

Ngoc Nguyen

Developing a multiplayer AR game us-
ing AR Foundation and Unity

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

6 June 2020

 Abstract

Author
Title

Number of Pages
Date

Ngoc Nguyen
Developing a multiplayer AR game using AR Foundation and
Unity

30 pages + 3 appendices
6 June 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Supervisor, Head of ICT Department

In early 2016, knowledge about the augmented reality of the world is limited. Later that year,
the release of Pokemon Go and the popularity of it got undeniable attention, as well as the
technology underneath. In this thesis, the main focus is to introduce the fundamentals for
getting started with the promising and ever-growing technology, namely Augmented Reality.
People usually got confused between augmented reality and its sibling, virtual reality, there-
fore, the differences will be explained as well.

An augmented reality mobile game is developed throughout this report to apply and prove
the application of the technology. The game brings an immersive experience to the player
designed to simulate playing a real board game in the virtual world, that is no other platforms
can be achieved.

The implementation process is explained in chapter 5. However, this thesis aims for the
game developers who are already familiar with the Unity game engine and know all the
simple terminology in game development. Therefore, a step-by-step tutorial is not provided.
Following the powerful and popular game engine, augmented reality development tools are
used, including Apple ARKit, Android ARCore, and Unity AR Foundation. Besides, this pro-
ject is built for Android phones using the Windows machine, building this app for iOS using
a macOS machine can be different.

The outcome is the thesis is an augmented reality mobile game with some expectations that
are not fulfilled. Challenges and future improvements are pointed out after all. Carrying out
this final year project, the author gains a significant amount of grasp about new technologies,
and more confident in game development.

Keywords Augmented Reality, Mobile game, Unity, AR Foundation

Contents

List of Abbreviations

1 Introduction 1

2 Background and Motivation 2

2.1 Current State of the Game Industry 2

2.2 Motivation 3

3 Augmented Reality Technology 4

3.1 Augmented Reality’s Definition 4

3.2 Augmented Reality versus Virtual Reality 5

3.3 Handheld Mobile Augmented Reality 6

3.4 Mobile Augmented Reality’s Operation 7

3.5 Augmented Reality’s Applications 11

4 Development Tools 12

5 Practical Implementation 14

5.1 Project overview 14

5.2 Getting started 15

5.3 Initial scene set up 16

5.4 Board placing 18

5.5 Play Area prefab 19

5.6 The ball 20

5.7 Paddle control 22

5.8 Enemy 23

5.9 User Interface 25

5.10 Gameplay 26

5.11 Unity event 27

5.12 Power-up 28

6 Conclusions 30

References 31

Appendices

Appendix 1. Source code used for placing the board

Appendix 2. Source code for controlling enemies movement

Appendix 3. Source code of the gameplay script

List of Abbreviations

VR Virtual reality

AR Augmented reality

MR Mixed reality

PC Personal computer

SDK Software development kit

AI Artificial intelligence

UI User interface

API Application program interface

OS Operating system

AAA In the video game industry, AAA (pronounced "triple A") or Triple-A is a

classification term used for games with the highest development budgets

and levels of promotion.

CPU Central processing unit

GPU Graphics processing unit

GPS Global positioning system

QR code Quick response code

1

1 Introduction

The game industry is a competitive business. Therefore, new ideas and new technolo-

gies are needed to create new games and attract more players. This thesis explores the

new technology in making the video game, namely Augmented reality, and provides the

process of implementation of an augmented reality mobile game.

This project is carried out using the popular game engine, Unity, with this intention, this

thesis is suitable for the familiar developer with Unity game development. The practical

implementation chapter presents the most important processes, not a step-by-step tuto-

rial.

Following the Introduction, this thesis contains five more chapters. In chapter 2, a short

description of the current state of the video game industry and the author’s motivation.

Chapter 3 provides knowledge of Augmented reality while chapter 4 is an introduction of

software tools used for developing this project. Chapter 5 describes the process of im-

plementation of the mobile game and final words are contained in the last chapter.

2

2 Background and Motivation

This section briefly describes the current state of the video game industry and following

by the reasons of the author making this project.

2.1 Current State of the Game Industry

Decades ago, the first introduced computer was huge and heavy. Many companies spe-

cialize in computer hardware that was researched and developed to reduce the size and

increase the performance of the computer. After that laptop was invented as well as

smartphone, which was the size become smaller, but the performance was slower. While

the technology used in PC, laptop, and smartphone continues growing, the gap between

PC and smartphone’s performance is closing.

As a result of rising smartphone’s performance, a mobile phone can handle more heavy

tasks included gaming. Therefore, more and more people want to play video games on

their mobile phones. Furthermore, mobile phones are light and compact, so the user can

play video games anywhere they want.

Making mobile games contains a lower risk than PC or console video games. An AAA

PC game made by a large game company is available to release after 7 to 10 years of

development. Unfortunately, the game company can not receive profit from an unfinished

product. Besides that, the player’s concern may not similar to 7 to 10 years ago. Many

sizable game projects have been forced to cancel after 5 years of processing. Develop-

ing mobile games required less time, which leads to gaining profit faster.

However, the more companies making mobile games, the bigger threat of competition.

The potential of the game mobile business was undeniable, that was the reason why

many game companies have followed the trend. Besides, a larger amount of game mo-

bile start-ups has been established. Therefore, standing out in the crowded business

was not a simple challenge.

Luckily, VR and AR technology were invented, which is provided great benefits for many

industries including gaming. While VR still struggles to obtain enough number of

3

consumers for expanding at the moment, AR promising a remarkable leap forward for

the mobile game business. At the moment, AR is still a new technology, bringing a unique

AR game to the market is achievable.

2.2 Motivation

The author’s first-time playing computer games was through uncle’s PC in 2001. After

that, the biggest enthusiasm of the author became playing video games. Over the year

until now, the author has been using many devices for playing video games, including

PCs, consoles, handheld consoles and smartphones. However, PC and console games

are remaining the author’s favorites for a very long time even when mobile games have

become a huge trend worldwide.

Surprisingly, the first experience with VR and AR technology changed the author’s mind.

These two new technologies opened a new era for the next level of interaction in playing

the video game. VR made huge changes for user experience, it represents a completely

believable virtual world, which can be different from the real world or the real world in

other places. As impressive as VR’s sibling, AR technology gained the author’s attention

to the mobile game. A combination of the real environment with virtual objects in real-

time make user feels connected.

In the real world situation, many times the author needs more than a few board games

to play with friends. Playing mobile games is a good solution, but not moving for a long

time is not a good idea. Therefore, A multiplayer AR game that simulates a board game

will be a good idea, players can move around and enjoy their board games without any

physical pieces of equipment.

4

3 Augmented Reality Technology

AR’s definition will be introduced in this section, as well as how it works and which ways

it can be used. There will be a short comparison between Augmented reality and Virtual

reality, which is many people confuse about the similarity.

3.1 Augmented Reality’s Definition

In AR, the physical space around us which is captured by image sensors in real-time is

layered on with computer-generated graphics. This is usually associated with the aug-

mentation of 3D objects to a live video from the camera of the mobile device, such as a

smartphone or tablet [1, p. 8]. More details about how it works on the mobile platform will

be discussed later.

AR is an old concept. The term has been accepted and used since the 1990s in research

labs, military and other industries. Since then, the development kits for both open source

and other platforms have been accessible. The attraction of AR of the consumer has

gone further because of the rising of smartphones and tablets [1, p. 8]. Apple with ARKit

and Google with ARCore released since late 2017, they constantly evolve and improve

their SDK, even now in 2020, statement of Jonathan and Kristian [1, p. 8] about handheld

AR has not yet achieved their ultimate form remain correct.

For further precisely about AR’s definition, Jonathan and Kristan [1, p. 10] mentioned the

definition of two separated words augmented and reality written in the Merriam-Webster

dictionary, the word augment’s meaning is “ to make greater, more numerous, larger, or

more intense” [1, p. 10]. And the definition of the word reality is “ the quality or state of

being real” [1, p. 10]. Then Jonathan and Kristan [1, p. 10] emphasized that “augmented

reality, at its core, is about taking what is real and making it greater, more intense, and

more useful”. Beside word-by-word meaning, the goal of the AR is to enhance human

sense in various activities, including directed tasks, learning, communicating, or enter-

taining.

Underneath the impression of AR is the power of artificial intelligence (AI) in the field of

computer vision. AR needs computer vision to observe targets in the user’s field of view,

5

including coded markers, natural feature tracking (NFT), or other methods to observe

objects or text. When a target is detected and its position and orientation in the real world

are marked, computer graphics that lines up with those real-word transform will be gen-

erated on top of real-world imagery [1, p. 10].

Another equally important definition of AR is it is running in real-time, not pre-recorded.

For example, the mixing of actual action with computer graphics as cinematic special

effects is not accepted as AR. Besides, the computer-generated display must be regis-

tered to the real 3D world, not 2D overlays. As an illustration, many head-up displays,

such as in Iron Man’s mask or even Google Glass, are not AR. From the user’s point of

view, AR graphics could be seen as real objects landing around them physically in the

real-world [1, p. 11].

To summarize, AR has three key concepts, which is the virtual blend in the real, interact

in real-time, and register in 3D.[1, p. 11]

3.2 Augmented Reality versus Virtual Reality

Many people usually got confused between virtual reality (VR) and AR. As described

earlier, AR adds virtual objects to the real-world, on the other hand, VR puts you in a

different environment digitally, which is virtual [1, p. 12].

One of the important purposes of VR headsets is to separate the user’s visual to their

real-world. Therefore, everything viewed in VR application is designed and created by

the developer to maintain the fully immersive VR experience. Unfortunately, VR comes

with a unique issue, which is motion sickness. Researches were conducted to point out

that rendering the graphic at least 90 frames per second or higher will reduce or even

remove the effect of motion sickness while using the VR headset [1, p. 13].

Unlike VR, latency is not a big issue for AR because of the real-world visual cover most

of the user’s field of view. As a result, users have a small chance to suffer the motion

sickness problem [1, p. 13].

6

Both technologies have different heavy work-load on hardware usage. VR forces the

device’s CPU and GPU processors maximum power to render 3D graphics for both left

and right eyes simultaneously for the entire scene while maintaining very high framerate,

as well as running physics, animations, audio, and other processing tasks. On the other

hand, AR’s main task is to detect and track the targets through image processing pattern

recognition in real-time. Depth sensors built-in complex devices are responsible for cre-

ating and tracking a scanned 3D model of the real-world in real-time (Simultaneous Lo-

calization and Mapping, or SLAM) [1, p. 13].

3.3 Handheld Mobile Augmented Reality

As described earlier, AR is a combination of the real-world and virtual graphic objects,

those objects are attached to the physical 3D world, and this operation must be con-

ducted in real-time. There are two popular ways to achieve that, which is using a

handheld mobile device such as a smartphone, tablet, or using wearable AR smart-

glasses. In this thesis, the first technique will be focused, which is the most universal and

reachable one. [1, p. 14]

In the first place, handle mobile platform contains unique characteristics to become the

most common in the implementation of AR, those are:

• cordless and powered by a battery

• touchscreen display built-in

• cameras

• CPU, GPU, and memory

• motion sensors and gyroscope

• GPS and Wi-Fi.

First of all, mobile devices are cordless, which provide users the freedom to use any-

where without connection to a PC, and a built-in battery for supply power to all compo-

nents. That is ideal for AR because AR operates in the real world, while users moving

around. [1, p. 15]

7

Second, mobile devices have a color display with resolution and pixel density suitable

for handheld viewing distance. Besides, a multitouch input sensor under the screen is an

important feature for interaction using fingers. [1, p. 16]

Third, taking real-world video and present it on-screen in real-time required a rear-facing

camera. AR application can process video data in real-time because video data is digital.

[1, p. 16]

In addition, CPU and GPU included in mobile devices nowadays are powerful, which is

crucial for AR to deal with heavy tasks such as detects targets in the video in real-time,

handles sensors and user inputs, and process the video combination. Achieving higher

performance requires further researches from hardware manufactures. [1, p. 16]

Furthermore, the advance of mobile AR depends on built-in sensors that calibrate mo-

tion, orientation, and other conditions. Tracking linear motion along three axes is an ac-

celerometer’s responsible, and tracking rotational motion around the three axes is a gy-

roscope’s task. AR application can measure the device’s position and orientation in the

physical 3D environment based on real-time data from the sensors, then register the 3D

graphics accordingly. [1, p. 16]

Last but not least, the user’s location on the globe is defined by a GPS sensor. Metadata

can be accessed from the internet with Wi-FI connection. [1, p. 16]

3.4 Mobile Augmented Reality’s Operation

In a handheld mobile device, the AR application needs the device’s camera to take the

video of the real world then merge the graphic-generated objects into it. [1, p. 14]

Handheld mobile video see-through is depicted in Figure 1.

8

Figure 1. Handheld mobile AR [1, p. 15]

As illustrated in Figure 1, using the mobile AR app, the user aims the camera at the target

in the real world and a 3D virtual graphic will be registered to the target’s position and

orientation once the app detects the target. Then the AR video is showed on the device’s

screen, which is the meaning of video see-through. [1, p. 15]

The loop of detecting a target in AR is portrayed in Figure 2.

9

Figure 2. Target detection [1, p. 18]

In Figure 2, each frame of the video, which is taken by the device camera, will be ana-

lyzed by the application and use the photogrammetry technique to find a target, such as

a pre-programmed marker. The distance, position, and orientation of the marker relative

to the camera in 3D is inspected in the detection phase. Then, the virtual objects are

rendered based on the value of the camera pose, namely position and orientation, which

is established in the 3D world in the previous phase. Finally, the video frame showed to

the user is combined with the rendered graphics. [1, p. 18]

Smartphone’s display commonly has a 60Hz refresh rate. That is a heavy task for the

smartphone to handle that process because the image on the screen is updated 60 times

per second. Therefore, many attempts have been carried out in optimizing the software

to minimize any unnecessary calculations, reduce redundancy, and other methods to

boost efficiency while maintaining a smooth user experience. As an illustration, instead

of detecting repeatedly the same target each time, the application will mark and follow

its movement from one frame to the next once it has been spotted. [1, p. 19]

10

Interaction is the mobile screen with computer-generated objects is similar to any mobile

app or game. Figure 3 shows the process of input in the mobile AR app.

Figure 3. Input process in mobile AR app [1, p. 19]

As depicted in Figure 3, the AR app listens to a touch event. Then it casts a ray from the

screen 2D position into 3D space, which uses the current camera pose, to verify which

object user expected to tap. The app can react to the tap to move or modify the geometry

in case the ray hits a detectable object. These modifications of the object will be rendered

visually on the screen in the next updated frame. [1, p. 19]

Applying AR with the selfie camera of the smartphone is more advance, such as Snap-

chat popular app. The app runs complex AI pattern matching algorithms while analyzes

the user’s face to determine notable points or nodes, that match the features in the user’s

face, including eyes, nose, lips, chin, and so on. Then it creates a 3D mesh, which sim-

ulates the user’s face, to cover the user’s matching facial feature with an additional

graphic layer and even modify and distort the user’s face for entertaining. [1, p. 20]

11

3.5 Augmented Reality’s Applications

As discussed in previous sections about what technique using underneath AR and how

it works, AR has colossal potential to become popular as the World Wide Web, the social

web. Below are a few examples of the applications that will gain benefit from AR tech-

nology.

Business marketing is the first example. A companion app can bring to customers more

details about the product, or marketing media when it scans the AR markers printed in

the product container. For example, AR business cards are an impressive approach to

show information about a person. QR codes are a convenient way to take people to a

website for advertisement purposes. Likewise, AR markers in advertising will be popular

sooner or later. [1, p. 35]

Education is a field that already receives benefits from AR. Stories in children's books

have been augmented to life for years. AR in educational textbooks and media resources

are available for older students who study more serious subjects. [1, p. 35]

Industrial training’s adoption of AR is another great example. An AR app explains how

to fix equipment to increase technical training and lower mistakes. Paper training manu-

als, PDFs, or web pages are out-dated methods. Instructional videos are somewhat bet-

ter. However, more interactive 3D graphics, as well as hands-on tutorials augmented on

real-world objects brings training to be more intimate. [1, p. 35]

Retail earn a great boost from AR technology. The most compelling evidence is furniture

stores, such as IKEA, can provide an AR app to the user for trying new furniture in their

home visually before buying decisions. [1, p. 35]

Gaming got undeniable benefits from AR as well. Niantic made AR become a well-

known term in the gaming industry with their Pokémon GO game. [1, p. 36] This will be

the focus field of AR’s application in this thesis.

Many other fields benefit from AR, including engineering, design disciplines, music, cin-

ema, storytelling, journalism, and so on. [1, p. 36]

12

4 Development Tools

Various game development tools have introduced over the years, from the free version

to the high price-tag game engine. Many of them support multi-platform, while some are

aiming at a specific platform. Most of the popular game engine build games with heavily

scripting, but a small amount of game engine is code-free for fast prototyping and suita-

ble for people who do not have sufficient programming skillset. This chapter provides a

brief introduction to one of the most well-known game engines, Unity. Following by the

extra introductions of powerful AR development tools, namely ARCore, ARKit, and AR

Foundation.

Unity is an industry-level game engine used for multi-platform video game creation. It is

suitable for professional game development, as well as beginner game developers. Many

tutorials on the internet and books are available to explain in detail about how to start

using Unity. For downloading the latest version of Unity and watching tutorials, see

https://unity.com/. [2]

Unity consists of a great number of modules for controlling and rendering 3D objects,

lighting, physics, animation, audio, and the list goes on. The beauty of the Unity editor is

powerful in developing and testing quickly and efficiently. Unity can be used in macOS

and Windows. In terms of deployment targets, Unity can deploy to PC, web, mobile that

is included iOS and Android, or consoles, and VR and AR platform support recently.[2]

ARCore is a platform made by Google for creating AR apps for Android devices. It uses

three key abilities to combine virtual objects with the physical world through the camera:

• Motion tracking allows the phone to track its position based on analyzing
the real world.

• Environment understanding allows the phone to discover any surface’s size
and location, such as horizontal, vertical, and angled surfaces.

• Light estimation allows the phone to evaluate the current lightning status of
the surrounding physical space.

A list of supported devices can be found here https://developers.google.com/ar/dis-

cover/supported-devices.

https://unity.com/
https://developers.google.com/ar/discover/supported-devices
https://developers.google.com/ar/discover/supported-devices

13

ARKit is the framework made by Apple for building AR projects for the iPhone and iPad.

Compiling an app on iOS or iPadOS required a macOS device. ARKit consists of fea-

tures: [3]

• TrueDeph Camera

• Visual Inertial Odometry

• Scene Understanding

• Lighting Estimation

• Rendering Optimizations.

AR Foundation is a framework made by Unity, that allows developing an AR once, then

deploy it across multiple mobile platforms and wearable AR devices, such as Android,

iOS / iPadOS, Magic Leap, and HoloLens. This package provides an interface for Unity

developer to use core features from each platform, as well as unique features from Unity,

including photorealistic rendering, physics, device optimization. However, it does not

carry out any AR features itself. [4]

14

5 Practical Implementation

This chapter explains in detail how the final year project is carried out. It also provides

an overview of the project, such as the main idea of the project, the requirements to run

the project in Unity.

5.1 Project overview

Many time the author visit friends and wanted to play board games, playing frequently a

few board games over time leading to losing interest. Unfortunately, the author could not

bring a large number of board games for having more options. Therefore, the author

wanted to make AR mobile board games for players can switch to other games easily,

at the same time player have to move, that encourages players not to sit for too long. On

the other hand, an AR game will bring an immersive experience to the player and even

more impressive than using a physical board game.

According to the purpose above, this project is based on the idea of creating a multiplayer

AR mobile board game, which is an upgrade from the legacy Pong game. The game can

run on both iOS and Android devices.

Up to 4 players can enjoy the game together at once or playing with computer enemies.

The player controls their paddle to protect the goal and leads the ball to the enemy’s

goals. Several power-ups respawn randomly in-game, who take it first can use that to

take advantage. Every player has 3 stars, each time their goal got hit, they lose 1 star. If

a player loses all their 3 stars, they are knocked out of the game. The last player stays,

that is the winner.

This project can deploy an app for Android and iOS devices. Building the app for Android

devices can carry out either on Windows or macOS machine. However, building the app

for iOS devices requires Xcode, which only can run on the macOS machine.

15

To run this project in Unity, suitable Unity version and extra preview packages are re-

quired to prevent any conflict and able to develop AR applications:

• Unity 2019.3.7f1 (later is possible)

• AR Foundation 3.1.0 preview 6

• AR Subsystems 3.1.0 preview 6

• ARCore XR Plugin 3.1.0 preview 6

• ARKit XR Plugin 3.1.0 preview 6.

5.2 Getting started

Before start writing any line of code, setting up all the software and tools needed are

important. This project is carried out with Unity in Windows and developed an AR game

for Android specifically. Due to the slight difference between developing for iOS and An-

droid, this report may not suitable for iOS development.

First, Unity is essential for the entire process. To install Unity, downloading and installing

Unity Hub first is strongly recommended, which is a developer can manage multiple

Unity versions easily and add more modules conveniently. Choosing a suitable Unity

version is crucial, as mention in the previous subsection. Depend on which mobile plat-

form developer aims to, select Android Build Support or iOS Build Support in the

process of installing Unity, or can be added later in Unity Hub.

Once a new project is created, heading to Package Manager to install the rest of the

required packages, that is mentioned in the previous subsection. There are several con-

figurations needed to be set in the Build Settings window. Begin with switching the

platform to Android. The rest of the configurations is shown in Table 1.

16

Table 1. Player Settings configurations

Setting Value

Player Settings > Other Set-
tings > Rendering

Uncheck Auto Graphics API
If Vulkan is listed under Graphics APIs, remove it.

Player Settings > Other Set-
tings > Package Name

Create a unique app ID using a Java package name

format.

For example, use com.example.helloAR

Player Settings > Other Set-
tings > Minimum API Level

Android 7.0 'Nougat' (API Level 24) or higher

(For AR Optional apps, the Minimum API level is 14.)

Player Settings > XR Set-
tings > ARCore Supported

Enable

As shown in Table 1, those configurations are in Player Settings. Preparing all the set-

tings carefully is important to avoid any extra conflict in further development.

Last but not least, installing the Android Logcat package for debugging and analyzing

the device is recommended. Enabling Developer Options and USB debugging on the

testing device is necessary as well.

5.3 Initial scene set up

After importing all the required packages in the previous subsection, the next step is

creating AR Foundations game objects under the GameObject > XR submenu. The ini-

tial set up scene of Hierarchy and Project view can illustrate in Figure 4.

Figure 4. Initial set up of Project and Hierarchy view

https://developers.google.com/ar/develop/unity/enable-arcore

17

As can be seen in Figure 4, the scene’s name is changed to ARPongGame. Four new

game objects are created and shown in the Hierarchy view. The AR Session controls

the lifecycle of an AR app. The AR Session Origin’s mission is to transform trackable

features into their final position, orientation, and scale in the Unity Scene. Two last game

objects are blue, which indicates they are prefab instances, by dragging into newly cre-

ated folder Prefabs in Project view, then they will be deleted after that.

Several components and prefabs need to add to the AR Session Origin, which is shown

in Figure 5.

Figure 5. Components added to the AR Session Origin

In Figure 5, three new components are added, namely AR Plane Manager, AR Point

Cloud Manager, and AR Raycast Manager. Their purpose is to detect flat surface, de-

tect feature points, and raycast functions respectively. Two prefabs that are created in

the previous step are added to new components.

The final step in setting up the initial scene is adding the opening scene to the Scene in

Build list in Build Settings window.

18

5.4 Board placing

The game board, which contains all the objects of the game, will be selected its position

by the player from the beginning of the game. The script handling this function is added

to the AR Session Origin game object, therefore it will be executed early when the player

opens the app.

Once the app is started, all the AR game objects related, that is mentioned earlier,

worked together to analyze the video feed of the real-world, detect feature points then

create horizontal or vertical planes. The Update() method for placing a board is shown

in Listing 1:

// Update is called once per frame

 void Update()

 {

 if (!boardIsPlaced)

 {

 if (RaycastManager.Raycast(centerScreenPos, listHits,

TrackableType.PlaneWithinPolygon))

 {

 // Raycast hits are sorted by distance, so the first one

 // will be the closest hit.

 hitPose = listHits[0].pose;

 if (spawnedObject == null)

 {

 spawnedObject = Instantiate(board);

 SessionOrigin.MakeContentAppearAt(spawnedObject.transform,

hitPose.position, hitPose.rotation);

 }

 else

 {

 SessionOrigin.MakeContentAppearAt(spawnedObject.transform,

hitPose.position);

 }

 }

 }

 }

Listing 1. Placing the board

In Listing 1, that is the Update() method, which is called once per frame. Whether or not

the board is placed on the plane will be checked every frame, if not then a ray will be

cast from the center of the phone screen and target and available plane in the 3D world.

Once the Raycast sends out by the RaycastManger hits a plane, an image of the board

will appear and the player can rotate the phone and move around to select the preferred

19

position for the board. There are more methods and lines of code contribute to placing

the board, the full script can be found in Appendix 1.

5.5 Play Area prefab

The game needs to restart several times while players playing. Usually, using restart the

scene method available with Unity is easy and convenient. However, an AR app renders

virtual objects on top of the video feed from the phone’s camera, using that restart

method will black out the screen, which can disrupt the immersive experience of the user.

Therefore all components of the game need to be packed in one prefab and reset the

prefab without resetting the camera feed. All of the prefab’s components and visual is

illustrated in Figure 6:

Figure 6. Play Area prefab

As shown in Figure 6, the right side is the Scene view, which is displaying the whole play

area prefab visually. That is how the play area looks like in the game. On the left side is

the Hierarchy view, which is a nested list of all the objects. Many objects on the list

contain collider for all the physic interaction related. Objects, such as Goals, Enemies,

20

Player, and ScoreManager include separated script components, which will be ex-

plained later in this chapter.

The ShadowPlane is a transparent material plane with a custom shader, that allows the

transparent plane to receive shadow. Therefore all objects in the PlayeArea will be got

virtual shadow added to the video feed. Moreover, one script component is attached to

the PlayArea, that is shown in Listing 2:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class PlayArea : IntEventInvoker

{

 // Start is called before the first frame update

 void Start()

 {

 Time.timeScale = 0;

 // add as invoker for BoardPlacedEvent

 unityEvents.Add(EventName.BoardPlacedEvent, new BoardPlacedEvent());

 EventManager.AddInvoker(EventName.BoardPlacedEvent, this);

 unityEvents[EventName.BoardPlacedEvent].Invoke(0);

 }

 private void OnDestroy()

 {

 gameObject.tag = "Untagged";

 EventManager.RemoveInvoker(EventName.BoardPlacedEvent, this);

 }

}

Listing 2. Script component of the PlayArea

In Listing 2, the Start() method is called before the first frame update. Its purpose is to

pause the game and invoke an event to indicate that the play area is fully loaded and

ready to run. The invoke callback belongs to a complex Unity Events system, which will

be discussed later.

5.6 The ball

One of the key objects in this game is the ball. The ball needs to convert to a prefab

object because that is an efficient technique to respawn a new ball while the game

21

running. Physical interaction is crucial for the ball in the game, therefore, several settings

of components of the ball must setted properly in the Inspector as shown in Figure 7:

Figure 7. Important components of the ball prefab

As depicted in Figure 7, in Sphere Collider component, Is Trigger is enabled, and Ma-

terial property contains the PhysicMat physic material, which is a custom physic mate-

rial with the Bounciness value set to 1. In the Rigidbody component, the Interpolate

is set to Interpolate for the smooth transition of the moving ball when the game enters

slow-motion time.

Controlling the movement of the ball is handled by the attached script. Two essential

methods are shown in Listing 3:

// Update is called once per frame

 void Update()

 {

 if(Time.time >= timeToMove && !ballmoves)

 {

 Move();

 }

 //For constant velocity

 if (ballmoves)

 {

 //Get current speed and direction

 Vector3 direction = rb.velocity;

22

 float currentSpeed = direction.magnitude;

 direction.Normalize();

 if (currentSpeed != speed)

 {

 rb.velocity = direction * speed;

 }

 }

 }

 void Move()

 {

 //Determines a random starting direction

 transform.position = new Vector3(0, 0.5f, 0);

 randomDir.x = Random.Range(-1F, 1F);

 randomDir.z = Random.Range(-1F, 1F);

 //randomDir.x = 1;

 randomDir.Normalize();

 rb.velocity = new Vector3(randomDir.x, randomDir.y, randomDir.z) *

speed;

 ballmoves = true;

 }

Listing 3. Control ball movement

As illustrated in Listing 3, once per frame, the Update() method is called to ensure the

suitable condition to allow the ball to start moving. One the other hand, another task of it

is maintaining the constant velocity of the ball in any condition, because, at the time of

the collision with other physic objects, the velocity of the ball may become unstable. The

Move() method is responsible for determining a random starting direction for the ball.

5.7 Paddle control

To play the game, every player control one paddle to block the ball from going through

the goal. Simply dragging the paddle parallel with the goal. Because this game is an AR

game, touching and dragging the in-game object are not similar to a normal mobile game.

An important piece of code of the Update() method is shown in Listing 4:

if (!TryGetTouchPosition(out Vector2 touchPosition))

 {

 drag = false;

 }

 else

 {

 Ray ray = Camera.main.ScreenPointToRay(touchPosition);

 RaycastHit hit;

 if (Physics.Raycast(ray, out hit))

 {

23

 if (hit.collider.name.Equals("PlayerControlDetector"))

 {

 drag = true;

 if (drag == true)

 {

 float screenDist = Camera.main.WorldToScreen-

Point(gameObject.transform.position).z;

 Vector3 pos_move = Camera.main.ScreenToWorldPoint(new

Vector3(touchPosition.x, touchPosition.y, screenDist));

 transform.position = new Vector3(pos_move.x, trans-

form.position.y, transform.position.z);

 }

 }

 }

 }

Listing 4. Control the paddle

As shown in Listing 4, when a touch action is detected, a ray is cast from the touchpoint

forward in the 3D world. At the same time, hit testing is established to identify which

object got hit by the ray. If the object’s name got hit is PlayerControlDetector, which is

a child object of the paddle, then the player can start dragging the paddle.

5.8 Enemy

At the idea stage, the game is designed to be a multiplayer game. However, due to short

of time, computer enemies are created to cover the missing of real players. Begin with

creating the enemy paddle prefab for duplicating more enemies faster.

As similar to any object that needs physical interaction, add the Collider and Rigidbody

components to the enemy paddle object. In the Rigidbody component, select the Inter-

polate option. Constraints field selection slightly differences between enemies paddle

based on its position on the board. An example of those selections is illustrated in Figure

8 below:

24

Figure 8. Rigidbody component of enemy paddle

As shown in Figure 8, all the Freeze Rotation of 3 axes are selected, this prevents the

paddle to rotate in any direction and applied to all enemies paddle object. On the other

hand, only the enemy, which its position is opposite to the main player, is Freeze Posi-

tion on X-axis, the rest enemies paddle maintain the same selection as shown in Figure

8 above.

Although computer enemies are not implemented with Artificial Intelligent (AI), they are

still designed to adjust the difficulty level easily if needed. One parent object control all

the enemies paddle, the controlling method is similar for all the enemies, which is shown

in Listing 5:

//Reading the ball's coordinates

 if (ball != null)

 {

 ballCoord = ball.transform.position;

 i = 0;

 //Tracking the ball and moving enemies

 if (move && ball.GetComponent<Ball>().ballmoves)

 {

 //Enemy 1

 if (!knockedPlayers[3] && !isFreeze3)

 {

 if (enemy3.transform.position.x <= ballCoord.x && en-

emy3.transform.position.x <= 2.5F)

 {

 enemy3.transform.position = new Vector3(

 enemy3.transform.position.x + movAmount,

 enemy3.transform.position.y,

 enemy3.transform.position.z);

 }

25

 if (enemy3.transform.position.x >= ballCoord.x && en-

emy3.transform.position.x >= -2.5F)

 {

 enemy3.transform.position = new Vector3(

 enemy3.transform.position.x - movAmount,

 enemy3.transform.position.y,

 enemy3.transform.position.z);

 }

 }

Listing 5. Control the enemy paddle

In Listing 5, this is a part of the Update() method in the script attached to the enemy

controller object. Every frame, the ball’s coordinate is tracked and the paddle is moved

based on that data. Several booleans are added to prevent the null reference error. The

full script to control enemies' movement can be found in Appendix 2.

5.9 User Interface

User Interface (UI) is important for the user to interact easily with the game. Creating any

new UI object leads to new Canvas created if there is not one. An overview of UI for this

project is depicted in Figure 9:

Figure 9. User Interface

As shown in Figure 9, on the Hierarchy view, the main Canvas is renamed to UIMan-

ager, including many UI objects as children. Most of the UI objects are buttons, else are

a score text and a crosshair. As can be seen on the Scene view, that is the layout of the

26

UI. All UI elements are set its position and pivot based on the side of the screen, there-

fore, its position will adjust automatically in any screen sizes. The UIManager contains

a script for controlling all the UI elements. Methods in the script are mainly provided

Onclick behavior for all the buttons and several conditions to enable and disable buttons.

5.10 Gameplay

The Gameplay script is attached to the AR Camera game object, so that script can be

executed correctly after the AR Camera is ready to run. Most of the tasks related to game

operation are handled by this script, such as responding to event invocations, including

board placed successfully, start the game, respawn a new ball, and so on, as well as

invoke several events. The detailed script is written in Appendix 3.

Included in the gameplay mechanic are the goal and the scoring system. The goal script

attached to each goal object is responsible for detecting any collision of the ball, then

invoke an event to inform other components to react accordingly. Besides, the goal also

can a goal into a normal wall when the player at that position is knocked out.

Last but not least, the score manager handles all score related activities, namely chang-

ing the score of all players and deciding when the game is over. The method to manage

the score is shown in Listing 6:

void HandleGoalEvent(int goalOfPlayerGotHit)

 {

 scorePlayers[goalOfPlayerGotHit] -= 1;

 if (scorePlayers[goalOfPlayerGotHit] == 0)

 {

 Destroy(StarPlayers[goalOfPlayerGotHit].gameObject);

 // check which condition to invoke which event

 if (goalOfPlayerGotHit == 1 || AllBotKnockedOut())

 {

 needNewBall = false;

 unityEvents[EventName.GameOverEvent].Invoke(0);

 }

 unityEvents[EventName.KnockedOutEvent].Invoke(goalOfPlayerGotHit);

 }

 else

 {

 Destroy(StarPlayers[goalOfPlayerGotHit].trans-

form.GetChild(0).gameObject);

 }

27

 // check whether or not new ball is needed

 if (needNewBall)

 {

 unityEvents[EventName.RespawnBallEvent].Invoke(0);

 }

 }

Listing 6. Goal event handler

As illustrated in Listing 6, every time a goal got hit, the score of that player is decreased

and one star on the board will be destroyed. If the player’s score down to zero, that player

will be knocked out. After that, a new ball needs to respawn.

5.11 Unity event

Unity event is a fairly complex system, indeed it improves the performance of the game

significant. Instead of checking many conditions in the Update method in every script

once every frame, that amount might increase rapidly when more features are added,

using invoker and listener handle those tasks efficiently. The EventManager is initialized

at the beginning of the game within the AR Session Origin as can be seen in Listing 7:

 public static void Initialize()

 {

 // create empty lists for all the dictionary entries

 foreach (EventName name in Enum.GetValues(typeof(EventName)))

 {

 if (!invokers.ContainsKey(name))

 {

 invokers.Add(name, new List<IntEventInvoker>());

 listeners.Add(name, new List<UnityAction<int>>());

 }

 else

 {

 invokers[name].Clear();

 listeners[name].Clear();

 }

 }

 }

Listing 7. Initializing the Event manager

As shown in Listing 7, the EventManager is a static class, which contains two dictionary

variables, namely invoker and listener. It loads and adds all invokers and listeners based

on an enum class EventName, which stores all the names of events in the game. Fur-

thermore, three methods to handle event process is depicted in Listing 8:

28

 public static void AddInvoker(EventName eventName, IntEventInvoker in-

voker)

 {

 // add listeners to new invoker and add new invoker to dictionary

 foreach (UnityAction<int> listener in listeners[eventName])

 {

 invoker.AddListener(eventName, listener);

 }

 invokers[eventName].Add(invoker);

 }

 public static void AddListener(EventName eventName, UnityAction<int> lis-

tener)

 {

 // add as listener to all invokers and add new listener to diction-

ary

 foreach (IntEventInvoker invoker in invokers[eventName])

 {

 invoker.AddListener(eventName, listener);

 }

 listeners[eventName].Add(listener);

 }

 public static void RemoveInvoker(EventName eventName, IntEventInvoker in-

voker)

 {

 // remove invoker from dictionary

 invokers[eventName].Remove(invoker);

 }

Listing 8. Processing event invoker and listener

In Listing 8, two method for adding new invoker and listener separately. The last method

is to remove a particular invoker to prevent memory leakage. Most of the script in this

project using this event system.

5.12 Power-up

Power-up is a useful added feature to provide more attractive and creative activities for

the player, also encouraging the player to use more AR aspects. When the board is

placed, a timer with a random duration is started for respawning a power-up at a random

position above the board. Two of the three methods define the power-up can be seen in

Listing 9:

 // always called before any Start functions and also just after a prefab

is instantiated

 void Awake()

 {

 // get random x, y and z for position of gameObject

 GameObject floor = GameObject.FindGameObjectWithTag("Floor");

29

 Vector3 meshColliderFloorSize = floor.GetComponent<MeshCol-

lider>().bounds.size;

 float randX = Random.Range(meshColliderFloorSize.x / 2, -meshCol-

liderFloorSize.x / 2);

 float randY = Random.Range(4, 8);

 float randZ = Random.Range(meshColliderFloorSize.z / 2, -meshCol-

liderFloorSize.z/ 2);

 randPowerUpPosition = new Vector3(randX, randY, randZ);

 Debug.Log(randPowerUpPosition);

 }

 // Start is called before the first frame update

 void Start()

 {

 Time.timeScale = 0.1f;

 // set new random postition for gameObject

 transform.position = randPowerUpPosition;

 }

Listing 9. Initialize the power-up

As illustrated in Listing 9, the Awake() method is typically called before any Start func-

tion, it randomizes a new position for the power-up and set that new position for the

power-up in the Start method. At the same time, the time scale of the game is set to 0.1

when the power-up appears. The game enters the slow-motion mode, so the player can

have enough time to pick up the power-up without losing attention to the ball.

Two scenarios have been designed for the power-up usage of real player and the com-

puter enemies. If the real player obtains the power-up, one can activate the power-up

anytime. After that, simply pointing at any enemy paddle and press a button to freeze

that paddle in three seconds.

On the other hand, if the computer enemy got the power-up. A short random time after

that, one big wall will appear above the main player’s goal and block the sight of the

paddle. Therefore, one needs to move around and turn the camera to see the paddle

can gain back the control. The wall will disappear after 5 seconds.

Many operations associated with the power-up is carried out in the Gameplay and UI-

Manager scripts. With this intention, all related methods in the UI manager are due to

activity after pressing a button.

30

6 Conclusions

One journey is about to end. Throughout this report, various knowledge about Aug-

mented reality has been explored and a project has been carried out to showcase what

AR is capable of. That technology has huge potential to be popular soon.

Developing an AR mobile game is time-consuming and hard-working, which is similar to

developing any software. The app performed pleasantly at the end due to most of the

original ideas are fulfilled. Proper testing with an ideal number of testers has not carried

out, there are only three people except the author has been playing the game with dif-

ferent versions. Based on their feedback, several improvements have been implemented

to enhance performance and provide more only-AR-can-do experience.

Unfortunately, two expectations are not accomplished. First is the multiplayer mode, it

requires more experience and time for server and cloud programming. Multiplayer in AR

game and one in the normal mobile game are unalike at some extents. Second is the

virtual object in the game did not blend ideally into the real world due to the shadow,

lighting, and collision configurations.

Furthermore, challenges occurred in the development process. The author has to buy a

new phone for testing because not all Android phone is ARCore supported. Besides, the

testing phase is a demanding task, since all the tools for AR development are still in

preview and not mature enough.

Moving beyond this report, many upgrades can be added to this project, such as com-

plete the multiplayer mode, enhance the immersive experience from the AR perspective.

One crucial element of a game, that has been forgotten the entire time of this project, is

the audio. Future updates and the whole project can be found at the author’s GitHub

repository: https://github.com/NgocNguyen95/AR-Pong-ARFoundation. This thesis is

believed to be an encouraging concept for not only the author but also other developers

who are interested in AR technology.

https://github.com/NgocNguyen95/AR-Pong-ARFoundation

31

References

1 Jonathan Linowes, Krystian Babilinski. Augmented Reality for Developers: Build
practical augmented reality applications with Unity, ARCore, ARKit, and Vuforia
[e-book]. Birmingham, UK. Packt. 2017.
URL: https://learning.oreilly.com/library/view/augmented-reality-
for/9781787286436/

2 Joseph Hocking. Unity in Action: Multiplatform game development in C#. Second
Edition [e-book]. New York, USA. Manning: 2018. p. 3-7.
URL: https://learning.oreilly.com/library/view/unity-in-action/9781617294969/

3 Jesse Glover. Unity 2018 Augmented Reality Projects [e-book]. Birmingham, UK.
Packt: 2018. p. 13, 14.
URL: https://learning.oreilly.com/library/view/unity-2018-aug-
mented/9781788838764/

4 Unity Technologies. About AR Foundation [Internet]. [cited 2020 May 22].
URL: https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.0/man-
ual/index.html

5 Dominic Cushnan, Hassan EL Habbak. Developing AR Games for iOS and An-
droid [e-book]. Birmingham, UK. Packt: 2013.
URL: https://learning.oreilly.com/library/view/developing-ar-
games/9781783280032/

6 Michelle Menard, Bryan Wagstaff. Game Development with Unity [e-book]. 2nd
ed. Boston: CENGAGE Learning. 2014.
URL: http://ebookcentral.proquest.com/lib/metropolia-ebooks/
detail.action?docID=3136735

7 Micheal Lanham. Learn ARCore - Fundamentals of Google ARCore: Learn to
build augmented reality apps for Android, Unity, and the web with Google
ARCore 1.0 [e-book]. Birmingham, UK. Packt. 2018.
URL: https://books.google.fi/books?id=05lUD-
wAAQBAJ&lpg=PP1&dq=learn%20arcore&lr&pg=PP3#v=onepage&q&f=false

8 Micheal Lanham. Augmented Reality Game Development [e-book]. Birmingham.
UK. Packt. 2017.
URL: https://learning.oreilly.com/library/view/augmented-reality-
game/9781787122888/index.html

9 Allan Fowler. Beginning iOS AR Game Development: Developing Augmented
Reality Apps with Unity and C# [e-book]. Marietta, GA, USA. Apress: 2018.
URL: https://learning.oreilly.com/library/view/beginning-ios-ar/9781484236185/

Appendix 1

 1 (3)

Source code used for placing the board

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.XR.ARFoundation;
using UnityEngine.XR.ARSubsystems;
using UnityEngine.UI;
using System;

/// <summary>
/// Cast ray to demonstrate board game in real world
/// </summary>
[RequireComponent(typeof(ARRaycastManager))]
public class PlaceTheBoard : IntEventInvoker
{
 [SerializeField]
 [Tooltip("Instantiate this prefab on a plane at the ray")]
 GameObject board;
 Transform boardTransform;

 ARRaycastManager RaycastManager;
 ARPointCloudManager PointCloudManager;
 ARPlaneManager PlaneManager;
 ARSessionOrigin SessionOrigin;

 Vector2 centerScreenPos;
 static List<ARRaycastHit> listHits = new List<ARRaycastHit>();
 [SerializeField] Button PlaceHereButton;
 Pose hitPose;
 bool boardIsPlaced = false;

 Timer delayRespawnNewBoardTimer;

 /// <summary>
 /// The object instantiated as a result of a successful raycast intersection
with a plane.
 /// </summary>
 GameObject spawnedObject { get; set; }

 private void Awake()
 {
 RaycastManager = GetComponent<ARRaycastManager>();
 PointCloudManager = GetComponent<ARPointCloudManager>();
 PlaneManager = GetComponent<ARPlaneManager>();
 SessionOrigin = GetComponent<ARSessionOrigin>();
 }

 // Start is called before the first frame update
 void Start()
 {
 centerScreenPos = new Vector2(Screen.width / 2, Screen.height / 2);

 // add listener for restart game event

Appendix 1

 2 (3)

 EventManager.AddListener(EventName.RestartGameEvent, HandleRestart-
GameEvent);

 // add listener for game over event
 EventManager.AddListener(EventName.GameOverEvent, HandleGameOverEvent);

 // create timer
 delayRespawnNewBoardTimer = gameObject.AddComponent<Timer>();
 delayRespawnNewBoardTimer.Duration = 0.5f;
 delayRespawnNewBoardTimer.AddTimerFinishedEventListener(Han-
dleDelayRespawnNewBoardTimerFinishedEvent);

 PlaceHereButton.onClick.AddListener(PositionSelected);
 }

 // Update is called once per frame
 void Update()
 {
 if (!boardIsPlaced)
 {
 if (RaycastManager.Raycast(centerScreenPos, listHits, Trackable-
Type.PlaneWithinPolygon))
 {
 // Raycast hits are sorted by distance, so the first one
 // will be the closest hit.
 hitPose = listHits[0].pose;

 if (spawnedObject == null)
 {
 spawnedObject = Instantiate(board);
 SessionOrigin.MakeContentAppearAt(spawnedObject.transform,
hitPose.position, hitPose.rotation);
 }
 else
 {
 SessionOrigin.MakeContentAppearAt(spawnedObject.transform,
hitPose.position);
 }
 }
 }
 }

 private void PositionSelected()
 {
 PlaceBoard();

 // diactivate existings trackable
 foreach (ARPlane plane in PlaneManager.trackables)
 {
 plane.gameObject.SetActive(false);
 }

 foreach (ARPointCloud pointCloud in PointCloudManager.trackables)
 {
 pointCloud.gameObject.SetActive(false);
 }

Appendix 1

 3 (3)

 // dissable plane and point cloud detections
 PointCloudManager.enabled = !PointCloudManager.enabled;
 PlaneManager.enabled = !PlaneManager.enabled;

 PlaceHereButton.gameObject.SetActive(false);
 }

 void PlaceBoard()
 {
 Debug.Log("Board placed!");
 boardIsPlaced = true;
 boardTransform = GameObject.FindGameObjectWithTag("PlayArea").gameOb-
ject.transform;
 }

 /// <summary>
 /// Handle restart game event
 /// </summary>
 /// <param name="unused">unused</param>
 void HandleRestartGameEvent (int unused)
 {
 Time.timeScale = 1;
 delayRespawnNewBoardTimer.Run();
 }

 void HandleDelayRespawnNewBoardTimerFinishedEvent()
 {
 GameObject newBoard = Instantiate(board);
 newBoard.transform.position = boardTransform.position;
 newBoard.transform.rotation = boardTransform.rotation;

 PlaceBoard();
 }

 /// <summary>
 /// Handle game over event
 /// </summary>
 /// <param name="unused">unused</param>
 void HandleGameOverEvent(int unused)
 {
 Destroy(GameObject.FindGameObjectWithTag("PlayArea").gameObject);
 }
}

Appendix 2

 1 (4)

Source code for controlling enemies movement

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class EnemyMovement : MonoBehaviour
{
 public GameObject enemy3;
 public GameObject enemy4;
 public GameObject enemy2;

 bool isFreeze2 = false;
 bool isFreeze3 = false;
 bool isFreeze4 = false;

 float speed = 10;
 float movAmount = 0.05f;

 bool[] knockedPlayers = { false, false, false, false, false };

 // getting the ball coordinates
 private Vector3 ballCoord;
 [SerializeField]GameObject ball;
 int i = 0;

 public bool move = true;

 Timer freezeEffectTimer;
 int playerFrozen;

 // Start is called before the first frame update
 void Start()
 {
 // add listener for ball respawned event
 EventManager.AddListener(EventName.BallRespawnedEvent, HandleBallRes-
pawnedEvent);

 // add listener for the knocked out event
 EventManager.AddListener(EventName.KnockedOutEvent, HandleKnockedOutE-
vent);

 // add listener for the player be freeze selected event
 EventManager.AddListener(EventName.PlayerBeFreezeSelectedEvent, Handle-
PlayerBeFreezeSelectedEvent);

 // add timer for the freeze effect
 freezeEffectTimer = gameObject.AddComponent<Timer>();
 freezeEffectTimer.Duration = 2;
 freezeEffectTimer.AddTimerFinishedEventListener(HandleFreezeEf-
fectTimerFinished);
 }

 // Update is called once per frame
 void Update()

Appendix 2

 2 (4)

 {
 //Reading the ball's coordinates
 if (ball != null)
 {
 ballCoord = ball.transform.position;
 i = 0;

 //Tracking the ball and moving enemies
 if (move && ball.GetComponent<Ball>().ballmoves)
 {
 //Enemy 1
 if (!knockedPlayers[3] && !isFreeze3)
 {
 if (enemy3.transform.position.x <= ballCoord.x && en-
emy3.transform.position.x <= 2.5F)
 {
 enemy3.transform.position = new Vector3(
 enemy3.transform.position.x + movAmount,
 enemy3.transform.position.y,
 enemy3.transform.position.z);
 }

 if (enemy3.transform.position.x >= ballCoord.x && en-
emy3.transform.position.x >= -2.5F)
 {
 enemy3.transform.position = new Vector3(
 enemy3.transform.position.x - movAmount,
 enemy3.transform.position.y,
 enemy3.transform.position.z);
 }
 }

 //Enemy 2
 if (!knockedPlayers[4] && !isFreeze4)
 {
 if (enemy4.transform.position.z <= ballCoord.z && en-
emy4.transform.position.z <= 2.5F)
 {
 enemy4.transform.position = new Vector3(
 enemy4.transform.position.x,
 enemy4.transform.position.y,
 enemy4.transform.position.z + movAmount);
 }

 if (enemy4.transform.position.z >= ballCoord.z && en-
emy4.transform.position.z >= -2.5F)
 {
 enemy4.transform.position = new Vector3(
 enemy4.transform.position.x,
 enemy4.transform.position.y,
 enemy4.transform.position.z - movAmount);
 }
 }

 //Enemy 3

Appendix 2

 3 (4)

 if (!knockedPlayers[2] && !isFreeze2)
 {
 if (enemy2.transform.position.z <= ballCoord.z && en-
emy2.transform.position.z <= 2.5F)
 {
 enemy2.transform.position = new Vector3(
 enemy2.transform.position.x,
 enemy2.transform.position.y,
 enemy2.transform.position.z + movAmount);
 }

 if (enemy2.transform.position.z >= ballCoord.z && en-
emy2.transform.position.z >= -2.5F)
 {
 enemy2.transform.position = new Vector3(
 enemy2.transform.position.x,
 enemy2.transform.position.y,
 enemy2.transform.position.z - movAmount);
 }
 }
 }
 }
 }

 /// <summary>
 /// Handle ball respawned event
 /// </summary>
 /// <param name="unused">unused</param>
 void HandleBallRespawnedEvent (int unused)
 {
 ball = GameObject.FindGameObjectWithTag("Ball");
 }

 /// <summary>
 /// Handle the knocked out event
 /// </summary>
 /// <param name="playerKnockedOut">player who knocked out</param>
 void HandleKnockedOutEvent (int playerKnockedOut)
 {
 if (playerKnockedOut != 1)
 {
 knockedPlayers[playerKnockedOut] = true;
 }
 }

 /// <summary>
 /// Handle the player be freeze selected event
 /// </summary>
 /// <param name="playerGotFreeze">player who got freeze effect</param>
 void HandlePlayerBeFreezeSelectedEvent (int playerGotFreeze)
 {
 if (playerGotFreeze == 2)
 {
 isFreeze2 = true;
 }
 else if (playerGotFreeze == 3)
 {

Appendix 2

 4 (4)

 isFreeze3 = true;
 }
 else if (playerGotFreeze == 4)
 {
 isFreeze4 = true;
 }

 playerFrozen = playerGotFreeze;
 freezeEffectTimer.Run();
 }

 void HandleFreezeEffectTimerFinished ()
 {
 if (playerFrozen == 2)
 {
 isFreeze2 = false;
 }
 else if (playerFrozen == 3)
 {
 isFreeze3 = false;
 }
 else if (playerFrozen == 4)
 {
 isFreeze4 = false;
 }
 }
}

Appendix 3

 1 (4)

Source code of the gameplay script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.SceneManagement;
using UnityEngine.UI;

public class Gameplay : IntEventInvoker
{
 [SerializeField] GameObject BallPrefab;
 [SerializeField] GameObject PlayArea;

 [SerializeField] GameObject PowerUpPrefab;
 [SerializeField] GameObject BlockWallPrefab;
 GameObject powerUp;

 [SerializeField] GameObject[] Players = new GameObject[5];

 Timer ballRespawnDelayTimer;
 Timer powerUpRespawnTimer;
 Timer enemyTakePowerUpTimer;
 Timer enemyUsePowerUpTimer;

 bool gameOver = false;

 // Start is called before the first frame update
 void Start()
 {
 // add listener for board placed event
 EventManager.AddListener(EventName.BoardPlacedEvent, HandleBoard-
PlacedEvent);

 // add listener for game started event
 EventManager.AddListener(EventName.GameStartedEvent, Hand-
leGameStartedEvent);

 // add as listener for respawn ball event
 EventManager.AddListener(EventName.RespawnBallEvent, HandleRespawn-
BallEvent);

 // add listener for knocked out event
 EventManager.AddListener(EventName.KnockedOutEvent, HandleKnockedOutE-
vent);

 // add as invoker for power up respawned event
 unityEvents.Add(EventName.PowerUpRespawnedEvent, new PowerUpRes-
pawnedEvent());
 EventManager.AddInvoker(EventName.PowerUpRespawnedEvent, this);

 // add listener for power up taken event
 EventManager.AddListener(EventName.PowerUpTakenEvent, HandlePowerUpTak-
enEvent);

Appendix 3

 2 (4)

 // add this as invoker for power up taken event
 unityEvents.Add(EventName.PowerUpTakenEvent, new PowerUpTakenEvent());
 EventManager.AddInvoker(EventName.PowerUpTakenEvent, this);

 // create timer for ball respawn delay
 ballRespawnDelayTimer = gameObject.AddComponent<Timer>();
 ballRespawnDelayTimer.Duration = 0.5f;
 ballRespawnDelayTimer.AddTimerFinishedEventListener(HandleBallRespawnDe-
layTimerFinishedEvent);

 // create timer for power up respawn
 powerUpRespawnTimer = gameObject.AddComponent<Timer>();
 powerUpRespawnTimer.Duration = RandomPowerUpRespawnDuration();
 powerUpRespawnTimer.AddTimerFinishedEventListener(HandlePowerUpRespawn-
TimerFinished);

 // create timer for enemies take powerUp
 enemyTakePowerUpTimer = gameObject.AddComponent<Timer>();
 enemyTakePowerUpTimer.Duration = 0.3f;
 enemyTakePowerUpTimer.AddTimerFinishedEventListener(HandleEnemyTakePow-
erUpTimerFinished);

 // create timer for enemis use powerUp
 enemyUsePowerUpTimer = gameObject.AddComponent<Timer>();
 enemyUsePowerUpTimer.Duration = 3f;
 enemyUsePowerUpTimer.AddTimerFinishedEventListener(EnemyUsePowerUp);
 }

 // Update is called once per frame
 void Update()
 {

 }

 /// <summary>
 /// Handles the BoardPlacedEvent
 /// </summary>
 /// <param name="unused">unused</param>
 void HandleBoardPlacedEvent(int unused)
 {
 PlayArea = GameObject.FindGameObjectWithTag("PlayArea");

 // get all players and add to the players array
 for (int i = 1; i < Players.Length; i++)
 {
 GameObject player = GameObject.FindGameObjectWithTag("Player" + i);
 Players[i] = player;
 }
 gameOver = false;
 }

 /// <summary>
 /// Handle the game started event
 /// </summary>
 /// <param name="unused">unused</param>
 void HandleGameStartedEvent(int unused)
 {

Appendix 3

 3 (4)

 RespawnBall();
 powerUpRespawnTimer.Run();
 }

 /// <summary>
 /// Respawn a ball when call and invoke ball respawned event
 /// </summary>
 void RespawnBall()
 {
 Instantiate(BallPrefab, PlayArea.transform);
 }

 /// <summary>
 /// Handle repsawn ball event
 /// </summary>
 /// <param name="unused">unused</param>
 void HandleRespawnBallEvent (int unused)
 {
 ballRespawnDelayTimer.Run();
 }

 /// <summary>
 /// Handle knocked out event
 /// </summary>
 /// <param name="playerKnockedOut">player who knocked out</param>
 void HandleKnockedOutEvent (int playerKnockedOut)
 {
 Destroy(Players[playerKnockedOut].gameObject);
 }

 void HandleBallRespawnDelayTimerFinishedEvent()
 {
 RespawnBall();
 }

 /// <summary>
 /// Take a random duration for power up timer
 /// </summary>
 /// <returns>return a random float number</returns>
 float RandomPowerUpRespawnDuration()
 {
 return Random.Range(20, 40);
 }

 void HandlePowerUpRespawnTimerFinished()
 {
 powerUp = Instantiate(PowerUpPrefab, PlayArea.transform);
 unityEvents[EventName.PowerUpRespawnedEvent].Invoke(0);

 enemyTakePowerUpTimer.Run();
 }

 /// <summary>
 /// Handle power up taken event
 /// </summary>
 /// <param name="playerTookPowerUp">player number who took the power
up</param>

Appendix 3

 4 (4)

 void HandlePowerUpTakenEvent (int playerTookPowerUp)
 {
 Destroy(powerUp.gameObject);
 Time.timeScale = 1;
 powerUpRespawnTimer.Duration = RandomPowerUpRespawnDuration();
 powerUpRespawnTimer.Run();

 if (playerTookPowerUp == 1)
 {
 enemyTakePowerUpTimer.Stop();
 }
 else
 {
 enemyUsePowerUpTimer.Run();
 }
 }

 void HandleEnemyTakePowerUpTimerFinished ()
 {
 unityEvents[EventName.PowerUpTakenEvent].Invoke(0);
 }

 void EnemyUsePowerUp()
 {
 Instantiate(BlockWallPrefab, PlayArea.transform);
 }
}

