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Abstract

Thermal conduction is considered in deuterated palladium. We assume that the energy released in a single LENR event thermalizes
in a region that has a typical dimension on the order of a hundred nanometers. It is shown that thermal conductivity enables the heat
transfer of the energy released in repeated events without causing the lattice to melt. Consequently, continuous power is possible.
It is argued that power of close to one watt can arise from a single nuclear active environment, NAE. Both the experimental and
theoretical consequences of the results are discussed.

© 2018 ISCMNS. All rights reserved. ISSN  2227-3123

Keywords: Heat transfer, LENR, Theory

1. Introduction

In the LENR research there are two important — and unsolved — problems. Firstly, what is the mechanism which allows
detectable energy production even though the interparticle distances between hydrogen nuclei remain much larger
compared to the nuclear distances. Secondly, how is the nuclear energy, that is released, transferred to the heat without
penetrating radiation. Several different approaches have been proposed to solve either or both of these questions [1-8].
However, the discussion on these problems have shown practically no convergence over the years. The total lack of
agreement in these principal questions forces us to skip these principal questions here and to proceed further on more
general grounds, in order to extract some useful information anyway. Therefore, in this article we will consider the
issue, how the heat is transferred away after the thermalisation has taken place.

It is possible that initially the energy released in a fusion reaction is in the form of the energies of the initial
energy carriers which can be phonons, photons, electrons or hydrogen nuclei (protons or deuterons), depending on the
theoretical model. In the first stage these energy carriers may have a non-thermal energy distribution. Due to collisions
the thermalisation of the hydrogen loaded metal will be reached. We shall assume here that this thermalisation takes
place in a submicron region, of order hundred nanometers, large enough that no melting of the lattice will occur.
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2. Heat transfer

Considering how the heat is transferred, we need to use the thermal diffusion equation [9]

0T (x,t)
ot

where the thermal diffusion constant D is defined by the thermal conductivity x and the specific heat per unit volume

=DV?T (x,t), (1

K K
D= C/V — cpp @
Here c, is specific heat per unit mass and p is the mass density.

Assume here that the temperature is large compared to the Debye temperature, which is clearly true as we are
dealing with temperatures corresponding to the room temperature or above it. The specific heat of the metal increases
with hydrogen loading due to the additional vibration modes corresponding to the hydrogen atoms. However, the same
is also true for the thermal conductivity. The thermal conductivity is proportional to the number of free electrons in
metal [10]. This increases with loading due to the additional free electrons associated with the loaded hydrogen atoms.
Therefore we can use, as the first approximation, the known values of the thermal conductivity and the specific heat
of the host metal to calculate the thermal diffusion constant. To be specific, we shall here consider (fully loaded)
palladium metal. For palladium we get the value of the thermal diffusion constant D = 2.5 x 107> m?/s.

In the standard solution of the diffusion equation (1) the thermal distribution at some later time to, 7" (r, o), can
be expressed by the initial temperature distribution, 7'(x, 0)

1 2
T(r,tg) = ————7 / d3x e~ (=27 /4Dt (x (), 3)
(47TDt0)3/2
In the case of the spherical symmetry this reads
1 > 2 2
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Now, assume that the initial state is ambient temperature Tj plus (due to a fusion reaction) a temperature increase by
an amount of AT inside a sphere of radius r¢:

Then the temperature distribution becomes

T (r,tg) = %/0 dxz f (r,z) [To+ AT 6 (ro—2x)] = TO+¥/0 dez f (r,z) 6(ro—x), 6)

where a shorthand notation has been used:

f(rz) = # e—(r—)?/4Dty _ e—(r+m)2/4Dt0} o

vV 47TDt0



T. Toimela / Journal of Condensed Matter Nuclear Science 26 (2018) 69-75 71

Assume now that the next fusion reaction takes place at the same sphere at the time ¢, leading to another temperature
increase AT in the sphere. The temperature distribution at the time 2¢, can be written then

1 0o
T(’I“, 2t0) = ;/(; diEQ CCQf(T, 132) [T (.Z‘Q,to)]
1 [ AT [
= ;/ d.’L‘Q zgf(f',.’L'g) |:T0+.Z‘2/ d.’L‘l Z‘lf(.%'g,.’ﬂl) 0(?"0—.%‘1)—'— AT&(T’Q—.CL'Q):|. (8)
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By renaming the integration variable x5 to 27 in the last term this can be written

T (r,2ty) = To+£ {/ dziday f (r,x2) f (22, 21) 216 (ro—x1) + / dzy f (r,2z1) 216 (ro—21) } &)
r 0 0

Assuming several consequent fusion reactions, so that the temperature inside the sphere of the radius ry increases
by the amount AT after every time interval ¢y. Then the above solution can be iterated, leading to the thermal
distribution

T (r,ntg) = To+ AT {i [/ dzy - dzy, f (ryzn) f (X, Tn—1) -+ [ (z2,21) 210 (ro—21) (10)
0
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where the temperature increase at the time ¢ = nty has been also included. Every term in this sum (10) represents
a separate fusion reaction; the first term corresponding to the reaction occurred at zero time, and so on, the last one
corresponding to the last reaction at the time t = nt,.

The temperature has its largest value in the center. Noting that

2

. flrx) r e
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we get

o T e~ Dty
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By using the dimensionless variables

Z;

- V4nDt,’ (13)

this can be written
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with

g (2ns 2n_1) = e~ (zn—za—1)? _ g=(zatzn_1)? 15)

Now, consider the integral

I= dzz e~ /k (e_(z_w)2 - e_(z+w)2). (16)

w7,
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This integral can be written

1= dzz %(Zfrlhw)z e b1 (z+k+1w) ) efu;2/(k;+1). (17
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Substituting in the latter integral z — —z, we obtain

—w?/(k+1) . )
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This can be evaluated analytically [11] giving

—w?/(k+1)
1= “’673/2 (19)
(k+1)
Comparing this to Eq. (16) we find that in Eq. (14) all the multiple integrals can be evaluated analytically one by one
(except the last one) the integer k just increasing by one in every integration, leading to the sum

4 T
T(o,oo)—To+AT{1+ 7/ dra’e” ke(\/émoimo q:)} (20)
or
T(0,00) = Ty + AT {1+Z/V“D'° z%zz}. Q1)

In these equations a continuous power is assumed by letting n — oo . For numerical calculations this sum converges
relatively fast. Even faster convergence can be obtained if the exponential function is expanded as a Taylor expansion
and the integrations are performed. We get then
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T(0,00) = Tp + AT {14 i L5 o (22)
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where the Riemann zeta function is
=1
£() =) (23)
k=1

The temperature increase AT depends on energy released (Q and the number of the host metal atoms in the volume of
the sphere inside which the energy thermalizes.

Q_ Q Q
C 6Nk  8mrip,k’ (24
where p,, is the particle density of the host metal atoms. In Eq. (24) we have used the Dulong—Petit equation to express

the heat capacity:

C=6NE, (25)

where k is the Boltzmann constant and /V is the number of Pd atoms in the 7¢-sphere

a7
N = 5 o P (26)
The extra factor 2 in Eq. (25) arises from the doubled vibration degrees of freedom in the fully loaded palladium metal,
D/Pd = 1. In Eq. (25) the contribution from the degenerated electron gas is neglected as a small change, at most on
the order of a few per cent. The time interval between the consequent fusion reactions can be written by the excess
power P

= 9 @7)

Now, demanding that the central temperature will remain below the melting temperature, we get an equation relating
the maximum excess power Px to the thermalisation sphere radius r:

2n+3
a0 ) (o
T 7000 = Ty &t g Gitaal \Vipam) [ P

We assume here the deuterium-deuterium to He-4 fusion, so that Q = 23.85 MeV. Tj is assumed to be room temper-
ature, +20°C. Inserting also the values of the thermal diffusion constant and the particle density of palladium, we can
calculate numerically the maximum power that can arise from a single spot while still leaving the central temperature
below the melting point. This maximum power is shown in Fig. 1. as a function of the radius 7.
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Figure 1. Maximum power as a function of the radius.

3. Discussion

As we can see in Fig. 1, the thermal conductivity of loaded Pd-metal is large enough to allow continuous excess power
to exist up to the order of, or close to, one watt, provided that the thermalization takes place in submicron range (on
the order 100 nm). Or, to put it other way around, it is possible to have continuous excess power on the order of one
watt originating from a single spot of about 100 nm. It should be noted, however, that the exact relation between Py,ax
and ry depends on the specific assumptions about the power production (i.e. does it originate as discrete events, as
assumed here, or for example as constant power).

In roughly half of the electrochemical experiments in LENR research the excess power reported has been on the
order of one watt. So, it is possible that in those experiments the excess power has originated from a single spot (or
a single NAE [12]). Or if not just from a single spot - then from a very small number of spots. This notion can be
regarded as compatible with the fact that LENR is a very rare phenomenon. It is possible that in the evolution of
the surface region during electrolysis, the critical properties of NAE do not appear anywhere, leading to a null result.
Sometimes, the requirements of NAE are met in only a single place (or in very few places) leading to excess power of
1 W or less. And only occasionally will several NAE emerge, leading to larger values of excess power.

The results of the above calculation also suggests that surface studies may have rather limited value. In surface
studies, typically only the average values are considered. Now, if the critical requirements of NAE are met only in
a single spot on the order 100 nm, they will remain hidden, because we cannot have control over the whole cathode
surface within 100 nm accuracy.

As a final remark, we can note that the results shown here may be used to restrict possible theoretical models by
their ability to reproduce the behavior found here. Especially the results may be used to restrict the possible energy
carriers in the first stage.
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