Jarkko Lohilahti

SELVITYS 3D-TULOSTAMISEN TILANTEESTA SUOMESSA
SELVITYS 3D-TULOSTAMISEN TILANTEESTA SUOMESSA

Jarkko Lohilahti
Opinnäytetyö
Syksy 2011
Kone- ja tuotantotekniikan koulutusohjelma
Oulun seudun ammattikorkeakoulu
PIIVISTELMÄ

Oulun seudun ammattikorkeakoulu
Kone- ja tuotantotekniikka, koneautomaatio

Tekijä: Jarkko Lohilahti
Opinnäytetyön nimi: Selvitys 3D-tulostamisen tilanteesta Suomessa
Työn ohjaaja: Esa Kontio
Työn valmistumislukukausi ja -vuosi: syksy 2011 Sivumäärä: 56 + 4 liitettä

Työssä tehtiin tutkimus 3D-tulostuksen tilanteesta Suomessa. Tutkimuksen tavoitteena oli kartoittaa 3D-tulostuksia tarjoavat yritykset ja vertailla niiden palvelua Oulu PMC:n tuomaan palveluun. Tavoitteenä oli myös miettiä 3D-tulostukseen alustava kaupallistamistapa ja luonnostella markkinointimateriaalit.

Asiasanat: pikamallinnus, 3D-tulostus
SISÄLTÖ

TIIVISTELMÄ

SISÄLTÖ

1 JOHDANTO ... 9

2 PIKAVALMISTUS (RAPID PROTOTYPING) ... 10

2.1 Määritelmä ... 10

2.2 Yleistä .. 10

2.3 Pikavalmistustekniikat ... 10

2.3.1 FDM (Fused Deposition Method) ... 11

2.3.2 MJM (Multijet Modeling Systems) ... 12

2.3.3 SLA (Stereolitografia) ... 13

2.3.4 SLS (Selective Laser Sintering) ... 14

2.3.5 DMLS (Direct Metal Laser Sintering) .. 15

2.3.6 LOM (Laminated Object Manufacturing System) 16

2.4 Pikavalmistuslaitteet .. 17

2.4.1 3D-toimistotulostimet .. 17

2.4.2 Tekniset pikavalmistuslaitteet ... 18

2.4.3 Rapid Tooling -laitteet .. 18

2.5 3D-Tulostuksen hyödyt ja lisäarvo .. 19

2.6 Kohderyhmät ... 19

3 PROOF OF CONCEPT .. 23

3.1 Proof of conceptin etenemisjärjestys ... 23

3.2 Tavoitteet .. 25

3.3 Kilpailuedun ja arvoketjun luominen .. 25

3.3.1 Arvoketju .. 26
3.3.2 Arvoketjuanalyysi ...28
3.3.3 Arvoa luovien tapojen tunnistaminen28
3.4 SWOT-analyysi ..29
3.5 Kilpailija-analyysi ..30
3.6 Strateginen suunnittelu ..31
 3.6.1 Perusstrategian valinta ...31
 3.6.2 Muut strategiset valinnat ...32
3.7 Liiketoimintasektorit ...32
3.8 Portfolioanalyysit ...33
3.9 Visio ..33
3.10 Segmentointi ..33
3.11 IPR (Immateriaalioikeudet) ..35
 3.11.1 Oikeuksien tyypit ...35
 3.11.2 Immateriaalistrategian edut ...37
 3.11.3 Ennakouutuustutkimus ..38
4 TEKNOLOGIA JA KAUPALLISTAMISTOIMET40
 4.1 Tausta ja historia ...39
 4.2 Teknologiayhteenveto ..40
 4.3 Arvoketju pikavalmistuspalvelusta ..40
 4.4 SWOT-analyysi ..41
 4.5 Pikamallinnusteknologian lisärvo markkinoille41
 4.6 Arvio markkinapotentiaalista ..41
 4.7 3D-tulostusta tarjoavia yrityksiä Suomessa43
 4.8 Totuustaulukko kilpailutilanteesta ...43
 4.8.1 Kilpailija 1 ...44
 4.8.2 Kilpailija 2 ...46
TERMIT JA LYHENTEET

3D-CAD
Tietokoneavusteinen 3D-suunnittelu.

Fotopolymerisaatio
Polymerisaatiossa pienestä molekyylistä muodostetaan suuria molekyylejä. Kun polymerisaation tarvitsema energia saadaan valosta, on kyseessä fotopolymerisaatio.

Freedom to operate
Selvitys, ettei kehitetyn teknologian hyödyntäminen loukkaa muita patentteja.

GOPP
Pääomaohjautuva projektisuunnittelu.

POC
Proof of concept. Selvitys konseptin kannattavuudesta.

Road map
Suunnitelma, jossa päätetään tehtävät toimenpiteet, vastuutus, resursointi ja aikataulutus.

RP
Rapid Prototyping. Esimerkiksi suunnitteluprosessissa tarvittavien prototyyppien valmistukseen soveltuva prosessi.

RT
Rapid tooling. Esimerkiksi ruiskupuristusmuottien valmistamiseen sopiva prosessi.

stl-tiedosto
Pikamallinnuksessa käytettävä tiedostoformaatti.
Termoplastinen
Lämpömuovattava.
1 JOHDANTO

Oulu PMC osuuskunta on hankkinut käyttöönsä Objet Eden 260V -3D-tulostimen. 3D-tulostin toimii pikamallinnusteknikalla, jossa kappale valmistetaan materiaalia lisäämällä automaattisesti 3D CAD -aineistosta. Pikamallinnustekniikan käyttö on ollut jatkuvasti kasvussa 1990-luvun alusta saakka. Tekniikan kehittyessä laitteistot ovat halventuneet ja yleistyneet.

Työn tavoitteena on tehdä proof of concept -tyyppisiä tarkastuksia 3D-tulostimen kaupallistamisen edistämiseksi. Laitteiston kaupallinen potentiaali todistetaan. Työssä etsitään muut 3D-tulostuksia tarjoavat yritykset ja selvitetään mahdolliset kilpailijat. Mahdollinen kilpailutilanne arvioidaan ja esitetään tulokset. Työssä luonnostellaan paras mahdollinen liiketoiminnan malli mahdollisimman suuren kassavirran löytämiseksi ja tehdään alustavat markkinointimateriaalit, joilla Oulu PMC voisi aloittaa palvelun markkinoinisen hyödyntäjäryksille.
2 PIKAVALMISTUS (RAPID PROTOTYPING)

2.1 Määritelmä

Pikavalmistus on nimitys useille erilaisille tekniikoille, jotka kattavat mallien, prototyyppien ja työvälineiden valmistuksen. Pikavalmistuksessa on ominais- ta, että konkreettinen kiinteä kappale valmistetaan automaattisesti 3D CAD -aineistosta, ilman lastuavaa työstöä tai käsityötä. (1, s. 1.)

2.2 Yleistä

2.3 Pikavalmistustekniikat

Pikavalmistustekniikoita on nykyään useita. Laitevalmistajat tekevät laitteen- sa toisistaan poikkeavilla tekniikoilla. Karkeasti ne voidaan jakaa neljään päälukuokaan: sulasta materiaalista lisäävät, esimerkiksi FDM ja MJM, nestet- tä kovettavat esimerkiksi SLA, muovi- tai metalli- tai kipsipulverista sintraavat esimerkiksi SLS ja DMLS, sekä levystä leikkaavat esimerkiksi LOM. (2.)
2.3.1 FDM (Fused Deposition Method)

FDM-menetelmä perustuu termoplastisen raaka-aineen, kuten muovin tai vahan pursottamiseen ohuena nauhana kerroksittain työtasolle. Laitteen tulostuspää sulattaa käytettävän materiaalin ja ohjaa sen oikeaan kohtaan. Materiaali jäähtyy nopeasti, jolloin se sitoutuu alempaan olevaan kerrokseen. Kerroksen ollessa valmis rakennusalusta liikkuu kerrospaksuuden verran alaspäin. FDM-laitteiden tarvitsee tulostaa tukirakenteet tietynlaisten geometrioiden tulostamiseen. Tukirakenteita ei tarvitse välttämättä tulostaa varsinaiseen kappaleeseen käytetyllä materiaalilla, vaan siihen on olemassa oma materiaalinsa, joka on vesiliukoista. Kun kerrokset ovat valmiina ja kappale jäähtynyt, poistetaan tukirakenteet ja pinta viimeistellään. (1, s. 35–38.)

Menetelmä ei ole kaikista nopein isoa kappaleita valmistettaessa, eikä sillä pysty tekemään ohuita muotoja. Menetelmällä voidaan valmistaa kohtalaisen lujia kappaleita, jotka ovat käytettävissä sellaisinaan tai viimeistetynä. FDM-menetelmän periaate on esitetty kuvassa 1. (1, s. 35–38.)
KUVA 1. FDM:n periaate (3)

2.3.2 MJM (Multijet Modeling Systems)

MJM-teknikalla toimivat laitteet ovat 3D-tulostimia, jotka vastaavat käytöl- täään nykyaikaisia tulostimia. Laitteisto on helppokäyttöinen, se voidaan kyt- keä normaaliin tietoverkkoon, eikä sen käyttö vaadi erityistä koulutusta. Mallinvalmistuksen nopeutta on priorisoitu tarkkuuden kustannuksella. Laite onkin selkeästä tarkoituksessa 3D CAD -suunnittelun verifioimiseen, eikä se pyri- käään muuhun. Tekniikan toiminta perustuu mustesuihkuperiaatteeseen, ku- ten perinteisissä tulostimissa. Laitteisto käyttää yleensä satoja suuttimia suihkutukseen, joilla voidaan pystyä jopa 100 mm leveä kaistalle. Kool- taan koneet ovat suurehkon kopiokoneen luokkaa, ja ne on tarkoitetut toimis- toypäräistöön. Kappalekoot ovat aika pieniä; yleensä ± 300 mm. MJM- menetelmän periaate on esitetty kuvassa 2. (1, s. 49–50.)
2.3.3 SLA (Stereolitografia)

SLA on vuonna 1986 kehitetty ensimmäinen kaupallinen RP-teknologia, jonka 3D Systems toi markkinoille vuonna 1987. (5, s. 12.)

Kovetuksen jälkeen poistetaan kappaleesta tukirakenteet ja viimeistellään pinta. Valmiin kappaleen pinta on tahmea, joka vaatii jälkikäsittelyä kuten hiomista, jolloin pinnanlaatu ja mittatarkkuus voivat kärsiä. SLA-menetelmän peritaate on esitetty kuvassa 3. (1, s. 24–27.)

KUVA 3. SLA:n toimintaperiaate (6)

2.3.4 SLS (Selective Laser Sintering)

Yleisesti tekniikasta käytetään nimitystä lasersintraus. SLS käyttää materiaalinaan termoplastisia jauheita, jotka sintrataan tai sulatetaan laserilla. Laitteen sisällä on kaksi sylinteriä, joiden pohjia liikutetaan männän avulla. Ensimmäinen sylinteri sisältää tulostusmateriaalin, ja toisen sylinterin pohja toimii tulostusalustana. Materiaalisylinteri annosteelee sopivan määrän materiaalia, ja tela tai rulla levitää jauheen tulostusalustalle. Ohut jauhekerros kuumennetaan laserin avulla niin, että se sulaa kiinni edelliseen kerrokseen. Prosessin nopeuttamiseksi tulostusmateriaalia esiläämmitetään. Tulostettava kappale muodostuu jauhepedin sisään, jolloin erillisiä tukirakenteita ei tarvit-
se. Tulostusmateriaalista johtuen lopullinen kappale on huokoinen ja lopullisesta käyttötarkoituksesta riippuen voidaan huokoset joutua mahdollisesti täyttämään. SLS-menetelmän peritaate on esitetty kuvassa 4. (1, s. 28–30.)

KUVA 4. SLS:n toimintaperiaate (7)

2.3.5 DMLS (Direct Metal Laser Sintering)

DMLS-menetelmässä erikoispulveriseos sintrataan suoraan kiinteäksi kappaleeksi laserin avulla ilman jälkikäsittelyjä. Kone rakentaa kappaleen huoneenlempotilassa olevalle teräkselle rakennusalustalle, johon kappale kiinnitetty. Menetelmä on tarkka eikä vaadi erillistä suojakaasuilmaa. Syntyvää kappala voidaan käyttää ruiskupuristusmuotin osana prototyyppisarjojen valmistukseen. DMLS-menetelmän peritaate on esitetty kuvassa 5. (1, s. 33–34.)
2.3.6 LOM (Laminated Object Manufacturing System)

2.4 Pikavalmistuslaitteet

2.4.1 3D-toimistotulostimet

3D-toimistotulostimet ovat toimistoympäristöön soveltuvia helppokäyttöisiä, myrkyttömiä ja pölyttömiä laitteita, jotka mahdollistavat toimintamallin, jossa suunnittelija luo tietokoneella suunnitelman ja pystyy sen perusteella itse tulostamaan kolmiulotteisen kappaleen. Ne ovat hinnaltaankin kehittymässä niin alhaisiksi, että ei tulostimen hankinta ole enää iso sijoitus. Makerbotin tulostimen saa hankittua jo noin 1 000 euron hintaan. Niiden mittatarkkuus ja kappaleiden lujuus eivät ole kovin hyviä. Laitteet käyttävät mm. FDM- ja MJM-teknikoita. 3D-tulostuksen periaate on esitetty kuvassa 7. (10.)
2.4.2 Tekniset pikavalmistuslaitteet

Tekniset pikavalmistuslaitteet ovat teollisuuden pikamallitarpeisiin tehtyjä laitteita, joiden tyypillinen työstökerroksen paksuus on 0,1 mm. Käytössä on useita menetelmiä, joista toiset soveltuvat esim. koruteollisuuden vaatimiin pieniin ja tarkkuutta vaativiin töihin. Ruiskupuristettavat tuotteet ovat tyypillisesti pikamallilaitteilla imitoitavia tuotteita. Valimoteollisuus käyttää suuria mallleja. (10.)

2.4.3 Rapid tooling -laitteet

Rapid tooling -laitteet ovat usein lähes samoja laitteita kuin tekniset pikavalmistuslaitteet. Rapid tooling -laitteilla tehdään pikatyökaluja, joilla valmisteestaan prototyyppiä käyttäen lopullista materiaalia ja tuotantomenetelmää kuten ruiskupuristusta. (10.)
2.5 3D-tulostuksen hyödyt ja lisäärvo

3D-tulostamisella on mahdollista tehdä millaisia muotoja tahansa ja itse prosessi on pitkälle automatisoitu. Saavutettavat hyödyt voidaan jakaa kolmeen kategoriaan verrattuna perinteiseen koneistukseen: ajansäästölliset hyödyt, kustannukselliset hyödyt ja laadulliset hyödyt. (12, s. 130–132.)

Riippuen tulostettavan kappaleen koosta ja tulostusalueesta, voidaan rakentaa useampaa kappaletta yhtä aikaa. Itse tulostus prosessiin sitoo myös hyvin vähän työntekijää, jolloin säästetään arvokasta käsityöaikaa. (12, s. 130–132.)

Taloudelliset säästöt koostuvat pääasiassa saavutetuista ajansäästöistä. Käsinekosketeltavien prototyyppien avulla suunnitteluvirheet minimoituvat, jolloin suunnittelukustannukset pienenevät. Pikavalmistuksella valmistetut mallit ovat halvempia kuin perinteiset koneistamalla tehdyt. (12, s.130–132.)

Kun suunnitteluprosessiin otetaan mukaan 3D-tulostuksella valmistetut prototyyppit, pystytään tuotantoon pääsevästä lopullisesta tuotteesta tekemään laadultaan entistä parempi ja virheettömämpi ratkaisu. Prototyyppillä myös parannetaan tuotteen laatua, koska kaikki suunnitteluprosessiin osallistuvat henkilöt ymmärtävät paremmin tuotteen konkreettisen muodon ilman teknillistä koulutusta. (12, s. 130–132.)

2.6 Kohderyhmät

Kuvassa 8 on esitetty, mihin kohteisiin pikamallinnustekniikka voidaan käyttää. Tekniikasta voi olla näille aloille hyötyä, mutta tekniikka ei ole vielä täysin kaupallistettavissa.
KUVA 8. Tyypillisiä RP:n käyttökohteita (13, s. 358)

Kuvassa 9 on esitetty, kuinka suurella mittakaavalla mikäkin teollisuuden ala käyttää pikavalmistustekniikka.
KUVA 9. Pikamallinnustekniikka käytättävät toimialat vuonna 2008 (5, s. 26.)

Kuvassa 10 on esitetty, kuinka yritykset käyttävät pikavalmistustekniikkaa liiketoiminnassaan.

KUVA 10. Kuinka yritykset käyttävät pikamallinnustekniikkaa vuonna 2008 (5, s. 26.)
Pikamallinnustekniikka käyttää suurimmaksi osaksi teollisuudessa autoala ja ilmailuala, joiden osuus tekniikan käytöstä on noin puolet. Muita suurempia toimialoja on lääketiede ja teollisia laitteita valmistavat yritykset.

Pikamallinnustekniikkaa käyttävät yritykset hyödyntävät tekniikkaa pääasiassa malleilla, prototyypeillä ja valmiilla osilla. Valmiit osat eivät ole yleensä sarjatuotantoa.
3 PROOF OF CONCEPT

Proof of concept (POC) on yritysmailman käsite, jolla osoitetaan yrityksen tai tuotteen taloudellinen kannattavuus. Yleensä POC:n tekeminen edellyttää laajaa tutkimustyötä, jotta saadaan laaja-alainen kuva tuotteesta tai palvelusta. POC:ssa tullaan todentamaan liiketoimintapotentiaali ja tekemään riittävät toimet kaupallistamisen jatkuvuuden onnistumisen takaamiseksi. Näillä todisteilla on helppo todistaa potentiaalisille sijoittajille tuotteen tai palvelun kannattavuutta. (14, s. 1.)

3.1 Proof of conceptin etenemisjärjestys

POC:n tekeminen alkaa yrityksen taustan käsittelyllä, jossa yrityksen historia tutkitaan mahdollisimman tarkasti. Ensinnä esitellään innovaatio, sen kaupalliset mahdollisuudet ja lyhyt teknologiayhteenveto. Tuotteen tai palvelun hyödyt ja lisäarvo markkinoille on tultava ilmi. (14, s. 2.)

POC:ssa tehdään kaupallistamiseen tähtäävänä toimina, joiden ensisijaisena tavoitteena on toimia keskeisinä osina kaupallistamissuunnitelmiin laadinnassa ja toteutuksessa. Kaupallistettavan teknologian hyödyntämispotentiaalin arviointia tehtäessä arvioidaan ensin liiketoimintapotentiaali, jossa selvitetään hankkeen kaupallinen potentiaali, keskeiset hyödyntämiskohteet ja markkinoiden koko. (14, s. 2.)

Arvoketju ja omaa positiota arvoketjussa määriteltäessä määritellään hankkeen kohteena olevan teknologian sijoittuminen nykyisiin arvoketjuihin ja tunnistetaan ne muutokset, joita teknologia ja muita modernit teknologiat tulevat arvoketjuihin aiheuttaamaan. Konkretisoidaan arvoketjuanalyysistä tunnistama- la nimeltä keskeiset arvoketjuihin osallistuvat yritykset, kiinnittäen erityistä huomiota niihin, jotka voisivat olla teknologian ostajia tai pahimpia kilpailijoita. (14, s. 2.)
Kilpailijoita etsittäessä toteutetaan kilpailija- analyysi, jossa toisaalta tunnistet- tujen nykyisissä arvoketjuissa olevat kilpailijat ja toisaalta arvioidaan uusien teknologioiden vuoksi mahdollisesti syntyvää uusi kilpailu. Teknologian kilpai- lukykya arvioidaan SWOT- analyysillä suhteella keskeisiin nykyisiin ja tunnistet- tuihin potentiaalisii kilpailijoihin. (14, s. 3.)

Kaupallissuunnitelman keskeisenä tuloksena on ehdotus teknologian kaupallis- listamisen liiketoimintamalliksi. Kaupallistamistavalle laaditaan konkreettinen aikataulutettu kaupallistamissuunnitelma ja lyhyen tähtäimen road map. Arvi- oidaan mahdollinen rahoituksen, resursoinnin ja partneroinnin tarve. (14, s. 3.)

POC:ssa tehdään IPR-selvitys, jossa selvitetään IPR:n nykyinen suojaamis- status. IPR-selvityksen yhteydessä toteutetaan myös freedom-to-operate- selvitykset, ennakkouutuustutkimukset ja laaditaan alustava patentointiistra- tegia. (14, s. 3.)

Markkinaselvitys kuuluu myös POC:in ja on olennainen osa yrityksen liike- toimintaa. Tässä projektin kohdassa toteutetaan edellisten projektinkohtien dokumentointi siten, että ne toimivat teknologian markkinointi- ja kaupallista- misen toimintasuunnitelmana. (14, s. 3.)

Teknologian lisäärho todennetaan tunnistetuille hyödyntäjille yhdessä hyö- dyntäjärytysten kanssa. Lisäärho todennetaan haastatellen, pilotoiden, seminaariyöskentelyssä ja mahdollisesti GOPP-tyyppisiä menetelmiä sovelta- en. (14, s. 3.)

Yleensä proof of concept sisältää tarkastelun ansaitsemismallin, jossa en- nustetaan tulot tuotteesta tai palvelusta. Siinä osoitetaan kehyksen kustann- nukset ja pitkän aikavälin taloudelliset ennusteet, sekä se kuinka paljon tuote tai palvelu maksaa ylläpitää ja pitää markkinoilla. Lopulta proof of conceptin tarkoituksena on vähentää uuden hankkeen tai hankinnan epävarmuutta. (14, s. 4.)
3.2 Tavoitteet

Proof of concept -projektien tärkeimpinä tavoitteina on:

- innovaation kaupallisena potentiaalin todentaminen yhdessä hyödyntäväätä-yritysten kanssa sekä innovaation tuotteistaminen kaupallistamiskelpoiseksi

- luoda uutta liiketoimintaa

- kaupallistamisen toteuttaminen oppimisprosessorina, niin että uusien tutkimuslähtöisten innovaatioiden kaupallistamiseen voidaan hyödyn- tää opittuja prosesseja, käytäntöjä ja verkostoja

- tutkijoiden, kaupallistamisasiantuntijoiden ja teollisuuden välisen yhteistyön edistäminen. (14, s. 5.)

3.3 Kilpailuedun ja arvoketjun luominen

Yrityksen asema määräytyy sen mukaan, millä tavalla se pystyy hyödyntämään vahvuuksiaan. Vahvuedet voidaan jakaa kahteen kilpailuedun perusla-jiin: kustannustehokkuuteen ja differointiin (erilaistuminen). Kustannus- ja dif- ferointietuja pidetään asemallisina etuina, sillä ne määrävät yrityksen aseman omalla alallaan joko kustannusjohtajana tai differointijohtajana. (15.)

Resurssejaan ja osaamisiaan hyödyntämällä yritys luo kilpailuetua, jonka tu- loksena yritys tuottaa kilpailijoitaan parempaa arvoa. Tämä prosessi on mal- linnettu kuvassa 11.
Yrityksen ydinosaamisalueet helpottavat uusia innovaatioita ja parantavat tehokkuutta, laatua ja asiakastyytyväisyyttä. Kaikkia näitä voidaan entisestään vahvistaa alemman kulurakenteen saavuttamiseksi tai tuotteiden erilaistamiseksi. Yrityksen markkina-asema muotoutuu oman valinnan mukaan alhaisista kustannuksista tai tuotteiden erilaistamisesta. Päätös on keskeinen osa yrityksen kilpailustrategiaa. (15.)

3.3.1 Arvoketju

Arvoketjun avulla analysoidaan toimintoja, joiden kautta yritykset voivat luoda arvoa ja saavuttaa kilpailuetua. Arvoketjussa yritys nähdään arvoa luovien toimintojen ketjuna. Kuvassa 12 on esitetty arvoketjun rakentuminen. (15.)
Arvoketjun ensisijaiset toiminnot

Ensisijaisista toiminoisto jaoliin voi olla ratkaiseva kilpailuetuva muodostettaessa. Esimerkiksi tulo- ja lähtölogistiikka ovat äärimmäisen tärkeitä jakeluveluiden toimittajalle, kun taas toimistotarvikkeiden huolto tarjoavalle yritykselle ratkaisevassa asemassa ovat palvelutoiminnot. (15.)

Tukitoiminnot

Tukitoiminnot ovat arvoketjun ensisijaisten toimintojen suorittamisen helpottamiseksi. Ne on jaettu neljään yleiseen luokkaan, joiden yksityiskohdat riippuvat tarkemmin yrityksen toiminnasta. Yrityksen infrastruktuuri sisältää yleiset hallintatoimet, kuten suunnittelu, talouden, lakiasiat, kirjanpidon, laadunvalvonnan, yrityssrankenteen, hallintajärjestelmät ja yrityskulttuurin. Henkilöstöhallintoon kattaa kaikki työntekijöiden ja johtajien rekrytointiin, palkkaamiseen, koulutukseen, kehittämiseen, pitämiseen ja korvaamiseen liittyvät toiminnot. Teknologinen kehitystö sisältää arvoketjun toimintoja, kuten tutkimus- ja kehitystöitä, prosessien automaatiota, suunnittelualaa ja uudelleen
suunnittelua koskevan teknologisen kehitystyön. Hankinnat sisältävät toiminnot, jotka liittyvät raaka-aineiden, palveluiden, varaosien, rakennusten, koneiden tai muiden tuotantopanosten hankintaan, joita käytetään arvoa muodostavissa toiminnoissa. (15.)

3.3.2 Arvoketjumanalyysi

Arvoon perustuvasta johtamisnäkökulmasta tarkasteltuna arvoketjumalli auttaa yhdessä kilpailuetua koskevien ideoiden kanssa yritystä saavuttamaan suhteellista kilpailuetua. Kun erilliset toiminnot on selvitetty, selvitetään toimintoja yhdistävät tekijät. Toiminnnot ovat yhteydessä silloin, kun yhteen toimintoon liittyvillä kustannuksilla on vaikutusta toiseen toimintoon. (15.)

Optimoimalla ja sovittamalla yhteen toisiinsa liittyviä toimintoja pystytään saavuttamaan kilpailuetua. Toimintojen välisiä yhteyksiä pohtimalla tehdään tehokkampia päätöksiä siitä, ostaako yritys jonkin tuotteen vai valmistaako se tuotteen itse, minkä seurauksena yritys voi saavuttaa joko kustannust tai differointietua. (15.)

3.3.3 Arvoa luovien tapojen tunnistaminen

Arvoketjumanalyysin avulla tunnistetaan tapoja, joilla yritys voi luoda asiakkailleen arvoa ja myöhemmin pohtia, kuinka tämä arvo voidaan maksimoida tuotteiden, palveluiden tai työpaikkojen avulla. Työkulu on kolmivaiheinen
prosessi, joka alkaa toimintojen analysoinnilla. Tässä vaiheessa tunnistetaan ne toiminnot, jotka liittyvät tuotteen tai palvelun toimittamiseen. Aivoriihi on yleisin tässä käytetty työkalu. Tunnistettaviin toimintoihin kuuluvat ne vaiheet- taiset liiketoimintaprosessit, joiden avulla yritys hankkii asiakkaita. Tämän jälkeen merkitään muistiin ne toiminnot, jotka luovat yritykselle arvoa. Työn- kulku-kaavion luonti on tähän käytännöllinen. (15.)

Arvoanalyysin vaiheessa tunnistetaan ne toimenpiteet toiminnoista, joilla on mahdollista toteuttaa parhaan mahdollisen arvon tuottaminen asiakkaille. Toiminnolle määritellään arvotekijät asiakkaan näkökulmasta. Muistiin merkitään ne toimenpiteet tai muutokset, joiden avulla jokaiselle arvotekijälle saadaan suurempaa arvoa. (15.)

Arviointi ja suunnitteluavaiheessa arvioidaan muutosten tekemisen kannattavuus. Toimintasuunnitelma laaditaan kannattavista muutoksista tärkeysjärjestysessä, sillä kaikkien ideoiden toteuttaminen voi osoittautua mahdottomaksi. (15.)

3.4 SWOT-analyysi

SWOT-analyysi (Strengths, Weaknesses, Opportunities, Threats) on Albert Humphreyn kehitämä nelikenttämenetelmä, jota käytetään strategian laatimisessa, oppimisen tai ongelmien tunnistamisessa, arvioinnissa ja kehittämisessä. Se on hyödyllinen ja yksinkertainen työkalu yrityksen toiminnan, hankkeiden ja projektien suunnittelussa. SWOT-analyysin kohteena voi olla jonkin yrityksen toiminta koko laajuudessaan, jonkin tuotteen tai palvelun asema ja kilpailukyky tai esimerkiksi kilpailijan toiminta ja kilpailukyky. (16, s. 22–25.)

asiat. Kaavion alapuoliskoon kuvataan organisaation ulkoiset ja yläpuolis-
koon sisäiset asiat. (16, s. 22–25.)

KUVA 13. SWOT-analyysi (13)

SWOT-analyysin pohjalta voidaan tehdä päätelmiä, miten vahvuksia vo-
daan käyttää hyväksi, miten heikkoudet muutetaan vahvuusiksi, miten tule-
vaisuuden mahdollisuuksia hyödynnetään ja miten uhat vältetään. Tuloksena
saadaan toimintasuunnitelma siitä, mitä millekin asialle pitää tehdä. SWOT-
mallia on tarkoitus käyttää ideointiin ja jatkokehittelyyn. (16, s. 22–25.)

3.5 Kilpailija-analyysi

Kilpailija-analyysia tehdessä mietitään kuvan 14 tapaisesti seuraavia kysy-
myksiä:

- Mitkä yritykset ja tuotteet ovat kilpailijoitamme?
- Millä tavalla kilpailijamme markkinoivat?
- Mitkä ovat kilpailijoidemme vahvat ja heikot puolet?
- Onko markkinoille tulossa tai onko sieltä poistumassa kilpailijoita?
• Millä tavalla kilpailijat reagoivat mahdollisiin toimenpiteisiimme?
• Millaista yhteistyötä voisimme tehdä kilpailijoiden kanssa? (17.)

KUVA 14. Kilpailija-analyysi (17)

3.6 Strateginen suunnittelu

Strategisia ovat yritykselle kaikki ne asiat, jotka ovat keskeisiä yrityksen olemassaolon ja kehittämisen kannalta. Siihen kuuluvat yrityskokonaisuutta koskevat kokonaisuuden kannalta olennaiset ulkoiset ja sisäiset asiat. Strateginen suunnittelu on yrityksen selvittämistä ja konkretisointia yrityksen toimintaan vaikuttavista ulkoisista tekijöistä, näkemyksen luomista yrityksestä tulevaisuudessa, toimintalinjojen ja -tapojen valintaa sekä toimintasuunnitelmien laadintaa. (16, s. 26–27.)

3.6.1 Perusstrategian valinta

Strategian valinnassa on mahdollisuuksina olla erilaisempi ja olla halvempi, joista käytetään myös nimityksiä kustannustehokkuus ja differointi. Tämän valinnan jälkeen on tehtävä päätös siitä, tarjotaanko laajalla valikoimalla laajalle markkina-alueelle vai keskitytäänkö johonkin. (16, s. 27.)

Perusstrategian valintavaihtoehdot voidaan esittää kuvan 15 mukaisesti.
3.6.2 Muut strategiset valinnat

Keskeisiä strategisia valintoja ovat päätökset yrityksen toiminnan muutoksista, joilla määritellään yrityksen rooli markkinoilla. Keskeisiä strategisia valintoja voi olla esimerkiksi muuttaa jakelutietä asiakkaan suuntaan, hankkia hallintaan tavarantoimittajia, laajentaa toimintaa tavarantoimittajien suuntaan, siirtyä yritysoston kautta uudelle toimialalle, kasvattaa tuotantokapasiteettia, luoda oma markkinointiorganisaatio tai valmistaa varastoon. (16, s. 29–30.)

Määriteltäessä yrityksen toimintapolitiikkaa valitaan yrityksen rooli markkinoinnilla. Rooleja on mm markkinajohtaja tai kakkostoimittaja, aktiivinen edelläkävi jä tai seurailija, tuotteiden kehittäjä tai jäljittelijä, aggressiivinen hyökkääjä tai hissukseen eläjä sekä yhteistyöhön pyrkivä tai yksineläjä. (16, s. 29–30.)

3.7 Liiketoimintasektorit

Liiketoiminnan keskeisiä strategisia asioita ovat vähien voimavarojen oikea kohdentaminen ja käyttö. Keskeisiä kohtia on kokonaisuuteen keskittyminen. Ongelmana on yleensä se, että eri toimintasektorien tilanne ja näkymät saat tavan olla hyvinkin erilaisia. On löydettävä koko yksikön ja yksittäisten liiketoimintasektoreiden välillä järkevä tapa pilkkoa liiketoiminta strategisten toi-
menpiteiden kannalta järkeviksi kokonaisuuksiksi. Tällöin pystytään paremmin löytämään kunkin osa-alueen menestystekijät. Yrityksen liiketoiminta on jaettava suunnittelun ja päätöksenteon kannalta järkeviin tuote-markkinalohkoihin. (16, s. 30.)

3.8 Portfolioanalyysit

Portfolioanalyysit ovat tekniikoita, joissa yksinkertaisten kehysten avulla kartotetaan yrityksen eri tuotteita ja toimintoja, sekä näiden avulla pyritään määrittelemään voimavarojen kohdentamista. Tekniikoita on kaksi: Boston Consulting Groupin BCG kasvu- ja markkinaosuusmatriisi ja General Electricin GE yrityksen aseman tai alan haluttavuusmatriisi. (16, s. 31.)

3.9 Visio

Visiolla tarkoitetaan kuvaa yrityksestä tiettynä ajanhetkenä tulevaisuudessa. Visiota laadittaessa on hahmotettu se, millaiseksi yrityksen halutaan ja uskoaan kehittyvän. Näkemys toimialan kehityksestä ja näkemys yrityksen mahdollisuksista muodostavat puitteet vision laadinnassa. Visio on merkittävä apuväline, koska se on päämäärä, sen avulla voidaan kuvailla yrityksen tulevaisuutta eri sidosryhmille ja sen avulla voidaan jäsentää tavoitteet yrityksen toiminnalle ja määritellä kehittämistarpeet. (16, s. 31.)

3.10 Segmentointi

Segmentointi tarkoittaa markkinoiden eli potentiaalisten asiakkaiden lohkoista keskenään erilaisiin segmentteihin jollakin määritetyllä perusteella. On oleellista löytää sopivat markkinoinnin kohderyhmät segmentoimalla myös asiakassuhteen vaiheiden perusteella sekä kulutus- että tuotantohyödykkekaupassa. Asiakkaiden kulutustottumukset, tarpeet ja odotukset ovat erilaisia, eikä yritys voi markkinoida tuotteitaan samalla tavalla kaikille asiakkaille, joten kannattaa keskittyä vain tiettyihin asiakkaisiin. (18, s. 120.)
Segmentoinnille asetetaan ensin tavoitteet. Tämän jälkeen segmentointi jaetaan viiteen vaiheeseen kuten kuvassa 16.

KUVA 16. Markkinoiden segmentoinnin vaiheet (18, s.121)

Tavoitellut asiakkaat voidaan segmentoida keskenään samanlaisista asiakkaista koostuviksi ryhmiksi. Kullekin segmentille markkinoidaan eri tuotetta tai saman tuotteen eri versiota. (18, s.120.)
3.11 IPR (immateriaalioikeudet)

3.11.1 Oikeuksien tyypit

IPR eli Intellectual Property Right, on Suomessa puhuttaessa yleensä immateriaalioikeus tai aineeton oikeus. Immateriaalioikeuksia ovat patenttioikeus, tavaramerkkioikeus, hyödyllisyysmallioikeus, mallioikeus, toiminimioikeus, integroitujen piirien ja piirimallien suoja, kasvinjalostajan oikeus teollisoikeuksia ja tekijänoikeudet. Teollisoikeudet edellyttävät oikeuden rekisteröintiä, mutta tekijänoikeuksia ei tarvitse rekisteröidä. Immateriaalioikeudet ovat rakenteeltaan omistusoikeuden kaltaisia yksinoikeuksia, jotka suojaavat joko luovaa toimintaa tai kaupallisia tunnusmerkkejä. Immateriaalioikeudet ovat ajallisesti rajoitettuja. Suomessa kansallisena rekisteriviranomaisena toimii patentti- ja rekisterihallitus. (19.)

Patentointi

Patentointimenettelyssä kustannuksia syntyy viraston maksuista ja mahdollisesti käytettävän asianmiehen kustannuksista. Patentin saamiseksi on mak- settava ainakin hakemusmaksu 450 euroa ja patentin julkaisumaksu 450 eu- roa. (20, s. 97–147.)
Hyödyllisyyssmalli

Hyödyllisyyssmalli eli niin sanottu pikkupatentti muistuttaa suojamuotona patenttiä. Hyödyllisyysmallisuojan on voimassa neljä vuotta, ja se voidaan myös uusia. Hyödyllisyysmallin etuna patenttiin nähden on rekisteröinnin nopea voimaansaattaminen, mikä saattaa joissakin tapauksissa olla tarpeen oikeustoimien aloittamiseksi kilpailijan loukkaavaa toimintaa vastaan. (20, s. 152–156.)

Tavaramerkkisuoja

Tavaramerkin on tuotteen tai palvelun tunnus, jonka tarkoitus on auttaa asiakkaita erottamaan kilpailijoiden tuotteet toisistaan. Tavaramerkkisuojan saamisen ehtona on se, että se erottuu olennaisesti muista markkinoilla olevista tavaramerkkeistä. Tavaramerkki pätee ainoastaan siinä maassa, jossa sitä on haettu. Poikkeuksena tästä on kuitenkin EU:n alueella myönnettävän EU-tavaramerkin. Tavaramerkin voidaan uudistaa joka kymmenes vuosi erillisen hakemuksen avulla. (20, s. 180–224.)

Mallisuoja

Mallisuoja on tarkoitettu suojaamaan tuotteen ulkonäköä tai ulkoista olemusta, ei teknisiä ominaisuuksia. Mallisuojan alaista tuotetta eivät kilpailijat saa valmistaa, tuoda maahan tai muutoin käyttää hyväksi. Edellytyksenä mallisuojan saamiselle on se, että tuotteen malli on uusi ja poikkeaa olennaisesti aiemmin tunnetuista. Suojan pituus on viisi vuotta, ja se voidaan uusia kahteen kertaan viiden vuoden ajaksi. (20, s. 158–168.)

Tekijänoikeus

Tekijänoikeudella voidaan suojaata lähinnä kirjallisia tai taiteellisia teoksia, kuten kirjoja, musiikkia, elokuvia ja taidetta. Myös tietokoneohjelmat kuuluvat tekijänoikeuden piiriin. Toisin kuin muita immateriaalioikeuksia, tekijänoikeuksia ei tarvitse erikseen anoa, vaan se syntyy automaattisesti teoksen valmis-tumisen myötä. Tekijänoikeuden voimassaoloaika vaihtelee uutisia koske-
vasta 12 tunnistaa aina kirjoille ja taiteellisille teoksille myönnettävään 70 vuo-
den suojaan tekijän kuolemasta laskien. (20, s. 31–96.)

Salassapitosopimus

Lakimiehet, kirjanpitäjät ja pankkien henkilökunta ovat lain nojalla velvoitettu-
ja pitämään asiakkaidensa asiat luottamuksellisina. Ammattimaisten pää-
omasijoittajien tulee myös pitää asiakkaidensa ideat salassa, vaikka heidän
käytäntöään ei ole yleensä allekirjoittaa salassapitosopimuksia. Jos sijoitta-
jan kuullaan varastavan ideota, hänen ei todennäköisesti tulla tarjoamaan
uusia ideoita. Sama pätee myös konsultteihin. Esiteltäessä esimerkiksi suo-
jaamatonta tuotetta potentiaaliselle asiakkaalle tai yhteistyökumppanille kan-
nattaa kuitenkin aina teettää erillinen salassapitosopimus kokeneella laki-
miehellä. Vaikka salassapitosopimus olisikin laadittu, sen rikkomista on usein
vaikea todistaa oikeudessa. (21.)

3.11.2 Immateriaalistrategian edut

Immateriaalistrategia on olennainen osa yrityksen strategiaa ja liiketoiminta-
suunnitelmaa. Hyvällä immateriaalistrategialla yritys voi tarkentaa oman lii-
keidean uutuutta, ehkäistä mahdollisia konfliktitilanteita, käyttää kilpailijoiden
voimassa olevia patentteja oman liikeidean jatkokehittelyssä, kartoittaa yh-
teistyökumppanit ja markkinaesteet, saada tietoa kilpailijoiden suojaamista
sovelluksista, määrittää potentiaalisia markkina-alueita joihin kilpailevia so-
velluksia on suojattu sekä antamaan tietoa muiden kehittämistä sovelluksis-
ta, joihin voidaan hankkia tai tarvitaan käyttöoikeus liikeidean kaupallistamis-
vaiheessa. (22.)

Luultavasti paras suoja idean varastamista vastaan on toteuttaa se nopeasti.
Ideen kehittäminen menestystä tulee liiketoiminnaksi vaatii sekä suurta työ-
panosta että alalle tulon esteiden ylittämistä. Nopea toiminta saattaa estää
tai aina vaikeuttaa idean mahdollisia kopioijia toteuttamasta sitä. (22.)
3.11.3 Ennakkouutuustutkimus

Ennakkouutuustutkimuksella kartoitetaan keksinnön uutuus selvittämällä on-ko ratkaisu esitetty aiemmassa kirjallisuudessa kuten patenttiulkaisuissa. Keksinnön uutuus on sen patentitoitavuuden ensimmäinen edellytys. Tutkimuksessa selvitetään täyttääkö tekninen ratkaisu uutuuden osalta patentitoitavuuden ehdot. (23.)

Uutuustutkimus tehdään tuotekehitysprosessissa usein vasta, kun harkitaan valmiiksi kehitetyn teknisen ratkaisun patentoihimista. Varsinainen tuotekehitysprosessi kannattaa aloittaa vasta, kun on varmistettu toteutustavan uutuudesta, jos uuden idean käytännön toteutustapa vaikuttaa jo etukäteen selvältä. Kehitystyö voidaan suunnata uuden sovelluksen luomiseen ja si- ten ehkä patentitoivissa olevan tai ainakin patentttivapaan ratkaisun löytämi- seen. (23.)
4 TEKNOLOGIA JA KAUPALLISTAMISTAMISTET

4.1 Tausta ja historia

Oulu PMC:n perustehtävänä on ollut tuottaa palveluita yrityksille ja oppilaitoksille. Lisäksi tämä huippumoderni laite- ja ohjelmistokanta antaa erinomaisen pohjan tutkimuksen tekemiseelle sekä erilaisille projekteille. Laite- ja ohjelmistoinvestointien sekä niiden ympärille rakennetun infrastruktuurin hankintahinta oli noin viisi miljoonaa euroa. Oulu PMC: laite- ja ohjelmistokantaa hyödynnetään useissa yrityksissä, VTT:n ja Oulun Yliopiston projekteissa. Oulu PMC:n tärkeimmistä ansioista on yhteisprojektien aikaansaamien toisille ennestään tuntemattomien tahojen kesken. Oulu PMC:n tärkein ansio on ollut saada yritykset käyttämään laitteita ja ohjelmistoja. Tämä on luonut puitteet yritysten omille investoinneille ja siten rekrytoinneille. (26, s. 4.)

Yhteistyö Oulun alueen pk-yritysten kanssa on vahvistunut Oulu PMC:n, oppilaitosten ja tutkimuslaitosten markkinoinnista. Yhteistyön kehittymisen myötä alan opiskelupaikoista on tullut erittäin haluttuja. Alueen työ- ja elinkeinotoiminnan tulee olemaan tärkeä näkökulma. Tehtävästä yhteistyöstä tulee syntyään lisää yhteistyötä ja projekteja. Toisaalta eri osapuolten välille rakentuu myös pitkäjänteisempää yhteistyötä projektien käynnistämisen myötä. Yhteistyöverkosto on luotu mm. seuraavien kansallis-
ten toimijoiden kanssa: Turun Koneteknologiakeskus, Centria ja Hermia/LCC. (26, s. 4.)

Oulu PMC osuuskunnan hallituksen puheenjohtana toimii Ilpo Mäki. Varsinaisessa työssään hän toimii OAKK:n palveluksessa. Yrityksen toimitusjohtajana työskentelee Ahti Haapalainen. (26, s. 4.)

4.2 Teknologiayhteenveto

Oulu PMCilla on 3D-tulostukseen huipputekniikkaa oleva Objet Eden 260V. Laitteisto toimii MJM-tekniikalla (ks. luku 2.3.2). Kappaleen suurin mahdollinen rakennuskyky on 260x260x200 mm, tarkkuuden ollessa 0,1-0,2 mm. Mahdollisia tulostusmateriaaleja on kahdeksan. Valikoimaan kuuluu joustavasta kovaan muoviin värivaihtoehtoin: valkoinen, sininen, musta ja harmaa (ks. liite 4). VTT:n tutkimuksen (24) ja brighthubin verkkosivujen (25) Objetin tulostimet ovat maailman ehdotonta eliittiä.

4.3 Arvoketju pikavalmistuspalvelusta

Kuvan 17 arvoketjussa määritellään pikavalmistuksen arvoketju. Ketjussa kuvataan arvotekijät ja keinoit, joilla ne saavutetaan.

<table>
<thead>
<tr>
<th>Toimintojen analysointi</th>
<th>Arvoanalyysi</th>
<th>Tarvittavat muutokset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arvoketju</td>
<td>Arvotekijät</td>
<td>Asiakaslista, johon tieoa asiakkaista</td>
</tr>
<tr>
<td>Vastaanotto</td>
<td>- Nopeat vastausajat tilauksiin</td>
<td>- Tilaukseen arna variivusto</td>
</tr>
<tr>
<td></td>
<td>- Asiakkaiden tarpeen tunteinen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tilausten hallinta</td>
<td></td>
</tr>
<tr>
<td>Maaritelmät</td>
<td>- Hintaperusteiden selvitys</td>
<td>- Tahdustustista</td>
</tr>
<tr>
<td></td>
<td>- Kuvaukset Mootoksista</td>
<td></td>
</tr>
<tr>
<td>Laitu</td>
<td>- Pysyttevä oikeassa muodossa ja toleranssissa</td>
<td>- Työn jäljen tutkiminen</td>
</tr>
<tr>
<td>Aikataulut</td>
<td>- Annetaan toimitusaika selkeästi</td>
<td>- Aikataulutusajastelmat</td>
</tr>
<tr>
<td></td>
<td>- Pyytettävää pysymään arviodussa ajassa</td>
<td>- Laitteen kapasiteettitunnittava</td>
</tr>
<tr>
<td></td>
<td>- Ilmoitetaan mahdollisesta viivastymisestä</td>
<td></td>
</tr>
</tbody>
</table>

KUVA 17. Oulu PMC:n arvoketju
4.4 SWOT-analyysi

Kuvassa 18 on Oulu PMC:n SWOT vuodelta 2005. SWOT on tehty huolella ja osaksi sen ansiosta yrityksen toiminta on ollut edelleen kannattavaa.

4.5 Pikamallinnusteknologian lisäarvo markkinoille

3D-tulostus kehityy koko ajan ja tuo näin ollen jatkuvasti arvoa markkinoille. Vapaan geometrian ansiosta pikamallinnusteknologia tuo huomattavaa lisäarvoa juurikin prototyyppien valmistuksessa. Luvussa 2.5 on selitetty teknologian tuomasta lisäarvosta tarkemmin.

4.6 Arvio markkinapotentiaalista

Kaupallinen potentiaali palvelulle on valtava. 3D-tulostimien antamat edut ovat yrityksille merkityksellisiä, koska yritykset haluavat säästää rahaa. Tällä hetkellä pikamalleja tuottavien yritysten liikevaihdot ovat vain muutamia sato-jatuhansia euroja (ks. luku 4.8). Palvelujen tarjoaminen on vasta viime vuosi-
na yleistynyt teknikoiden kehittyessä ja laitteiden halventamassa. Nykypäivän yritykset eivät vielä ole kokemuksen perusteella täysin perillä palvelun tuottamista edusta. Markkinoinnilla yritykset saadaan ymmärtämään teknologiasta saatavat hyödyt, jolloin kapasiteetin tarve nousee ja tekniikka kehittyy kysynnän kasvaessa, mikä nostaa palveluita tuottavien tai laitteiden valmistavien yritysten liikevaihtoa.

Monet asiantuntijat ennustavat 3D-tulostuksen olevan lähivuosina käytössä kotitalouksilla. On jopa ennustettu, että tulevaisuudessa kaikki tuotanto tapahtuu pikamallinnustekniikalla. Lääketiedekin on alkanut käyttämään tekniikkaa hyväkseen huomatessaan sen antaman lisäarvon. (27; 28; 29; 30; 31)

Wohlers Associates, Inc. julkistaa vuosittain Wohlersin raportin, johon on koottu 3D-tulostuksen viimeisimmän tiedot ja tunnusluvut. Ala on kasvanut 24,1 %, ja raportti ennustaa tulevaisuudessakin kasvua. Taulukossa 1 on esitetty laitevalmistajien laitemyynnit kappalemäärissä. (32)

TAULUKKO 1. Pikamallinnustekniikkalaitteiden yritysten laitemyynnit 2000-luvulla (5, s. 54)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratasys</td>
<td>115</td>
<td>95</td>
<td>305</td>
<td>497</td>
<td>865</td>
<td>1072</td>
<td>1559</td>
<td>1939</td>
<td>1979</td>
<td>8426</td>
</tr>
<tr>
<td>Z Corp</td>
<td>170</td>
<td>188</td>
<td>210</td>
<td>349</td>
<td>461</td>
<td>687</td>
<td>777</td>
<td>1022</td>
<td>950</td>
<td>4814</td>
</tr>
<tr>
<td>Objet</td>
<td>24</td>
<td>51</td>
<td>94</td>
<td>164</td>
<td>235</td>
<td>316</td>
<td>402</td>
<td>433</td>
<td>1719</td>
<td></td>
</tr>
<tr>
<td>3D Systems</td>
<td>227</td>
<td>182</td>
<td>88</td>
<td>53</td>
<td>261</td>
<td>221</td>
<td>94</td>
<td>40</td>
<td>46</td>
<td>1212</td>
</tr>
<tr>
<td>Envisiotec</td>
<td>2</td>
<td>39</td>
<td>132</td>
<td>233</td>
<td>246</td>
<td>226</td>
<td>350</td>
<td>1228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solido</td>
<td>65</td>
<td>31</td>
<td>26</td>
<td>22</td>
<td>18</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beijing Yin-hua</td>
<td>12</td>
<td>15</td>
<td>125</td>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAB@Home</td>
<td>50</td>
<td>53</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>512</td>
<td>489</td>
<td>656</td>
<td>1032</td>
<td>1948</td>
<td>2479</td>
<td>3030</td>
<td>3716</td>
<td>3954</td>
<td>17816</td>
</tr>
</tbody>
</table>
4.7 3D-tulostusta tarjoavia yrityksiä Suomessa

Taulukkoon 2 on koottu 3D-tulostuksia tarjoavia yrityksiä. Osa yrityksistä on oppilaitoksia tai vain kokeilumielessä toimivia, joista ei ole mahdollisiksi kilpailijoiksi.

TAULUKKO 2. 3D-Tulostuspalveluja tuottavat yritykset Suomessa

<table>
<thead>
<tr>
<th>Yritys</th>
<th>Toimiala</th>
<th>Merkki</th>
<th>Malli</th>
<th>VM</th>
<th>Paikkakunta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betsdan Oy</td>
<td>Suunnittelu</td>
<td>Stratasys</td>
<td>Uprint</td>
<td>2007</td>
<td>Vantaa</td>
</tr>
<tr>
<td>Suomen 3D-malli Oy</td>
<td>Tekninen palvelu</td>
<td>Solido</td>
<td>SD 300</td>
<td>2007</td>
<td>Porvoo</td>
</tr>
<tr>
<td>C-Advice Oy</td>
<td>Insinööritoimisto</td>
<td>Dimension</td>
<td>SST 768</td>
<td>2007</td>
<td>Lahti</td>
</tr>
<tr>
<td>Innoexpress</td>
<td>Suunnittelu</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Helsinki</td>
</tr>
<tr>
<td>CC-Case</td>
<td>Suunnittelu</td>
<td>Dimension</td>
<td>Frotus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keski-Pohjanmaan Aikuisopisto</td>
<td>Oppilaitos</td>
<td>Z-printer</td>
<td>310 Plus</td>
<td>2010</td>
<td>Kokkola</td>
</tr>
<tr>
<td>Jyväskylän Ammatti-korkeakoulu</td>
<td>Oppilaitos</td>
<td>Dimension</td>
<td>Elite</td>
<td>2009</td>
<td>Jyväskylä</td>
</tr>
<tr>
<td>Teveteam Oy</td>
<td>Suunnittelu</td>
<td>Z-printer</td>
<td>150</td>
<td>2009</td>
<td>Tampere</td>
</tr>
<tr>
<td>Piirustuspalvelu Juha Lievonen</td>
<td>Suunnittelu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insinööritoimisto Petti Oy</td>
<td>Suunnittelu</td>
<td>Dimension</td>
<td>SST 1200es</td>
<td>2010</td>
<td>Rymättylä</td>
</tr>
<tr>
<td>Rovaniemen Ammatti-korkeakoulu</td>
<td>Oppilaitos</td>
<td>Objet</td>
<td>Eden 250V</td>
<td>2010</td>
<td>Rovaniemi</td>
</tr>
<tr>
<td>Valututetekniikan tuki vattu ry</td>
<td>Suunnittelu</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Helsinki</td>
</tr>
<tr>
<td>Joensuun Muovi Oy</td>
<td>Teollinen muotoilu</td>
<td>x</td>
<td>x</td>
<td></td>
<td>Joensuu</td>
</tr>
<tr>
<td>Kuopion muotoiluakatemia</td>
<td>Oppilaitos</td>
<td>EOS</td>
<td>P350</td>
<td>x</td>
<td>Kuopio</td>
</tr>
<tr>
<td>NC-tuote</td>
<td>Maahantuonti</td>
<td>Objet</td>
<td>x</td>
<td>x</td>
<td>Lahti</td>
</tr>
</tbody>
</table>

x=yritys ei luovuttanut tietoa tai se ei ollut yleistä.

4.8 Totuustaulukko kilpailutilanteesta

4.8.1 Kilpailija 1

Taulukko 3. Yrityksen tiedot (33)

<table>
<thead>
<tr>
<th>Yrityksen virallinen nimi</th>
<th>Suunnittelutoimisto Bestdan Oy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-tunnus</td>
<td>1085284-8</td>
</tr>
<tr>
<td>Rekisteröintipäivä</td>
<td>11.12.1996</td>
</tr>
<tr>
<td>Yhtiömuoto</td>
<td>Osakeyhtiö</td>
</tr>
<tr>
<td>Sijaintikunta</td>
<td>Vantaa</td>
</tr>
<tr>
<td>Toimipaikkojen lukumäärä</td>
<td>1</td>
</tr>
<tr>
<td>Tuonti</td>
<td>Ei</td>
</tr>
<tr>
<td>Vienti</td>
<td>Ei</td>
</tr>
<tr>
<td>Henkilöstölukuokka</td>
<td>5-9 henkeä</td>
</tr>
<tr>
<td>Liikevaihtoluokka</td>
<td>400 000 - 999 000€</td>
</tr>
<tr>
<td>Toimialaluokitus</td>
<td>Kone- ja prosessisuunnittelu</td>
</tr>
<tr>
<td>Toimitusjohtaja</td>
<td>Erkki Olavi Lehtonen</td>
</tr>
<tr>
<td>Hallituksen varsainen jäsen</td>
<td>Erkki Olavi Lehtonen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Liikevaihto t€</th>
<th>Liikevaihdon muutos %</th>
<th>Henkilöstö</th>
<th>Liikevoitto t€</th>
<th>Tilikauden tulos t€</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/12</td>
<td>462</td>
<td>6</td>
<td>-9</td>
<td>-9</td>
<td></td>
</tr>
<tr>
<td>2008/12</td>
<td>436</td>
<td>12,4</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2007/12</td>
<td>388</td>
<td>16,1</td>
<td>6</td>
<td>-5</td>
<td>-5</td>
</tr>
</tbody>
</table>
4.8.2 Kilpailija 2

TAULUKKO 4. Yrityksen tiedot (33)

<table>
<thead>
<tr>
<th>Yrityksen virallinen nimi</th>
<th>Suomen 3D-malli Oy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-tunnus</td>
<td>2117097-3</td>
</tr>
<tr>
<td>Rekisteröintipäivä</td>
<td>25.6.2007</td>
</tr>
<tr>
<td>Yhtiömuoto</td>
<td>Osakeyhtiö</td>
</tr>
<tr>
<td>Sijaintikunta</td>
<td>Porvoo</td>
</tr>
<tr>
<td>Toimipaikkojen lukumäärä</td>
<td>1</td>
</tr>
<tr>
<td>Tuonti</td>
<td>Ei</td>
</tr>
<tr>
<td>Vienti</td>
<td>Ei</td>
</tr>
<tr>
<td>Henkilöstöluokka</td>
<td>Alle 5 henkeä</td>
</tr>
<tr>
<td>Liikevaihtoluokka</td>
<td>Alle 200 000 euro</td>
</tr>
<tr>
<td>Toimialaluokitus</td>
<td>Muu tekninen palvelu</td>
</tr>
<tr>
<td>Toimitusjohtaja</td>
<td>Jari Mikael Ojaniemi</td>
</tr>
<tr>
<td>Hallituksen varsinainen jäsen</td>
<td>Jari Mikael Ojaniemi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Liikevaihto t€</th>
<th>Liikevaihdon muutos %</th>
<th>Henkilöstö</th>
<th>Liikevoitto t€</th>
<th>Tilikauden tulos t€</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/06</td>
<td>55</td>
<td>89,7</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2009/06</td>
<td>29</td>
<td>866,7</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2008/06</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.8.3 Kilpailija 3

TAULUKKO 5. Yrityksen tiedot (33)

<table>
<thead>
<tr>
<th>Yrityksen virallinen nimi</th>
<th>C-Advice Oy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-tunnus</td>
<td>2066652-0</td>
</tr>
<tr>
<td>Rekisteröintipäivä</td>
<td>19.10.2006</td>
</tr>
<tr>
<td>Yhtiömuoto</td>
<td>Osakeyhtiö</td>
</tr>
<tr>
<td>Sijaintikunta</td>
<td>Lahti</td>
</tr>
<tr>
<td>Toimipaikkojen lukumäärä</td>
<td>1</td>
</tr>
<tr>
<td>Tuonti</td>
<td>Ei</td>
</tr>
<tr>
<td>Vienti</td>
<td>Ei</td>
</tr>
<tr>
<td>Henkilöstöluokka</td>
<td>5-9 henkeä</td>
</tr>
<tr>
<td>Liikevaihtoluokka</td>
<td>200 000 - 399 000 euroa</td>
</tr>
<tr>
<td>Toimialaluokitus</td>
<td>Kone- ja prosessisuunnittelu</td>
</tr>
<tr>
<td>Hallituksen puheenjohtaja</td>
<td>Heikki Veli Eeronpoika Gustafsson</td>
</tr>
<tr>
<td>Hallituksen varsinainen jäsen</td>
<td>Olavi Ilmari Nykänen</td>
</tr>
<tr>
<td>Hallituksen varsinainen jäsen</td>
<td>Juha Petteri Suokas</td>
</tr>
<tr>
<td>Hallituksen varsinainen jäsen</td>
<td>Jouni Veli-Matti Nurminen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Liikevaihto t€</th>
<th>Liikevaihdon muutos %</th>
<th>Henkilöstö</th>
<th>Liikevoitto t€</th>
<th>Tilkkauden tulos t€</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/12</td>
<td>396</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2008/12</td>
<td>7</td>
<td>28</td>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.8.4 Kilpailija 4

TAULUKKO 6. Yrityksen tiedot (33)

<table>
<thead>
<tr>
<th>Yrityksen virallinen nimi</th>
<th>CC-Case Oy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-tunnus</td>
<td>1997079-5</td>
</tr>
<tr>
<td>Rekisteröintipäivä</td>
<td>9.11.2005</td>
</tr>
<tr>
<td>Yhtiömuoto</td>
<td>Osakeyhtiö</td>
</tr>
<tr>
<td>Sijaintikunta</td>
<td>Lahti</td>
</tr>
<tr>
<td>Toimipaikkojen lukumäärä</td>
<td>1</td>
</tr>
<tr>
<td>Vienti</td>
<td>Kyllä</td>
</tr>
<tr>
<td>Henkilöstöluokka</td>
<td>Alle 5 henkeä</td>
</tr>
<tr>
<td>Liikevaihtoluokka</td>
<td>200 000 - 399 000 euroa</td>
</tr>
<tr>
<td>Toimialaluokitus</td>
<td>Yleisagentuurtuominta</td>
</tr>
<tr>
<td>Toimitusjohtaja</td>
<td>Tomi Tapani Kuusisto</td>
</tr>
<tr>
<td>Hallituksen varsinainen jäsen</td>
<td>Tomi Tapani Kuusisto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liikevaihto t€</th>
<th>Liikevaihdon muutos %</th>
<th>Henkilöstö</th>
<th>Liikevoitto t€</th>
<th>Tiilikauden tulos t€</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/10</td>
<td>360</td>
<td>300</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>2008/10</td>
<td>90</td>
<td>-20,4</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>2007/10</td>
<td>113</td>
<td>46,7</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>
5 TULOKSET

5.1 Totuustaulukko kilpailutilanteesta

Taulukossa 7 on esitetty totuusarvot kilpailutilanteesta. Oulu PMC voittaa CC-Case Oy:n näillä määreillä tehdyssä kilpailutilannearviossa. Alä on tällä hetkellä ennusteiden mukaan räjähdyspisteessä kasvun suhteen, joten tulevaa on mahdoton ennustaa. Oulu PMC tulee kuitenkin olemaan vahva yritys kaikilla tekniikan aloilla alueen osaamisen ja suhteidensa ansiosta.

TAULUKKO 7. Totuustaulukko kilpailuasetelmista

<table>
<thead>
<tr>
<th>Nettisivut</th>
<th>Markkinointi</th>
<th>Laitteisto</th>
<th>Käyttöaste</th>
<th>Liikevaihto</th>
<th>Pisteet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oulu PMC</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>CC-Case Oy</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bestdan OY</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C-Advice Oy</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Suomen 3D-malli</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

5.2 Visio liiketoiminnasta

Kuvaan 17 on luonnosteltu visio liiketoiminnasta, joka muodostuu Oulu PMC:n 3D-tulostimen ympärille.
Palvelustrategiana on lähteä markkinoimaan palvelua vähintään 30 yritykselle, joista myöhemmässä vaiheessa valitaan sopivat määrä yrityksiä, jotka ovat pääasiassa neljältä toimialalta. Esimerkiksi tuottekehitystä tekeviä yrityksiä, omia tuotteita omaavat yritykset, insinööritoimistot ja muotoilualan yritykset. Tavoitellaan kapasiteetin maksimoimista niin, että tilauskirja on 3 viikon mittainen toimitusnopeuden pysyessä 2–4 viikossa.

Markkina-alue kansallisena ja pyritään saamaan lähialueen yritykset asiakkaisiksi.

Markkinointistrategiassa jaetaan yrityksille sähköpostitse mainoksia (liite 2) ja 5 sivun esittelylehtisiä (liite 3). Yrityksille tuotetaan ilmaisia tuotteita esitteleyksi. Palvelua esitellään mahdollisilla messuilla. Palvelua ei markkinoidua yksityishenkilöille.

Palvelutuotannon ydin muodostuu laadukkaaseen palveluun, jossa tulosteita voidaan tuottaa joustavasti ja mahdollisimman vähillä virheillä.

KUVA 17. Visio liiketoiminnasta

<table>
<thead>
<tr>
<th>Kenelle</th>
<th>Palvelukuva</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Aluksi yrityksille toimialasta riippumatta kassavirran aukaisemiseksi</td>
<td>- Varmaa ja nopea toimittaja laadukkaalla teknologiaalla</td>
</tr>
<tr>
<td>- Myöhemmin tuotekehityksen,</td>
<td>- Luotettava yhteistyökumppani avaisiakkaalle</td>
</tr>
<tr>
<td>- Omaa tuotetta omalla yritykselle</td>
<td>- Joustava ja auttava palvelu</td>
</tr>
<tr>
<td>- Insinööritoimistoille</td>
<td>-</td>
</tr>
</tbody>
</table>
5.3 Johtopäätökset

Mielestäni työn tulokset vastasivat niin hyvin kohdan 3.2 tavoitteita, kuin mi-
nulle annetuilla valtuuksilla pystyin saavuttamaan. Tämän tutkimuksen avulla
hyödyntäjäryksille tulee entistä parempi kuva 3D-tulostuksen eduista ja
uusi liiketoiminta voi alkaa.
6 POHDINTA

Tulokset saatiin asetettujen tavoitteiden mukaisesti, joten työn päättäytyy selvitettiin. Suurin ongelma työn aikana muodostui totuustaulukon laadinnassa. Totuustaulukon arvioitiin Oulu PMC:n ja neljän mahdollisesti pahimman kilpailijan muodostama kilpailutilanne. 3D-tulostuksia tuottavien yritysten liikevaihdot ovat vielä niin pieniä, että vain harva yritys on keskittynyt pelkästään 3D-tulostukseen. Tuloksellisia tunnusluuksia ei ollut tarjolla, eivätkä yritykset haluaneet luopua niistä. Näin ollen useimmat totuustaulukon arvosanat jouduttiin arvioimaan tuntuman perusteella.

Idean liiketoimintamallista täytyy suhtautua kriittisesti sen perustuessa olettamukseksi alan kehityksessä. Tällä hetkellä kuitenkin palveluista ovat olleet eniten kiinnostuneita suuret yritykset. Markkinointimateriaalit ovat luonnokseeltaan hyviä, mutta vaativat ammattilaisen käsittelyä.

LÄHTEET

21. Salassapitosopimus. Saatavissa:
http://www.keksintosaatio.fi/ideoijalle/ideasta-liiketoiminnaksi/keksinnon-

22. Immateriaalistrategian edut. Saatavissa

23. Ennakkouutuustutkimus. Saatavissa:
http://www.prh.fi/fi/patentit/tutkimuspalvelut/ennakkouutuustutkimus.html. Hak-
upäivä 31.5.2011.

25. Kuinka valita paras 3D-tulostin. Saatavissa:
http://www.brighthub.com/computing/hardware/articles/36640.aspx. Hakupäi-

27. Pikavalmistuksen sovellusmahdollisuudet. Saatavissa:
http://www.isv.hut.fi/firpa/Pikavalmistuksen_sovellusmahdollisuuksien_kehitty

28. 3D-tulostuksen edelläkävijäsivustot. Saatavissa:

29. 3D-tulostaminen mullistaa maailman. Saatavissa:
http://www.talouselama.fi/uutiset/3dtulostaminen+mullistaa+maailman/a6182

30. 3D-tulostin osaa jo melkein kopioida itsensä. Saatavissa:
http://www.digitoday.fi/tiede-ja-teknologia/2008/03/06/3d-tulostin-osaa-jo-
31. Ruokatulostin. Saatavissa:

32. Wohlers report 2011. Saatavissa:

34. IPR-selvitys. Saatavissa:
PIKAVALMISTUS
3D-TULOSTUS

Oulu PMC osuuskunta on puolueeton asiantuntijaorganisaatio, joka toimii verkostonsa kanssa yhteistyössä tuottaakseen tarkkuusmekaniikkaa. Osana palveluita yritys tarjoaa myös 3D-tulostusta.

3D-tulostimella valmistettuja pikamalleja voidaan käyttää tuotekhityksen lisäksi mm. markkinoinnissa, pienoismallien luomisessa, taiteessa ja räätälöityjen yksittäistuotteiden valmistuksessa. 3D-tulostustekniikkaa voidaan hyödyntää myös valmuottivalmistuksessa.

3D-pikamallien avulla saadaan selkeä kuva tuotteen ulkomuodosta, mittasuhteista ja ergonomiasta.

Oulu PMC tarjoaa pikamallit nopeasti viimeisimmällä teknologiailla.

Laitteistomme – OBJET EDEN 260 V

- Maksimikappalekoko 260x260x200mm
- Suuremmat kappaleet voidaan jakaa osiin ja liimata kokoon
- Tarkkuus 0,025-0,05mm
- Tulosteita voidaan jälkikäsitellä
- Kestävät, toiminnalliset ja tarkan tulosteet
- Tuotekehitysprosessi nopeutuu merkittävästi
- Tuotekehityskustannukset vähenevät

LISÄTIETO JA TARJOUSPYynnöt

Ahti Haapalainen
Oulu PMC ok tj. (CEO)
040 5084 782
Tutkijantie 1 90570 Oulu
ahti.haapalainen@vtt.fi
3D-Tulostuspalvelu

Oulu Precision Mechanics Manufacturing Centre
Sekkusanomiskor opetus ja vakuutustekniset
Mitä on 3D-tulostus?

3D-tulostuksessa on kyse kolmiulotteisten kappaleiden valmistamisesta 3D-mallista.

3D-mallinnusohjelma

Valmis tuote

Valmis malli tulostimelle

Prototyyppi
Käyttökohteet

3D-tulostimella valmistettuja pikamalleja voidaan käyttää tuotekehityksen lisäksi:

- markkinoinnissa,
- pienoismallien luomisessa,
- taiteessa
- ja räätälöityjen yksittäistuotteiden valmistuksessa.

3D-tulostustekniikka voidaan hyödyntää myös valumuottivalmistuksessa.

3D-pikamallien avulla saadaan selkeä kuva tuotteen ulkomuodosta, mittasuhteista ja ergonomiasta
Hyödyt

- 3D-tulostustekniikan avulla tuotetta voidaan ennakkomarkkinoida ilman kalliita muottikustannuksia.

- 3D-pikamalleja voidaan hyödyntää myös tuotteen osien mekaanisen yhteensopivuuden ja toimivuuden tarkastelussa.

- 3D-tulosteiden avulla voidaan varmistaa tuotekehityksen onnistuminen, sekä löytää ja korjata mahdolliset virheet jo tuotekehitysvaiheessa. Tällöin vältetään kalliilta työkalumuutoksilta ja mahdollisilta tuotteiden takaisinkutsuilta
Tekniset tiedot

Merkki ja malli: OBJET EDEN 260 V
Kappaleen koko:
Tulostuskerroksen paksuus:
Tulostusnopeus:
Materiaali:
Yhteystiedot

Ahti Haapalainen
Oulu PMC ok tj. (CEO)
040 5084 782
Tutkijantie 1 90570 Oulu
ahti.haapalainen@vtt.fi
VALTIONEUVOSTON PERIAATEPÄÄTÖS AINEETTOMIA OIKEUKSIKOSKEVASTA STRATEGIASTA

Valtioneuvoston periaatepäätös aineettomia oikeuksia koskevasta strategiasta on valmisteltu työ- ja elinkeinoministeriössä (TEM) yhteistyössä opetusministeriön (OPM) kanssa.

Tausta

Aineettomia oikeuksia ovat muun muassa patentti, tavaramerkki, tekijänoikeus, mallisuojat, hyödyllisyysmalli, toiminimi, verkkotunnukset, maantieteelliset merkinnät ja kasvinjalostajan oikeus. Aineettomista oikeuksista käytetään myös nimityksiä immateriaalioikeus tai IPR (lyhenne sanoista ”Intellectual Property Rights”).

Tulevaisuudessa aineettomien oikeuksien merkitykseen vaikuttaa ainakin neljä keskeistä kehityssuuntaa. Ne ovat globalisaatio, digitalisoituminen ja konvergenssi, aineettomien oikeuksien politisoituminen sekä aineettomien oikeuksien kentän ekspansio.

Digitalisoituminen ja konvergenssi näkyvät selvimmin internetissä. Tietotekniikan kehitys on tuonut monipuoliset audiovisuaaliset tuotanto- ja jakelujärjestelmät kaikkien käyttöön. Yksityisellä ihmisellä voi jo puhelimesan kolla olla laskin, posti-, pankki- ja kauppalapelit, kirjasto (internet), pelejä, radio, televisio, kamera, runsaasti audiovisuaalista sisältöä ja paikanvelostoa. Kehityksen myötä digitaalisten aineistojen tekniset kopiointi- ja jakelutoimet tietoverkossa ovat käytävällä käytännössä ilmaisia.

Aineettomien oikeuksien politiisoituminen näkyy siinä, että aiemmin alalle etäiset asiat kuten terveydenhuolto, lääkehuolto tai alku peräisin ollut perinnöiden suojavuus ovat saaneet vahvan aineettomiin oikeuksiin liittyvän ulottuvuuden. Kansainvälinä on neuvoitu käsitelläänkin esimerkiksi kysymystä lintuinfluenssavirukseen liittyvistä aineettomista oikeuksista.

Tulevaisuuden näkymä ja tavoitettila 2015

Lähivuosien yhteiskunnallisen kehityksen olennaiset elementit voidaan aineettomien oikeuksien osalta hahmotella seuraavasti:

Tulevaisuuden näkymä 2015

- Innovoinnin ja luovan työn määrä ja merkitys ovat kasvaneet.
- Avoin innovointi ja esimerkiksi kuluttajien tuottaman sisällön suuri merkitys haastavat yksinoikeusperusteisen aineettomien oikeuksien järjestelmän.
- Osaaminen, tieto ja niiden hallittu jakaminen ovat merkittäviä kilpailutekijöitä.
- Patentit, tavaramerkit ja mallit myönnetään pääasiassa kansainvälinäissä järjestelmissä.
- Tekijänoikeuksien suora lisensointi lisääntyy.
- Standardisointiin liittyvät IPR- ja kilpailunäkökohdat ovat tulleet keskeisemmiksi.
- Oikeudelliset kollisiotilanteet ovat lisääntyneet.
- Digitaaliteknikan hyödyntäminen on monipuolistunut ja edennyt uusille alueille.
Konvergenssi on muuttanut ja yhdistänyt perinteisiä liiketoiminta-aloja.

Ristiinlisensointi ja valtioiden rajat ylittävät yhteistyöhankkeet ovat lisääntyneet.

Aineettomien oikeuksien käyttö vaihdannan välineenä on yleistynyt.

Patentti- ja tavaramerkkihakemusten määrän ekspansio on haaste aineettomien oikeuksien järjestelmälle.

Tavoitetila 2015

Menestyminen vuoden 2015 toimintaympäristössä edellyttää seuraavia asioita:

Suomessa on innovaatiotoimintaa ja luovaa työtä tehokkaasti tukeva IPRtoimintaympäristö.

Aineettomia oikeuksia koskevalla lainsäädännöllä kannustetaan innovatiivisuutta ja luovaa työtä sekä mahdollistetaan investoinnit näihin. Aineettomien oikeuksien järjestelmä on joustava teknologian ja liiketoiminnan muutostilanteissa ja edistää suomalaisten yritysten kilpailukykyä ja palveluinnovaatioita.

Aineettomia oikeuksia koskevan lainsäädännön valmistelussa kiinnitetään huomiota lainsäädäntöratkaisun taloudelliseen merkitykseen sekä sen taloudellisiin ja muihin vaikutuksiin. Aineettomien oikeuksien järjestelmän ja sen eri osien tehokkuuden arviointiin on kehitetty indikattorit.

Aineettomia oikeuksia hyödynnetään lähtökohtaisesti globaalissa toimintaympäristössä. Yksinomaan kansallissille markkinoille keskittyvä toiminta on poikkeuksellista.

Suomi vaikuttaa aktiivisesti ja suunnitellussa toimintaympäristössä. Yksinomaan kansallissille markkinoille keskittyvä toiminta on poikkeuksellista.

Toimenpiteiden kohdealueet

1. Osaaminen
1.1. Tavoitteet

Menestyminen niin kotimaisilla kuin kansainvälisillä markkinoilla edellyttää suojauskysymysten monipuolista hallintaa. Aineettomia oikeuksia koskevan strategian taustaselvityksen yhteydessä tehdyt yrityskyselyt viittaavat kuitenkin merkittäviin puutteisiin aineettomia oikeuksia koskevassa osaamisessa.

Aineettomien oikeuksien koulutuksen painoarvoa tulee lisätä sekä oikeudellisessa että liiketoiminnassa liittyvääsää koulutuksessa. Myös avoimeen innovointiin perustuvat strategiat edellyttävät aineettomien oikeuksien osaamista. Koulutuskentän koordinaation ja yhtenäistämisen edellytyksiä on paranettava. Tekninen, taloudellinen ja oikeudellinen tietämystä tulisi mahdollisuuksien mukaan olla saatavissa yhden koulutuskokonaisuuden puitteissa.

Liiketoiminnan strategiassa aineettomien oikeuksien kenttä on ymmärrettävä paitsi lakisääteisten oikeuksien suojamisena, myös erilaisten toimintatilojen liittyvien oikeusmenetelmien oikeana tunnistamisena eli liiketoiminnin uuslukuisuus. Luovan työn taloudellinen arvo tulee esiin vasta kun luovan työn pohjalta syntynyt oikeus on oikeudenmukaisesti käytetään ammattitaitoisesti. Tämä edellyttää esimerkiksi taiteellisen kentän managerointiosamisen kehittämistä. Myös teollisoikeus- ja innovaatioasiamieskentän korkeatasoinen osaaminen on edellytys suomalaisen innovaatiotoiminnan menestymiselle kansainvälisessä kaupassa.

Patentti-informaatiotoiminta ei hyödynnetä riittävän aktiivisesti. Sen hyödyntämisellä vältettäisiin kuitenkin päällekkäistä tutkimus- ja kehitystyötä ja nopeuttaisiin kaupallisten sovellusten syntyä.

Tavoitteiden saavuttaminen osaamisen alueella edellyttää seuraavia toimenpiteitä:

1.2. Toimenpiteet

Yliopistot ja ammattikorkeakoulut

☐ Edistetään yhteistyössä korkeakoulujen kanssa aineettomia oikeuksia koskevaa opetusta ja tutkimusta. Asia huomioidaan korkeakoulujen tulosohjauksessa. Perustetaan asiaa edistävä ohjelma (OPM, TEM).

☐ Selvitetään, miten edellytyksiä teknis-taloudellis-oikeudellisen koulutuksen tarjoamisesta Aalto-yliopistossa voidaan kehittää (OPM, TEM).

☐ Selvitetään, voidaanko IPR University Centerin toimintaa laajentaa aineettomia oikeuksia koskevan, julkinen hallinnon tarvitseman tutkimuksen tarpeisiin.

☐ Edistetään aineettomien oikeuksien koulutusta erityisesti tutkijankoulutuksessa (OPM, Suomen Akatemia).

☐ Laajennetaan opettajien aineettomia oikeuksia koskevaa tietämystä- ja osaamispohjaa aineettomista oikeuksista tuottamalla ja tarjoamalla sisältöpalveluita opettajankoulutukseen (OPM, TEM).
Liiketoiminta- ja oikeudellinen osaaminen

☐ Kehitetään aineettomia oikeuksia koskevaa täydennyskoulutusta, jossa teknistaloudellis-juridinen koulutus on tarvittaessa saatavissa samasta lähteestä.

☐ Edistetään voimakkaasti englanninkielistä aineettomiin oikeuksiin ja aineettomia oikeuksia koskevaan sopimustoimintaan liittyvää täydennyskoulutusta.

☐ Kehitetään yritysneuvojille suunnattua koulutusta ja oppimateriaalia (TEM).

☐ Kehitetään innovaatiojohtamisen koulutusta (TEM, OPM). Lisätään aineettomien oikeuksien osaamista erikoismatittutkinnoinnoissa (esim. tuotekehittäjän ja johtamisen erikoismatittutkinnot) (Opetushallitus). Kehitetään managerointivalmennusta.

☐ Lisätään koulutusta patentti-informaation hyödyntämisestä (PRH).

☐ Otetaan käyttöön teollisoikeusasiamiestutkinto ja säädetään tarvittava lainsäädäntö (TEM).

☐ Selvitetään työsuhtedekeksintööikeuteen liittyvän osaamisen kartuttamistarve.

2. Oikeuksien tehokkuus ja selkeys

2.1. Tavoitteet

Ollakseen tehokkaita eli tehokkaasti toimeenpantavissa oikeuksien tulee olla selkeitä ja oikeasuhteisia. Tämä koskee myös toimintaa tietoverkoissa. Sähköisen markkinan ja tietyyhdistänen kehitystä on edistettävä neuvonnalla ja tiedottamisella.

Aineettomia oikeuksia koskevassa lainsäädännössä ja käytännön toiminnassa on kiinnitettävä huomiota oikeudenhallitajan ohella myös käyttäjän asemaan tasapainoinen loppulentokseen saavuttamiseksi. Tämä koskee sekä yritystä kaupallisena käyttäjänä että tuotteen lopputuotteen käyttäjänä. Aineettomia oikeuksia koskevassa sääntelyssä kiinnitetään erityistä huomiota käyttäjän asemaa. Myös oikeuksien siirtämisen tehokkuutta ja oikeudellista selkeyttä on parannettava.

Patenttien laatuun on kiinnitettävä huomiota, sillä patenttien laadukkuus on keskeisessä asemassa tarkasteltaessa patentti- ja oikeuksien tekohoidon ja täytäntöönpanon parannetta.

Tavoitteiden saavuttaminen näissä kysymyksissä edellyttää seuraavia toimenpiteitä:

2.2. Toimenpiteet
Aineettomia oikeuksia koskevien riita-asioiden käsittely keskitetään markkinaoikeuteen vuoteen 2012 mennessä. Oikeusministeriölle varmistetaan keskittämisen edellyttämät resurssit (OM).

Huolehditaan tekijänoikeuslainsäädännön ja -järjestelmän ajanmukaisuudesta perustamalla työryhmä selvittämään seuraavia osa-alueita:

- Tekijänoikeuslakiin pohjautuvat lisensiointijärjestelmät (esim. sopimuslisenssi- ja creative commons sekä suora lisenssiointi) sekä tekijänoikeuksien kansainvälisen lisenssioinnin rakennemuutos
- Aineistojen kaupallisen käytön edistäminen (esim. monikanavajakelu, verkkotallennuspalvelut)
- Yhteentoimivuuden ja oikeudenhaltijatiedon saatavuuden edistäminen
- Arvioidaan tietoverkossa toimivien hakukoneiden oikeudellinen luonne ja toiminnan vaikutukset markkinoihin (LVM, OPM, TEM)
- Selvitetään kansallisen digitaalisen kirjaston ja muiden kansallisten digihankkeiden tekijänoikeudellisten kysymysten järjestäminen muun muassa yksityisen ja julkinen sektorin kumppanuuden pohjalta.
- Selvitetään tavaramerkkilakia, toimimilakia ja lakia sopimattomasta menetelmästä elinkeinotoiminnassa koskevat muutostarpeet (TEM, OM).
- Lisätään tiedotusta ja neuvontaa siitä, mitä tietoverkossa saa ja mitä ei tehdä. Selkeytetään tarvittaessa lainsäädäntöä (OPM, PRH, Kuvi).
- PRH:n tulosohjauksessa kiinnitetään huomiota patenttien laatun (TEM).
- Selvitetään avoimeen lähdekoodiin perustuvien ohjelmistojen lisenssiöinnin ja hyödyntämisen oikeudelliset riskit (OPM).
- Uudistetaan Tekijäl 3 luku (OPM, tekijänoikeustoimikunta).
- Säädetään työsuhteessa luotujen teosten tekijänoikeudesta (OPM).
- Kehitetään tekijänoikeusjärjestelmän toimivuuden arviointimenetelmää ja -kriteerit (OPM).

3. Kilpailupoliittikka ja aineettomiin oikeuksiin perustuvien markkinoiden toimivuus

3.1. Tavoitteet

Sekä kilpailuokus että aineettomia oikeuksia koskeva lainsäädäntö tähtäävät markkinoiden tehokkaan toiminnan varmistamiseen ja innovaatioiden tehokkaaseen hyödyntämiseen. Suomelle, jonka kilpailukyky ja kansallinen hyvinvointi riippuvat ratkaisevalla tavalla kysyvää tuottaa uusia innovaatioita ja hyödyntää niitä maksimaalisella tavalla, avoimien ja hyvin toimivien kansallisten ja kansainvälisten markkinoiden merkitys on erityisen suuri. Markkinoiden pullonkauoloja ja esteitä teknologian kehitykselle tulee aktiivisesti purkaa.

Aineettomien oikeuksien käyttöä yritysvarallisuutena tulee edistää lisäämällä tietoa aineettomiin oikeuksiin liittyvistä mahdollisuksista ja erityisesti aineettomien oikeuksien arvonmääritykseen liittyvistä kysymyksistä. Aineettomien oikeuksien käyttö vakuutena on tärkeää alan yritysten rahoitumahdollisuuksille.

Patentti-informaation samoin kuin julkisesti tuotetun tiedon käytettävyyttä tulee edistää.

Näiden tavoitteiden saavuttaminen edellyttää seuraavia toimenpiteitä:

3.2. Toimenpiteet

☐ Vaikutetaan aineettomien oikeuksien käyttöä koskevien Euroopan yhteisön ryhmäpoikkeusasetusten (erikoistumissopimukset, T&K-yhteistyö ja teknologian siirto) säännöksiin siten, että niissä otetaan huomioon teknologian nopea kehitys, kansainvälisen kaupan muotojen murros ja eurooppalaisten elinkeinoelämän globaali kilpailukyky (TEM).

☐ Aineettomia oikeuksia koskevat asiat kytketään kilpailuviraston tulosneuvotteluihin (TEM).

☐ Arvioidaan tekijänoikeusjärjestöjen lisensiointikäytänteet kilpailupoliitikan näkökulmasta (TEM).

☐ Julkisia tietovarantoja syntyy valtion laitoksissa, kunnissa tai julkisen sääntelyn piirissä olevissa organisaatioissa suuria määrä, esimerkikinä Patentti- ja rekisterihallitus, Ilmatieteen laitos, Tilastokeskus ja erilaiset verotuksen organisaatiot. Selvitetään julkisten tietovarantojen ja arkistojen tehokkaan hyödyntämisen esteet ja edistetään julkisten tietovarantojen käyttöä huomioiden kilpailupoliitiikka. (OPM, TEM, VM).

☐ Selvitetään (TEM, OPM)

- aineettomien oikeuksien arvonmääritystapoja

- aineettomia oikeuksia koskevan taloudellisen informaation kehittämistarpeita (esim. Tilastokeskuksen tilastointimetodien kehittäminen)

- esteet luovan työn myötä syntyvien aineettomien oikeuksien hyödyntämiselle (esim. verotukseen liittyvät) (TEM)

- standardisointiin liittyvät IPR-kysymykset

4. Järjestelmän toiminnallinen ja taloudellinen tehokkuus

4.1. Tavoitteet
Aineettomien oikeuksien järjestelmää tulee tehokkaasti koordinoida korkealla poliittisella tasolla, jotta valtion toiminta aineettomien oikeuksien alueella olisi johdonmukaista ja asetettuihin tavoitteisiin tähtäävää. Eri ministeriöiden yksiköiden tulee toimia tehokkaana virtuaaliorganisaationa. PRH:n asemaa korkeatasoisena aineettomien oikeuksien viranomaisena tulee kehittää.

Näiden tavoitteiden saavuttaminen edellyttää seuraavia toimenpiteitä:

4.2. Toimenpiteet

Hallinto

- Aineettomia oikeuksia koskevia asioita hoitavat ministeriöt huomioivat IPRasiamet strategioissaan ja muu valtionhallinto toiminnassaan.

- Vuonna 2009 toteutetaan Patentti- ja rekisterihallituksen toiminnan arviointi. Siinä arvioidaan viraston toiminnan kehittämistä, aineettomien oikeuksien hallinnon kehittämisarvoja ja viraston roolia osana Suomen innovaatiojärjestelmää.

- PRH:ta koskevan arvion yhteydessä selvitetään mahdollisuudet täsmentää PRH:n toiminnan painopistettä mm. tekijänoikeusneuvontaa koskevalla tehtävänä sty Daviesellä (TEM, OPM).

- Järjestetään vuosittain korkean tason IPR-forumin esim. WIPO:n maiden omaisuuuden päivitystä edistää (OPM, TEM, PRH).

- Kehitetään kaksinta- ja innovaatioasiamiestoimintaa laaja-alaisemman aineettomia oikeuksia koskevan asiantuntumukseen suuntaan huomioidentä mm. tekijänoikeus. (TEM, PRH, TE-keskukset).

- Yksityisten keksijöiden ja alkavia yritysten (mikroyritysten) kehityshankkeiden aineettomien oikeuksien (teollisoikeuksien) tukistoiminnasta huolehtii Keskintöasiantunteis. Säätiön rahoitusvaltuuksia lisätään asteittain toimintaympäristön tarpeet huomioon ottaen. Selvitetään mikroyritysten ja yksityishenkilotöiden kehitystoiminnan asema osana innovaatiopolitiikkaa, mukaan lukien luonnon mahdollisuudet hyödyntää elinkeinopoliittisia instrumentteja (TEM).

Rahoitus

- Yritystuki: edellytetään aineettomia oikeuksia koskeva selvitys ennen kehityshankkeiden aloittamista. Muilloin se hankkeen luonteen huomioon ottaen on tarkoituksemukaista mukaan lukien (TEM, Tekes, TE-keskukset, Keskintöasiantunteis):
 - tekniiikan tason kartoitus
Täydennetään tarpeen mukaan jo tuotantokäytössä olevia rahoitusinstrumentteja, joilla aineettomia oikeuksia koskevaa osaamista yrityksissä voidaan kasvattaa, kuten esimerkiksi Tekesin avustus innovaatiopalveluiden hankintaan pkyrityksille.

Kartioitetaan korkeakoulujen ja julkisten tutkimusorganisaatioiden aineettomia oikeuksia koskevia painoarvoja (OPM, TEM):

- tutkimuksen ja elinkeinoelämän yhteistyön IPR-ongelmat
- yhteisrahoitteisen tutkimuksen sekä elinkeinoelämän ja julkisten organisaatioiden yhteisprojekteina toteuttavaa tutkimusta koskevan lainsäädännön arviointi ja kehittäminen yhteistyöön kannustavaksi ja tutkimustulosten hyödyntämisestä edistäväksi
- IPR-rajoitussääntelyn asianmukainen hyödyntäminen korkeakoulujen sopimustutkimuksessa (OPM, TEM)

Neuvonta

- Selvitetään, millä tavalla aineettomia oikeuksia koskevan neuvonnan tehokkuutta voidaan lisätä (TEM, OPM)

- toimintoja yhdistämällä

- toimintoja keskitetysti ohjaamalla

- yhteisen poliittisen tahdonmuodostuksen avulla

- Kytketään aineettomia oikeuksia koskeva neuvonta TEM:n kasvuyrityspalvelun; toteutusmuotoina ovat muun muassa koulutustuki osana tutkimus-, kehitys- ja innovaatiohanketta, työelämän kehittämishanke sekä palvelusetelin nykyistä laajempia käyttöä (TEM, TE-keskukset, Tekes, Finnpro).

- Huolehditaan aineettomien oikeuksien asianmukaisesta painoarvosta Yritys-Suomi-hankkeessa.

- Lisätään tekijänoikeuden neuvontapalveluita TE-keskusten yhteyteen (TEM).
5. Toiminta kansainvälisen ja EU:n aineettomien oikeuksien politiikan osalta

Suomi vaikuttaa aktiivisesti ja johdonmukaisesti aineettomien oikeuksien järjestelmän kehittämiseen Euroopan unionissa ja kansainvälisesti.

Suomella on edellytykset sopeutua nopeasti kansainvälisen IPR-kentän muutoksiin. Pienenä maana Suomi hyötyy aineettomia oikeuksia koskevan lainsäädännön mahdollisimman suuresta globalista yhdenmukaisuudesta, sillä se luo edellytyksiä kansainväliselle kaupalle ja tehostaa aineettoman pääoman suojaamista.

5.1. Toimenpidesuosituksut

Euroopan unioni:

☐ EU-vaikutaminen koordinoidaan ja EU-vaikuttamisen tavoitteista keskustellaan sisäryhmien kanssa (TEM, OPM).

☐ Komissio on antanut kesällä 2008 tiedonannon teollisoikeuksien strategiaksi. Kannustetaan komissiota käsittelemään teollis- ja tekijänoikeuksia yhtenä kokonaisuutena toimintaympäristössä tapahtuneiden muutosten ja erityisesti konvergenssin vuoksi (TEM, OPM).

☐ Vaikutetaan komissioon siten, että se ryhtyi teollisoikeuksia koskevassa tiedonannossa mainittujen selvitysten tekemiseen välittömästi ja että selvityksiin tulisi selkeä taloudellinen ja myös kilpailutoimivuuslähestymiskulma (TEM).

☐ Kannustetaan komissiota laatimaan kattavat vaikutusarvioinnit kaikista aineettomia oikeuksia koskevista lainsäädäntöhankkeista (TEM).

☐ Vaikutetaan siihen, että komission lainsäädäntöhankkeet luovat toteutuessaan lisäävää eivätkä vaaranna kansallisen IPR-infrastruktuurin toimivuutta (TEM).

☐ Vaikutetaan siihen, että EU:iin luodaan kustannustehokas patenttilitigaatiojärjestelmä (TEM, OM).

☐ Mahdollinen yhteisöpatentti toteutetaan vaarantamatta kansallisen tutkivan patenttiviraston toimintaedellytyksiä. Kiinnitetään erityistä huomiota yhteisöpatenteista perittävien maksujen asianmukaiseen jakautumiseen kansallisille virastoille.

☐ Seurataan ja vaikutetaan EU:n tutkimustoimintaa koskevaan IPR-sääntelyyn ja mm. edistetään julkisten tutkimustulosten hyödyntämistä.

☐ Lisätään Suomen pysyvän edustuston (Bryssel) aineettomoihin oikeuksiin liittyvien asioiden käsittelyyn osoitettuja resursseja.
Vaikutetaan teknologian siirtoa koskevan ryhmäpoikkeusasetuksen evaluointiin ja päivitykseen (TEM; ks. tarkemmin kohdassa 3.2.).

Vaikutetaan siihen, että EY:n ohjelmien osallistumissääntöjen, valtioleikkauksia ja maksuperustelain tuomat ongelmat eurooppalaisessa tutkimus- ja kehitysyhteistyössä ratkaistaan yhteistyöhön kannustavasti.

Kansainvälistä foorumia

- Aineettomia oikeuksia koskeva kannanmuodostus on johdonmukaista ja tapahtuu koordinoidusti (TEM, OPM, OM, UM, tarvittaessa muutkin ministeriöt).
- Turvataan riittävät resurssit kahdenvälisiin ja monenvälisiin neuvotteluihin sekä näistä johtuvaan laininapautelutyöhön.
- Edistetään suomalaisen sijoittumista kansainvälistä IPR-tehtäviin.
- Varmistetaan PRH:n asema kansainvälistenä tutkivana patenttiviranomaisena.
- Selvitetään mahdollisuudet patenttiviranomaisten välisen tutkimusyhteistyön lisäämiseksi.

Edistetään IPR-laatuun liittyviä hankkeita (TEM, PRH).

6. Viestintä ja seuranta

Valtioneuvoston periaatepäätöksestä tiedotetaan laajasti ja se käännetään tarpeellisille muille kielille (TEM, OPM).

Perustetaan aineettomien oikeuksien neuvottelukunta, joka toimii alan verkostoitumisen edistäjänä. Lisätään kilpailuviranomaisten ja aineettomien oikeuksien hallinnon keskusteluja ja vuorovaikutusta aloja sivuavista kysymyksistä perustamalla yhteistyöfoorum tätä tarkoituksa varten (TEM, Kivi, OPM). Tarkastelukauden loppupuolella vuonna 2014 laaditaan tulevaisuuden näkymän ja tavoitetilan päivitys.
Eden260V

The 1.6 Micron Layer 3-Dimensional Printing System

Superior accuracy, high quality and the power of a large system in a small footprint

- Ultra-thin-layer PolyJet™ technology
- 16 micron high resolution ensures smooth surfaces and fine details
- Tray size: 10.2 x 10.2 x 7.9 inch (260 x 260 x 200 mm)
- High Speed and High Quality Printing Modes
- Wide range of materials: FullCure®720, Tango, Yero and Durus
- 72 hours of unattended continuous printing
- Optimax for automation of resin handling
- Small footprint: 34.3 x 32.9 x 47 inch (870 x 830 x 1200 mm)
- Office environment
Eden260V
The 16 Micron Layer 3-Dimensional Printing System

Technical Specifications

- Layer Thickness (Z-axis): 16 microns
- Horizontal build layers down to 16-micron
- Trays Size (X-x2-Z): 10.2in x 10.2in x 7.9in (250 x 250 x 200 mm)
- Net Build Size (X-y-Z): 10.2in x 10.2in x 7.9in (250 x 250 x 200 mm)
- Printing Modes: High Quality (HQ): 0.0006 inch (16 microns), High Speed (HS): 0.001 inch (30 microns)
- Accuracy: 0.004-0.005 inch (0.1-0.2 mm) typical (accuracy varies according to porosity, part orientation and print size)
- Material Supported:
 - FullCure720 Model transparent
 - VeroWhite and Opaque material
 - VeroBlue Opaque material
 - VeroBlack opaque material
 - TangoBlack, rubber like flexible material
 - TangoGrey, rubber like flexible material
 - TangoPlus, rubber like flexible material
 - Durus opaque material
- Support Type:
 - FullCure720 Support
 - Non-toxic gel-like photopolymer support easily removed by waterjet
- Materials Cartridges:
 - Sealed 4.7 lb (2.1 kg) cartridges
 - Automatic switching between cartridges
 - Easily and instantly replaced through a frontloading door
- Power Requirements: 110-240VAC 50/60 Hz, 1.5 KW single phase
- Machine Dimensions (W+x+H):
 - 34.32in x 29.47in x 71in (870 x 735 x 1200 mm)
- Machine Weight:
 - Net 317 lb (360 kg)
 - Gross (on crate) 727.5 lb (330 kg)
- Software:
 - Object Studio™ features
 - Suggested build orientation and speed

About Objet Geometries

Objet Geometries, the photopolymer jetting pioneer, develops, manufactures and globally markets extrusion-layer, high-resolution 3-dimensional printing solutions for rapid prototyping and rapid manufacturing. The market proven Eden line of systems is based on Objet’s patented office-friendly PolyJet™ technology. Objet’s FullCure® materials create accurate, clean, smooth and highly detailed 3-dimensional models, enabling even the most complex 3D models to be printed with exceptionally high quality, accuracy and speed.

 Connex300®, Objet’s latest innovation, is based on Objet’s PolyJet Matrix™ technology, which offers jetting multiple model materials simultaneously. PolyJet Matrix has Digital Materials™ creating composite materials which are fabricated on the fly.

Objet’s solutions enable manufacturers and industrial designers to reduce cost of product development cycles and dramatically shorten time-to-market of new products. Objet systems are in use by world leaders in many industries, such as automotive, electronics, toy, consumer goods, and footwear industries in North America, Europe, Asia, Australia and Japan.

Founded in 1998, Objet serves its growing worldwide customer base through offices in USA, Europe and Hong Kong, and a global network of distribution partners. Objet owns more than 50 patents and patent pending inventions.