

Muftau Raheem

IMPLEMENTING A SECURED CONTAINER

WORKLOAD IN THE CLOUD

Master’s thesis

Master of Engineering, Cybersecurity

2021

Author (authors) Degree title

Time

Muftau Raheem Master of
Engineering,
Cybersecurity

February 2021

Thesis title

Implementing a Secured Container Workload in the Cloud

69 pages
1 page of appendix

Commissioned by

Supervisor

Vesa Kankare (Senior Lecturer, XAMK)
Abstract

The objective of this thesis was to research the different security controls to consider when
implementing container workloads in the cloud, the current threats affecting container
workloads in the cloud, the mitigation to the threats and finally find the cloud security
recommendations to secure the workloads.

The action-based research methodology was used, where the researcher is actively
involved in ensuring that the commissioner is aware of the risks associated with
implementing the container workloads in the cloud and implementing the recommended
guidelines presented in this study to mitigate the risks. Information security guidelines,
benchmarks, scientific and industry whitepapers have been used in the research.

The research shows that securing of container workloads must be with a “shift left”
approach in which security is included at every stage of the container lifecycle. A set of
threats and associated mitigations were identified to be critical to securely deploy container
workloads in the cloud. This research also examined the different hardening techniques of
the k8s cloud-managed service and the applicable security standards for organisations to
consider when deploying container workloads in the cloud. The result of this thesis will
serve as a guideline for the commissioner and other organisations planning to implement a
secured container workload in the cloud.
Keywords

Containers, Cloud, Container Security, Docker, Container images, immutable
infrastructure, Kubernetes, Registries, Micro-segmentation, Shift-left, Sidecar

CONTENTS

LIST OF ABBREVIATIONS ... 6

1 INTRODUCTION .. 8

2 RESEARCH .. 9

2.1 Research Objectives ... 9

2.2 Research Questions ... 9

2.3 Research Method ... 10

3 APPLICATION CONTAINER TECHNOLOGY .. 11

3.1 Container Technology Terminologies ... 13

3.1.1 Image .. 14

3.1.2 Docker .. 14

3.1.3 Kubernetes ... 15

3.1.4 Kubernetes Constructs and Objects ... 18

4 CONTAINER SECURITY IN THE CLOUD ... 20

4.1 Container Images security .. 21

4.1.1 The building of Base Images .. 22

4.1.2 CI/CD/CS Pipeline .. 23

4.2 Securing Container Registry ... 29

4.2.1 Container Registry Authentication and Authorisation 29

4.2.2 Continuous Vulnerability Assessment ... 30

4.2.3 Registry Encryption ... 30

4.2.4 Trusted Images ... 31

4.3 Container Orchestrator Security ... 32

4.3.1 Run the latest version ... 32

4.3.2 Private Cluster .. 33

4.3.3 Container-centric OS .. 36

4.3.4 Role-Based Access Control (RBAC) ... 37

4.4 Securing the Container Runtime ... 37

4.4.1 Secret Management ... 38

4.4.2 Micro-segmentation .. 40

4.4.3 Service Mesh .. 42

4.5 Threats and mitigation .. 44

4.5.1 Initial Access ... 45

4.5.2 Execution .. 46

4.5.3 Persistence ... 47

4.5.4 Privilege Escalation (PE) .. 48

4.5.5 Defense Evasion ... 50

4.5.6 Credential Access ... 50

4.5.7 Discovery .. 52

4.5.8 Lateral Movement ... 53

4.5.9 Impact ... 55

5 CONTAINER SECURITY STANDARDS AND PUBLICATIONS 57

5.1 NIST Special Publications .. 57

5.2 CIS .. 57

5.3 PCI Secure Cloud Computing Guidelines ... 58

5.4 Cloud Security Alliance ... 58

6 RESULTS AND DISCUSSION ... 59

6.1 What security controls should be implemented to protect container workloads in the

cloud? ... 59

6.2 What are the current threat landscape of containers and recommended mitigation?

 60

6.3 What cloud security controls can be utilized to secure the workloads deployed in the

cloud? ... 61

6.4 Recommended future research. ... 62

REFERENCES .. 63

LIST OF FIGURES .. 68

LIST OF TABLES .. 69

APPENDIX ... 70

Appendix 1 VC scanning code for Image build in CI/CD .. 70

LIST OF ABBREVIATIONS

ACR Azure Container Registry

AKS Azure Kubernetes Service

API Application Programmable Interface

ASM Anthos Service Mesh

AWS Amazon Web Services

C2 Command and Control

CCAT Cloud container attack tool

CCM Cloud controller manager

CD Continuous Deployment

CI Continuous Integration

CIS Centre for information security

CLI Command Line Interface

CM Configuration Management

CMEK Customer-Managed Encryption Keys

CMS Container Management Solution

CNI Container Networking interface

COS Container-Optimized OS

CRUD Create, Read, Update, Delete

CS Continuous Security

CSA Cloud Security Alliance

CSO Container-specific OS

CSP Cloud Service Provider

CSPM Cloud Security Posture Management

CVE Common Vulnerabilities and Exposures

CWP Cloud Workload Protection

DAP Dynamic Access Provider

DB Database

DevOps Developer and Operations

DNS Domain Name Service

DR Disaster Recovery

ECR Elastic Container Registry

EKS Elastic Kubernetes Service

GCP Google Cloud Platform

GCR Goole Container Registry

GKE Google Kubernetes Engine

HA High Availability

IAM Identity and access management

IBMS Identity based micro-segmentation

IP Internet Protocol

K8s Kubernetes

MiTM Man in the Middle

mTLS Mutual TLS

NVD National vulnerability database

OS Operating System

OSI Open Systems Interconnection

OWASP Open Web Application Security Project

PaaS Platform as a Service

PCI Payment Card Industry

PE Privilege Escalation

PLP Principle of least privilege

RBAC Role-Based access control

RO Read-only

SA Service Accounts

SCM Source Code Management

SDK Software Development Kit

SIEM Security Information and Event Management

SM Service Mesh

TLS Transport Layer Security

UEBA User and entity behaviour analytics

VM Virtual Machines

VS Vulnerability and Compliance

1 INTRODUCTION

Computing architecture has transitioned across different stages in today’s

modern computing infrastructure. The first of the stages being considered was

client-server architecture which is based on a single application in a host

operating system (OS) running on bare metal, the next transition was the

virtualization architecture which is mainly comprised of the foundational bare

metal with a hypervisor, guest OS and the running applications. (Palo-Alto. 2019).

An individual virtual machine running in a virtualized architecture requires its OS,

libraries, dedicated resources, and applications, this, in turn, creates a bottleneck

for VMs allowed to run on a server. (Sultan et al. 2019). The third stage which is

the focus of these studies is the containers, containers are made up of bare

metals, host OS, container engines, binaries, or libraries and finally the code

application. Containers provide a means to bundle an application’s code with the

needed dependencies to run smoothly on any platform and computing

environment. It, therefore, solves the portability problem by ensuring that the

applications can run successfully as the packaged application is passed from one

environment to another.

By 2022, 75 percent of global organisations will have containerised applications

within the production infrastructure compared to less than 20 percent in 2019.

Furthermore, the container management industry is expected to grow from

€383.58million in 2020 to €777.37million by 2024 and the public cloud container

orchestration services will be having the largest share of this revenue. (Moore

2020). Hence, it becomes critical to have these studies about securing the

container workloads in the Cloud. Although there are numerous benefits in

embracing containers and moving away from the virtualization architecture, the

associated threats become a major challenge that requires adequate

consideration. Security controls must be integrated to mitigate the threats

throughout the lifecycle of the container.

2 RESEARCH

2.1 Research Objectives

The identity of the commissioning organization for this thesis has been kept

secret and therefore referred to CompX. CompX is undergoing a digital

transformation of migrating legacy applications to containerized microservices

deployed in the Cloud. CompX operates in a highly regulated business area

where it must be compliant with several IT security standards and national

regulations.

Container technology is new to the commissioner and this study presents the

opportunity to research into the security controls to be implemented when

deploying container workloads in the cloud. The digital transformation is not

unique to CompX because several organisations are re-architecting applications

utilizing the cloud-native services for scaling, high availability, portability,

consistency, and the immutability of a containerized microservice infrastructure

using DevOps agile deployment model.

The main objective of this thesis is to research and identify the security controls

required to securely deploy container workloads in the cloud using a cloud-

managed orchestrator solution such as the Elastic Kubernetes Service (EKS)

from Amazon, Google Kubernetes Engine (GKE) from Google and Azure

Kubernetes Service (AKS) from Azure. The research will identify the controls to

secure the containers at every stage of its lifecycle and identify the threats

commonly used by adversaries to target containerized applications in the cloud.

The result of this thesis will serve as a set of recommended guidelines for the

commissioner to securely implement container workloads in the cloud.

2.2 Research Questions

In other to achieve the objectives of this thesis with better clarity, the research

questions which this thesis aims to answer as listed below.

o What security controls should be implemented to secure container
workloads in the cloud?

o What is the current threat landscape of containers and how can they be
mitigated?

o What cloud security controls can be utilized to secure the container
workloads deployed in the cloud?

2.3 Research Method

The action research method has been used in these studies. The focus was on

“problem-solving in whatever way is appropriate” (Smith 2017). It involves finding

the current practice, researching the available standards and adopt the

recommended practices to the environment. This involves active cooperation

between the researcher and the commissioning organisation. Also, this method is

primarily achieved as “learning by doing” (O'Brien 2001).

The action research is one of the three research synthesised when qualitative

and quantitative research methodologies are combined. The uniqueness of the

action research is that the researcher participates in the change process and

ensure the realization of the research. The researcher primarily acts as

equipment for gathering data. (Kananen 2015, 57).

The data gathering method in action research is qualitative research which

involves participatory observation allowing the researcher to be the subject

phenomenon. The observation is complemented by interviews and discussions to

ensure the correct interpretation of the observations. (Kananen 2015, 57). The

researcher has found this method effective with the commissioner’s stakeholders

in ensuring that the expected changes, as found during this research, are

implemented.

3 APPLICATION CONTAINER TECHNOLOGY

The application container technology is OS-level virtualization for deploying and

running microservice applications without utilizing an entire VM compute

resource. Containers are likened to an application running as a process with

isolation on an OS within its own address space. The containerised running

applications are packaged with all the needed dependencies and libraries.

(Zhang et al. 2018).

As shown in figure 1, the traditional deployment involves the running of

applications on physical servers. All the applications share the same resource

with no means of resource allocation for the applications. Solving the resource

allocation issue requires allocating a dedicated physical server for an individual

app. This poses a scalability challenge and resource wastage with more cost.

(Kubernetes.io 2020b).

Figure 1 Workload Abstractions (Kubernetes.io 2020b)

The virtualized infrastructure evolved as a solution to the challenges of the

traditional deployment by allowing multiple virtual machines (VMs) with allocated

compute resources to run on a physical server, thereby providing better resource

utilization and scalability. Each VM has its OS and provides some security by

isolating applications between the VMs without allowing easy access to

information. (Kubernetes.io 2020). The use of containers provides some benefits

to infrastructures such as agile application deployment with CI/CD, resource

isolation with predictable application performance and application consistency

across environments.

Containers are lightweight and portable because the applications share a single

OS as well as decoupled from the base infrastructure making them interoperable

across different OS and Cloud environment. (Kubernetes.io 2020b). Multiple

containers run on the same physical server using features such as Linux Control

Groups (Cgroups) and namespaces. As shown in Figure 2, Cgroups are used to

assign resources such as CPU, memory, and network to the containers. (Zhang

et al. 2018).

Figure 2 Namespaces and Cgroups (Joy. 2015).

Figure 3 shows the granularity of application workloads with a shorter lifespan as

they evolve from one deployment model to another. Containers have the shortest

lifespan that supports the DevOps culture of several deployment iterations in a

day. (MacDonald & Croll 2020). There are different types of container

technologies apart from Docker that includes java containers, Unikernels, LXD,

OpenVZ, Rocket containers (RKT), Hyper-V containers (Wadsworth. 2016) and

many more. This focus of this thesis is on Docker and using a cloud-managed

container orchestrator service, Kubernetes.

Figure 3 Lifespan of application workloads (MacDonald & Croll. 2020).

3.1 Container Technology Terminologies

Containers continue to be a popular technology among application developers

due to its robustness in building and packaging an application with its

dependencies suitable for different environment and deployment targets

(Johnston 2018). It is important to understand the foundational elements of

containers to ensure adequate security controls are applied at every stage of the

container lifecycle. A summary of some of the terminologies is presented in

subsequent sections of this chapter.

Physical

• Monolithic applications
• Physical servers as unit of scaling
• Lifespan of years

Virtual
Machines

• Hypervisor virtualizes the hardware
• VMs as unit of scaling
• Lifespan of months to years

Containers

• Virtualizes the OS
• Applications/services as unit of scaling
• Minutes to days

3.1.1 Image

Container images are the lightweight foundational element of the containers

because they are the files with the needed configurations, libraries, and the code

to efficiently run an application with the desired result. The containers become

instances of the images and every instance will be having same foundational

dependencies (Brady et al. 2020). The docker images are composed of different

image layers, with each layer depicting a set of instruction in the docker file. All

entries in the file are read-only (RO) except the last line which usually signifies

what command to run in the container layer. (Docker 2020a). Figure 4 below

shows the layered composition of a container image.

Figure 4 Container Image Layers (Simi 2019)

3.1.2 Docker

Dockers are the de-facto Platform as a Service (PaaS) solution for rapidly

building, testing, deploying, and sharing containers (Brady et al. 2020). It is the

default container runtime on some cloud service providers (CSP) managed

Kubernetes offerings which include Google Kubernetes Engine (GKE), Amazon

Elastic Kubernetes Service (EKS) and Microsoft Azure Kubernetes Service (AKS)

(Foster 2020). In summary, Figure 5 shows docker supports the creation of

containers while orchestrators like Kubernetes manages the containers

(Bytemark 2019). Other orchestrators include apache mesos, docker swarm, fleet

and docker-compose (Pavlik & Mercl 2018).

Figure 5 Relationship between Dockers and Kubernetes (Bytemark 2019)

3.1.3 Kubernetes

Kubernetes sometimes referred to as k8s is the container management solution

(CMS) used for the orchestration of Docker containers across multi-host

installations. (RedHat 2018). It supports container-as-a-service by abstracting the

application orchestration from underlining infrastructure resource and as-a-

service automation helping with provisioning, scaling, and auto-healing.

Kubernetes is constantly being developed with new features and critical patches

for discovered vulnerabilities.

Kubernetes is becoming the container orchestration standard due to its

interoperability and its command line is the current industry standard which is

kubectl. K8s nodes have a container runtime software that runs the container

applications using either Docker, containerd and container runtime interface.

(Kubernetes.io 2020a). “The most powerful orchestrator is Kubernetes in this

time. Kubernetes allows you to run and manage containers, regardless of the

hardware” (Pavlik & Mercl 2018).

Kubernetes has some standard components distributed between the master and

worker nodes. These components include the API server, controller manager,

scheduler, kube-dns, metric-server, etcd, kubelet, and kube proxy.

Within a cloud infrastructure, some components are managed by the CSP and

some are managed by the CSP customers, the details of the shared

responsibility model are presented in section 4 of container security in the cloud.

Figure 6 below contains some of the different elements of a container workload.

Figure 6 Kubernetes Standard components (Kubernetes.io 2020a)

The functions of the respective components as applicable to the master and

worker nodes is presented in table 1.

Table 1 Kubernetes Components on Master and Worker nodes

Component Master Node functions Worker Node functions

API Server Processes
requests and
updates etcd.

 Performs
authentication
and authorization.

 It provides the
entry point for the
cluster.

Not Applicable

Controller Manager It Is the daemon
process
implementing the
control loops built
into Kubernetes
such as
deployment
updates.

Not Applicable

Cloud Controller

Manager (CCM)

 The CCM enables
linking the K8s
with the CSP’s
API by logically
separating the
components that
interact with the
cloud from those
that only require
interaction with
the k8s cluster

Not Applicable

etcd It is a HA key-
value store for the
Kubernetes
cluster

Not Applicable

Scheduler It decides where
pods are run
based on pre-
defined properties
e.g affinity
groups,
resources, labels
etc.

Not Applicable

Kubelet Not Applicable This is an agent
on every worker
node.

 Ensures that all
pods are healthy.

 It registers the
node with the API
server.

Kube Proxy Not Applicable This is also an
agent on the
workers.

 It acts as a
network proxy
and load balancer
for k8s services.

3.1.4 Kubernetes Constructs and Objects

These are entities used to depict the state of the cluster and can be expressed in

the YAML format. The objects can describe what the container applications are

running, the nodes where the applications are running, the assigned resources to

the containers and the configured policies such as high availability and restart

policies (Kubernetes.io 2020a). The construct includes Pods, nodes, cluster,

services, and namespaces.

In Kubernetes, the pods are the smallest units that exist. It represents an

instance of a running process within a cluster. A pod has one or more container

and the containers within a pod automatically communicate because they share

network and storage resource irrespective of their nodes (Kubernetes.io 2020a).

Nodes are the elastic compute resources that run the containerized applications.

The nodes host the pods, the pods can migrate to an available node to ensure

the application is responsive. The nodes are managed from a cluster, and each

node runs the needed services to support the Docker containers for the cluster.

Kubernetes has a node master-slave architecture; the slave is otherwise referred

to as the worker node (Bytemark 2019).

The master nodes in a Kubernetes cluster controls the pod deployments and

worker nodes. (Bytemark 2019). It maintains the state of the running application

and the container images. The worker nodes are the actual compute resources

that host the deployed pods. Clusters are sets of nodes running the pods. For

every cluster, there is a master node and one or more worker nodes. The

containers within a Kubernetes cluster are abstracted across the cluster and not

bound to a specific node (RedHata).

Services are an essential component of every pod. It is the abstract way of

exposing the running applications on a set of pods (Kubernetes.io 2020a).

Kubernetes namespaces are the logical groupings of the cluster resources that

act as a virtual cluster within a Kubernetes cluster.

The list below shows the available namespaces from a newly created Kubernetes

cluster. Figure 7 and 8 show different K8s objects.

kubectl get namespaces

NAME STATUS AGE

default Active 3m3s

kube-node-lease Active 3m4s

kube-public Active 3m4s

kube-system Active 3m4s

 Figure 7. k8s objects (Maharjan 2020)

 Figure 8. k8s objects (Lee & Hogenson 2020).

4 CONTAINER SECURITY IN THE CLOUD

Deploying containers in the cloud using the CSP’s managed service requires the

understanding of the shared responsibility model of the cloud infrastructure. The

containers managed service is a PaaS solution which means that the CSP is

responsible to secure the underlying infrastructure and the customer secures the

running application. Despite the CSP ensuring the security of the infrastructure,

there is still a lot of security controls that need to be managed by the application

owner when running applications in the cloud. Some of these include running the

latest Kubernetes version, latest operating system versions, securing the

container images, ensuring secure image storage/access in the registry,

container network security policies, container runtime security, monitoring and

vulnerability management.

A shared responsibility model of the Kubernetes cloud-managed service such as

GKE, EKS and AKS is represented in figure 9, showing that all components of

the control plane are the full responsibility of the CSP. The organisations

consuming the CMS must ensure the security of the pods throughout their

lifecycle.

Figure 9. Share responsibility model of the k8s CMS (Google 2020c)

The table 2 below shows the shared responsibility model of a container-managed

service depicting the underlying infrastructure being the responsibility of the CSP.

Table 2 Shared responsibility model of CMS in the cloud (Kaczorowski 2019)

Container

PaaS Layer

Customer

Responsibility

CSP

Responsibility

Content * NA

Access policies * NA

Usage * NA

Deployment * NA

Web application

security

* NA

Identity NA *

Operations NA *

Access and

Authentication

NA *

Network

Security

NA *

Guest OS NA *

Audit Logging NA *

Network NA *

Storage with

encryption

NA *

Hardened

Kernel

NA *

Boot NA *

Hardware NA

4.1 Container Images security

The containers images are the core component in the containerized web

application, as such the integrity of the image must be protected by ensuring that

non-vulnerable and exploitable images are built, stored, and deployed within the

infrastructure. Securing the container images means reducing the attack surface

in the container lifecycle by detecting vulnerabilities, configuration errors and the

security policy violations (StackRox 2019). Figure 10 shows the different security

threats associated with the building of the base images from the source code to

the deployment.

Figure 10. Base Image security threats (Rice 2020)

The items discussed in this section presents the security recommendation

towards having a secured image for container workloads and the implementation

of these controls will help mitigate threats.

4.1.1 The building of Base Images

With the availability of different images from the public registries, it is easier to

“grab” images from publicly available registries. This poses a immense risk to the

organization as the actual origin of the image and its dependencies are not

known, likewise if there are exploits embedded in the image. It is recommended

to have full control of the build process by building the image from their private

registry (Bernstein 2018).

Securing the build of the base images from the early phase creates a “shift left”

approach towards securing the container workloads. The base image is often

built from a set of commands specified in the Dockerfile, it is often a common

practice to use the “docker build” command which in turn invokes the docker

daemon process running as root and grants the possibilities of running other

docker privileged commands which could be a security risk within an uncontrolled

cloud infrastructure. The latest release of Docker, version 19.03.14 in December

2020, Docker introduces the rootless mode of the docker daemon that allows a

non-root user to execute the Docker daemon and containers inside the user’s

namespace (Docker 2020b). Using the rootless mode helps to satisfy the CIS

docker recommendation of ensuring the images are created with a non-root user

and the containers running as a non-root user (CIS Docker 2019).

However, there are still security risk of being able to execute other Docker

commands which are not relevant to the image build process, this presents an

opportunity for a malicious user or an attacker to poison the trust chain of the

container lifecycle. Other solutions such as Kaniko, Bazel, podman and buildah

(Abbassi 2019) gives the flexibility of creating an image for container workloads

without using the Docker daemon process (Rice 2020)

The image build process should include a security assessment that identifies

vulnerabilities in the image components and every layer of the base image.

Introducing this control ensures that the identified vulnerabilities and available

fixes are applied before the base image is marked as a container “golden” image

for the workloads (StackRox 2019).

It should however be noted that traditional vulnerability management tools are

limited in terms of visibility to identify the vulnerabilities of each layer of the

container images. Some of these limitations include asset management, keeping

up with the ephemeral nature of the containers, providing vulnerability details of

the libraries being used, e.g., identifying the vulnerability in a webserver but not

an underlining library composition. Some open-source solutions capable of a

deep dive to provide the vulnerability of the container images and configuration

include Anchore engine, Clair project and Dagda (Moyle 2020).

4.1.2 CI/CD/CS Pipeline

Automation is a key part of the container deployment in the Cloud and so should

be the security. The continuous integration (CI) involves the continuous

monitoring of the source code management (SCM) for new commits or changes

and a set of predefined tasks are initiated based on the commit. In continuous

delivery, Infrastructure as code images is built, tested, and deployed. The end

goal of the continuous delivery is a status showing the image could be deployed

by storing it in the registry (Sanz et al. 2018.)

The continuous deployment (CD) uses the result of the continuous delivery to

trigger an automated deployment and capable of a rollback operation based on a

configuration management integration. RBAC must be implemented to ensure

authorized accounts can trigger a job on the pipeline (Sanz et al. 2018).

The continuous security (CS) should be dynamic and keep up with the rapidness

of the CI/CD and its threat landscape. The pipeline must include admission

controls that validate the built images, stored images, and images that are

deployed meet the expected compliance benchmarks such as the CIS standard

for Docker or the benchmark for k8s CMS as well as an acceptable level of risk

(Sanz et al. 2018).

The continuous security must implement an admission control that checks the

images before being transformed into a running container, the admission control

should include the following at the least:

 image scanning for vulnerabilities and malware
 ensuring that image is pulled from an authorized registry.
 checking that the image meets the defined security policies.
 trusted images should only be used. (Rice 2020)

With the admission control in place, the pass or fail control could then include in

the CI/CD pipeline for an automated CS. Some of these include:

 A failed vulnerability and compliance (VC) scan would result in a failed
build.

 The image failed VS scan should prevent image deployment to workloads.
 A failed VS scan on container runtime should alert for remediation.

(Hausenblas & Rice 2018)

An example security policy rule would be to fail a build pipeline if there are high

and critical VC issues that already have a fix. Different policies could be applied

based on the criticality of the infrastructure, for example, the development

environment having a different security policy from the production environment.

Figure 11 shows the integration of an automated security assessment to the

CI/CD pipeline which includes applying security policies during the image build,

storage and towards the runtime. Anchore engine is an example open-source tool

that could be integrated with the popular CD tool, Jenkins. (Jenkins 2018). On

the commercial side, Prisma Cloud from Palo-Alto among others can also be

used to achieve this implementation.

Figure 11. CI/CD Pipeline with automated security data flow. (Hausenblas & Rice 2018)

Figure 12 below shows an example configuration of a continuous security policy

for an acceptable vulnerability risk level for container images using Prisma Cloud

compute module. On the other hand, figure 13 shows the acceptable compliance

risk level. The VC policies will fail or pass the build if the set threshold is met.

Figure 12. CI/CD pipeline vulnerability Security policy

Figure 13. CI/CD Compliance Security policy using Prisma Cloud

Figure 14 shows a summary output of the pipeline from Jenkins. Build #9 failed

because there were 2 compliance issues of high and medium severity. The

security violations show that the image was created with a root user. Build #8 in

the screenshot passed when the policy was adjusted to alert about the policy

violations and pass the build.

Figure 14 Jenkins Image build output

The below output shows the detailed output of the scan and figure 15 shows the

identified vulnerabilities from the image. The full pipeline code is in appendix 1.

Started by user user
Running in Durability level: MAX_SURVIVABILITY
[Pipeline] Start of Pipeline
[Pipeline] node
Running on Jenkins in /opt/bitnami/jenkins/jenkins_home/workspace/prisma_pi
peline
[Pipeline] {
[Pipeline] stage
[Pipeline] { (Preparation)
[Pipeline] echo
Preparing
[Pipeline] }
[Pipeline] // stage
[Pipeline] stage
[Pipeline] {(Build)
[Pipeline] sh
+ echo FROM ubuntu:14.04
[Pipeline] sh
+ echo MAINTAINER AF <af@*.com>
[Pipeline] sh
+ echo RUN mkdir -p /tmp/test/dir
[Pipeline] sh
+ docker build --no-cache -t dev/ubun2:test .

Sending build context to Docker daemon 85.5kB

Step 1/3 : FROM ubuntu:14.04
 ---> df043b4f0cf1
Step 2/3 : MAINTAINER AF <af@*.com>
 ---> Running in ff29b61c1043
Removing intermediate container ff29b61c1043
 ---> b7b94befd51c
Step 3/3 : RUN mkdir -p /tmp/test/dir
 ---> Running in b01ec9b2cf08
Removing intermediate container b01ec9b2cf08
 ---> ac96d3384183
Successfully built ac96d3384183
Successfully tagged dev/ubun2:test
[Pipeline] }
[Pipeline] // stage
[Pipeline] stage
[Pipeline] {(Scan)
[Pipeline] prismaCloudScanImage
[PRISMACLOUD] Scanning images on master
[PRISMACLOUD] Waiting for scanner to complete
[PRISMACLOUD] /opt/bitnami/jenkins/jenkins_home/workspace/prisma_pipeline/t
wistcli4569411900994248309 images scan ubun* --docker-
address unix:///var/run/docker.sock --ci --publish --details --
address https://*.twistlock.com:443/121212 --ci-results-file prisma-cloud-
scan-results.json
[prisma_pipeline] $ /opt/bitnami/jenkins/jenkins_home/workspace/prisma_pipe
line/twistcli4569411900994248309 images scan ubun* --docker-
address unix:///var/run/docker.sock --ci --publish --details --
address https://*.twistlock.com:443/121212 --ci-results-file prisma-cloud-
scan-results.json
[Pipeline]}
[Pipeline] // stage
[Pipeline]}
[Pipeline] // node
[Pipeline] End of Pipeline
[Checks API] No suitable checks publisher found.
ERROR: Build failed
Finished: FAILURE

Figure 15. Image build security policy violations on Jenkins

4.2 Securing Container Registry

Images are stored in registries. To this thesis, the registries being considered are

those of the Cloud providers such as the Google container registry (GCR),

Amazon Elastic container registry (ECR) or the Azure container registry (ACR).

The storage and retrieval of the images in the registry are referred to as pushing

and pulling, respectively.

4.2.1 Container Registry Authentication and Authorisation

Granting access to the container registry should follow a least-privilege,

administrative accounts with write as well as delete roles should not be used for

regular tasks on the registry. The individual identity entities building the images

and pushing to the registry will be assigned credentials with the permissions to

push/pull to the registry, the identity credential should have short-lived token

access for few hours according to the organizational policies.

The CI/CD build pipeline should be assigned a service account subject to an

access-token rotational policy usually 90 days according to CIS benchmark. This

service account would only need the pull permission. Where possible,

namespaces should be used to group and share registry resources with relevant

teams within the project (Field et al. 2018). Private registries must always be

used to mitigate the risk of unauthorised access to the built images.

4.2.2 Continuous Vulnerability Assessment

As vulnerabilities are constantly discovered and threat actors always ready to

exploit, so is the criticality of continuous vulnerability assessment of images in the

registry. The vulnerability source at least gets the common vulnerability exposure

(CVE) from the national vulnerability database (NVD).

All images pushed to the registry must be scanned for vulnerability upon upload

based on the image digest which identifies the image and tracks its vulnerability

changes. After the initial assessment, a continuous and regular scan of the

image should be scheduled for an updated image vulnerability status based on

the threat intelligence from the vulnerability sources.

Most of the Cloud providers provide the container registry vulnerability scanning

as a managed service for the cloud-native solution (Google 2020e).

In addition to the scanning of the images, it is recommended to audit the age of

the container images stored in the registry. Older images with vulnerable

dependencies should be identified, patched, deleted, or recreated using the latest

libraries. Ensuring these activities are completed helps to reduce the attack

vectors from the Cloud infrastructure.

4.2.3 Registry Encryption

The data at rest in the registries are recommended to be encrypted to protect

against access to sensitive data on disks, modification, and unauthorized access

(Dissanayake & Mistry 2020). Most Cloud providers offer encryption for data at

rest which means the CSP completely manages the complete lifecycle of the

keys viz, creation, rotation, and deletion of the keys.

Encrypting the container registry using the customer-managed encryption keys

(CMEK) allows fulfilling the security and compliance requirement while having

control of how the encryption keys are used. Access to the registry can also be

managed with the encryption keys; a registry with disabled encryption key means

access is forbidden until allowed. In addition to encrypting the data at rest, data in

transit during pull and push activities should also be encrypted between the

registries and trusted endpoints.

4.2.4 Trusted Images

Images are easily transferrable from non-Cloud infrastructure to the Cloud due to

the portability and availability of the container images on public image

repositories. This presents a risk of allowing untrusted, malicious, and vulnerable

container images within the Cloud infrastructure. In ensuring that trusted images

are deployed on the workloads every there should be a centrally managed

inventory to identify every image and repositories, this provides control to

manage the allowed repositories and images.

In addition to this, identifying the images by names alone is not enough. Images

should have a unique identification either using their hashes or other unique

metadata. With the unique identification, an enforcement policy that ensures that

every container workload only runs the trusted images from the approved

registry. Image integrity check and continuous monitoring policy should be in

place to guarantee the maintenance of the images and compliance of the images

as the vulnerabilities and requirements changes (Souppaya et al. 2017).

According to MITRE ATT&CK, the persistence phase in a cloud attack could

include adversaries implanting malicious container images within the

infrastructure. Using tools such as Cloud Container Attack Tool (CCAT),

attackers can plant backdoors in container images and create a reverse web

shell to their command and control (C2). These are some of the potential threats

facing the cloud container workloads. (MITRE ATT&CK. 2020a).

4.3 Container Orchestrator Security

Container orchestrators are the tools used in the management and automation of

container deployments and regular tasks. Common container orchestrators

providing the framework to manage the containers and other microservice include

Kubernetes, Docker Swarm, Docker Compose, Fleet and Apache Mesos.

They provide the management of the container tasks, some of which is listed

below:

 Service scalability
 HA and DR management
 Rapid deployment and provisioning
 Allocation of resources to the containers
 Life cycle and configuration management
 Securing container communication
 Container workload scaling
 Scheduling and configuration
 Traffic routing and load balancing
 Container health monitoring
 Multi-cloud or multi-platform service development

(Pavlik & Mercl 2018)

Considering the scope of the roles the orchestrators in the management of

container workloads it is important to consider and ensure its security.

Kubernetes is one of the popular container orchestrators, the focus of the

research in this chapter will be on the CSP managed services of Kubernetes and

specifically the GKE with applicability to other CSPs.

4.3.1 Run the latest version

One of the fundamental controls to have is to ensure that the latest version of

Kubernetes is deployed as well as have an upgrade policy. By default, most of

the CSPs do not offer the latest version of Kubernetes for the container

workloads, leaving the responsibility to the users. Table 3 presents the available

versions of Kubernetes and the corresponding offerings in the Cloud from

Amazon, Google, and Microsoft (Foster 2020)

Table 3. Cloud Kubernetes versions and upgrade

 GKE EKS AKS

Default version 1.16 1.17 1.17

Supported

versions

1.14 to 1.18 1.14 to 1.17 1.16 to 1.19

Control-plane

upgrade

CSP Managed

automatically

Requires user to

upgrade

Requires user to

upgrade

4.3.2 Private Cluster

Access to the control plane and nodes should be restricted. By default, access to

the control is set to allow anyone access over the internet to make connections to

the control plane, this default configuration should never be used. The first of ten

phases of cloud workload attack tactic according to the MITRE ATT&CK cloud

matrix is initial access with a technique of exploiting public-facing application. It

means adversaries will try all possible exploits to access the hack value. (MITRE

ATT&CK 2020b).

During this research, a search from Shodan for publicly available Kubernetes

control plane reveals over 13000 workloads being available on the internet and

some even presenting the login console as shown in figure 16. Hence, users

must take these configurations critical, review the default configurations and

continuously review the Cloud security posture management (CSPM) of the

entire cloud infrastructure. Figure 17 shows the top 10 countries with publicly

accessible Kubernetes control plane.

Figure 16. Login Prompt of a publicly exposed Kubernetes control plane

Figure 17 Top countries of internet-facing control plane (Shodan. 2020)

Figure 18 shows how prevalent the misconfigurations are within the cloud

infrastructure. This research shows most of the responding clusters over the

internet are present in the AWS Cloud (Shodan. 2020). This does not mean that

the Cloud itself has the issue, rather it is the misconfiguration of the organisation

utilizing the services because the control plane security has not been considered.

In 2018, Tesla’s Kubernetes infrastructure was infiltrated due to having a

password-less k8s console and with privilege escalation storage buckets with

sensitive data were accessed. (RedLock 2018).

Misconfigurations like this are common in the cloud. A typical example of this was

an Accenture data leak due to publicly accessible Cloud storage containing

decryption keys and other sensitive corporate and customer data (Ashok 2017).

Figure 18 Top CSPs with a publicly reachable Kubernetes control plane (Shodan 2020).

Figure 19 shows that Kubernetes is the most available API endpoint during the

findings and presents how critical it is to protect the container workloads.

Figure 19 Kubernetes as the top publicly available service (Shodan 2020)

When deploying container workloads in the Cloud, it is highly recommended to

create private clusters as a mitigation to the publicly exposed Kubernetes control

planes. At the very least, create a whitelist of the authorized networks to the

public endpoints of the cluster. Table 4 shows how to create private clusters in

AWS, Azure and GCP using the CSP’s respective SDK command-line interface.

As an example, creating a private GKE cluster with access to the control plane

endpoints only allowed from the RFC1918 range requires adding the following

flag:

--enable-ip-alias

--enable-private-nodes

--enable-private-endpoint

--enable-master-authorized-networks (Google. 2020d)

Table 4 Creating Private Kubernetes Cluster in the Cloud

GCP SDK

configuration

AWS SDK

Configuration

Azure SDK

Configuration

gcloud container clusters
create <private-cluster-
name> \
 --enable-master-
authorized-networks \
 --enable-ip-alias \
 --enable-private-
nodes \
 --enable-private-
endpoint \
 --no-enable-basic-
auth \

aws eks update-cluster-

config \ --region

<region-code> \

 --name <my-cluster> \

 --resources-vpc-config

endpointPublicAccess=<

false>,endpointPrivateAc

cess=<true>

(AWS. Amazon EKS

cluster endpoint access

control)

az aks create -n

<private-cluster-name> -

g <private-cluster-

resource-group> --load-

balancer-sku standard --

enable-private-cluster

(Microsoft. 2020)

4.3.3 Container-centric OS

There are inherent attack surfaces to every OS allowing for exploits. In

containers, there is no need to have additional attack surface and it is highly

recommended to use a Container-specific OS (CSO) which reduces the

likelihood of exploiting host OS vulnerability thereby compromising the workloads.

The host OS to be used must not allow the containers to mount directories on the

host’s filesystem or tampering of the filesystem.

The use of CSO reduces the attack risks associated with share kernel as there is

not the availability of the application library/package managers as present in the

general-purpose OS and improper user access rights (Souppaya et al. 2017).

By default, GKEs runs the Container-Optimized OS (COS) which has a minimal

OS footprint such as read-only filesystem, file-system integrity check, locked-

down firewall and audit logging. (Google. 2020a).

4.3.4 Role-Based Access Control (RBAC)

The criticality of the principle of least privilege (PLP) cannot be overemphasized

in any infrastructure and Kubernetes is not an exception. Using PLP reduces the

blast radius of an attack in case of a compromise. (Hausenblas & Rice. 2018).

RBAC in Kubernetes involves some elements which are subject, resources,

verbs, roles, and role bindings as depicted in figure 20.

Figure 20 RBAC fundamentals in Kubernetes

The subjects are the entities requesting access to the Kubernetes API and the

subjects could be users, groups, or service accounts (SA). The resources are the

actual API available for use within the cluster while the verbs are the sets of

actions specified in a role defining the permitted operations on the resources by

the subjects. The summary of the verbs is CRUD (Create, Read, Update and

Delete) actions and the Role bindings attach a role to the subject.

4.4 Securing the Container Runtime

Images transitions to container runtime after being deployed. At the runtime,

there are new security concerns as new threats are discovered either due to

misconfiguration or vulnerabilities in the container application libraries and

dependencies. A survey by StackRox in 2019 shows that most organisations find

it challenging securing the container runtime as shown in figure 21. (StackRox.

2019). This section describes some of the risks to be considered in the container

runtime.

Figure 21 Container lifecycle security concerns (StackRox 2019)

4.4.1 Secret Management

Every application always requires some form of credentials to function as

expected. The credentials otherwise known as secrets could be access tokens to

make some API calls or even database (DB) credentials for some frontend

application. It is a common practice to see application developers hardcoding

these secrets to the application.

The PLP must be applied to the secrets granted to the containers and different

set of secrets should be applied to different environments. For instance, the

development secret must not be the same as the production environment. In

addition to the PLP, secrets must be encrypted at rest using CMEK as well as in

transit using TLS.

26 %

30 %

44 % Build

Deployment

Runtime

The secrets could be stored using the native Kubernetes storage or some other

third-party solutions. By default, Kubernetes stores its secret with other

configurations in the etcd, which is open-source which poses as a distributed and

reliable key-value store for critical data of distributed systems. (Etcd Authors.

2020). The etcd values are stored as base64 encoding which could be easily

decoded, for example using the echo command on a Linux OS as seen below.

echo YmFzZTY0IGRlY29kZXI= | base64 --decode

Organisations should ensure in addition to the encryption provided by the CSP,

customer-managed encryption keys (CMEK) are also used to encrypt the

workloads. Encryption key rotation policies should be applied to ensure that there

are controls in place to rotate keys or revoke in case of a comprise. (Hausenblas

& Rice. 2018). The use of third-party secret management solutions such as

Conjur and Hashicorp vault are more secure because they separate secrets from

the container workloads, provides a single secret management pane for all

applications and prevents committing secrets to SCM. (CyberArk Conjur).

Figure 22 Third-party secret management solution workflow (CyberArk Conjur)

4.4.2 Micro-segmentation

The limitation of network traffic by dividing networks into small segments thereby

reducing blast radius in a situation of a malicious attack or a breach referred to as

micro-segmentation. It requires the implementation of a distributed firewall

regulating access to the network traffic according to pre-defined security rules

based on each resource. (Mujib & Sari 2020).

This leads to the concept of identity-based micro-segmentation (IBMS),

implementing IBMS to secure the workloads eliminates the assumption that IP

based network reachability means network authorization as shown in Figure 23.

Figure 23 Traditional IP Connection request (Palo-Alto 2020a).

IBMS will apply several known metadata about a workload to provide a set of

cryptographically signed identity dynamically learned from the cloud-native

sources such as the system information, cloud provider and the container

orchestrator. (Palo Alto 2020). Table 5 shows some cryptographic unique identity

for the cloud-native identity source.

Table 5 identity-based micro-segmentation (Palo Alto. 2020).

Cloud-native identity source Cryptographic unique identity

System Information OS

services

Hostnames

Cloud Provider IAM roles

Other CSP metadata

Container Orchestrator Kubernetes service accounts

Namespaces

Docker images

App labels

Figure 24 shows the 3-way handshake of the IBMS in which the cryptographic

identity is used to first authenticate client and server workloads. Based on the

matching attributes, the network is authorised. The nonce is the arbitrary value

used only once within the lifetime of a cryptographic session. (Rogaway. 2002).

Figure 24. IBMS Connection Request (Palo Alto .2020)

By default, k8s allows Intra pod traffic within a cluster without restrictions. To limit

traffic, Kubernetes uses network policies to declaratively configure how pods

communicate with one another using a combination of allowed pods, allowed

namespaces and IP block. (kubernetes.io 2020a).

K8s implements micro-segmentation with network plugins such as calico, Canal,

Cilium, CNI-Genie etc. Most public clouds such as AWS, GCP and Azure

supports some of the Kubernetes network plugins such as calico that helps to

implement the rules defined in the network policies. (Calico 2019). Defining the

rules on the k8s nodes is a time-consuming task to do manually that is not worth

the effort as the containers are ephemeral which means the rules will have to be

recreated every time the containers are created. (Rice 2020).

Moreover, a k8s cluster in a production environment will have more than one

node, which means all nodes within the cluster must have all the rules defined for

them. Leveraging on the k8s network policy objects provides the easy

management and automation of the rules. The network policies could also be

dynamically using container-native tools capable of learning about the normal

container workloads network traffics.

Some best practices for using micro-segmentation to protect the cloud container

workloads is having a default deny rule, default-deny egress, limit pod-to-pod

traffic by allowing only pods with the right label to communicate and finally, allow

only predefined ports for each container. (Rice 2020).

4.4.3 Service Mesh

Service mesh (SM) in k8s provides secure communication for the services of a

container cluster. It provides mutual TLS (mTLS) encrypting communications

within container workload infrastructure and protecting the infrastructure from

MiTM attack. Unlike the network policies operating from OSI layer 3 to 4, service

mesh secures the container workloads from OSI layer 5 to 7 which is the session

to application layer respectively. (Rice 2020).

Figure 25 Service Mesh mTLS (Amazon AWS App Mesh)

In addition to securing the communication between the services with mTLS,

which gives authentication and authorization for the services, SM provides the

possibility of creating policies that are enforced across the infrastructure. (Google

2020d). For Cloud-managed k8s services, there are managed service mesh

solutions such as GCP’s Anthos service mesh (ASM) and AWS App Mesh. SM is

made of proxies called sidecars because they run alongside the services. All the

requests between the microservices are routed through the proxies for security,

traffic management and monitoring.

Figure 26 Service Mesh sidecars (RedHat. What is service mesh?)

If service mesh will be used, it is recommended to have some controls that

ensure that the sidecars are present in all the containers and possibly have a

complementary solution to restrict the traffic flow between the containers as well

as external IP addresses or domains.

4.5 Threats and mitigation

Microsoft Azure security team presented the first Kubernetes attack matrix using

the MITRE ATT&CK framework. It shows threat landscape, tactics, and the

techniques an adversary could use to exploit a Kubernetes infrastructure.

(Weizman 2020b)

This matrix includes forty techniques with nine tactics that an attacker can use to

compromise a container workload as shown in Figure 24. Usually, the

mitigations for the threats have overlapping security controls, organisations

should ensure policies are in place to secure the container workloads within the

Cloud.

Figure 27. Kubernetes attack Matrix (Weizman 2020b)

The attacks on the container workloads could be resolved either within

Kubernetes itself, at the CSP or other cloud-native tooling such as the container

registries.20 of the 40 threats can be mitigated by implementing security controls

in Kubernetes itself, 6 techniques could be mitigated implementing controls in

toolchains, 3 mitigated at the CSP and 11 mitigated with a set of controls in k8s

and at the CSP. (Dang 2020). The details of the individual technique are

presented in this chapter.

4.5.1 Initial Access

This tactic refers to an attacker gaining access to the GKE, AKS or the EKS

clusters deployed using the cloud account credentials. The compromise of a

cloud account means the possibility of gaining access to the management plane.

Table 6 details the techniques and recommended mitigation for the initial access

tactic.

Table 6 Initial Access Mitigation (Dang. 2020)

Technique Mitigation security

controls

Using Cloud

Credentials

 Avoid the use of shared
accounts

 Configure Cloud IAM to
restrict access to
privileged credentials.

 Implement PLP

CSP

Compromised images

in the registry

 Only use private registries
 Implement Trust image

policy
 Developers to use only

approved base image.
 Limit access to the

registry
 Continuous VC scans of

the registry

Tools (Registry)

kubeconfig file Always use the latest
version of Kubernetes
clients

 Authenticate to the API
server using a third-party
DAP

Kubernetes

Application

vulnerability

 Implement workload
identity

 Scan images for
vulnerabilities

 Limit external access to
pods with network policies

 Implement admission
controls to prevent
high/critical severity
images from deployment

CSP

K8s

Exposed Dashboard Use private endpoint to
dashboard

 Delete/disable dashboard
if not required

 Restrict ingress traffic to
the dashboard

K8s

4.5.2 Execution

This tactic allows the attacker to run the malicious codes inside the cluster and

table 7 shows the techniques used to exploit container workloads and the

possible mitigations to secure the container workloads in the cloud.

Table 7 Execution phase mitigation (Dang 2020).

Technique Mitigation security controls

Exec into containers Implement RBAC
with PLP access
to pods

 Delete
unnecessary
processes from
containers

 Run pods with RO
file system

K8s

Bash/cmd inside a

container

 Limit access to
the workloads

CSP

New container Implement RBAC
to create pods

K8s

Application exploit Scan images for
vulnerabilities

 No container
should have code
execution
vulnerabilities

K8s

SSH server running

inside a container

 Policy to prevent
SSH server
process in
containers

 Have monitoring
and audit all SSH
servers running in
the containers

K8s and Tooling

4.5.3 Persistence

In the persistence phase, the attackers establish backdoors to ensure that

persistence access to the cluster is maintained if initial connectivity access is lost.

The techniques involved in this stage is presented in table 8.

Table 8 Persistence Mitigation (Dang 2020).

Technique Mitigation security controls

Backdoor container Implement RBAC to

create pods and

abstractions that create

pods

K8s

Writable hostPath

mount

 In CSP limit node
lifetime to 24hrs
and automatically
provision new
nodes as a
replacement.

 Policy to
limit/disallow host
mount

CSP

K8s

 Make required
host paths as RO

Kubernetes CronJob RBAC with PLP to

create pods and jobs

K8s

4.5.4 Privilege Escalation (PE)

The PE tactics involve the techniques used by the attacker to have an elevated

right within the clusters. Some of the access rights could be gaining access to the

nodes from the containers, privilege elevation in the container and possibly

access to cloud infrastructure, especially in environments without RBAC or

misuse of cloud service accounts.

The techniques and the possible mitigations for the PE tactic are presented in

table 9.

Table 9 Privilege Escalation mitigation (Dang 2020).

Technique Mitigation security controls to

configure

Privileged container Restrict the use of
running privileged
container
workloads

 If any implement
RBAC and
network policies
to restrict network
access to the
privileged
workloads.

K8s

Cluster-admin binding RBAC to limit
admins with
access to cluster-
admin role and
admins able to
create role
bindings.

K8s

 Avoid the use of
cluster-admin role
and grant groups
with granular
permissions with
PLP

hostPath mount In CSP limit node
lifetime to 24hrs
and automatically
provision new
nodes as a
replacement.

 Implement a
policy to prevent
host mount in
container
workloads

 Use pod security
policies to specify
the allowed file
path to be
mounted

CSP

K8s

Access Cloud

resources

 Implement
workload identity
where applicable.

 limit node lifetime
to 24hrs and
automatically
provision new
nodes as a
replacement.

 Implement a
policy to prevent
host mount in
container
workloads

 Use pod security
policies to specify
the allowed file
path to be
mounted

CSP

K8s

4.5.5 Defense Evasion

In the defense evasion, the attacker uses different tactics to prevent being

detected and hide all trails leading to its activities. Details of the techniques and

possible mitigation are presented table 10 below.

Table 10 Defense Evasion Mitigation (Dang 2020).

Technique Mitigation security controls to

configure

Clear container logs Restrict host
mounts

 In CSP limit
access to the
cluster workloads
and implement
PLP

 Implement a
SIEM system to
collect logs or
have persistence
storage.

K8s

CSP

Tool

Delete K8s events Limit workload
access to the
nodes.

 Enable the
logging supported
features

K8s

CSP

Pod/container name

similarity

 Implement RBAC
for Pod creations
APIs

 Use PLP for
access to the
cluster

K8s

Connect from a Proxy

server

 Restrict access to
the k8s API
server

CSP

4.5.6 Credential Access

In this tactic, the attacker starts using techniques to steal sensitive credentials

such as passwords, service tokens, service accounts, secret key stores in the

cluster, the cloud or application credentials. Table 11 shows the recommended

mitigations.

Table 11 Credential Access mitigation (Dang 2020).

Technique Mitigation security controls

List k8s secrets Use namespaces
to limit the scope
of a secret

 Implement secret
rotation.

 Store secrets
outside of the
container
workloads

K8s

Mount service

principal

 limit node lifetime
to 24hrs and
automatically
provision new
nodes as a
replacement.

 Use pod security
policies to specify
the allowed file
path to be
mounted.

CSP

K8s

Access container

service account

 Service accounts
should have
RBAC with PLP.

 Avoid the use of
the cluster-admin
role

K8s

Applications

credentials in

configuration files

 Ensure no secrets
are written to
manifest files.

 Scan files to
identify secrets
stored in the SCM

K8s

Tools

4.5.7 Discovery

In this phase, the attacker explores ways to identify more resources within the

k8s cluster thereby allowing an attacker to make lateral movement within the

container workload infrastructure. By default, k8s does not restrict traffic between

the pods, hence making the discovery exercise and enumeration easier to do.

Some of the discovery would include getting instance metadata (such as SSH

pub keys, network configs,) and running pods using

https://<NODE IP>:10255/pods/. With network policies, access to the kubelet

port can be restricted as follows:

apiVersion: crd.projectcalico.org/v1
kind: GlobalNetworkPolicy
metadata:
 name: deny-access-to-kubelet-port
spec:
 types:
 - Egress
 egress:
 - action: Deny
 protocol: TCP
 destination:
 nets:
 - 0.0.0.0/0
 ports:
 - 10255
 source: {}

Other recommended mitigations to the discovery tactic are in table 12 below.

Table 12 K8s Discovery mitigation (Dang 2020).

Technique Mitigation security controls

Access the K8s API

server

 Restrict users and
SA with access to
the k8s API
server

 Use private
clusters

K8s

CSP

 Access to
external clusters
to be limited to
only trusted IPs

Access Kubelet API Implement
network policies
to block pod
access to the
Kubelet port

K8s

Network mapping Implement micro-
segmentation to
restrict traffic
between pods.

K8s

Access Kubernetes

dashboard

 Don’t use the
Kubernetes
dashboard, rather
use the cloud
console
dashboard

K8s

Instance API Enable metadata
concealment or
workload identity

 Implement egress
network policy to
restrict to the
cloud metadata
services

CSP

4.5.8 Lateral Movement

The lateral movement tactics focus on navigating through the container clusters

to gain access to other resources within the cluster, underlying node and

ultimately other cloud resources within the infrastructure.

For instance, every workload in AKS has a service principal (SP) used for the

creation and management of the resources used for cluster operations. The SP is

stored in /etc/kubernetes/azure.json, so an attacker with access to the credentials

can access and modify the resources. Table 13 shows the recommended

mitigation actions.

Table 13 Lateral Movement Mitigation (Dang 2020)

Technique Mitigation security controls

Access cloud resource limit node lifetime
to 24hrs and
automatically
provision new
nodes as a
replacement.

 Enable metadata
concealment or
workload identity

 Implement a
policy to prevent
host mount in
container
workloads

 Use pod security
policies to specify
the allowed file
path to be
mounted

CSP

K8s

Container service

account

 Implement RBAC
with PLP for SA
and role bindings

K8s

Cluster internal

networking

 Implement
network policies
to restrict inter
pod network
traffic

K8s

Applications

credentials in

configuration files

 Ensure no secrets
are written to
manifest files.

 Scan files to
identify secrets
stored in the SCM

Tools

K8s

Writable volume

mounts on the host

 In CSP limit node
lifetime to 24hrs
and automatically

K8s

CSP

provision new
nodes as a
replacement.

 Policy to
limit/disallow host
mount

 Make required
host paths as RO

Access K8s dashboard Do not use the
Kubernetes
dashboard, rather
use the cloud
console
dashboard

K8s

Access tiller endpoint If using Helm,
upgrade to the
latest version of
Helm

Tools

4.5.9 Impact

The last tactic of the Kubernetes attack matrix is the impact where the attacker

finally launches the offensive to destroy the entire container workloads, cause a

denial of service and obtain other hack values from the infrastructure. In mid-

2020, there was a large-scale campaign where attackers have impacted the

cloud container workloads by compromising them for cryptojacking attack.

(Weizman 2020a). Recommended mitigation techniques are contained in table

14.

Table 14 Impact Mitigation (Dang 2020).

Technique Mitigation security controls

Data Destruction Actively monitor
the audit logs

K8s

CSP

 Implement RBAC
with PLP to SIEM

 Restrict access to

k8s nodes and
configuration APIs
from CSP

Resource Hijacking Restrict access to
k8s cluster nodes

 RBAC with PLP to
create pods

 Do not deploy

public images in
production without
scanning for VC

K8s

CSP

Denial of service Always deploy the
latest version of
k8s available from
the CSP

 Only permit
allowed
connections
between pods.

 Restrict access to
the cluster API
and internally
consumed
services to only
allowed IP.

 Implement
effective
monitoring and
alert security
solution

K8s

CSP

5 CONTAINER SECURITY STANDARDS AND PUBLICATIONS

Cybersecurity consists of several standards with different sets of policies used to

protect critical infrastructures across different industries. The recommended

policies are sets of proven guidelines that could help secure the infrastructure.

Also, organisations have different standard compliance requirements needed by

law. For the container security and the findings done in this thesis work, the

examined standards and publication are from NIST, CIS, CSA, PCI and

publications from IEEE and leading container security vendors such as StackRox,

Aquasec, Palo Alto, Microsoft and Oracle just to mention a few.

5.1 NIST Special Publications

The NIST special publication 800-190 is a comprehensive set of guidelines to

secure application container technologies. It presents the threats and the

countermeasures to consider when planning, implementing, and maintaining a

container technology infrastructure. (Souppaya et al. 2017.)

The publications focus on the risks associated with container images, the image

registries, host OS, orchestrator, and the container runtime. Organisations are

responsible to implement the countermeasures using any of the security tools

with the technological capabilities to address the risks described in the special

publication 800-190. Some of the solutions providing the CWPP include Aquasec,

Twistlock, Neuvector, StackRox, Sysdig, Anchor and many others.

5.2 CIS

CIS publishes several benchmarks to configure the infrastructure from the OS,

Cloud providers, network devices, browsers etc. It has also published

recommended best practices for docker and Kubernetes virtualization.

The CIS benchmark for Kubernetes provides a set of general guidelines to

securely configure the open-source Kubernetes infrastructure.

For users consuming the Kubernetes CMS such as GKE and EKS, the security of

container workloads is a shared responsibility between the users and the CSP.

To ensure that the right set of controls are implemented, the applicable CSP

Kubernetes benchmark such as CIS GKE benchmark and CIS EKS benchmark

should be applied as they are a subset of the CIS Kubernetes Benchmark

addressing the specific risks of using the Kubernetes Cloud Managed services.

(Google. 2020b).

Security solutions that support the k8s CMS benchmarks should be deployed for

an automated audit and continuous compliance monitoring. A manual check

could as well be done using the open-source kube-bench for the worker nodes as

follows; kube-bench node --benchmark cis-1.5

5.3 PCI Secure Cloud Computing Guidelines

The PCI Cloud computing guidelines prescribed standards to fulfilled by

organisations accepting payment cards. It has defined some minimum

requirements to deploy application container workloads. One of the policies

relating to secret management is required to ensure that secrets are not stored

within the cluster.

“Access controls to both the orchestration framework and the containers

themselves such that different workloads do not have access to keys, identity

tokens and other sensitive information used by other containers in the cluster”

(Cloud Special Interest Group. 2018). Other recommended policies have been

discussed in this research work.

5.4 Cloud Security Alliance

The Cloud security alliance, CSA have created a set of guidelines across 14

different domains to ensure a secured Cloud architecture, adequate governance

in the Cloud and Operating the Cloud securely. (Mogul et al. 2017). It is a highly

recommended standard for cloud workloads.

6 RESULTS AND DISCUSSION

This research seeks to answer the three research questions identified at the

beginning of this thesis as specified in chapter 2.1. The research questions are

listed below with the discussion and findings to the questions are presented in the

topics are contained in this chapter. The applicable security controls from the

results presented in this section are also implemented by the commissioner.

 What security controls should be implemented to protect the container
workloads in the Cloud?”.

 What is the current threat landscape of containers and what are the
recommended mitigation?

 What cloud controls can be utilized to secure the container workloads
deployed in the cloud?

6.1 What security controls should be implemented to protect container
workloads in the cloud?

Securing the container workloads is not a “press one-button” approach to

security, it requires a well-planned approach to secure the containers irrespective

of the orchestration tool. This research shows that container security must be part

of their entire lifecycle; from the build to running phase and every element in-

between.

The building of base images must comply with the industry standard and

hardened using the recommended benchmark such as the CIS benchmark.

Having a hardened base image is not enough because threats and vulnerabilities

are always evolving, so organisations must have continuous security as part of

the CI/CD to ensure that vulnerability and compliance are always monitored.

The challenge most organisations face is using processes and tools not designed

for securing container workloads in the cloud, processes such as patch

management and tools to be adopted must adapt rapidly a containerized

infrastructure and able to interpret the cloud constructs and provide more context

about any vulnerabilities or misconfigurations.

Establishing a list of trusted images to be used for deployment, implementing

RBAC with PLP and ensuring that all data at rest and in transit are always

encrypted will further strengthen the security posture of the container workloads

in the cloud.

In the runtime, employing a defense-in-depth approach helps further secure the

containers. Limiting access between containers with the use of micro-

segmentation is a recommended practice to ensure that container workload is

only allowed to connect with specified namespaces and ports. The runtime must

be continuously monitored for any deviation from set security policies and

immediately remediated based on the associated risk factor.

It is highly recommended that organisations implementing container workloads

should at the minimum ensure that the infrastructure follows the NIST special

publication 800-190 and the CIS benchmark for the adopted k8s cloud-managed

service.

6.2 What are the current threat landscape of containers and recommended
mitigation?

Attackers are constantly exploiting the vulnerabilities associated with containers

either in the runtime or images stored in registries such as a malicious image

being downloaded over 5million times from docker hub (Goodin. 2018). The main

container threats in the cloud include application vulnerability, misconfigured

cloud IAM, insufficient RBAC with PLP, secret exposure, malicious container

images, overly permissive network, and insecure orchestrator configurations.

This study shows that the threat landscape of the containers is no different from

the non-containerized applications concerning the tactics which are shown from

in the matrix from chapter 4.5. There is however some peculiarity with the

containers especially for the orchestrator being considered in this research which

is the Kubernetes.

The uniqueness includes the presence of a control plane being the central

management system to control the operations of all the nodes and containers in a

container cluster. An adversary with access to a misconfigured and vulnerable

control plane can exploit and impact the normal operations of the cluster.

Most of the identified threats can be mitigated by implementing effective RBAC

with PLP, using micro-segmentation and having a cloud-native runtime security

solution. Security minded organisations should build their compliant images and

use private registries instead of utilizing publicly available images.

6.3 What cloud security controls can be utilized to secure the workloads
deployed in the cloud?

Deploying in the cloud comes with its own risk and the required level of

applicable security control to be implemented in the cloud depends on the

deployment model being adopted, either IaaS or PaaS. The k8s cloud managed

services are the PaaS services, which means the security of the underlining

infrastructure is the responsibility of the CSP based on the shared responsibility

model.

When deploying container workloads in the cloud, IAM is a critical foundation

element that must be configured with RBAC. IAM services such as GCP “cloud

IAM Conditions” provides a possibility to define the required set of permissions

for the human and service accounts needed by the cluster.

It was interesting to see how k8s clusters are publicly available on the internet

with the majority of them available on the public cloud, this shows that the use of

private clusters should be defined as a guardrail in the cloud. In addition to this

and reducing the attack surface. Besides, some cloud providers by default create

a publicly accessible load balancer with firewalls allowing access from 0.0.0.0/0,

this should be reviewed to ensure that the services are not publicly exposed by

creating private load balancers. The research shows using minimalistic OS

should be favored over the full feature OS for the container workloads.

6.4 Recommended future research.

Container technologies and especially using Kubernetes as orchestrator

continues to evolve and develop new features and tools to manage them. The

threat to the containerized infrastructure is also evolving so is the security

standards to protect containers and the use of the cloud also adds additional

complexity to the security of the workloads if not configured properly.

This research did not examine in detail the specifics of different cloud provider

when deploying the container workloads in the cloud and this presents an

opportunity for research and learning on the capabilities of different cloud

providers to securely deploy container workloads. An additional research

proposal is identifying the specific monitoring metrics to effectively implement

situation awareness for a containerized infrastructure in the cloud.

REFERENCES

Abbassi, P. 2019. Building Container Images with Podman and Buildah. WWW
document. Available at: https://www.giantswarm.io/blog/building-container-
images-with-podman-and-buildah [Accessed 05 December 2020].

Amazon AWS App Mesh. Amazon Web Services. Available at:
https://aws.amazon.com/app-mesh [Accessed 05 November 2020].

Ashok, A. 2017. Accenture Data leak: ‘Keys to the Kingdom’ left exposed via
multiple unsecured cloud servers. International Business Times., 11 October
2017. Available at: https://www.ibtimes.co.uk/accenture-data-leak-keys-kingdom-
left-exposed-via-multiple-unsecured-cloud-servers-1642653 [Accessed 05
December 2020] .

AWS. Amazon EKS cluster endpoint access control. WWW document. Available
at: https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
[Accessed 15 December 2020].

Bernstein, B. 2018. Container Image Registry Security Best Practices. WWW
document. Available at: https://thenewstack.io/container-image-registry-security-
best-practices/ [Accessed 02 December 2020].

Brady, K., Moon, S., Nguyen, T. & Coffman, J. 2020. Docker Container Security
in Cloud Computing. IEEE. 10th Annual Computing and Communication
Workshop and Conference (CCWC)

Bytemark. 2019. Kubernetes Terminology: Glossary. WWW document. Available
at: https://docs.bytemark.co.uk/article/kubernetes-terminology-glossary/
[Accessed 26 April 2020].

Calico. 2019. Managed Public Cloud. Calico Project. WWW document. Available
at: https://docs.projectcalico.org/getting-started/kubernetes/managed-public-
cloud/ [Accessed 05 December 2020].

CIS Docker 2019. CIS Docker Benchmark v1.2.0. WWW document. Available at:
https://learn.cisecurity.org/l/799323/2020-07-02/yz62 [Accessed 26 April 2020].

Cloud Special Interest Group. 2018. PCI Security Standards Council. Information
Supplement: PCI SSC Cloud Computing Guidelines Version 3.

CyberArk Conjur. Secret management solution. WWW document. Available at:
https://www.conjur.org/ [Accessed 11 December 2020].

Dang, W. 2020. Protecting Kubernetes: Kubernetes Attack Matrix and How to
Mitigate its Threats. WWW document. Available at:
https://www.stackrox.com/post/2020/06/protecting-against-kubernetes-threats-
chapter-1-initial-access/ [Accessed 15 December 2020].

Dissanayake, L. & Mistry, P. 2020. Introducing Amazon ECR server-side
encryption using AWS Key Management System. WWW document. Available at:
https://aws.amazon.com/blogs/containers/introducing-amazon-ecr-server-side-
encryption-using-aws-key-management-system/ [Accessed 29 December 2020].

Docker. 2020a. About Storage Drivers. WWW document Available at
https://docs.docker.com/storage/storagedriver/ [Accessed 04 December 2020].

Docker. 2020b. Release notes. WWW document. Available at:
https://docs.docker.com/engine/release-notes/ [Accessed 10 December 2020].

Etcd Authors. 2020. ETCD WWW document. Available at: https://etcd.io
[Accessed 29 November 2020].

Field, J., Lepow, D., Moat, L., Macy, M., Jenks, A. & Connock, J. 2018. Best
Practices for Azure Container Registry. WWW document. Available at:
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-best-
practices [Accessed 02 December 2020].

Foster M, 2020. EKS vs GKE vs AKS – Evaluating Kubernetes in the Cloud.
WWW document. Available at: https://www.stackrox.com/post/2020/10/eks-vs-
gke-vs-aks/ [Accessed 10 November 2020].

Goodin, D. 2018. Backdoored images downloaded 5million times finally removed
from Docker Hub. WWW document. Available at:
https://arstechnica.com/information-technology/2018/06/backdoored-images-
downloaded-5-million-times-finally- [Accessed 11 January 2021].

Google. 2020a. Container-Optimized OS. WWW document. Available at:
https://cloud.google.com/container-optimized-os [Accessed 29 November 2020].

Google. 2020b. CIS Benchmarks. WWW document. Available at:
https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks
[Accessed 04 November 2020].

Google. 2020c. GKE Cluster Architecture. WWW document. Available at:
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
[Accessed 90 January 2021].

Google. 2020d. Hardening your cluster’s security. WWW document. Available at:
https://cloud.google.com/kubernetes-engine/docs/how-to/hardening-your-cluster
[Accessed 29 November 2020].

Google. 2020e. Vulnerability Scanning. WWW document. Available at:
https://cloud.google.com/container-analysis/docs/vulnerability-scanning
[Accessed 29 November 2020].

Hausenblas, M. & Rice, L. 2018. Kubernetes Security: Operating Kubernetes
Clusters and applications safely. 1st Edition. O’Reilly Media.
https://shodan.io/report/He7efzH9. [Accessed 04 December 2020].

Jenkins. 2018. Anchor Container Image Scanner. WWW document. Available at:
https://wiki.jenkins.io/display/JENKINS/Anchore+Container+Image+Scanner+Plu
gin [Accessed 10 December 2020].

Johnston, M. & Newcomer, K. 2018. What is Container Security? WWW
document. Available at: https://www.redhat.com/en/topics/security/container-
security [Accessed 26 April 2020].

Joy, A. 2015. Performance Comparison between Linux Containers and Virtual
Machines. IEEE. International Conference on Advances in Computer Engineering
and Applications Ghaziabad, 2015, 342-346.

Kaczorowski, M. 2019 Exploring Container Security: The shared responsibility
model in GKE. Google GCP. WWW document. Available at:
https://cloud.google.com/blog/products/containers-kubernetes/exploring-
container-security-the-shared-responsibility-model-in-gke-container-security-
shared-responsibility-model-gke [Accessed 09 November 2020].

Kubernetes.io. 2020a. Kubernetes components. WWW document. Available at:
https://kubernetes.io/docs/concepts/overview/ [Accessed 10 December 2020].

Kubernetes.io. 2020b. What is Kubernetes? Kubernetes. WWW document
Available at https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
[Accessed 26 April 2020].

Lee, T. & Hogenson, G. 2020. How Bridge to Kubernetes works. WWW
document. Available at:. https://docs.microsoft.com/en-
us/visualstudio/containers/overview-bridge-to-kubernetes?view=vs-2019
[Accessed 10 January 2021].

MacDonald, M. & Croll, T. 2020. Market Guide for Cloud Workload Protection
Platforms. WWW document. Available at:
https://www.gartner.com/doc/reprints?id=1-1ZF2YMQ5&ct=200707&st=sb
[Accessed 10 May 2020].

Maharjan, Y. 2020. How rolling and rollback deployments work in Kubernetes.
WWW document. Available at: https://medium.com/@yankee.exe/how-rolling-
and-rollback-deployments-work-in-kubernetes-8db4c4dce599 [Accessed 10
January 2021].

Microsoft. 2020. Create a private Azure Kubernetes Service Cluster. WWW
document. Available at: https://docs.microsoft.com/en-us/azure/aks/private-
clusters [Accessed 11 November 2020].

MITRE ATT&CK. 2020a. Cloud Matrix. WWW document. Available at:
https://attack.mitre.org/matrices/enterprise/cloud/ [Accessed 29 November 2020].

MITRE ATT&CK. 2020b. Implant Container Image. WWW document. Available
at: https://attack.mitre.org/techniques/T1525/ [Accessed 05 December 2020].

Mogul, R., Arlen, J., Gilbert, F., Lane, A., Mortman, D., Peterson, G. & Rothman,
M. 2017. Security Guidance for Critical Areas of Focus in Cloud Computing v4.0.

Moore, S. 2020. Gartner Forecasts Strong revenue growth for global container
management software and services through 2024. WWW document. Available at:
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-
forecasts-strong-revenue-growth-for-global-co [Accessed 10 May 2020].

Moyle. Ed. 2020. Benefits of Open Source container vulnerability scanning.
WWW document. Available at:
https://searchcloudsecurity.techtarget.com/tip/scan [Accessed 10 November
2020].

Mujib, M. & Sari, R. Performance Evaluation of Data Center Network with
Network Micro-segmentation. 2020 12th International Conference on Information
Technology and Electrical Engineering (ICITEE) IEEE Xplore.

O'Brien, R. 2001. An Overview of the Methodological Approach of Action
Research. Available at https://www.web.ca/arfinal.html#_Toc26184651
[Accessed 25 April 2020].

Palo-Alto. 2019. Container security for dummies. WWW document. Available at:
https://www.paloaltonetworks.com/resources/guides/container-security-for-
dummies [Accessed 4 April 2020].

Palo-Alto. 2020. Identity-Powered Micro-segmentation: Going beyond network
boundaries to protect cloud-native applications. ebook-081720.

Pavlik, J. & Mercl, R. 2018. University of Hradev Kravlove. The Comparison of
Container Orchestrators. Available at:
https://www.researchgate.net/publication/323417485_The_Comparison_of_Cont
ainer_Orchestrators

RedHat. 2018. Container and Images. OpenShift 3.0.WWW document. Available
at: https://docs.openshift.com/enterprise/3.0/ [Accessed 04 December 2020].

RedHata. What is a Kubernetes Cluster? WWW document. Available at:
https://www.redhat.com/en/topics/containers/what-is-a-kubernetes-cluster
[Accessed 10 November 2020].

RedHatb. What is Service Mesh? WWW document. Available at:
https://www.redhat.com/en/topics/microservices/what-is-a-service-mesh
[Accessed 13 November 2020].

RedLock. 2018. CSI Team. Lessons from the Cryptojacking Attack at Tesla. Blog.
Available at: https://redlock.io/blog/cryptojacking-tesla [Accessed 05 November
2020].

Rice, L. 2020. Container Security: Fundamental Technology Concepts that
protect Containerized Applications. 1st Edition. O’Reilly.

Rogaway.P. 2002. Nonce-Based Symmetric Encryption. University of California,
Davis. Available at: https://rdcu.be/ceXdJ

Sanz, J., Carter. E. & Anderson, K. 2018. Running Containers in Production for
dummies. Ebook. Sysdig. Available at:
https://sysdig.com/resources/ebooks/running-containers-in-production-for-
dummies/ [Accessed 10 October 2020].

Shodan. 2020. Kubernetes-online20201220. WWW document. Available at:
https://shodan.io/report/He7efzH9 [Accessed 15 November 2020].

Simi, S. 2019. Docker Image Vs Container: The Major Differences. WWW
document. Available at: https://phoenixnap.com/kb/docker-image-vs-container
[Accessed 25 April 2020].

Smith, M. 2017. What is action research and how do we do it. The encyclopedia
of pedagogy and informal education. WWW document. Available at:
[https://infed.org/mobi/action-research/. Accessed on [Accessed 25 April 2020].

Souppaya, M., Morello, J. & Scarfone, K. 2017. National Institute of Standards
and Technology. Special publication 800-190. Application Container Security
Guide. 2017. PDF document. Available at: https://doi.org/10.6028/NIST.SP.800-
190 [Accessed 25 April 2020].

StackRox. 2019. Container and Kubernetes Security: An Evaluation Guide. PDF
document. Available at: https://security.stackrox.com/container-security-
evaluation-guide.html [Accessed 11 November 2020].

Sultan, S., Imtiaz, A. & Tassos, D. 2019. Container Security: Issues, Challenges,
and the Road Ahead. IEEE Access 7: 52976–96. Available at:
https://doi.org/10.1109/ACCESS.2019.2911732.

Wadsworth, R. 2016. Beyond Docker: Other Types of Containers. WWW
document. Available at: https://www.contino.io/insights/beyond-docker-other-
types-of-containers [Accessed 23 December 2020].

Weizman, Y. 2020a. Misconfigured Kubeflow workloads as a security risk. WWW
document. Available at: https://www.microsoft.com/security/misconfigured-
kubeflow-workloads [Accessed 30 December 2020].

Weizman, Y. 2020b Threat matrix for Kubernetes. 2020. WWW document.
Available at: https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-
kubernetes/ [Accessed 30 December 2020].

Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L. & Zhou, W. 2018. A Comparative
Study of Containers and Virtual Machines in Big Data Environment. IEEE 11th
International Conference on Cloud Computing, San Francisco.

LIST OF FIGURES

Figure 1 Workload Abstractions (Kubernetes.io 2020b) -------------------------------- 11

Figure 2 Namespaces and Cgroups (Joy. 2015). -- 12

Figure 3 Lifespan of application workloads (MacDonald & Croll. 2020). ----------- 13

Figure 4 Container Image Layers (Simi 2019) -- 14

Figure 5 Relationship between Dockers and Kubernetes (Bytemark 2019) ------ 15

Figure 6 Kubernetes Standard components (Kubernetes.io 2020a) ---------------- 16

Figure 7. k8s objects (Maharjan 2020) -- 19

Figure 8. k8s objects (Lee & Hogenson 2020). --- 19

Figure 9. Share responsibility model of the k8s CMS (Google 2020c) ------------- 20

Figure 10. Base Image security threats (Rice 2020) ------------------------------------ 22

Figure 11. CI/CD Pipeline with automated security data flow. (Hausenblas & Rice

2018) --- 25

Figure 12. CI/CD pipeline vulnerability Security policy --------------------------------- 26

Figure 13. CI/CD Compliance Security policy using Prisma Cloud ------------------ 26

Figure 14 Jenkins Image build output --- 27

Figure 15. Image build security policy violations on Jenkins -------------------------- 29

Figure 16. Login Prompt of a publicly exposed Kubernetes control plane --------- 33

Figure 17 Top countries of internet-facing control plane (Shodan. 2020) --------- 34

Figure 18 Top CSPs with a publicly reachable Kubernetes control plane (Shodan

2020). -- 35

Figure 19 Kubernetes as the top publicly available service (Shodan 2020) ------ 35

Figure 20 RBAC fundamentals in Kubernetes -- 37

Figure 21 Container lifecycle security concerns (StackRox 2019) ------------------ 38

Figure 22 Third-party secret management solution workflow (CyberArk Conjur) 39

Figure 23 Traditional IP Connection request (Palo-Alto 2020a). --------------------- 40

Figure 24. IBMS Connection Request (Palo Alto .2020) ------------------------------- 41

Figure 25 Service Mesh mTLS (Amazon AWS App Mesh) ---------------------------- 43

Figure 26 Service Mesh sidecars (RedHat. What is service mesh?) --------------- 43

Figure 27. Kubernetes attack Matrix (Weizman 2020b) -------------------------------- 44

LIST OF TABLES

Table 1 Kubernetes Components on Master and Worker nodes 16

Table 2 Shared responsibility model of CMS in the cloud (Kaczorowski 2019) ... 21

Table 3. Cloud Kubernetes versions and upgrade .. 33

Table 4 Creating Private Kubernetes Cluster in the Cloud 36

Table 5 identity-based micro-segmentation (Palo Alto. 2020). 41

Table 6 Initial Access Mitigation (Dang. 2020) .. 45

Table 7 Execution phase mitigation (Dang 2020). ... 46

Table 8 Persistence Mitigation (Dang 2020). ... 47

Table 9 Privilege Escalation mitigation (Dang 2020). .. 48

Table 10 Defense Evasion Mitigation (Dang 2020). .. 50

Table 11 Credential Access mitigation (Dang 2020). .. 51

Table 12 K8s Discovery mitigation (Dang 2020). .. 52

Table 13 Lateral Movement Mitigation (Dang 2020) .. 54

Table 14 Impact Mitigation (Dang 2020). .. 55

APPENDIX

Appendix 1 VC scanning code for Image build in CI/CD

The code snippet below assumes that the CI/CD pipeline environment is based

on Jenkins with the integration of Prisma Cloud Jenkins plugin for the

vulnerability and compliance scanning.

node {
 stage('Preparation') {
 // for display purposes
 echo "Preparing"
 }
#Building of the container image based on ubuntu
 stage('Build') {
 // Build an image for scanning
 sh 'echo "FROM ubuntu:14.04" > Dockerfile'
 sh 'echo "MAINTAINER Aqsa Fatima <aqsa@twistlock.com>" >> Dockerfile
'
 sh 'echo "RUN mkdir -p /tmp/test/dir" >> Dockerfile'
 sh 'docker build --no-cache -t dev/ubun2:test .'
 }
#Scan of the image after build before pushing to the registry
 stage('Scan') {
 prismaCloudScanImage ca: '',
 cert: '',
 dockerAddress: 'unix:///var/run/docker.sock',
 ignoreImageBuildTime: true,
 image: 'ubun*',
 key: '',
 logLevel: 'info',
 podmanPath: '',
 project: '',
 resultsFile: 'prisma-cloud-scan-results.json'
}
#Publish result of the scan
 stage('Publish') {
 prismaCloudPublish resultsFilePattern: 'prisma-cloud-scan-
results.json'
 }
#Push image to registry after passing admission control
 stage('push to registry') {
 ...
 ...
 }

}

