quite satisfied with the result as it gave me time

to explore and pursue things I have been interested in for a long time. In addition, I have

now built a simple production-level app that I feel will be of interest to its intended niche

market and perhaps my future employer. Ever since I started studying information

52

technology engineering at Arcada, I had a goal of learning how to build apps that could

be released to real customers, and this helped me achieve that. I hope this thesis makes

the process of creating a smartphone app less intimidating for young and aspiring engi-

neers, and that the results would encourage them not to dismiss the app ideas that they

might have, but instead simplify, build, and publish them, so others can decide their value

and give feedback to help improve them.

My recommendation for further research is around MVP smartphone app development.

Throughout this project I was looking for MVP-style software development theory and I

was unable to find any from the resources available to use via Arcada UAS. I think there

is room for additional software development theory that focuses on the development of

MVPs, between the thorough, high-level, and sometimes complex software process the-

ory and the very detailed software development cookbooks. This is something I would

have greatly enjoyed during this project.

53

REFERENCES

Abbott, D. & Djirdehh, H. (2020). Fullstack React Native. [E-book] Leanpub. Available

at: https://www.newline.co/fullstack-react-native/ [17.6.2020]

Android (s. a.). Design & Quality. [Web site] Available at: https://developer.an-

droid.com/design [6.11.2020]

App Annie (2020). State of Mobile 2020. [pdf] App Annie. Available at: https://www.ap-

pannie.com/en/go/state-of-mobile-2020/ [20.4.2020]

Apple (s. a.). Design. [Web site] Apple. Available at: https://developer.apple.com/design/

[6.11.2020]

Baker, J.C. (2018). Getting to Market with Your MVP: How to Achieve Small Business

and Entrepreneur Success. [E-book] Business Expert Press. Available at:

https://www.perlego.com [21.8.2020]

Bjørn-Hansen, A., Grønli, T., Ghinea, G. & Alouneh, S. (2019). An Empirical Study of

Cross-Platform Mobile Development in Industry [Journal Article] Wireless Communica-

tions and Mobile Computing, vol. 2019, pp. 1-12. Available at:

https://www.hindawi.com/journals/wcmc/2019/5743892/ [7.6.2020]

Chen, B. X. (2010). Apple Registers Trademark for 'There's an App for That'. [Online

article] Wired. Available at: https://www.wired.com/2010/10/app-for-that/ [19.8.2020]

Clark, J.F. (2012). History of Mobile Applications. [pdf] MAS 490: Theory and Practice

of Mobile Applications. University of Kentucky. Lexington 4.4.2012. Available at:

http://www.uky.edu/~jclark/mas490apps/History%20of%20Mobile%20Apps.pdf

[20.4.2020]

Carli, S. (2020). react-native-quiz. [Github repository] Available at:

https://github.com/ReactNativeSchool/react-native-quiz [5.7.2020]

Duffy, T. (2018) Choosing a Cross-Platform Development Tool: Cordova, Ionic, React

Native, Titanium, and Xamarin, (2018). [Online course] Linkedin.com, 8.5.2018. Avail-

able at: https://www.linkedin.com/learning/choosing-a-cross-platform-development-

tool-cordova-ionic-react-native-titanium-and-xamarin/what-you-should-

know?u=56747801 [7.8.2020]

Expo (s.a. a). Create a splash screen. [Web site] Expo. Available at:

https://docs.expo.io/guides/splash-screens/ [9.9.2020]

54

Expo (s.a. b). Configuration with app.json / app.config.js. [Web site] Expo. Available at:

https://docs.expo.io/workflow/configuration/ [9.9.2020]

Expo (s.a. c). App Icons. [Web site] Expo. Available at: https://docs.expo.io/guides/app-

icons/ [9.9.2020]

Hansson, N. & Vidhall, T. (2016). Effects on performance and usability for cross-plat-

form application development using React Native. Dissertation. Linköping: Linköping

University

McWherter, J. and Gowell, S. (2012). Professional Mobile Application Development. [E-

book] Wiley. Available at: https://www.perlego.com [6.11.2020]

Mikkola, M. (2018). Metsästäjätutkinto uudistui – uusia metsästäjiä yli 6 000. [Online

article] Riistan Vuoksi. Available at: https://www.riistanvuoksijulkaisu.fi/artikkelit/riista-

tieto/metsastajatutkinto-uudistui-uusia-metsastajia-yli-6-000.html [20.8.2020]

Mushtaq, Z., Kirmani, M., Saif, S.M., & Wahid, A., (2016). Mobile Application Devel-

opment: Issues and Challenges. [Journal article] International Research Journal of Engi-

neering and Technology, vol. 3, pp. 1096-1099 Available at: https://www.re-

searchgate.net/publication/327154905_Mobile_Application_Development_Is-

sues_and_Challenges [6.11.2020]

Manchanda, A. (2019). Where Do Cross-Platform App Frameworks Stand in 2020?

[Online article] Net Solutions. Available at: https://www.netsolutions.com/insights/cross-

platform-app-frameworks-in-2019/ [10.8.2020]

PC Mag (s. a.) Mobile Platform. [Web site] PC Mag. Available at:

https://www.pcmag.com/encyclopedia/term/mobile-platform [6.11.2020]

Peal, G. (2019). Sunsetting React Native. [Weblog] Medium, 19.6. Available at:

https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a

[11.8.2020]

Poppendieck, M. and Poppendieck, T. (2006). Implementing Lean Software Develop-

ment: From Concept to Cash. [E-book] Addison-Wesley Professional, Available at:

https://www.perlego.com [8.5.2020]

React (s. a.). Component state. [Web site] React. Available at: https://re-

actjs.org/docs/faq-state.html#gatsby-focus-wrapper [10.11.2020]

React Native (s. a. a). React Native Learn once, write anywhere. [Web site] React Native.

Available at: https://reactnative.dev/ [11.8.2020]
React Native (2020b). TouchableOpacity. [Web site] React Native. Available at:

https://reactnative.dev/docs/touchableopacity.html [4.9.2020]

55

React Native (2020c). Modal. [Web site] React Native. Available at: https://reactna-

tive.dev/docs/modal#docsNav [4.9.2020]

Ries, E. (2011). The Lean Startup: How Constant Innovation Creates Radically Success-

ful Businesses. St Ives: Portfolio Penguin.

Riistainfo.fi (s.a. a). Suomalainen metsästys. [Web site] Riistainfo.fi. Available at:

https://www.riistainfo.fi/suomalainen-metsastys/ [19.8.2020]

Riistainfo.fi (s.a. b). Metsästäjätutkinto. [Web site] Riistainfo.fi. Available at:

https://www.riistainfo.fi/uusi-metsastaja/metsastajatutkinto/ [20.8.2020]

Stack Overflow (2010). How to randomize (shuffle) a javascript array. [Web site] Stack

Overflow. Available at: https://stackoverflow.com/questions/2450954/how-to-random-

ize-shuffle-a-javascript-array?page=1&tab=votes#tab-top [9.7.2020]

O’Dea, S. (2020). Market share of mobile operating systems worldwide 2012-2019.

[Online article] Statista. Available at: https://www.statista.com/statistics/272698/global-

market-share-held-by-mobile-operating-systems-since-2009/ [7.8.2020]

Liu, S. (2020). Leading mobile operating systems in Finland as of June 2020, by market

share. [Online article] Statista. Available at: https://www.statista.com/statis-

tics/623924/most-popular-mobile-operating-systems-in-finland/ [9.11.2020]
Stephens, R. (2015). Beginning Software Engineering. [E-book] Wiley. Available at:

https://www.perlego.com [6.8.2020]

Strain, M. (2015). 1983 to today: a history of mobile apps. [Online article] The Guardian.

Available at: https://www.theguardian.com/media-network/2015/feb/13/history-mobile-

apps-future-interactive-timeline [21.4.2020]

Sommerville, I. (2016). Software Engineering, Global Edition. 10th ed. [E-book] Pearson

Education Limited. Available at: https://www.perlego.com [6.8.2020]

Wikipedia (2020a). iPhone. [Web site] Wikipedia. Available at: https://en.wikipe-

dia.org/wiki/IPhone [6.8.2020]

Wikipedia (2020b). Software Build. [Web site] Wikipedia. Available at: https://en.wik-

ipedia.org/wiki/Software_build [12.8.2020]

Wikipedia (2020c). Emulator. [Web site] Wikipedia. Available at: https://en.wikipe-

dia.org/wiki/Emulator [12.8.2020]

Wikipedia (2020d). Babel (transcompiler). [Web site] Wikipedia. Available at:

https://en.wikipedia.org/wiki/Babel_(transcompiler) [9.7.2020]

APPENDIX

6 SWEDISH SUMMARY

Om det finns en enkel och vardaglig uppgift som kan lösas med hjälp av teknologi, finns

det säkert också en mobilapplikation som försöker göra det. Under senaste årtiondet har

mobilapplikationsmarknadens värde exploderat till flera hundra miljarder medan konsu-

menter blivit allt vanare att söka efter applikationer för även nischbehov, vilket fortsätt-

ningsvis ökar efterfrågan. En sådan nisch kunde till exempel vara en applikation som

hjälper blivande jägare förbereda sig för finska jägarexamen. Omkring 6000 personer

klarar jägarexamen årligen. Men, för att affärsfallet för en nischapplikation med en så

liten målgrupp skall vara vettig så måste utvecklingen vara billig och enkel.

Det finns digitalt inlärningsmaterial för jägarexamen på nätet men inte i formen av en

mobilapplikation. Då jag höll på att förbereda mig för jägarexamen så sökte jag efter en

mobilapplikation där jag kunde öva på inlärningsmaterialet för examen, men tyvärr hit-

tade jag ingen. Detta enkla men ouppfyllda behovet fick mig att besluta att jag skulle

utveckla en applikation för detta syfte som en del av mitt examensarbete.

I dagens läge är mobilmarknaden, som också inkluderar mobilapplikationsmarknaden,

dominerad av två aktörer och sina mobiloperativsystem, Apple med iOS och Google med

Android. Dessa mobiloperativsystem har sina egna utvecklingsekosystem, med skilda

programmeringsspråk och utvecklingsverktyg, vilket betyder att man måste kunna pro-

grammera en applikation på två olika sätt om man vill lansera den på både iOS och

Android plattformarna. Att programmera en applikation med samma affärslogik på två

olika sätt kräver både tid och kunnande, vilket gör utvecklingsprocessen mycket dyr.

Men, cross-platform-amverk erbjuder en lösning. Med cross-platform-ramverk kan man

programmera en applikation som sedan med hjälp av ramverket översätts så att den fun-

gerar på flera plattformar. Cross-platform-ramverk gör det billigare och enklare att ut-

veckla mobilapplikationer för flera plattformar, och detta kan ha stor betydelse för små-

företag och ensamma entreprenörer med knappa resurser.

Målet med detta examensarbete var att utveckla en mobilapplikation genom att utnyttja

ett cross-platform-ramverk tillsammans med agila produktutvecklingsfilosofier för att

testa om de tillämpar sig för ett affärsfall som kräver billig och enkel applikationsutveckl-

ing. Jag kommer utveckla en minimum-viable-product (MVP) mobilapplikation som

skall kunna lanseras på Android och iOS plattformarna. Applikationen skall till början

vara gratis och den skall följa jägarexamens uppsättning genom att ha olika kategorier

med flervalsfrågor. Om applikationen visar sig värdefull för sina användare så kan den

sedan göras betald för att hämta inkomster.

Genom detta utvecklingsprojekt ville jag hitta svar på följande forskningsfrågor:

- Hur väl ett cross-platform-ramverk, som React Native, tillämpar sig för att ut-

veckla en mobilapplikation för flera plattformar.

- Hur mycket av koden som kan delas mellan de olika plattformarna.

- Hur väl existerande mjukvaruutvecklingsprocessteori stöder ett utvecklingspro-

jekt av en enkel MVP applikation som drivs av en ensam programmerare.

Mjukvaruutvecklingsprocessen fyra huvudaktiviteter är mjukvaruspecifikation, mjukva-

ruutveckling, mjukvaruvalidering och mjukvaruevolution. Mjukvaruspecifikation hand-

lar om att kunder eller slutanvändare tillsammans med utvecklare definierar vad mjukva-

ran skall göra och vad den inte skall göra. Mjukvaruutveckling handlar om att utvecklare

designar mjukvaran och sedan implementerar den. Mjukvaruvalidering handlar om att

granska mjukvaran för fel och se till att den motsvara det som beställts. Mjukvaruevolut-

ion handlar om att underhålla och vidareutveckla mjukvaran för att garantera att den mö-

ter kundernas och marknadens förändrade behov. De ovannämnda huvudaktiviteterna kan

vara mycket komplexa och de varierar i arbetsmängd, de innehåller oftast också flera

underaktiviteter, som t.ex. projektplanering, arkitekturdesign, och enhetstestning.

Utvecklare utför oftast samma aktiviteter då de utvecklar mjukvara, men de utför dem

inte i samma ordningsföljd. Mjukvaruutvecklingsmetoder beskriver i vilken ordning ut-

vecklingsaktiviteter utförs. I mitt examensarbete delar jag upp mjukvaruutvecklingsme-

toder i plandrivna metoder och inkrementella metoder.

Plandrivna metoder bygger på tanken om att man planerar varje utvecklingsaktivitet först

och sedan utför dem en i taget, så att en avslutas före en annan påbörjas. Plandrivna me-

toder fungerar under antagandet att utvecklare vet eller kan komma åt all information de

behöver då de planerar. Men, detta är sällan fallet i mjukvaruprojekt och man upptäcker

ofta ny information när man utför olika utvecklingsaktiviteter, vilket kan leda till att man

måste gå tillbaka i processen och göra om tidigare aktiviteter.

Inkrementella utvecklingsmetoder bygger på tanken att man utvecklar mjukvara i vers-

ioner. Första versionen utvecklas snabbt och används som ett verktyg för att få feedback

från kunden/slutanvändaren för vidareutveckling. Varje version går igenom specifikation,

design, implementation och validerings aktiviteterna och resulterar i mer och mer funkt-

ionalitet tills mjukvaruprodukten tillfredsställer alla krav. Denna metod tillämpar sig

bättre till situationer med flera okända eller snabbt förändrande variabler eller krav, vilket

är orsaken till att inkrementella utvecklingsmetoder blivit så populära för utvecklingen av

mjukvaruprodukter.

MVP tankesättet är väldigt likt inkrementella utvecklingsmetoder eftersom det grundar

sig på idén om att snabbt bygga och lansera en första version av mjukvaruprodukten. En

MVP skall bara innehålla den mest nödvändiga funktionaliteten för att kunderna skall

kunna tänkas använda produkten. Första versionen av en MVP applikation används sedan

för att testa en affärshypotes och lära sig om vad kunderna tycker om produkten. Ifall man

har knappar resurser och inte har en utomstående kund, som genom sina krav styr pro-

duktutvecklingen, utan man utvecklar en egen idé. Då kan MVP tankesättet kan vara ett

bra sätt att närma sig mjukvaruproduktutveckling. Det uppmuntrar en att skära ner på

funktionalitet och hålla kraven måttliga så att man snabbt kan lansera en fungerande pro-

dukt och validera behovet för produkten, vilket passar extra bra för småföretag och en-

samma entreprenörer.

Mjukvaruutvecklingsprocessen bygger på de fyra ovannämnda huvudaktiviteterna, som

används så gott som av alla organisationer som utvecklar mjukvara. Men, om organisat-

ionen väljer att utnyttja en plandriven utvecklingsmetod eller en inkrementell utveckl-

ingsmetod eller en blandning av båda, beror på situationen till hands, organisationens

styrkor och svagheter, och produktens egenskaper.

Traditionella mobilapplikationer har utvecklats med verktyg som är dedikerade för en

viss plattform. Om man utvecklar en applikation för iOS plattformen så måste man an-

vända deras verktyg och samma gäller för Android. Att utveckla samma applikation på

två olika sätt är tidskrävande och dyrt, speciellt för organisationer med knappa resurser.

Med cross-platform-ramverk kan man utveckla en mobilapplikation som kan översättas

till flera plattformar. Att utveckla med cross-platform-ramverk är billigare och enklare

men det kan hända att man inte kan utnyttja plattformens alla egenskaper, eftersom man

utnyttjar plattformens teknologi genom ett extra teknologiskt lager. Detta kan hindra

cross-platform applikationers prestanda och den så kallade ”look and feel” egenskapen,

som hänvisar till hur applikationen känns när man använder den.

Det finns olika cross-platform-ramverk för mjukvaruutvecklare att välja mellan och de

erbjuder alla ungefär samma fördelar. Vilket ramverk utvecklare väljer beror på applikat-

ionens egenskaper, kundens krav och mjukvaruutvecklarnas kunnande och preferenser. I

detta projekt kunde jag själv välja eftersom jag inte hade någon kund. Därför beslöt jag

mig för att använda React Native ramverket. React Native utnyttjar webutvecklingsbib-

lioteket React och programmeringsspråket JavaScript, som jag redan var bekant med från

tidigare. Detta gjorde det lätt för mig att komma igång med utvecklingen av applikationen

då ramverket kändes bekant från början.

Under utvecklingsprocessen tog jag stöd av mjukvaruutvecklingsprocessteorin som jag

undersökt tidigare och av en React Native mjukvaruutvecklingskokbok. Jag var ett en-

manslag som skulle programmera sin första cross-platform applikation med teknologi

som inte var bekant från tidigare. Dessa omständigheter ledde mig till att utnyttja en in-

krementell utvecklingsprocess där jag utnyttjade MVP tankesättet för beslutsfattande an-

gående funktionalitet.

Min MVP inspirerade kravspecifikationen var simpel. Applikationen skulle bara ha den

mest nödvändiga funktionalitet för att hjälpa blivande jägare förbereda sig för jägarexa-

men. Det behövdes ingen login eller databas, bara tre olika frågekategorier och en möj-

lighet att kolla vilka frågor man svarat fel på för att användaren skulle kunna lära sig.

Med dessa krav började jag designa och programmera direkt i skriven kod. Jag jobbade

mig fram en komponent i taget tills jag hade implementerat all funktionalitet jag ansåg

applikationen behöva för att den skulle vara till nytta för slutanvändaren. Det tog mig

ungefär en månad att programmera applikationen färdig.

Efter det testade jag applikationen med hjälp av digitala verktyg på olika rutstorlekar för

att garantera att applikationens layout fungerade dynamiskt. Efter att jag var nöjd med

testerna så beslöt jag att applikationen var färdig för lansering och att utvecklingsproces-

sen för första versionen kunde avslutas.

Som slutsats för mitt arbete kan jag konstatera att jag nådde målet med utvecklingspro-

jektet och lyckades svara på mina forskningsfrågor. Min mjukvaruutvecklingsprocess av-

slöjade att mjukvaruutvecklingsprocessteori inte är till stor nytta för ensamma utvecklare

eftersom det är mer riktat åt team och större projekt. Däremot är mjukvaruutvecklingskok-

böcker till större nytta då de mera konkret demonstrerar, via exempel, teknologins egen-

skaper, vilket är mer relevant i små utvecklingsprojekt.

Utvecklingsprocessen avslöjade också att React Native ramverket är ett mycket praktiskt

verktyg för utveckling av MVP-applikationer. Jag lyckades som. en oerfaren utvecklare

använda ramverket för att snabbt och enkelt utveckla en applikation som fungerar på två

plattformar. Till slut så delade applikationen nästan all kod mellan plattformarna, vilket

bevisar hur effektivt och praktiskt utveckling med React Native är.

Att utveckling av mobilapplikationer blir mer effektivt är bra nyheter för små organisat-

ioner med knappa resurser. Det gör det möjligt för dem att utöva idéer som inte tidigare

varit möjliga. Även nisch applikationsidéer kan anses vara möjliga då utvecklingskostna-

derna inte är för höga.

Då jag genomförde detta projekt så sökte jag efter litteratur om MVP applikationsutveckl-

ing, men hittade ingen. Jag tror det finns rum för någonting mellan den utförliga mjukva-

ruutvecklingsprocessteorin som är skriven för team och de detaljerade mjukvaruutveckl-

ingskokböckerna som beskriver teknologiska egenskaper via exempel. Det finns säkert

efterfrågan för litteratur som tacklar problemen kring MVP applikationsutveckling.

Det har varit roligt att jobba på detta utvecklingsprojekt och försöka skapa en lösning till

ett behov jag själv identifierat. Jag kommer fortsätta utveckla applikationen inkrementellt

med stöd från MVP tankesättet för beslutsfattande.

