

Dawit Nida

Developing Interoperable Online Backup
Software

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering
Information Technology
Bachelor’s Thesis
25 November 2011

Author(s)
Title

Number of Pages
Date

Dawit Nida
Developing interoperable online backup software

38 pages + 7 appendices
25 November 2011

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Kari Aaltonen, Principal Lecturer
Jussi Hirvi, Project Supervisor and Manager

With ever-increasing amounts of digital data, various data storing techniques can be
applied to overcome and minimize the risk of losing a single file or the whole system data.
Data can be stored using different mechanisms including online backup. The main
objective of this project was to design and implement interoperable online backup
software initiated by the Green Spot Media Farm company residing in Helsinki, Finland. In
addition, this documentation focuses on establishing a fundamental background and
research to create a cross platform application using Windows Communication Foundation
(WCF) (Microsoft's .NET Framework) on a Linux platform.

The software was developed using the Mono .NET development framework and Linux shell
scripting based on a standard software development life cycle. This application uses a
client-server paradigm in which suitable compliers, MySQL and Apache, programs were
installed and configured. To achieve multiple users who backup simultaneously, an
asynchronous communication method was implemented. Furthermore, it was deployed
and tested on a Windows 7 platform.

As a result, multiple clients were allowed to access the host, create new backups and store
data on the remote server concurrently. Besides, the application was analyzed using the
Mono Migration Analyzer (MoMA) tool for porting to Linux. Hence, some of the class
libraries were found missing. The application can be further developed to support different
platforms, such as smart phones, tablets, MacOSx, Linux distribution and also to make
new provision and customization to build a web-based application. Moreover, it can be
optimized by allocating bandwidth limit and upgraded to provide additional features.

Keywords Backup, Asynchronous Socket, Network Stream, C#, Bash,
WCF, Mono

Contents

Abstract

Acronyms

1 Introduction 1

2 Overall Description of Online Backup Software 3

2.1 Types of Backup 3

2.2 Features of Online Data Backup 4

2.3 Existing System Overview 5

3 Theories and Literature Reviews 7

3.1 Introduction to Windows Communication Foundation 7

3.2 WCF on Linux 9

3.3 Client-Server Communication Methodology 11

3.4 Sockets in .NET 11

4 Software Design Analysis 14

4.1 Developing Frameworks and Tools 14

4.2 UML Diagrams 16

4.3 Customizing the Software 20

5 Software Development Approach 21

5.1 Online Backup Attributes 21

5.2 Data Encryption and Security 22

5.3 Server Configuration 25

6 Backup Technique 29

6.1 Clients’ Interface and Usability 29

6.2 Asynchronous Sockets 30

6.3 Asynchronous I/O Stream 32

7 Test Cases and Results 34

7.1 User Interface Testing 34

7.2 Unit Testing 34

7.3 Integration and System Testing 35

8 Discussion 36

9 Conclusion 37

References 38

Appendices

Appendix 1. Project Structure

Appendix 2. Login and Register Window

Appendix 3. Client User Class

Appendix 4. Client Socket Creator Class

Appendix 5. Client File IO Class

Appendix 6. Server Open Port List

Appendix 7. Server Socket Creator and File Transfer Class

Acronyms

AOT Ahead-of-Time Compiler

API Application Programming Interface

BSD Berkeley Software Distribution

CentOS Community Enterprise Operating System

CLI Common Language Runtime Compilation

DLL Data Definition Language

DSA Digital Signature Algorithm

EXE Executable Files

FTP File Transfer Protocol

GUI Graphical User Interface

HLP Help Files

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

INI Initialization/Configuration File

JIT Just-in-Time

MAC Message Authentication Code

MoMA Mono Migration Analyzer

OS Operating System

P2P Peer-to-Peer

PDA Personal Digital Assistant

RSA Rivest, Shamir and Adleman

RSH Remote Shell

SSL Secure Socket Layer

SYS System Files

TCP Transmission Control Protocol

TMP Temporary Files

UDP User Datagram Protocol

UML Unified Modeling Language

WCF Windows Communication Foundation

Winsock Windows Sockets

XML Extensible Markup Language

1

1 Introduction

Throughout the course of years, the amount of computer-based data has increased

exponentially regardless of all the constraints and drawbacks. Losing a single file or the

whole system data from a personal or an enterprise workstation can cause devastation

to any kind of personal, business or service oriented company. Thus, backing up data

to a safe place and protecting them from any software or hardware failure is

considered as prolonging the companies’ existence despite all the compulsory factors

for in a centralized or distributed system. Different techniques can be applied to

backup and restore one’s essential and critical data.

An online data backup system is merely for storing or makes a second copy of

computer data on another device or a remote host for safety and re-usability. Hence,

the essence of online backup to a remote host persistently is taken as a more effective

solution than the customary way. An online data backup is considered as a handy and

efficient way on the basis of easiness, security, scalability, privacy, and various other

features. Due to these reasons, the majority of small businesses or large companies

and private customers are commencing to use online backup services.

Due to a growing demand on these services, this project was proposed and

supplemented by Green Spot Media Farm Company, which resides in Helsinki, Finland.

The objective of this final year project is to design and implement interoperable online

data backup software for clients. In depth, software design procedures,

implementation and deployment with integrated testing of the software are explained

in this document. The document includes the overall functionalities and practicalities of

the application from both the user and administrative perspective. In addition to

these, it also contains concise analysis and discusses considerable research on major

focal points on creating cross-platform (interoperable) application between Microsoft

.NET Framework, in particular Windows Communication Foundation (WCF) technology,

and the Linux platform.

2

The application uses Community Enterprise Operating System (CentOS), a free operat-

ing system (OS) based on Red Hat Enterprise Linux, as a back-end to store clients’

data and an installable Windows-based desktop application for front-end users. The

application utilizes and implements an asynchronous socket for handling multiple cli-

ents on-demand and implements an asynchronous network streaming technique to

transfer data across the network.

3

2 Overall Description of Online Backup Software

2.1 Types of Backup

In a modest sense, backuping up means creating a secondary copy of a computer’s

data and making an archive or duplicate on a local hard drive, removable disk or

remote server to protect a user from data loss, which may occur due to inadvertent

action, system corruption, hardware failure, natural disasters or malicious attacks.

Currently, traditional backup methods such as optical disks, external hard disks, and

USB devices are considered to be old-fashioned, costly and unreliable. Thus technology

experts introduced a new technique for backing up, known as the online backup

system.

An online backup system is used to manage bi-directional file transferring to/from a

client’s computer from/to an off-site storage media via a secure Internet connection

without any user intervention. Depending on backup capabilities and media used,

backups can be of different kinds; there is, for example, individual file backup,

individual folder backup, entire system backup (image backup), file-in-use backup,

registry backup, database backup, network backup, and dump backup. [1, 2.]

Depending on the type of technique used, backup and the restore methods can also be

categorized into three as follows: [3].

Full Backup (Reference Backup) is a mechanism in which the entire system

including applications and folders (directories) are included in the backup set and

stored on the backup media. Time span to execute the backup of each single file and

folder, storage space and network consistency can be considered as downsides for this

kind of backup. On the other hand, restoring time and single backup set restoring are

regarded as advantages.

Incremental Backup is another way to backup that is used to backup explicitly

changed files after the most up-to-date full backup. In an incremental backup, all files

in the folders existing inside a top folder are included automatically. Some of the

benefits of incremental backup are that it is fast, it requires less data storage space,

and files with a similar name can be stored as numerous subversions, but restoring

data takes longer than with a full backup.

4

Differential Backup is the third type of backup used to store copies of newly added

and changed files since the last full backup. Reduced backup time and a smaller

amount of disk space are required than with full or incremental backups. However,

restoring all files may take a significantly longer time since both, the last differential

and full backup, have to be done simultaneously.

2.2 Features of Online Data Backup

An online data backup can be built as a standard client application or as a web-based

application. Unlike their unique behaviors in implementation and deployment, both

share a common feature in a real-world implementation. Performance can be

mentioned as the prime difference between standard Windows application and web-

based application. A standalone Windows application running in the background affects

the performance of a computer compared to a web-based one. Some of the substantial

features are summarized in table 1.

Table 1. Features of online data backup software

Fully Automatic Users can make a backup or restore continuously in the background

without any interference after setup rules are applied.

Multicomputer This feature is used by clients with a centralized system having several

computers which need to access the service using a single account

without any prerequisites using the same application interface.

Accessibility This feature refers to online accessing of backup service from anywhere

using PCs, Personal Digital Assistants (PDAs), mobile phones, or tablets.

Search Engine The search engine in an online backup system is used to support file

enquiries as an internal search method on the local hard disk or the

remote service provider.

Security Measures Besides authorizing clients to access their own data, data transfer must

be given a high priority for secure data streaming between the client

and the service provider from intrusion or any kind of security risks.

Data Encryption This feature describes transforming plaintext files into cypher text using

hash-tables and keys to create non-readable data to unauthorized

parties while transferring/streaming data over the network.

5

Data encryption, security, fully automatic features, and creating a schedule for the

backup and restore processes are considered as the core features of any online data

backup software. As summerized in table 1, data synchronization with different

platforms, the web interface or the client’s standalone application can have the

extensibility for successful data management between various interfaces, the cloud,

tablets and mobile phones to achieve a reliable and dependable system.

2.3 Existing System Overview

Although there are limited numbers of online data backup software vendors on the

market, the existing ones provide different features and qualities. According to an

online data backup review, as shown in table 2, SugarSync has the highest overall

rating having various backup features and tools. Dropbox, which is currently competing

to attract several clients, is easy to use and contains a different variety of tools and

options for computer and mobile usage. Dropbox is not only used to backup files and

folders online but also to synch files with different mobile phones and OSs.

6

Table 2. 2011 Best online data comparisons and reviews [4]

Rank #1 #2 #3 #4 #5

 Excellent Very Good

 Good Fair

 Poor

SugarSync Dropbox IBackup IDrive Penny-
Backup

Overall Rating

Backup Features

Remote/ Mobile/ Web Access

Security

Ease of Use

Help/Support

Backup Features

Automatic Backups

Incremental Backups

Selective Backup

File Manager

Supports File Versioning

Archive Folder

Scheduler

Idle Backups

Remote/Mobile/Web Access

Internet Accessible

Folder/File Sharing

Mobile Phone Access

Security

SSL Secure Transfer

Encrypted Storage

As illustrated in table 2, IBackup and IDrive have many similarities, such as automatic

backup, scheduling backups, Secure Socket Layer (SSL), secure file transfer, and en-

crypted storage. Most vendors offer a scalable and on-demand storage space depend-

ing on the customer request, offered as a package or specific for a particular client

with agreement.

7

3 Theories and Literature Reviews

3.1 Introduction to Windows Communication Foundation

Over the past decades, procedural and object-oriented (OO) programming paradigms

have played a major role in building a variety of distributed systems on top of their

pitfalls and limitations. A distributed system can be defined as a collection of autono-

mous computers that are connected across a network and distribution middleware.

Since these computers are integrated and share the same resource and collaborate to

accomplish some tasks, they are considered as a single system. [5; 1-43.]

The introduction of service-oriented architecture (SOA) shifted the entire OO concept.

The SOA provided diversified support for systems that are running on various platforms

with different technologies. SOA is used to build integrated software applications based

on a set of ‘services’. A service is an autonomous system which is used to implement a

set of published and defined business functionality for clients in various applications.

These services can interact with well-defined messaging that can be developed in dif-

ferent types of programming languages and use different kinds of hosts. SOA enhanc-

es loose coupling between software components for reusability and boosts interopera-

bility and flexibility between heterogeneous applications. [6.]

In building a service-oriented model based distributed system, service orientation con-

templates four tenets during service design. These four tenets are the following:

Tenet 1: Boundaries are explicit.

Tenet 2: Services are autonomous.

Tenet 3: Services share schema and contracts, not classes.

Tenet 4: Service compatibility is based on policy. [7.]

In 2006, SOA was released for the first time as part of the .NET Framework 3.0. This

key concept behind WCF primarily is carried as a set of classes on top of the .NET

Framework’s Common Language Runtime (CLR) [5]. WCF is used to build service-

oriented applications for small or large business processes. WCF allows clients to ac-

cess services from all kinds of platforms. Wherever it runs, clients and services can

interact via Simple Object Access Protocol (SOAP) or/and a WCF-specific binary proto-

col, and in other ways. [7, 8.]

8

In addition to this, WCF is also used as an interface for a distibuted model to achieve

independent communication between a client and a server. WCF-based clients and

services do not require a defined host to run in any Windows process. Clients can in-

stantiate or activate data exchange through messages with the listening server. [6.]

The three main design goals of WCF are the following:

I. Unified programming model: WCF unifies today’s distributed technology stacks

with composable functionality.

II. Interoperatability across platforms: non-Microsoft platforms and existing

Microsoft investments can be integrated and operated via the WCF program.

III. Service oriented development: WCF uses a service-oriented programming

model and also supports the four tenets of service-orientation.

Three Components of WCF

The endpoints of the service are the core parts of the WCF communications, which

provides clients access to the service functionality. An endpoint consists of an address,

a binding, and a contract as shown in figure 1. A client application contains an end-

point with the three core components to use the WCF client to communicate with the

service. Services can have multiple endpoints composed of the three components.

Figure 1. Components of endpoint address bind and contract [9]

9

As illustrated in figure 1, these three endpoint components are address, bind, and

contract. They are explained briefly below.

Addresses: The address uniquely specifies the endpoint and tells potential clients

where the service can be found or where to send the messages. It is represented in

the WCF object model by the endpoint Address class. An Endpoint Address class con-

tains a Uri property, which represents the address of the service, and an Identity prop-

erty, which represents the security identity of the service and a collection of optional

message headers.

Bindings: The binding specifies how to communicate with the endpoint or how to

send a client a message. This includes the type of transport protocol to use (such as

the TCP or HTTP protocol), the type of message encoding to use (for example, binary

or text encoding) and the necessary security requirements (such as the SSL or SOAP

message security).

Contracts: The contract describes what functionality the endpoint exposes to the cli-

ent. A contract specifies operations that can be called by a client, the message form,

data required to call the operation or the type of input parameter and the type of pro-

cessing or the response message that the client can expect. [9.]

3.2 WCF on Linux

Ever since open source (community-built) implementation started delivering more ex-

tensible, highly reliable, less-costly and easily integratable software, developers came

up with a captivating WCF component known as Mono. Mono is a software platform

which can be used to create cross platform applications using Microsoft .Net Frame-

work based on ECMA standards for C# and CLR. It supports Linux distribution, UNIX,

Mac OS, Solaris, and other standards. Even though the Mono project is at the early

release stage (the latest release is Mono 2.10.5), it contains most of the .NET resource

replacements and libraries. [10.]

Mono is distributed in three logical components: the Mono runtime and tools, the Mi-

crosoft .NET compatibility API assemblies to provide better functionality, and the Mono

10

Application Programming Interface (API) assemblies and additional elements to the

core Mono. Figure 2 shows the modules of Mono containing a different set of class

libraries that constitute the .NET class library implementation, such as ADO.NET, Net,

eXtensible Markup Language (XML), collections, and threading. In addition, it also con-

tains GNU Network Object Model Environment (GNOME) and Unix Libraries, such as a

GNOME toolkit called Gtk#, that provide a set of C# bindings and integration used to

develop GNOME-based native applications for other platforms besides Windows. [11.]

Figure 2. High-level Mono components [12.]

The Mono system consists of Mono C# compiler (MCS), runtime, assemblies (code li-

braries), and documentation. MCS is the base component of the Mono development

environment. Even though the compiler is still in the early development stage, it is

compatible with both Java and Visual Basic. The Mono runtime engine provides a Just-

in-Time (JIT) compiler, an Ahead-of-Time compiler (AOT), a library loader, a garbage

collector, a threading system, remoting, and other interoperability functionalities. [13.]

In addition, the Mono runtime can be used as a stand-alone process, or it can be em-

bedded into applications. Mono also provides bundles that are used to merge (statisti-

cally linking) multiple applications, used libraries, and the Mono runtime into a single

executable image. Currently, Mono uses the Boehm conservative garbage collector as

its garbage collection engine. [13.]

11

3.3 Client-Server Communication Methodology

Principally there are two types of network paradigms in constructing distributed appli-

cation architecture to communicate between two edges of a network; these are a cli-

ent-server model and a peer-to-peer (P2P) model. Both structures use a network sys-

tem (TCP/IP protocol) to create a network stream and data transaction across the

network. The client-server model is a computing architecture based on an asymmetric

relationship in which program logics are distributed and shared between a client sys-

tem and a centralized server system. In the P2P model, clients can initiate unidirec-

tional or bidirectional communication with the other client (a peer) on-demand by

sending a dynamic message to the other peers using multicasting or by broadcasting a

request.

Unlike the P2P model, in the client-server model, the server determines which users

can access resources over the network using authentication keys and a password. For

such a model, the server provides all the data to be shared by one or multiple clients

from a central storage device. The server also handles and manages data transfer and

network security for multiple clients with concurrent requests using distinct IPs. For a

client/server scheme, a client has its own customized user interface to initiate and ac-

cess resources and to execute operations on a remote server. During client requests

for services from the listening server, a handshake and authentication are performed

and prompted for further operation or, if the connection fails, the clients are discon-

nected after which they are eligible to send a new request.

3.4 Sockets in .NET

Sockets are low-level network programming features which are used to create an end-

point bidirectional communication between client and server programs using a stand-

ard network protocol running on the same network. Sockets are used as a transport

mechanism for creating a high-performance communication link between two end-

points (client and server). Sockets are represented by integers commonly known as

socket descriptors. Sockets use a transport protocol for exchanging information from

one port to another by either a connection-oriented or a connectionless method of

communication. [14.]

12

Depending on the protocol type, there are two common types of communication proto-

cols used for creating sockets in C# programming, TCP based and User Datagram Pro-

tocol (UDP) based sockets. The basic difference between these two sockets depends

on their implementation technique. UDP sockets are used to transfer connectionless

messages for broadcasting and multicasting communication. Moreover, in UDP com-

munication data exchange, there is no active, real time connection between the source

program and the destination porgram. On the other hand, the TCP sockets guarantee

that the message sent or received on the socket is delivered in an accurate and reliable

way by using an error-detection and error-connection mechanism. [14, 15.]

For a client-server model, socket-based methods are applied to initiate a file transfer

operation across the network. The .NET framework provides a higher-level abstraction

of creating a managed implementation of the Windows Sockets (Winsock) interface

using the socket helper classes. These are TcpClient class, TcpListener class and Ud-

pClient class. However, these classes are missing some of the advanced features of a

lower-level socket class provided by the System.Net.Sockets namespace. [16.]

Accordingly, in the client-server model, the client and server can create and instantiate

a new socket object of the type Socket class on both the client and server side. This

object can be constructed having three parameters or characteristics defining the

socket application and in what approach it can interoperate with another socket appli-

cation. A socket object is initialized using AddressFamily, SocketType and ProtocolType

as as parameters.

Once the Socket object is initialized, the three parameters are completed with their

respective properties. AddressFamily, which designates the addressing scheme used by

the socket, can have different types of values. InterNetwork, the common Address-

Family type, is used for IPV4 addresses. Depending on the type of communication on

the created socket object, SocketType can have different values of the SocketType

object. The SocketType objects such as Stream, Dgram, Raw, and Rdm are commonly

used. A Stream object is applied for connection-oriented byte streams without dupli-

cating data and preserving boundaries on the socket. The third parameter for the

Socket object, ProtocolType, specifies the type of protocol used depending on the

SocketType [16, 17.]

13

Sockets can be classified into blocking and non-blocking mode depending on the type

of operation performed on that socket. As regards blocking (synchronous) sockets,

programs are "blocked" awaiting the request for data until the operation on the socket

is fulfilled, but for non-blocking (asynchronous) sockets, the application is allowed to

respond to events (asynchronously) upon the completion and execution of the process.

This operation is done by using one or two methods for polling an attempt to read and

write data and to get notification to recognize error conditions and a successful opera-

tion. [18.]

As described in table 3, some of the methods used by the socket can be used only for

the client socket or the server socket but in some cases for both. For example, an Ac-

cept method which can only be called from the server socket object is used upon a

new client request to create a new socket. The Socket.Connect (IPAddress, Int32)

method contains the IP address of the remote host and the port number assigned by

the server with an integer value. It is used to establish a synchronous network connec-

tion between local endpoint and the specified remote endpoint.

Table 3. Standard socket methods [16]

Method Name Description

Accept Creates a new Socket for a newly created connection.

Bind Associates a Socket with a local endpoint.

Connect (IPAddress, Int32) Establishes a connection to a remote host. An IP address and

a port number specify the host.

Listen Places a Socket in a listening state.

Shutdown Disables sends and receives on a Socket.

Close Closes the Socket connection and releases all associated re-

sources.

Some other methods, such as AcceptAsync, BeginAccept(AsyncCallback, Object),

BeginDisconnect, EndAccept(Byte(), Int32, IAsyncResult), and EndReceive

(IAsyncResult, SocketError) can be used to operate on an asynchronous socket object.

14

4 Software Design Analysis

4.1 Developing Frameworks and Tools

Online data backup software is intended to run on Windows OS as a front-end and on

Linux OS as a back-end, so the following frameworks were selected for designing and

implementing the application:

I. CentOS, an enterprise-class Linux distribution providing the backbone for the

data backup and clients’ data storage.

II. Microsoft Visual Studio 2010, a powerful IDE that ensures a quality code

throughout the entire application lifecycle, from the design phase till deploy-

ment.

III. The Mono Migration Analyzer (MoMA) tool helps to identify issues that might

have been encountered when porting the .Net application to Mono. It helps

pinpoint platform specific calls (P/Invoke) and areas that are not yet supported

by the Mono project.

IV. Microsoft Office tools were also used to write the software requirement and

specification.

V. In addition to these, astah* professional, a software design tool for a light-

weight Unified Modeling Language (UML) editor was integrated with ERD, DFD,

CRUD and mind mapping features.

VI. MonoDevelop, an Integrated Development Environment (IDE), primarily de-

signed for C# and other .NET languages was selected for developing server-

side application. This IDE enables to write and implement different desktop and

ASP. NET Web applications on Linux, Windows and Mac OSX. [11]

MonoDevelop is an open source Integrated Development Environment (IDE) for Linux

platform users, primarily designed for C# and other .NET languages, but the latest

version also supports multiple languages, such as Java, Python, Vala, C, and C++.

MonoDevelop enables developers to quickly write desktop and ASP.NET Web applica-

tions on Linux, Windows and Mac OSX. MonoDevelop makes it easy for developers to

port .NET applications created with Visual Studio to Linux and to maintain a single code

base for all platforms. [11.] Figure 3 shows a running Mono project IDE installed on

the Linux system.

15

Figure 3. Mono develop IDE

Feature Highlights

MonoDevelop supports the GUI development with Stetic (MonoDevelop's integrated

GTK# visual designer) with abundant functionalities and features compared to the Mi-

crosoft Visual Studio 2010.

 Multi-platform: Supports Linux, Windows and Mac OS-X.

 Advanced text editing: Code completion support for C#, code templates, and

code folding.

 Configurable workbench: Fully customizable window layouts, user defined key

bindings, external tools.

 Integrated debugger: For debugging Mono and native applications

 GTK# visual designer: Easily build GTK# applications

16

 ASP.NET: Web projects created with full code completion support and tests on

XSP, and the Mono web server.

 Other tools: Source control, makefile integration, unit testing, packaging, de-

ployment, and localization. [10.]

4.2 UML Diagrams

The use case diagram shown in figure 4 describes the possible actors and their respec-

tive use cases. A new client can download the executable file from the host web site

and make the installation. The second actor, the registered client can, for example,

login, request for lost password, manage a backup set for a single backup, explore the

workstation or backed up files using the application, restore backed up files, send error

reports, disconnect from the server, or synchronize backup files on the host.

Figure 4. Use-case diagram

17

Managing backups includes filtering and adding files to the backup set, removing files

from the backup set, calculating file sizes, and making schedule backups. Scheduling a

back-up includes creating new restore or backup points, editing and deleting scheduled

tasks, and stopping pending tasks. The registered client can also create a log file to

view the status of the scheduled task, on-demand backup or restore processes.

The sequence diagram in figure 5 illustrates a series of sequential interactions between

the client and the backup system. Once a client has registered to the Linux system, the

background processes will be automatically handled by the application running at the

back-end. Nonetheless, a client can interfere any process being executed on the appli-

cation layer.

Figure 5. Sequence diagram

18

Figure 6 illustarates an asychnronous socket activity diagram. The server, which will be

running and waiting for a client request at any time, can accept or deny the incoming

connections depending on the authentication information sent from the client’s

program. Thus, this connection creates a new socket object asychnronously with a

specific ID to stream files and to hold received bytes from the network stream.

Figure 6. Asynchronous socket activity diagram

An active working socket object is used until the connection timeout ends or is reset by

the client’s program using the passive socket. After the file stream is completed and all

bytes are transferred to the endpoint, the socket is disposed and all the resources that

are released will be reused again.

19

The class diagram in figure 7 describes potential utility classes designed for this appli-

cation. The first line on top of each class refers to the name of the class. The second

segment on the stack represents the attributes of the class basically containing the

fields which shall be implemented on another class that inherits them. The methods,

which are listed on the third segment of the stack, indicate the class operation (meth-

ods) that can be used within or outside the class.

Figure 7. Client Utility class diagram

One class can have an association or inheritance property to access the fields and

methods of parent classes to implement a specific task. The IUser and IClientSocket

are interfaces that are implemented on the User and ClientSocket class respectively.

Other classes for this application are listed in appendices 3, 4, and 5.

20

4.3 Customizing the Software

Online backup software is used to store copies of files and documents of a client on a

remote server and to organize data accordingly to be re-used during restoration. The

remote server, which is sited in a different location, uses secure file transfer and en-

cryption to minimize security threats. Private clients with a single computer or multiple

workstations residing in different locations under the same business group can use the

application. The software is mainly intended to collect, compress, and encrypt clients’

data and transfer their files to the remote backup service provider's server using an

Internet connection. The application can also be used to initiate retrieving backed up

files and to manage scheduled backing up on the workstations.

In figure 8, the essential client states are illustrated from the login/register phase until

the final step. None of the clients are allowed to create a socket connection to stream

files without having the personal data in the host server database with a Secure Shell

(SSH) password to access the host. During the file transfer from the client’s work-

station to the host server, a socket connection is created holding the username sent by

the client.

Figure 8. Client-server connection summary

A client trying to operate on a non-created socket will receive an error message sent

by the server, and the client will be automatically disconnected. After each backup

task, the client will receive a message which confirms how many bytes of data are

saved on the server successfully, and the socket resource will be released for future

use with connection request.

21

5 Software Development Approach

5.1 Online Backup Attributes

Graphical User Interface (GUI)

Unlike command line-based backup applications or traditional text-based backup sys-

tems on a Linux machine, online backup application is designed to have an interactive

and intuitive GUI, which shows the different states of the process and creates a hum-

ble and easy usage of the application. The GUI is also be able to display multiple steps

and allows complex tasks to be done simultaneously and without difficulty. Starting

from the initial installing phase of the software, configuring settings and optional dia-

logues, users are supplied with an easy access to perform the necessary functionality.

Some of these tasks include configuring and managing accounts, choosing optional

tools, searching files, creating desktop short-cuts, setting backups, restoring sets, and

creating scheduled jobs.

Scheduled and On-Demand Backup

The clients are provided with different options to schedule time and the date for the

execution of the backup or restoration by means of GUI. The data to be backed up is

encrypted and transferred securely to the remote server at a specific time. A scheduler

is used to run backup jobs automatically as a background task to save time during off-

peak hours. Clients can backup data once, daily, weekly or monthly depending on their

choice and Internet connection speed. The Windows task scheduler or the Linux

crontab can be integrated with this application to perform scheduled tasks at regular

intervals.

Security

The security of online backup is treated as high priority, and it is impossible for valua-

ble information to fall into the hands of unauthorized personnel. Therefore, data is

transferred in a compressed and encrypted state via the SSL connection to highly se-

cured and replicated data servers. Every online backup account owner can limit access

and restore to a predefined list of accounts.

22

An encryption key, which can be generated by the client, is only known by the client

and will never be sent via the Internet. If the encryption key is lost, the backup files

cannot be restored. Enhanced security with 128-bit SSL encryption on transfers and

optional 256-bit proprietary encryption on storage with a user-defined encryption key

that is not stored anywhere on the remote servers are used. To establish the secure

online Internet connection, this application uses an SSL connection, which is similar to

the one that banks use for online banking.

Filtering

There are a couple of ways to select files for backup, such as using a directory tree, or

for advanced users, by creating rules. All files are de-selected in the same way that

they are added. Before selecting files to backup, it is important to organize the data for

backup. Filtering lets the user determine which types of files should be included in or

excluded from the backup set since all files on the client computer are sorted accord-

ingly. Filtering enables clients to select files of a specific type to be visible on the cli-

ents’ GUI to be included or excluded from the backup set. Some examples of file ex-

tensions are given below:

 OS files such as ones that end in DLL, SYS, CPL, or VXD.

 Application or program files such as ones that end in EXE, INI, HLP, or DAT.

 Scan disk error files such as files ending in LOG.

Filtering can be done in two forms, by the types of files according to their extension or

by the size of the files. Filtering can also be done using the search tool to locate a par-

ticular file easily.

5.2 Data Encryption and Security

Storing critical information under the file of an executable-hosted application after the

deployment and installation can expose hidden files since any user can decompress

and unpack a self-extracting .exe file or an application installer easily and use creden-

tial information for hacking the database server or file server. To get rid of such data

exposure, most of the crucial data sent over the network should be encrypted or hid-

den from the user.

23

One of the common protocols used to deal with secure and encrypted network com-

munication is known as SSH. SSH can be used for secure logging into a remote host,

file streaming and transferring, running remote commands without manual authentica-

tion and encrypted tunneling. SSH is the replacement of non-encrypted protocols such

as File Transfer Protocol (FTP), Telnet, and Remote Shell (RSH) programs.

However, the .NET framework does not support native SSH implementation; therefore,

a third-party library called SharpSSH is used to carry out secure communication be-

tween the server and the client. SharpSSH is an API for creating a messaging channel

for running a shell on a remote SSH server which is implemented with pure .NET and is

capable of being integrated with any .NET application. The library also contains a C#

port of the JSch project from JCraft Inc. and is released under a Berkeley Software

Distribution (BSD) style license. In addition, SharpSSH allows exchanging data and

transfer files over SSH channeling with additional wrapper classes. [19.]

Some of the features provided by SharpSSH are listed below:

 Secure File Transfer Protocol (SFTP) refers to secure FTP using SSH by en-

crypting data to prevent sensitive data while transferring over the network.

 Secure Copy (SCP) is secure file copying technique between two or more

hosts on a network using an SSH password or passphrases with authentication.

 Cipher is an algorithm used for session encryption during SSH channeling.

Some of the algorithms that are supported by SharpSSH are des-cbc, aes128-

cbc.

 Message Authentication Code (MAC) refers to constructing cryptographic

hash function in combination with a secret key to use Hash-based MAC.

 Generating key pairs refers to generating private and public keys on UNIX

based systems to provide greater security when logging into a server using

SSH. For instance, Rivest, Shamir and Adleman (RSA) and Digital Signature Al-

gorithm (DSA) keys are commonly used.

 Passphrase means generating a random key for the symmetric cipher for the

password. SharpSSH also provides a method to change private keys.

 Port and stream forwarding refers to the process of redirecting computer

signals to use the right kind of network data on the right port. [19.]

24

Moreover, since the application is installable on a client’s computer, sensitive configu-

ration setting files must be hidden from the user. Configuration files such as database

connection, which contains confidential information, can be customized by implement-

ing an XML file. It is important to detach the file from the application to be only exe-

cuted and used at runtime. The source code in listing 1 shows the name of the connec-

tion string, the data source, the user ID, the name of the database used, and the type

of the database source.

<?xml version='1.0' encoding='utf-8'?>

<configuration>

 <configSections></configSections>

 <connectionStrings>

 <add name="Backup_Users" connectionString="Data Source = gsbackup.greenspot.fi;

 user id = gsusers;

 database = Greenspot;

 password = *********;"

 providerName = "System.Data.SqlClient" />

 </connectionStrings>

</configuration>

Listing 1. Database connection string (App.config)

To carry out this in practice, an application configuration file named after the

application name (Uifs_Green) is added to the application with a .config file

extention. This assembly file will only be located and loaded during CLR. Customizing

an application setting is also important to easily maintain or set up a new configuration

for future updates. The connection string instance containing the database connection

string object, shown in listing 2, is used when there is a need to fetch data from the

‘Greenspot’ database and insert data into the database.

string connectionString =

ConfigurationManager.ConnectionStrings ["Backup_Users"].ConnectionString;

Listing 2. Database connection string object

25

The ConfigurationSettings.AppSettings class in the System.Configuration namespaces

natively provides a simple mechanism to hold essential key-values and utilize them in

the .config file of an associate application. The key-values are simply stored in string

format and can easily be retrieved by using the ConfigurationSettgins.AppSettings ob-

ject as listed in listing 2.

5.3 Server Configuration

All users’ data and back-end operations are executed and monitored on the server

side. Thus, a complete functional server is set up with operative configuration files and

scripts running in the background to handle multiple clients. Configuring the server is

done in three phases.

Phase 1. Installing and configuring Apache and MySQL servers

To work with the database and to host a web-based application, an Apache server is a

prerequisite. Listing 3 indicates the final steps to checkup the Apache and MySQL serv-

er installations using the repositories and software packages provided by CentOS.

~# httpd -v

Server version: Apache/2.2.3

~#mysql -V

mysql Ver 14.12 Distrib 5.0.77, for redhat-linux-gnu (x86_64) using readline 5.1

Listing 3. Apache and MySQL installation

Phase 2. Mono and other packages

As explained in chapter 3, section 3.3, to compile and run the C# application on a

Linux machine, a Mono package is required to be installed on the server. Thus, after

downloading the source code (mono-2.10.tar.bz2) from

http://ftp.novell.com/pub/mono/download-stable/RHEL_5/repodata/ it is stored

under the /usr/src/ directory and unpacked under the mono-2.10.tar.bz2 directory

using a command called tar. Then the configuration steps in listing 4 are done for con-

26

figuring and installing the mono compiler on the Linux system. After the compiler is

successfully installed and configured, the C# console application is complied and run

using the mcs and mono commands respectively.

~#.cd mono-2.10

~#./configure --prefix =/usr/local

~# ./configure --prefix=/usr/local

~# make

~# make install

Listing 4. Configuring and installing mono

Moreover , g++ and gcc, two necessary Linux packages to compile and run all GCC

compilers (namely C++, Fortran 77, Objective C and Java) were not installed on the

Linux machine. These compilers are used for integrating all the optimizations and fea-

tures necessary for a high-performance and stable development environment. These

packages are also required for the GNU C++ compiler used by Mono. In addition to

these compliers, the Linux machine complained about the parser to get the mcs com-

piler work effectively. Thus, Bison, a general-purpose parser to generate C program

grammar, was installed successfully [20.] In listing 5, the main steps are shown on

how to install these compilers and the Bison parser to the Linux machine.

gcc: ~# yum install gcc

g++: ~# yum install gcc-c++

bison: ~# yum install bison

Listing 5. Complier and parser installation

Phase 3. Automating tasks

When the clients/users attempt to login or register via the login/register form, they are

automatically validated on the client’s application itself and the data will be sent to the

server database. This database contains essential user information for verification pur-

poses to prompt the user to the main backup window. Subsequently, the user is added

to the Linux user list with their respective username and password using bash shell

27

scripting, by creating a temporary file named as queryOutput.log as shown in listing 6.

Then this temporary file is stored under the >/tmp/ system file.

get_user()

{

using the password, login to mysql without prompt and query users and save usage

 mysql -u root –p****** Greenspot <<EOFMYSQL >/tmp/queryOutput.log

 SELECT userName, passwd, emailAdd FROM GsBackupUsers;

EOFMYSQL

}

Listing 6. Users information fetch from database (doauto.sh)

The client tasks, which are used to login, register or transfer data to the server, are

not done manually for this application. Thus, the server application running continu-

ously at the background is automated using a cron daemon provided by the Linux ma-

chine. This utility is set up on the Linux server to automate selected server scripts and

allow tasks to run at regular intervals. To implement cron entities, a bash shell script

is used to generate the executable file and added to the cron tab list using the com-

mand crontab -e by the root user.

In doing so, the clients/users are automatically checked on the Linux SSH users’ list to

permit SSH access for the client application. As illustrated in listing 7, the newly

fetched users from the database, which are saved in the queryOutput.log log file are

iterated and matched with the user list extracted from the /etc/passwd file. Then new

users are added to the system with a respective home directory and an old user’s

password will be updated. Finally, the temporary file that stores the user’s information

will be automatically removed from the system file by the root user.

Add new user to Linux box which are retrieved from the database-> automatically

main() {

get existing ssh users inside the linux box

export SSH_USERS=$(cat /etc/passwd | grep 501 | cut -d: -f1 | sort)

users who are newly registered users->add to db and query is saved under /tmp/ file

export NEW_USER=$(cat /tmp/queryOutput.log | cut -f1 | more +2 | sort)

28

export NEW_USER_LIST="/tmp/queryOutput.log"

export HOME_DIR="/home/"

 more +2 ${NEW_USER_LIST} | #Skip the column headers

 while

 read userName passwd emailAdd

 do

 for user in ${SSH_USERS[@]};

 do

 if [[$user != $userName]];

 then

 # add user to linux box with respective username and email address

 # home directory will be created under /home/username with default group gsclient

 /usr/sbin/useradd -g gsclient -s /bin/bash -m -d ${HOME_DIR}

${userName} ${userName};

 echo ${passwd} | passwd --stdin ${userName};

 # store logs of registered users

 echo "$userName registered successfully at $(date)" >

/root/gsbackup/logs/register.log;

 else

 echo $userName "already exists!";

 fi;

 done;

 #remove username list from the temp file

 rm -rf /tmp/queryOutput.log;

 done;

 exit 0;

}

Listing 7. Bash shell script (automatic user adder to Linux system: doauto.sh)

In typical service oriented architecture new client/user information is stored on the

remote server database, so that clients are prompted to use services provided by the

host. To store these data, users are added during the registration phase and automati-

cally stored in the host database (Greenspot). As described in chapter 5, section 5.2,

the client’s application uses the connection string object to insert or fetch credentials

from the database using configuration settings.

29

6 Backup Technique

6.1 Clients’ Interface and Usability

As a logged-in user, the startup form (window) will be redirected to the main backup

window as shown in figure 9. This window contains the basic and advanced features of

the application providing easy and straightforward access to the functionalities and

usability of the application. It has standard window formats including the menu bar,

tab tools, user information, drive selector, status bar, and the task bar.

Figure 9. Main backup window for clients

The backup window shown in figure 9 provides a pleasant appearance to the user for

searching files through folders by expanding and selecting particular files for backup.

The undo button is used to deselect unwanted files from the backup list box. Each

backup set will be saved to the server with the backup name and date.

30

6.2 Asynchronous Sockets

Hence, data transferring depends significantly on the use of the network, and the

server and clients are supposed interact using events and triggering delegates. The

server stays in a listening state for client requests as it is consistently waiting for multi-

ple clients’ calls. To manage these clients, event-driven programming is applied to

monitor multiple client-server communications based on an asynchronous socket pro-

gramming. This allows the application to continue in a non-blocking mode on a sepa-

rate thread and none of the clients’ sockets is suspended while waiting for the network

operation to complete. Asynchronous operation is more efficient and scalable than the

fork and threads that create a new process and a new thread respectively every time

clients call for a socket connection. Listing 8 illustrates an asynchronous socket which

is used to listen and bind the incoming client’s address.

private void AcceptSocketConnection()

{

 // create socket object

 listenerSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, Proto-

colType.Tcp);

 // and bind the socket to the endpoint and wait for any incoming connections

 RemoteEndpoint = new IPEndPoint(IPAddress.Any, Port);

 try

 {

 // bind the remote ip and port

 listenerSocket.Bind(RemoteEndpoint);

 // start listening

 listenerSocket.Listen(backlog);

 // keep listening

 while (true)

 {

 // set the event to nonsignaled state

 ConnectionDone.Reset();

 // start an asynchronous socket to listen for any connections

 Console.WriteLine("Server listening and waiting clients...");

 listenerSocket.BeginAccept(_clientConnectCallback, listenerSocket);

 // wait at least for one client request

 ConnectionDone.WaitOne();

 }

 }

}

Listing 8. Asynchronous socket Accept method (AsynchNetStreamIO.cs Class)

31

For this application, asynchronous sockets are defined on the client and server end-

point to allow communication across the network. Once a socket object is instantiated

having the three parameters described in chapter 3, section 3.4, an object of the type

IPEndPoint class with a specific port number and the IP address of any client is bound

to the socket and starts listening to the client/s calls. As shown in listing 8, the bind

method of the socket accepts the endpoint as an argument. [21.]

To begin accepting a client request, an asynchronous method named BeginAccept() is

called. This method contains a delegate method named AsyncCallback(), which is used

to complete the function (AsychnCallback()), and a generic state object that can pass

information between the asynchronous methods (listenerSocket()) received from the

client. Some of the commonly used asynchronous socket methods are listed in table 4.

Table 4. Selected Socket methods [21]

Name Description

BeginAccept(AsyncCallback,

Object)

Begins an asynchronous operation to accept an incoming

connection attempt.

EndAccept(IAsyncResult) Asynchronously accepts an incoming connection attempt and

creates a new socket to handle the remote host.

BeginDisconnect Begins an asynchronous request to disconnect from a re-

mote endpoint.

EndDisconnect Ends a pending asynchronous disconnect request.

During data transfer, using methods that utilize the AsyncCallback() delegate to call on

the completion method, the network streaming operation is completed to monitor the

client. Then the newly created temporary socket object in the method OnClientSock-

etConnect() is called to end the BeginAccept() method. In a similar manner, the

EndAccept() asynchronous call back method is used to end a client’s socket connection

after the client is successfully connected with the correct socket ID. The BeginDiscon-

nect() and EndDisconnect() methods work in a similar manner during connection ter-

mination and releasing a resource from that specific socket.

32

6.3 Asynchronous I/O Stream

Data representation is one of the major issues to be handled while transferring data

from the Microsoft Windows OS platform to Linux and vice versa. Thus, implementing

an interoperable data transfer requires data conversion and serialization to read the file

stream from the network, converting back to the original, and to deserialize to the

original file stream for the end user. Serialization and deserilazation depends on the

direction of the file stream sent over the Internet. To put this into action, a standard

.NET Framework network stream mechanism is used to access to the network data.

The System.Net.Sockets.NetworkStream namespace provides a network stream class

to carry out this mechanism. [22, 23; 81-114.]

As mentioned in section 6.2, network streams can also be used in two techniques in a

similar way as socket objects: asynchronously or synchronously. The synchronous

stream technique is simply creating a new thread that operates upon calling a method

and waiting till the operation is completed or failed. On the contrary, an asynchronous

stream returns from the method call instantaneously and none of the operations waits

or suspends to complete the task until the call back method sends a signal (state ob-

ject). Table 5 describes the most important members of the asynchronous stream used

to read and write in an asynchronous approach.

Table 5. Significant members of an asynchronous stream [22]

Name Description

BeginRead Begins an asynchronous read operation.

BeginWrite Begins an asynchronous write operation.

EndRead Waits for the pending asynchronous read to complete.

EndWrite Ends an asynchronous write operation.

After the socket is created and communication is successfully made between the client

and the server, the next step is to stream data over the created instance of an asyn-

chronous socket class. To achieve an asynchronous network streaming, a new Net-

workStream object is constructed holding the specified socket with the stated socket

ownership as a parameter. This NetworkStream object is used to implement a stream-

ing mechanism for reading and writing data to and from the network by using the

33

members mentioned in table 5. The files which are collected as a list in the list box of

the main backup window are iterated and the full path is returned by the GetFull-

FilePath() method.

34

7 Test Cases and Results

7.1 User Interface Testing

The application was installed on the Windows 7 platform for testing. As shown in chap-

ter 6, section 6.1, figure 9, the main backup window contains easy and pleasing menus

and tabs for exploring folders and files, check-boxs for selecting and deselecting files,

several buttons for making a backup, restoring and creating a scheduled task, corre-

spondingly. The user’s basic information is displayed at the top right corner of the win-

dow. The status bar is beneficial to indicate the user’s current path to the file or/and

directory. Users were also provided the ability to switch between the local drives and

easily make files available for backup selection. This piece of software has provided

users with captivating and forthright features to backup easily.

7.2 Unit Testing

When a new user is registered and added to the Linux system, the retrieved infor-

mation from the output file, as indicated in chapter 5, section 5.3, listing 7, the user

will automatically be added to the group gsclient. This user is only allowed to login

using an encrypted password and allowed a login shell type (/bin/bash). Figure 10 lists

users that belong to the gsclient group.

Figure 10. SSH users from group gsclient

35

The cat command is used to list the file under the /etc/passwd path which contains the

list of user details on the Linux server. The option -grep 501 syntax is added to filter

the users who are belonging to the group (gsclient) with ID 501. Figure 10 describes a

specific user name, an -x character indicating an encrypted password, that is stored in

the /etc/shadow file, including the user ID (UID), the user default group ID (GID), the

home directory and the users’ absolute path of command or login shell respectively.

7.3 Integration and System Testing

For an integrated testing, multiple clients were allowed to login to the system simulta-

neously and begin file streaming. The result shown in figure 11 describes the list of the

socket connections which were successfully made using the intended port (20011) with

a distinct socket id from multiple clients. This test was done using the netstat –anp

Linux command. This command is used to display such things as network connections,

interface statistics, routing tables, and masquerade connections. The options used, -

anp, are used to show both listening and non-listening sockets, numerical addresses

and the PID and name of the program to which each socket belongs respectively.

Figure 11. Console output: Active clients connected to the server

36

8 Discussion

One of the main intentions in carrying out this project was to create fully functional

and operational software to the client and to draw a brief conclusion on developing a

WCF application on Linux Server. Besides, learning and extending the knowledge of

advance C# programming techniques was of additional importance.

While carrying out this project and developing the application presented here, setting

up the limitations and constrains in the software specification phase was a challenge;

hence, the software has the ability to expand easily and to get out of control. Thus,

establishing a decent ground on the existing systems and deciding on the development

framework took ample time. In parallel to this, the restriction to deploy the application

on a Linux platform was also a determinant factor in obtaining successfully working

software. Besides, establishing a conclusive argument in developing a standalone ap-

plication rather than a web-based application was taken into account.

Although backing up data can be taken as a simple and easy task, many operations are

encountered in the process. In developing this application, intensive networking pro-

gramming and configuring the server were performed in for creating an asynchronous

socket connection for clients and handling multiple clients concurrently for the network

file stream. During the testing phase, performance and security of the software were

achieved with a complete working GUI for the client. However, the heavy-load of the

thread on the automatic running script on the server side was considered to be a dis-

advantage of this application. Nonetheless, the project thrived and managed to achieve

the primary purposes of the application.

In summary, even though this backup system was particularly designed and imple-

mented for a Windows platform, by adding missing libraries in Mono, it can be further

re-built to support other platforms, such as Linux and MacOS. The application can also

be applied to backup files from one drive to another drive or external disk without In-

ternet connection. Bandwidth throttling and extra features and tools can be added to

this application before it is released. Once Mono core is supported with the set of add-

on libraries and functionalities to provide .NET 3.0 APIs, the application can be de-

signed in different and flexible approaches.

37

9 Conclusion

The goal of the project was to design and implement a standalone desktop application

for an online backup and for the restoring of clients’ data to an off-site host provider.

The application uses a client-server paradigm to create and implement an interopera-

ble Microsoft Visual C# Windows application and a Linux platform using Mono Compiler

between the client and server. In addition to these, it also intended to build a general

background for developing a WCF application and a .NET framework on a Linux plat-

form for building SO applications using a unified programming model.

The application was implemented using the Microsoft Visual C# 2010 programming

language for GUI design and handling the functionalities and features and a bash shell

scripting for automating and handling clients. It was deployed and tested on a Win-

dows 7 platform as the front-end and on CentOS Linux distribution as a back-end. In

result, the clients were able to register into the database and login/logout gracefully.

Registered users were also added to the Linux system automatically using the auto-

mated crontab task on the server. The clients were also able to initiate a backup and

customize a backup scheme to fit their needs by selecting particular files and folders

for the backup set. Moreover, file streaming and creating an asynchronous socket for

each particular client was successfully managed, so that multiple clients residing in a

similar location or a different network could access and share files or folders from the

host. However, due to time constraints, the project was limited to achieving only the

main functionalities: backup, GUI designing, and Mono implementation.

To summarize, this application can be further developed to enhance performance and

security and to provide an easy and vast set of tools, such as a real-time backup tool,

command line tool, and encryption key generator. It can also be developed to be inte-

grated with full web access and with mobile phones. The application can easily be

transformed to a WCF application for any platform as requested by the client, once the

Mono libraries are fully supported. Depending on the bandwidth and memory, this ap-

plication can be optimized to enhanced band width-throttling or dedicating/allocating

specific amounts of computer resources for this service and increasing the competence

of the software.

38

References

1 Gogs. Backup basics and different types of backup [online]. Debian Admin; 27
October 2006.
URL: http://www.debianadmin.com/backup-basics-and-different-types-of-
backup.html.
Accessed 3 April 2011.

2 Microsoft Corporation. Backing up and restoring data [online]. Microsoft TechNet;
3 November 2005.
URL: http://technet.microsoft.com/en-us/library/bb457113.aspx.
Accessed 4 April 2011.

3 Microsoft Corporation. Description of full, incremental, and differential backups
[online]. Microsoft support; 15 November 2006.
URL: http://support.microsoft.com/kb/136621.
Accessed 30 March 2011.

4 TechMediaNetwork. Online data backup review [online]. TopTenReviews; June
2011.
URL: http://online-data-backup-review.toptenreviews.com/.
Accessed 30 June 2011.

5 Chappell D. Introducing Windows Communication Foundation. USA: Microsoft
Corporation; September 2005.

6 Evdemon J. Principles of service design: Service patterns and anti-patterns
[online]. MSDN Library; August 2005.
URL: http://msdn.microsoft.com/en-us/library/ms954638.aspx.
Accessed 4 April 2011.

7 Mahmoud H. Service-Oriented Architecture (SOA) and web services: The road to
Enterprise Application Integration (EAI) [online]. Oracle; April 2005.
URL: http://www.oracle.com/technetwork/articles/javase/soa-142870.- html.
Accessed 1 June 2011.

8 Nishith P. Pro WCF 4 practical Microsoft SOA implementation. New York: Apress
Inc.; 2011.

39

9 Microsoft Corporation. Endpoints: addresses, bindings, and contracts [online].
USA: MSDN Library.
URL: http://msdn.microsoft.com/en-us/library/ms733107.aspx.
Accessed 26 April 2011.

10 Clemens V. and Newtelligence AG. Introduction to building Windows
Communication Foundation Services [online]. USA: MSDN Library; September
2005.
URL: http://msdn.microsoft.com/en-us/library/aa480190.aspx.
Accessed 24 April 2011.

11 What is Mono [online].
URL: http://www.mono-project.com/What_is_Mono.
Accessed 20 March 2011.

12 Tapas P. Productivity improvements in Mono 2.4: Components and architecture
2010 [online]. QuinStreet Inc.
URL: http://www.devx.com/opensource/Article/43410/1954.
Accessed 4 May 2011.

13 Hutchinson M. MonoDevelop documentation [online]. MonoDevelop; 6 December
2010.
URL: http://monodevelop.com/Documentation.
Accessed 2 March 2011.

14 Daryn K. Get closer to the wire with high-performance sockets in .NET [online
Magazine]. Las Vegas, Nevada; MSDN Library; August 2005.
URL: http://msdn.microsoft.com/en-us/magazine/cc300760.aspx.
Accessed 20 August 2011.

15 Create a connectionless Socket [online]. IBM.
URL:
http://publib.boulder.ibm.com/iseries/v5r2/ic2928/index.htm?info/rzab6/rzab6co
nnectionless.htm.
Accessed 23 June 2011.

16 Houcks. System.Net.Sockets Namespace [online]. MSDN Library; 27 June 2011.
URL:
http://msdn.microsoft.com/en-s/library/system.net.sockets.socket_methods.aspx.
Accessed 6 June 2011.

40

17 Kim P. Socket class [online]. MSDN Library; 13 September 2010.
URL: http://msdn.microsoft.com/en-us/library/system.net.sockets.socket.aspx.
Accessed 5 July 2011.

18 Catalyst Development. Blocking vs. non-blocking sockets [online].
Developerfusion; 2 October 2008.
URL: http://www.developerfusion.com/article/28/introduction-to-tcpip/8/.
Accessed 10 August 2011.

19 Tamir G. SharpSSH - A secure shell (SSH) library for .NET [online].
URL: http://www.tamirgal.com/blog/page/SharpSSH.aspx.
Accessed 31 March 2011.

20 Akim D., Denny J.E., Bison P.E. GNU parser generator [online]. GNU Operating
System.
URL: http://gnuwin32.sourceforge.net/packages/bison.htm.
Accessed 5 March 2011.

21 Microsoft Corporation. Using an asynchronous client socket [online]. MSDN
Library.
URL: http://msdn.microsoft.com/en-us/library/bbx2eya8.aspx.
Accessed 20 July 2011.

22 Microsoft Corporation. Stream methods [online]. MSDN Library.
URL: http://msdn.microsoft.com/en-us/library/system.io.stream_methods.aspx.
Accessed 10 July 2011.

23 Richard B. C# network programming. 1151 Marina Village Parkway, Alameda:
Sybex Inc.; 2003.

Appendix 1

1 (1)

Appendix 1. Project Structure

Figure 12. Project structure

Appendix 2

1 (1)

Appendix 2. Login and Register Window

Figure 13. Login and register form

Appendix 3

1 (3)

Appendix 3. Client User Class

// <Copyright file=" User.cs " Company=" Greenspot Backup">
// <Author> @Dawit Nida
// <Last Edited on>08-24-2011
// <Summary> Class representing a User.cs entity. </Summary>
using System;
using System.Data;
using System.Configuration;
using System.Windows.Forms;
using MySql.Data.MySqlClient;
namespace Utils_Green
{
 public class User : IUser
 {
 private readonly string _host = @"gsbackup.greenspot.fi";
 private string _name = string.Empty;
 private string _passwd = string.Empty;
 /// <summary>
 /// Default constructor with name and password
 /// </summary>
 /// <param name="name"></param>
 /// <param name="pass"></param>
 public User(string name, string pass)
 {
 _name = name;
 _passwd = pass;
 // _host = @"gsbackup.greenspot.fi";
 }
 public User()
 {
 }
 #region IUser Members
 /// <summary>
 /// create auto-implemented Properties
 /// </summary>
 public string Host
 {
 get
 {
 return _host;
 }
 }
 public string Username
 {
 get
 {
 return _name;
 }
 set
 {
 if (value != null)
 _name = value;
 else
 _name = string.Empty;
 }
 }
 // Do the same for password

Appendix 3

2 (3)

 public string Userpass
 {
 get
 {
 return _passwd;
 }
 set
 {
 if (value != null)
 _passwd = value;
 else
 _passwd = string.Empty;
 }
 }
 /// <summary>
 /// Validate User check username->> return true if OK
 /// more validation todo
 /// </summary>
 /// <param name="input"></param>
 /// <returns></returns>
 public bool IsValid(string input)
 {
 // check input is not null, then check if input has the required
 if (input.Length > 0)
 {
 string regexString = @"^[a-zA-Z\.\-_]{4,10}$";
 RegexStringValidator regexValidator = new RegexStringValida-
tor(regexString);

 try
 {
 regexValidator.Validate(input);
 return true;
 }
 catch (ArgumentException)
 {
 return false;
 }
 }
 return false;
 }
 #endregion

 //validate user email address using regular expres-
sion:(Provided..msdn...regular expression
 public bool IsValidEmail(string inputEmail)
 {
 string regexString = @"^[a-zA-Z\.\-_]+@([a-zA-Z\.\-_]+\.)+[a-zA-
Z]{2,4}$";
 RegexStringValidator regexValidator = new RegexStringValida-
tor(regexString);
 if (inputEmail.Length > 0)
 {
 try
 {
 regexValidator.Validate(inputEmail);
 return true;
 }
 catch (ArgumentException)
 {

Appendix 3

3 (3)

 return false;
 }
 }
 return false;
 }

 public void InsertNewUser(string fname, string lname, string email,string
username,string passwd,string repasswd)
 {
 string connectionString = ConfigurationManag-
er.ConnectionStrings["Backup_Users"].ConnectionString;

 // create new connection using the connection string stored at con-
nectionString string above
 MySqlConnection connection = new MySqlConnection(connectionString);

 try
 {
 //open db connection using connection string
 connection.Open();

 string sqlInsert = " INSERT INTO GsBackupUsers VALUES
(@fname,@lname,@email,@username,@passwd,@repasswd,@date);";
 MySqlCommand insertUser = new MySqlCommand(sqlInsert, connec-
tion);

 insertUser.Parameters.AddWithValue("@fname", fname);
 insertUser.Parameters.AddWithValue("@lname", lname);
 insertUser.Parameters.AddWithValue("@email", email);
 insertUser.Parameters.AddWithValue("@username", username);
 insertUser.Parameters.AddWithValue("@passwd", passwd);
 insertUser.Parameters.AddWithValue("@repasswd", repasswd);
 insertUser.Parameters.AddWithValue("@date", DateTime.Now);
 insertUser.ExecuteNonQuery();
 insertUser.Dispose();
 insertUser = null;

 //test case
 MessageBox.Show(String.Format("{0} {1} : has registered success-
fully. Thank you.",fname, lname), "Registration Info");
 }
 catch (MySqlException ex)
 {
 //throw exception if db connection is not okay
 MessageBox.Show("Mysql Error. \n " + ex.ToString(), "Database
Connection Info");
 }
 finally
 {
 //finally release all database resources
 if (connection != null)
 connection.Close();
 }
 }
 }
}

Appendix 4

1 (2)

Appendix 4. Client Socket Creator Class

// <Copyright file=" Client.cs" Company=" Greenspot Backup">
// <Author> @Dawit Nida
// <Last Edited on>08-24-2011
// <Summary> Class representing a Client.cs entity.</Summary>

using System;
using System.Net;
using System.Net.Sockets;
using System.Windows.Forms;
using System.Threading;

namespace Utils_Green
{
 public class ClientSocket : SSHConnector, IClientSocket
 {
 private IPEndPoint _endIP;
 private readonly IPAddress _address = IPAddress.Parse("83.143.217.188");
 private readonly int _portNumber = 20011;
 private Socket clientSock;
 private User loggedUser;

 /// <summary>
 /// constructor for ClientSocket Class
 /// </summary>
 /// <param name="clientSock"></param>
 /// <param name="user"></param>
 protected ClientSocket(Socket clientSock, User user)
 : base(user)
 {
 // member initialization
 _address = IP;
 _portNumber = Port;
 _endIP = new IPEndPoint(_address, _portNumber);
 }
 /// <summary>
 /// ClientSocket constructor overloaded
 /// </summary>
 /// <param name="onlineUser"></param>
 public ClientSocket(User onlineUser)
 : base(onlineUser)
 {
 loggedUser = onlineUser;
 }

 #region IClientSocket Members
 public IPAddress IP
 {
 get { return _address; }
 }
 public int Port
 {
 get { return _portNumber; }

 }
 public IPEndPoint Endpoint

Appendix 4

2 (2)

 {
 get { return _endIP; }
 set
 {
 _endIP = value;
 }
 }

 #endregion
 /// <summary>
 /// create socket for the client and return Socket object to be used
 /// </summary>

 public Socket EstablishClientSock()
 {
 try
 {
 // create endpoint object using ip and port number
 Endpoint = new IPEndPoint(IP, Port);
 clientSock = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);

 clientSock.Connect(Endpoint);
 //test case
 MessageBox.Show(" Socket Connection Successful!", "Socket Connec-
tion Info");
 return clientSock;
 }
 catch (SocketException sockEx)
 {
 //test Connection
 MessageBox.Show(" Socket Connection Refused: Check Firewall Rules
\n Closing Socket Connection"
 + sockEx.ToString(), " Socket Connection Info");
 return null;
 }
 finally
 {
 if (clientSock != null)
 //close Socket connection safely
 clientSock.Close();
 }
 }
 }
}

Appendix 5

1 (3)

Appendix 5. Client File IO Class

// <Copyright file="FileIO.cs" Company=" Greenspot Backup">
// <Author> @Dawit Nida
// <Last Edited on>08-24-2011
// <Summary> Class representing a FileIO.cs entity.</Summary>

using System;
using System.Collections.Generic;
using System.IO;
using System.Windows.Forms;

namespace Utils_Green
{
 public class FileIO
 {
 /// <summary>
 /// List all ready drives and add it to the combo box
 /// </summary>
 /// <param name="listcbx"></param>
 public static void ListDrives(ComboBox listcbx)
 {
 // get all ready drives and save it into the array
 DriveInfo[] drivesInfo = DriveInfo.GetDrives();
 foreach (DriveInfo drive in drivesInfo)
 {
 if (drive.IsReady)
 {
 listcbx.Items.Add(drive.Name);
 }
 else
 {
 //test case
 MessageBox.Show(" Drive " + drive.Name + " not ready!", "
Drive Selector Info");
 }
 }
 }
 /// <summary>
 /// get drives from the host computer and return drive name
 /// Add to the combobox list
 /// </summary>
 /// <param name="drivescbx"></param>
 /// <returns></returns>
 public static string GetSelectedDriveName(ComboBox drivescbx)
 {
 string dr = null;
 dr = drivescbx.GetItemText(drivescbx.SelectedItem);

 if (dr.Length > 0)
 {
 //Test case
 MessageBox.Show("Selected Drive " + dr, " Drive Selector Info");
 return dr;
 }
 else
 {
 drivescbx.SelectedIndex = -1;

Appendix 5

2 (3)

 drivescbx.SelectedValue = drivescbx.SelectedIndex;
 dr = drivescbx.GetItemText(drivescbx.SelectedItem);

 //test case
 // MessageBox.Show("Default drive" + dr);
 return @"D:\";
 }
 }
 /// <summary>
 ///
 /// </summary>
 /// <param name="tree"></param>
 /// <param name="drive"></param>
 public void DisplayDirectoriesAndFiles(TreeView tree, string drive)
 {
 //clear everything from the treeview
 tree.Nodes.Clear();
 tree.BeginUpdate();
 //get all drives from the computer
 tree.Nodes.Add(Environment.UserName);

 DirectoryInfo di = new DirectoryInfo(drive);
 DirectoryInfo[] dirInfo = di.GetDirectories();

 foreach (DirectoryInfo rootDirs in dirInfo)
 {
 TreeNode parent = new TreeNode(rootDirs.FullName);

 parent.ImageIndex = 0;
 parent.Tag = rootDirs;
 tree.Nodes[0].Nodes.Add(parent);
 GetFiles(rootDirs, parent);
 tree.EndUpdate();
 }
 }
 /// <summary>
 ///
 /// </summary>
 /// <param name="dirInfo"></param>
 /// <param name="child"></param>
 private void GetFiles(DirectoryInfo dirInfo, TreeNode child)
 {
 try
 {
 DirectoryInfo[] dirInfoArray = dirInfo.GetDirectories();
 if (dirInfoArray.Length != 0)
 {
 foreach (DirectoryInfo subDirs in dirInfoArray)
 {
 //Add the subdirectories to the upper level node
 TreeNode dirNode = new TreeNode();
 dirNode = child.Nodes.Add(subDirs.Name);
 GetFiles(subDirs, dirNode);
 dirNode.Tag = subDirs;
 }
 // Get any files for this node.
 FileInfo[] files = dirInfo.GetFiles();
 // After placing the nodes place the files in that subdirec-
tory
 foreach (FileInfo file in files)

Appendix 5

3 (3)

 {
 TreeNode fileNode = new TreeNode(file.Name);
 child.Nodes.Add(fileNode);
 }
 }
 }
 catch (UnauthorizedAccessException)
 {
 //test case
 // MessageBox.Show(ex.ToString() + "File Access denied " , "
File Access Info");
 }
 }
 // Testcase
 private static List<string> readyFiles = new List<string>();
 public static string StoreListedFiles(ListView box)
 {
 ListView.CheckedListViewItemCollection chked = box.CheckedItems;
 for (int i = 0; i < chked.Count;)
 {
 string filename = box.CheckedItems[i].Text;
 foreach (ListViewItem items in chked)
 {
 items.Checked = true;
 readyFiles.Add(filename); ;
 }
 return filename;
 }
 return null;
 }
 }
}

Appendix 6

1 (1)

Appendix 6. Server Open Port List

~# nmap -sS -O 127.0.0.1

Starting Nmap 4.11 (http://www.insecure.org/nmap/) at 2011-06-10 14:24

EEST

Stats: 0:00:03 elapsed; 0 hosts completed (1 up), 1 undergoing OS Scan

Interesting ports on localhost.localdomain (127.0.0.1):

Not shown: 1675 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

80/tcp open http

111/tcp open rpcbind

3306/tcp open mysql

Accept tcp packets on destination ports 6881-6890

~# iptables -A INPUT -p tcp --dport 20011 -j ACCEPT

Appendix 7

1 (6)

Appendix 7. Server Socket Creator and File Transfer Class

// <copyright file="ClientSocketListener.cs" company=" Greenspot Backup">
// <author>Dawit Nida</author>
// <date>08-24-2011</date>
// <summary>Class representing a ClientSocketListener.cs entity.</summary>

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Runtime.Serialization;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

namespace FileTransfer
{
 public class ClientSocketListener
 {
 private const int _portNumber = 20011;
 private const int backlog = 20;

 private IPEndPoint _remoteEndPoint = null;
 private Socket listenerSocket = null;
 private AsyncCallback _clientConnectCallback;
 private AsyncCallback _clientDisconnectCallback;

 // Thread signal.
 private static ManualResetEvent ConnectionDone = new ManualRe-
setEvent(false);

 #region IServerSocket Members
 public int Port
 {
 get { return _portNumber; }
 }
 public IPEndPoint RemoteEndpoint
 {
 get { return _remoteEndPoint; }
 set
 {
 _remoteEndPoint = value;
 }
 }
 #endregion

 public ClientSocketListener()
 {
 _clientConnectCallback = new Async-
Callback(this.OnClientSocketConnect);
 _clientDisconnectCallback = new Async-
Callback(this.OnClientSocketDisConnect);
 }

Appendix 7

2 (6)

 public void AcceptSocketConnection()
 {
 // create socket object
 listenerSocket = new Socket(AddressFamily.InterNetwork, Socket-
Type.Stream, ProtocolType.Tcp);
 RemoteEndpoint = new IPEndPoint(IPAddress.Any, Port);

 try
 {
 // and bind the socket to the endpoint and wait for any incoming
connections...
 listenerSocket.Bind(RemoteEndpoint);
 // start an asynchronous socket to listen for any connections
 listenerSocket.Listen(backlog);
 Console.WriteLine(" Server State listening and waiting for Cli-
ent...");

 while (true)
 {
 // set the event to nonsignaled state
 ConnectionDone.Reset();

 // accept an asynchronous socket from any connections
 listenerSocket.BeginAccept(OnClientSocketConnect, listener-
Socket);

 // wait at least for one client request
 ConnectionDone.WaitOne();
 }
 }
 catch (Exception sockEx)
 {
 Console.WriteLine(" Asynchronous Socket could not be created. \n"
+ sockEx.ToString());
 }
 }

 public void OnClientSocketConnect(IAsyncResult asyncResult)
 {

 // get the created socket and use it
 Socket listener = (Socket)asyncResult.AsyncState;
 Socket tempSocket = listener.EndAccept(asyncResult);
 Console.WriteLine(" Client..." + tempSocket.RemoteEndPoint.ToString()
+ " connected.");

 // signal that the connection has been made.
 ConnectionDone.Set();

 FileHandler filehandler = new FileHandler(tempSocket);
 filehandler.StartRead();

 }

 public void OnClientSocketDisConnect(IAsyncResult asyncResult)
 {
 try
 {
 Socket tempSocket = (Socket)asyncResult.AsyncState;

Appendix 7

3 (6)

 // sending the data to the client ends here
 tempSocket.EndDisconnect(asyncResult);
 Console.WriteLine(" Client..." + tempSock-
et.RemoteEndPoint.ToString() + " disconnected safely.");
 tempSocket.Shutdown(SocketShutdown.Both);
 tempSocket.Close();

 }
 catch (Exception sockEx)
 {
 Console.WriteLine(" Error disconnecting the client." +
sockEx.ToString());
 }
 }

 static void Main(string[] args)
 {
 ClientSocketListener listener = new ClientSocketListener();
 listener.AcceptSocketConnection();
 Console.ReadLine();
 }
 }

 [Serializable]
 public class FileHandler
 {

 private NetworkStream newStream = null;
 private Stream inputStream = null;
 private Stream outputStream = null;

 private static ManualResetEvent ReceiveEnded = new ManualRe-
setEvent(false);

 private byte[] buffer;

 private AsyncCallback _recieveCallack;
 private AsyncCallback _sendCallback;
 private AsyncCallback _fileBackupCompleteCallback;

 public FileHandler(Socket serverSocket)
 {
 buffer = new byte[1024 * 5];
 newStream = new NetworkStream(serverSocket);
 _recieveCallack = new AsyncCallback(this.OnReceiveComplete);
 _sendCallback = new AsyncCallback(this.OnDataSendComplete);
 _fileBackupCompleteCallback = new Async-
Callback(this.OnFileBackupComplete);
 }

 public void StartRead()
 {
 // check if netstream is readable
 if (newStream.CanRead)
 {
 newStream.BeginRead(buffer, 0, buffer.Length, _recieveCallack,
null);
 ReceiveEnded.WaitOne();
 }
 else

Appendix 7

4 (6)

 {
 Console.WriteLine(" NetworkStream is unreadable.");
 }
 }

 protected string SplitFileSizeName(string stringMessage, short i)
 {
 char splitter = ' ';
 string[] size = stringMessage.Split(splitter);
 return size[i];
 }

 private static int TryToParseFileSize(string inputMessage)
 {
 int size = 0;
 bool success = Int32.TryParse(inputMessage, out size);
 if (success)
 {
 return size;
 }
 else
 {
 Console.WriteLine(" File Size could not be retrieved.");
 return 0;
 }
 }

 int receivedFileSize = 0;
 string receivedFileName = string.Empty;
 string receivedFile = string.Empty;
 string fullPath = string.Empty;

 private void OnReceiveComplete(IAsyncResult asycResult)
 {
 int bytesReceived = newStream.EndRead(asycResult);

 short i = 0;
 try
 {
 if (bytesReceived > 0)
 {
 string receivedMessage = Encoding.ASCII.GetString(buffer, 0,
bytesReceived);
 Console.WriteLine(" Received bytes {0} : with size {1} \n ",
receivedMessage, bytesReceived);

 string location = @"/home/john";
 i = 1;
 receivedFileName = SplitFileSizeName(receivedMessage, i);

 //create a new file under /home/username for read/write
 outputStream = new FileStream(location + "//" + receivedFile-
Name, FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.ReadWrite);
 string fullPath = location + "/" + receivedFileName;

 i = 0;
 receivedFileSize = TryToParse-
FileSize(SplitFileSizeName(receivedMessage, i));

 // i = 2;

Appendix 7

5 (6)

 receivedFile = SplitFileSizeName(receivedMessage, i);
 Console.WriteLine(" File Size '{0}' \t '{1}' \n", received-
FileSize, receivedFileName);

 i = 0;
 receivedFileSize = TryToParse-
FileSize(SplitFileSizeName(receivedMessage, i));

 byte[] receivedData = new byte[receivedFileSize];

 inputStream = new FileStream(location + "//" + receivedFile-
Name, FileMode.Open, FileAccess.ReadWrite, FileShare.ReadWrite);
 Console.WriteLine(" File '{0}' opened for write.", full-
Path);

 //Console.WriteLine(" Deserialize '{0}' bytes", received-
FileSize);
 //IFormatter formatter = new BinaryFormatter();
 //byte[] data = (byte[])formatter.Deserialize(inputStream);

 Console.WriteLine(" Begin reading from network stream here:
Status \n Received File Size: '{0}' bytes Received File Name: '{1}' Received
Data Length: {2} bytes.", receivedFileSize, receivedFileName, receivedDa-
ta.Length);
 inputStream.BeginRead(receivedData, 0, receivedFileSize,
_fileBackupCompleteCallback, null);

 Console.WriteLine(" Cleaning Stream and '{0}' Closed here!",
fullPath);
 //clean up everything
 outputStream.Close();
 outputStream.Dispose();

 }
 else
 {
 Console.WriteLine(" Data unavailableNetwork streaming
could not be acheived!");
 newStream.Close();
 newStream = null;
 }
 }
 catch (Exception randomEx)
 {
 Console.WriteLine(" Exception cought here. \n" + ran-
domEx.ToString());
 }
 }

 public void OnDataSendComplete(IAsyncResult asycResult)
 {
 newStream.EndRead(asycResult);
 Console.WriteLine(" Reading data from network stream is completed.
");
 //inputStream.BeginRead(buffer, 0, buffer.Length,
_fileBackupCompleteCallback, null);
 }

 private void OnFileBackupComplete(IAsyncResult asycResult)
 {

Appendix 7

6 (6)

 int bytesRead = inputStream.EndRead(asycResult);

 // check if any data left on the stream
 if (receivedFileSize > 0)
 {
 SaveFileToDisk(inputStream, outputStream, receivedFileSize);
 Console.WriteLine(" File successfully saved.");
 }
 inputStream.Close();
 newStream.Flush();
 newStream.Close();
 }

 private void SaveFileToDisk(Stream inputStream, Stream outputStream, int
SizeOfBuffer)
 {
 BinaryReader binReader = new BinaryReader(inputStream);
 BinaryWriter binWriter = new BinaryWriter(outputStream);
 Console.WriteLine(" Start saving file '{0}' to disk: Status Received
File Size: '{1}' with size '{1}' bytes.",receivedFileName, receivedFileSize);

 //create a buffer to hold the bytes
 byte[] bufferReader = new Byte[SizeOfBuffer];

 try
 {
 if (inputStream.CanRead)
 {
 Console.WriteLine(" \n Status: Received File Size '{0}' ",
receivedFileSize);
 if (receivedFileSize > 0)
 {
 Console.WriteLine(" Before Binary writer size '{0}' bytes
", bufferReader.Length);
 binWriter.Write(bufferReader, 0, SizeOfBuffer);
 }
 }
 else
 {
 //clean up everything
 binWriter.Flush();
 binReader.Close();
 binWriter.Close();
 }
 }
 catch (IOException ex)
 {
 Console.WriteLine(" File writing failed. \n" + ex.ToString());
 }
 }

 }
}

