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1 INTRODUCTION 

Computing architecture has transitioned across different stages in today’s 

modern computing infrastructure. The first of the stages being considered was 

client-server architecture which is based on a single application in a host 

operating system (OS) running on bare metal, the next transition was the 

virtualization architecture which is mainly comprised of the foundational bare 

metal with a hypervisor, guest OS and the running applications. (Palo-Alto. 2019).  

 

An individual virtual machine running in a virtualized architecture requires its OS, 

libraries, dedicated resources, and applications, this, in turn, creates a bottleneck 

for VMs allowed to run on a server. (Sultan et al. 2019). The third stage which is 

the focus of these studies is the containers, containers are made up of bare 

metals, host OS, container engines, binaries, or libraries and finally the code 

application. Containers provide a means to bundle an application’s code with the 

needed dependencies to run smoothly on any platform and computing 

environment. It, therefore, solves the portability problem by ensuring that the 

applications can run successfully as the packaged application is passed from one 

environment to another.  

 

By 2022, 75 percent of global organisations will have containerised applications 

within the production infrastructure compared to less than 20 percent in 2019.  

Furthermore, the container management industry is expected to grow from 

€383.58million in 2020 to €777.37million by 2024 and the public cloud container 

orchestration services will be having the largest share of this revenue. (Moore 

2020). Hence, it becomes critical to have these studies about securing the 

container workloads in the Cloud. Although there are numerous benefits in 

embracing containers and moving away from the virtualization architecture, the 

associated threats become a major challenge that requires adequate 

consideration. Security controls must be integrated to mitigate the threats 

throughout the lifecycle of the container. 



 

2 RESEARCH  

2.1 Research Objectives 

The identity of the commissioning organization for this thesis has been kept 

secret and therefore referred to CompX. CompX is undergoing a digital 

transformation of migrating legacy applications to containerized microservices 

deployed in the Cloud. CompX operates in a highly regulated business area 

where it must be compliant with several IT security standards and national 

regulations.  

 

Container technology is new to the commissioner and this study presents the 

opportunity to research into the security controls to be implemented when 

deploying container workloads in the cloud. The digital transformation is not 

unique to CompX because several organisations are re-architecting applications 

utilizing the cloud-native services for scaling, high availability, portability, 

consistency, and the immutability of a containerized microservice infrastructure 

using DevOps agile deployment model.  

 

The main objective of this thesis is to research and identify the security controls 

required to securely deploy container workloads in the cloud using a cloud-

managed orchestrator solution such as the Elastic Kubernetes Service (EKS) 

from Amazon, Google Kubernetes Engine (GKE) from Google and Azure 

Kubernetes Service (AKS) from Azure. The research will identify the controls to 

secure the containers at every stage of its lifecycle and identify the threats 

commonly used by adversaries to target containerized applications in the cloud. 

The result of this thesis will serve as a set of recommended guidelines for the 

commissioner to securely implement container workloads in the cloud. 

 

2.2 Research Questions 

In other to achieve the objectives of this thesis with better clarity, the research 

questions which this thesis aims to answer as listed below. 

o What security controls should be implemented to secure container 
workloads in the cloud? 



 

o What is the current threat landscape of containers and how can they be 
mitigated? 

o What cloud security controls can be utilized to secure the container 
workloads deployed in the cloud? 

 

2.3 Research Method 

The action research method has been used in these studies. The focus was on 

“problem-solving in whatever way is appropriate” (Smith 2017). It involves finding 

the current practice, researching the available standards and adopt the 

recommended practices to the environment. This involves active cooperation 

between the researcher and the commissioning organisation. Also, this method is 

primarily achieved as “learning by doing” (O'Brien 2001).  

 

The action research is one of the three research synthesised when qualitative 

and quantitative research methodologies are combined. The uniqueness of the 

action research is that the researcher participates in the change process and 

ensure the realization of the research. The researcher primarily acts as 

equipment for gathering data. (Kananen 2015, 57).  

 

The data gathering method in action research is qualitative research which 

involves participatory observation allowing the researcher to be the subject 

phenomenon. The observation is complemented by interviews and discussions to 

ensure the correct interpretation of the observations. (Kananen 2015, 57). The 

researcher has found this method effective with the commissioner’s stakeholders 

in ensuring that the expected changes, as found during this research, are 

implemented. 

 

 

 

 

 

 

 

 



 

 

3 APPLICATION CONTAINER TECHNOLOGY 

The application container technology is OS-level virtualization for deploying and 

running microservice applications without utilizing an entire VM compute 

resource. Containers are likened to an application running as a process with 

isolation on an OS within its own address space. The containerised running 

applications are packaged with all the needed dependencies and libraries. 

(Zhang et al. 2018).  

 

As shown in figure 1, the traditional deployment involves the running of 

applications on physical servers. All the applications share the same resource 

with no means of resource allocation for the applications. Solving the resource 

allocation issue requires allocating a dedicated physical server for an individual 

app. This poses a scalability challenge and resource wastage with more cost. 

(Kubernetes.io 2020b). 

 

 
Figure 1 Workload Abstractions (Kubernetes.io 2020b) 
 

The virtualized infrastructure evolved as a solution to the challenges of the 

traditional deployment by allowing multiple virtual machines (VMs) with allocated 

compute resources to run on a physical server, thereby providing better resource 

utilization and scalability. Each VM has its OS and provides some security by 

isolating applications between the VMs without allowing easy access to 

information. (Kubernetes.io 2020). The use of containers provides some benefits 

to infrastructures such as agile application deployment with CI/CD, resource 



 

isolation with predictable application performance and application consistency 

across environments. 

 

Containers are lightweight and portable because the applications share a single 

OS as well as decoupled from the base infrastructure making them interoperable 

across different OS and Cloud environment. (Kubernetes.io 2020b). Multiple 

containers run on the same physical server using features such as Linux Control 

Groups (Cgroups) and namespaces. As shown in Figure 2, Cgroups are used to 

assign resources such as CPU, memory, and network to the containers. (Zhang 

et al. 2018).  

 

 
Figure 2 Namespaces and Cgroups (Joy. 2015). 
 

Figure 3 shows the granularity of application workloads with a shorter lifespan as 

they evolve from one deployment model to another. Containers have the shortest 

lifespan that supports the DevOps culture of several deployment iterations in a 

day. (MacDonald & Croll 2020). There are different types of container 



 

technologies apart from Docker that includes java containers, Unikernels, LXD, 

OpenVZ, Rocket containers (RKT), Hyper-V containers (Wadsworth. 2016) and 

many more.  This focus of this thesis is on Docker and using a cloud-managed 

container orchestrator service, Kubernetes. 

 

 

 
Figure 3 Lifespan of application workloads (MacDonald & Croll. 2020). 
 

 

3.1 Container Technology Terminologies 

Containers continue to be a popular technology among application developers 

due to its robustness in building and packaging an application with its 

dependencies suitable for different environment and deployment targets 

(Johnston 2018). It is important to understand the foundational elements of 

containers to ensure adequate security controls are applied at every stage of the 

container lifecycle. A summary of some of the terminologies is presented in 

subsequent sections of this chapter. 

 

Physical

• Monolithic applications
• Physical servers as unit of scaling
• Lifespan of years

Virtual 
Machines

• Hypervisor virtualizes the hardware
• VMs as unit of scaling
• Lifespan of months to years

Containers

• Virtualizes the OS
• Applications/services as unit of scaling
• Minutes to days



 

3.1.1 Image 

Container images are the lightweight foundational element of the containers 

because they are the files with the needed configurations, libraries, and the code 

to efficiently run an application with the desired result. The containers become 

instances of the images and every instance will be having same foundational 

dependencies (Brady et al. 2020). The docker images are composed of different 

image layers, with each layer depicting a set of instruction in the docker file. All 

entries in the file are read-only (RO) except the last line which usually signifies 

what command to run in the container layer. (Docker 2020a). Figure 4 below 

shows the layered composition of a container image. 

 

 
Figure 4 Container Image Layers (Simi 2019) 
 

3.1.2 Docker 

Dockers are the de-facto Platform as a Service (PaaS) solution for rapidly 

building, testing, deploying, and sharing containers (Brady et al. 2020). It is the 

default container runtime on some cloud service providers (CSP) managed 

Kubernetes offerings which include Google Kubernetes Engine (GKE), Amazon 

Elastic Kubernetes Service (EKS) and Microsoft Azure Kubernetes Service (AKS) 

(Foster 2020). In summary, Figure 5 shows docker supports the creation of 

containers while orchestrators like Kubernetes manages the containers 



 

(Bytemark 2019). Other orchestrators include apache mesos, docker swarm, fleet 

and docker-compose (Pavlik & Mercl 2018). 

 

 

 
Figure 5 Relationship between Dockers and Kubernetes (Bytemark 2019) 
 

   

3.1.3 Kubernetes 

Kubernetes sometimes referred to as k8s is the container management solution 

(CMS) used for the orchestration of Docker containers across multi-host 

installations. (RedHat 2018). It supports container-as-a-service by abstracting the 

application orchestration from underlining infrastructure resource and as-a-

service automation helping with provisioning, scaling, and auto-healing. 

Kubernetes is constantly being developed with new features and critical patches 

for discovered vulnerabilities.  

 

Kubernetes is becoming the container orchestration standard due to its 

interoperability and its command line is the current industry standard which is 

kubectl. K8s nodes have a container runtime software that runs the container 

applications using either Docker, containerd and container runtime interface. 

(Kubernetes.io 2020a). “The most powerful orchestrator is Kubernetes in this 

time. Kubernetes allows you to run and manage containers, regardless of the 

hardware” (Pavlik & Mercl 2018). 



 

Kubernetes has some standard components distributed between the master and 

worker nodes. These components include the API server, controller manager, 

scheduler, kube-dns, metric-server, etcd, kubelet, and kube proxy.  

 

Within a cloud infrastructure, some components are managed by the CSP and 

some are managed by the CSP customers, the details of the shared 

responsibility model are presented in section 4 of container security in the cloud. 

Figure 6 below contains some of the different elements of a container workload. 

 

 
Figure 6 Kubernetes Standard components (Kubernetes.io 2020a) 
 

The functions of the respective components as applicable to the master and 

worker nodes is presented in table 1. 

 

Table 1 Kubernetes Components on Master and Worker nodes 
 

Component Master Node functions Worker Node functions 

API Server  Processes 
requests and 
updates etcd. 

 Performs 
authentication 
and authorization. 

 It provides the 
entry point for the 
cluster. 

Not Applicable 



 

Controller Manager  It Is the daemon 
process 
implementing the 
control loops built 
into Kubernetes 
such as 
deployment 
updates. 

Not Applicable 

Cloud Controller 

Manager  (CCM) 

 The CCM enables 
linking the K8s 
with the CSP’s 
API by logically 
separating the 
components that 
interact with the 
cloud from those 
that only require 
interaction with 
the k8s cluster 

Not Applicable 

etcd  It is a HA key-
value store for the 
Kubernetes 
cluster  

Not Applicable 

Scheduler  It decides where 
pods are run 
based on pre-
defined properties 
e.g affinity 
groups, 
resources, labels 
etc. 

Not Applicable 

Kubelet Not Applicable  This is an agent 
on every worker 
node.  

 Ensures that all 
pods are healthy. 

 It registers the 
node with the API 
server. 

Kube Proxy Not Applicable  This is also an 
agent on the 
workers. 

 It acts as a 
network proxy 
and load balancer 
for k8s services. 



 

 

3.1.4 Kubernetes Constructs and Objects 

These are entities used to depict the state of the cluster and can be expressed in 

the YAML format. The objects can describe what the container applications are 

running, the nodes where the applications are running, the assigned resources to 

the containers and the configured policies such as high availability and restart 

policies (Kubernetes.io 2020a). The construct includes Pods, nodes, cluster, 

services, and namespaces. 

 

In Kubernetes, the pods are the smallest units that exist. It represents an 

instance of a running process within a cluster. A pod has one or more container 

and the containers within a pod automatically communicate because they share 

network and storage resource irrespective of their nodes (Kubernetes.io 2020a). 

 

Nodes are the elastic compute resources that run the containerized applications. 

The nodes host the pods, the pods can migrate to an available node to ensure 

the application is responsive. The nodes are managed from a cluster, and each 

node runs the needed services to support the Docker containers for the cluster. 

Kubernetes has a node master-slave architecture; the slave is otherwise referred 

to as the worker node (Bytemark 2019).  

 

The master nodes in a Kubernetes cluster controls the pod deployments and 

worker nodes. (Bytemark 2019). It maintains the state of the running application 

and the container images. The worker nodes are the actual compute resources 

that host the deployed pods. Clusters are sets of nodes running the pods. For 

every cluster, there is a master node and one or more worker nodes. The 

containers within a Kubernetes cluster are abstracted across the cluster and not 

bound to a specific node (RedHata). 

 

Services are an essential component of every pod. It is the abstract way of 

exposing the running applications on a set of pods (Kubernetes.io 2020a). 

Kubernetes namespaces are the logical groupings of the cluster resources that 

act as a virtual cluster within a Kubernetes cluster.  



 

The list below shows the available namespaces from a newly created Kubernetes 

cluster. Figure 7 and 8 show different K8s objects. 

# kubectl get namespaces 

NAME              STATUS   AGE 

default           Active   3m3s 

kube-node-lease   Active   3m4s 

kube-public       Active   3m4s 

kube-system       Active   3m4s 

 

 
    Figure 7. k8s objects (Maharjan 2020) 
 

 
    Figure 8. k8s objects (Lee & Hogenson 2020). 



 

4 CONTAINER SECURITY IN THE CLOUD 

Deploying containers in the cloud using the CSP’s managed service requires the 

understanding of the shared responsibility model of the cloud infrastructure. The 

containers managed service is a PaaS solution which means that the CSP is 

responsible to secure the underlying infrastructure and the customer secures the 

running application. Despite the CSP ensuring the security of the infrastructure, 

there is still a lot of security controls that need to be managed by the application 

owner when running applications in the cloud. Some of these include running the 

latest Kubernetes version, latest operating system versions, securing the 

container images, ensuring secure image storage/access in the registry, 

container network security policies, container runtime security, monitoring and 

vulnerability management.  

 

A shared responsibility model of the Kubernetes cloud-managed service such as 

GKE, EKS and AKS is represented in figure 9, showing that all components of 

the control plane are the full responsibility of the CSP. The organisations 

consuming the CMS must ensure the security of the pods throughout their 

lifecycle. 

 

 
Figure 9. Share responsibility model of the k8s CMS (Google 2020c) 
 



 

The table 2 below shows the shared responsibility model of a container-managed 

service depicting the underlying infrastructure being the responsibility of the CSP.  

 

Table 2 Shared responsibility model of CMS in the cloud (Kaczorowski 2019) 
 

Container 

PaaS Layer 

Customer 

Responsibility 

CSP 

Responsibility 

Content * NA 

Access policies * NA 

Usage * NA 

Deployment * NA 

Web application 

security 

* NA 

Identity NA * 

Operations NA * 

Access and 

Authentication 

NA * 

Network 

Security 

NA * 

Guest OS NA * 

Audit Logging NA * 

Network NA * 

Storage with 

encryption 

NA * 

Hardened 

Kernel 

NA * 

Boot NA * 

Hardware NA  

 

4.1 Container Images security 

The containers images are the core component in the containerized web 

application, as such the integrity of the image must be protected by ensuring that 

non-vulnerable and exploitable images are built, stored, and deployed within the 



 

infrastructure. Securing the container images means reducing the attack surface 

in the container lifecycle by detecting vulnerabilities, configuration errors and the 

security policy violations (StackRox 2019). Figure 10 shows the different security 

threats associated with the building of the base images from the source code to 

the deployment. 

 

 
Figure 10. Base Image security threats (Rice 2020) 
 

The items discussed in this section presents the security recommendation 

towards having a secured image for container workloads and the implementation 

of these controls will help mitigate threats. 

 

4.1.1 The building of Base Images 

With the availability of different images from the public registries, it is easier to 

“grab” images from publicly available registries. This poses a immense risk to the 

organization as the actual origin of the image and its dependencies are not 

known, likewise if there are exploits embedded in the image. It is recommended 

to have full control of the build process by building the image from their private 

registry (Bernstein 2018). 

 

Securing the build of the base images from the early phase creates a “shift left” 

approach towards securing the container workloads. The base image is often 

built from a set of commands specified in the Dockerfile, it is often a common 

practice to use the “docker build” command which in turn invokes the docker 

daemon process running as root and grants the possibilities of running other 



 

docker privileged commands which could be a security risk within an uncontrolled 

cloud infrastructure. The latest release of Docker, version 19.03.14 in December 

2020, Docker introduces the rootless mode of the docker daemon that allows a 

non-root user to execute the Docker daemon and containers inside the user’s 

namespace (Docker 2020b). Using the rootless mode helps to satisfy the CIS 

docker recommendation of ensuring the images are created with a non-root user 

and the containers running as a non-root user (CIS Docker 2019).  

 

However, there are still security risk of being able to execute other Docker 

commands which are not relevant to the image build process, this presents an 

opportunity for a malicious user or an attacker to poison the trust chain of the 

container lifecycle. Other solutions such as Kaniko, Bazel, podman and buildah 

(Abbassi 2019) gives the flexibility of creating an image for container workloads 

without using the Docker daemon process (Rice 2020) 

 

The image build process should include a security assessment that identifies 

vulnerabilities in the image components and every layer of the base image. 

Introducing this control ensures that the identified vulnerabilities and available 

fixes are applied before the base image is marked as a container “golden” image 

for the workloads (StackRox 2019).  

 

It should however be noted that traditional vulnerability management tools are 

limited in terms of visibility to identify the vulnerabilities of each layer of the 

container images. Some of these limitations include asset management, keeping 

up with the ephemeral nature of the containers, providing vulnerability details of 

the libraries being used, e.g., identifying the vulnerability in a webserver but not 

an underlining library composition. Some open-source solutions capable of a 

deep dive to provide the vulnerability of the container images and configuration 

include Anchore engine, Clair project and Dagda (Moyle 2020). 

 

4.1.2 CI/CD/CS Pipeline 

Automation is a key part of the container deployment in the Cloud and so should 

be the security. The continuous integration (CI) involves the continuous 



 

monitoring of the source code management (SCM) for new commits or changes 

and a set of predefined tasks are initiated based on the commit. In continuous 

delivery, Infrastructure as code images is built, tested, and deployed. The end 

goal of the continuous delivery is a status showing the image could be deployed 

by storing it in the registry (Sanz et al. 2018.) 

 

The continuous deployment (CD) uses the result of the continuous delivery to 

trigger an automated deployment and capable of a rollback operation based on a 

configuration management integration. RBAC must be implemented to ensure 

authorized accounts can trigger a job on the pipeline (Sanz et al. 2018). 

 

The continuous security (CS) should be dynamic and keep up with the rapidness 

of the CI/CD and its threat landscape. The pipeline must include admission 

controls that validate the built images, stored images, and images that are 

deployed meet the expected compliance benchmarks such as the CIS standard 

for Docker or the benchmark for k8s CMS as well as an acceptable level of risk 

(Sanz et al. 2018).  

 

The continuous security must implement an admission control that checks the 

images before being transformed into a running container, the admission control 

should include the following at the least:  

 image scanning for vulnerabilities and malware 
 ensuring that image is pulled from an authorized registry. 
 checking that the image meets the defined security policies. 
 trusted images should only be used.    (Rice 2020) 

 

With the admission control in place, the pass or fail control could then include in 

the CI/CD pipeline for an automated CS. Some of these include: 

 A failed vulnerability and compliance (VC) scan would result in a failed 
build. 

 The image failed VS scan should prevent image deployment to workloads. 
 A failed VS scan on container runtime should alert for remediation.  

(Hausenblas & Rice 2018) 

An example security policy rule would be to fail a build pipeline if there are high 

and critical VC issues that already have a fix. Different policies could be applied 



 

based on the criticality of the infrastructure, for example, the development 

environment having a different security policy from the production environment. 

 

Figure 11 shows the integration of an automated security assessment to the 

CI/CD pipeline which includes applying security policies during the image build, 

storage and towards the runtime. Anchore engine is an example open-source tool 

that could be integrated with the popular CD tool, Jenkins. (Jenkins 2018).  On 

the commercial side, Prisma Cloud from Palo-Alto among others can also be 

used to achieve this implementation. 

 

 
Figure 11. CI/CD Pipeline with automated security data flow.  (Hausenblas & Rice 2018) 
 

Figure 12 below shows an example configuration of a continuous security policy 

for an acceptable vulnerability risk level for container images using Prisma Cloud 



 

compute module.  On the other hand, figure 13 shows the acceptable compliance 

risk level. The VC policies will fail or pass the build if the set threshold is met. 

 

 
Figure 12. CI/CD pipeline vulnerability Security policy  
 

 
Figure 13. CI/CD Compliance Security policy using Prisma Cloud 
 

Figure 14 shows a summary output of the pipeline from Jenkins. Build #9 failed 

because there were 2 compliance issues of high and medium severity. The 



 

security violations show that the image was created with a root user.  Build #8 in 

the screenshot passed when the policy was adjusted to alert about the policy 

violations and pass the build. 

 

 
Figure 14 Jenkins Image build output 
 

The below output shows the detailed output of the scan and figure 15 shows the 

identified vulnerabilities from the image. The full pipeline code is in appendix 1. 

 

Started by user user 
Running in Durability level: MAX_SURVIVABILITY 
[Pipeline] Start of Pipeline 
[Pipeline] node 
Running on Jenkins in /opt/bitnami/jenkins/jenkins_home/workspace/prisma_pi
peline 
[Pipeline] { 
[Pipeline] stage 
[Pipeline] { (Preparation) 
[Pipeline] echo 
Preparing 
[Pipeline] } 
[Pipeline] // stage 
[Pipeline] stage 
[Pipeline] {(Build) 
[Pipeline] sh 
+ echo FROM ubuntu:14.04 
[Pipeline] sh 
+ echo MAINTAINER AF <af@*.com> 
[Pipeline] sh 
+ echo RUN mkdir -p /tmp/test/dir 
[Pipeline] sh 
+ docker build --no-cache -t dev/ubun2:test . 



 

Sending build context to Docker daemon   85.5kB 
 
Step 1/3 : FROM ubuntu:14.04 
 ---> df043b4f0cf1 
Step 2/3 : MAINTAINER AF <af@*.com> 
 ---> Running in ff29b61c1043 
Removing intermediate container ff29b61c1043 
 ---> b7b94befd51c 
Step 3/3 : RUN mkdir -p /tmp/test/dir 
 ---> Running in b01ec9b2cf08 
Removing intermediate container b01ec9b2cf08 
 ---> ac96d3384183 
Successfully built ac96d3384183 
Successfully tagged dev/ubun2:test 
[Pipeline] } 
[Pipeline] // stage 
[Pipeline] stage 
[Pipeline] {(Scan) 
[Pipeline] prismaCloudScanImage 
[PRISMACLOUD] Scanning images on master 
[PRISMACLOUD] Waiting for scanner to complete 
[PRISMACLOUD] /opt/bitnami/jenkins/jenkins_home/workspace/prisma_pipeline/t
wistcli4569411900994248309 images scan ubun* --docker-
address unix:///var/run/docker.sock --ci --publish --details --
address https://*.twistlock.com:443/121212 --ci-results-file prisma-cloud-
scan-results.json 
[prisma_pipeline] $ /opt/bitnami/jenkins/jenkins_home/workspace/prisma_pipe
line/twistcli4569411900994248309 images scan ubun* --docker-
address unix:///var/run/docker.sock --ci --publish --details --
address https://*.twistlock.com:443/121212 --ci-results-file prisma-cloud-
scan-results.json 
[Pipeline]} 
[Pipeline] // stage 
[Pipeline]} 
[Pipeline] // node 
[Pipeline] End of Pipeline 
[Checks API] No suitable checks publisher found. 
ERROR: Build failed 
Finished: FAILURE 
 

 

 



 

 
Figure 15. Image build security policy violations on Jenkins 
 

4.2 Securing Container Registry 

Images are stored in registries. To this thesis, the registries being considered are 

those of the Cloud providers such as the Google container registry (GCR), 

Amazon Elastic container registry (ECR) or the Azure container registry (ACR). 

The storage and retrieval of the images in the registry are referred to as pushing 

and pulling, respectively.   

 

4.2.1 Container Registry Authentication and Authorisation 

Granting access to the container registry should follow a least-privilege, 

administrative accounts with write as well as delete roles should not be used for 

regular tasks on the registry. The individual identity entities building the images 

and pushing to the registry will be assigned credentials with the permissions to 

push/pull to the registry, the identity credential should have short-lived token 

access for few hours according to the organizational policies.   

 

The CI/CD build pipeline should be assigned a service account subject to an 

access-token rotational policy usually 90 days according to CIS benchmark. This 

service account would only need the pull permission.  Where possible, 

namespaces should be used to group and share registry resources with relevant 



 

teams within the project (Field et al. 2018). Private registries must always be 

used to mitigate the risk of unauthorised access to the built images.   

 

4.2.2 Continuous Vulnerability Assessment 

As vulnerabilities are constantly discovered and threat actors always ready to 

exploit, so is the criticality of continuous vulnerability assessment of images in the 

registry. The vulnerability source at least gets the common vulnerability exposure 

(CVE) from the national vulnerability database (NVD). 

 

All images pushed to the registry must be scanned for vulnerability upon upload 

based on the image digest which identifies the image and tracks its vulnerability 

changes.   After the initial assessment, a continuous and regular scan of the 

image should be scheduled for an updated image vulnerability status based on 

the threat intelligence from the vulnerability sources.   

 

Most of the Cloud providers provide the container registry vulnerability scanning 

as a managed service for the cloud-native solution (Google 2020e).   

In addition to the scanning of the images, it is recommended to audit the age of 

the container images stored in the registry. Older images with vulnerable 

dependencies should be identified, patched, deleted, or recreated using the latest 

libraries. Ensuring these activities are completed helps to reduce the attack 

vectors from the Cloud infrastructure.  

 

4.2.3 Registry Encryption 

The data at rest in the registries are recommended to be encrypted to protect 

against access to sensitive data on disks, modification, and unauthorized access 

(Dissanayake & Mistry 2020).  Most Cloud providers offer encryption for data at 

rest which means the CSP completely manages the complete lifecycle of the 

keys viz, creation, rotation, and deletion of the keys.   

Encrypting the container registry using the customer-managed encryption keys 

(CMEK) allows fulfilling the security and compliance requirement while having 

control of how the encryption keys are used.  Access to the registry can also be 



 

managed with the encryption keys; a registry with disabled encryption key means 

access is forbidden until allowed. In addition to encrypting the data at rest, data in 

transit during pull and push activities should also be encrypted between the 

registries and trusted endpoints.    

 

4.2.4 Trusted Images 

Images are easily transferrable from non-Cloud infrastructure to the Cloud due to 

the portability and availability of the container images on public image 

repositories. This presents a risk of allowing untrusted, malicious, and vulnerable 

container images within the Cloud infrastructure. In ensuring that trusted images 

are deployed on the workloads every there should be a centrally managed 

inventory to identify every image and repositories, this provides control to 

manage the allowed repositories and images. 

 

In addition to this, identifying the images by names alone is not enough. Images 

should have a unique identification either using their hashes or other unique 

metadata. With the unique identification, an enforcement policy that ensures that 

every container workload only runs the trusted images from the approved 

registry. Image integrity check and continuous monitoring policy should be in 

place to guarantee the maintenance of the images and compliance of the images 

as the vulnerabilities and requirements changes (Souppaya et al. 2017). 

 

According to MITRE ATT&CK, the persistence phase in a cloud attack could 

include adversaries implanting malicious container images within the 

infrastructure. Using tools such as Cloud Container Attack Tool (CCAT), 

attackers can plant backdoors in container images and create a reverse web 

shell to their command and control (C2). These are some of the potential threats 

facing the cloud container workloads. (MITRE ATT&CK. 2020a). 

 

 



 

4.3 Container Orchestrator Security 

Container orchestrators are the tools used in the management and automation of 

container deployments and regular tasks. Common container orchestrators 

providing the framework to manage the containers and other microservice include 

Kubernetes, Docker Swarm, Docker Compose, Fleet and Apache Mesos.  

They provide the management of the container tasks, some of which is listed 

below: 

 

 Service scalability  
 HA and DR management 
 Rapid deployment and provisioning 
 Allocation of resources to the containers 
 Life cycle and configuration management 
 Securing container communication 
 Container workload scaling 
 Scheduling and configuration 
 Traffic routing and load balancing 
 Container health monitoring 
 Multi-cloud or multi-platform service development  

(Pavlik & Mercl 2018) 

 

Considering the scope of the roles the orchestrators in the management of 

container workloads it is important to consider and ensure its security. 

Kubernetes is one of the popular container orchestrators, the focus of the 

research in this chapter will be on the CSP managed services of Kubernetes and 

specifically the GKE with applicability to other CSPs. 

 

4.3.1 Run the latest version 

One of the fundamental controls to have is to ensure that the latest version of 

Kubernetes is deployed as well as have an upgrade policy. By default, most of 

the CSPs do not offer the latest version of Kubernetes for the container 

workloads, leaving the responsibility to the users. Table 3 presents the available 

versions of Kubernetes and the corresponding offerings in the Cloud from 

Amazon, Google, and Microsoft (Foster 2020) 

 



 

Table 3. Cloud Kubernetes versions and upgrade 
 

 GKE EKS AKS 

Default version 1.16 1.17  1.17 

Supported 

versions 

1.14 to 1.18 1.14 to 1.17 1.16 to 1.19 

Control-plane 

upgrade 

CSP Managed 

automatically 

Requires user to 

upgrade 

Requires user to 

upgrade 

 

4.3.2 Private Cluster 

Access to the control plane and nodes should be restricted. By default, access to 

the control is set to allow anyone access over the internet to make connections to 

the control plane, this default configuration should never be used. The first of ten 

phases of cloud workload attack tactic according to the MITRE ATT&CK cloud 

matrix is initial access with a technique of exploiting public-facing application. It 

means adversaries will try all possible exploits to access the hack value.  (MITRE 

ATT&CK 2020b). 

 

During this research, a search from Shodan for publicly available Kubernetes 

control plane reveals over 13000 workloads being available on the internet and 

some even presenting the login console as shown in figure 16. Hence, users 

must take these configurations critical, review the default configurations and 

continuously review the Cloud security posture management (CSPM) of the 

entire cloud infrastructure. Figure 17 shows the top 10 countries with publicly 

accessible Kubernetes control plane.  

 

 
Figure 16. Login Prompt of a publicly exposed Kubernetes control plane 



 

 

 

 
Figure 17 Top countries of internet-facing control plane (Shodan. 2020) 
 

Figure 18 shows how prevalent the misconfigurations are within the cloud 

infrastructure. This research shows most of the responding clusters over the 

internet are present in the AWS Cloud (Shodan. 2020). This does not mean that 

the Cloud itself has the issue, rather it is the misconfiguration of the organisation 

utilizing the services because the control plane security has not been considered. 

In 2018, Tesla’s Kubernetes infrastructure was infiltrated due to having a 

password-less k8s console and with privilege escalation storage buckets with 

sensitive data were accessed. (RedLock 2018). 

 

Misconfigurations like this are common in the cloud. A typical example of this was 

an Accenture data leak due to publicly accessible Cloud storage containing 

decryption keys and other sensitive corporate and customer data (Ashok 2017). 

 



 

 
Figure 18 Top CSPs with a publicly reachable Kubernetes control plane (Shodan 2020). 
 

Figure 19 shows that Kubernetes is the most available API endpoint during the 

findings and presents how critical it is to protect the container workloads. 

 
Figure 19 Kubernetes as the top publicly available service (Shodan 2020) 
 

When deploying container workloads in the Cloud, it is highly recommended to 

create private clusters as a mitigation to the publicly exposed Kubernetes control 

planes. At the very least, create a whitelist of the authorized networks to the 

public endpoints of the cluster. Table 4 shows how to create private clusters in 

AWS, Azure and GCP using the CSP’s respective SDK command-line interface. 

As an example, creating a private GKE cluster with access to the control plane 

endpoints only allowed from the RFC1918 range requires adding the following 

flag: 



 

--enable-ip-alias 

--enable-private-nodes 

--enable-private-endpoint 

--enable-master-authorized-networks (Google. 2020d) 

 

Table 4 Creating Private Kubernetes Cluster in the Cloud 
 

GCP SDK 

configuration 

AWS SDK 

Configuration 

Azure SDK 

Configuration 

gcloud container clusters 
create <private-cluster-
name> \ 
    --enable-master-
authorized-networks \ 
    --enable-ip-alias \ 
    --enable-private-
nodes \ 
    --enable-private-
endpoint \ 
    --no-enable-basic-
auth \ 
 
 

aws eks update-cluster-

config \     --region 

<region-code> \ 

    --name <my-cluster> \ 

    --resources-vpc-config 

endpointPublicAccess=<

false>,endpointPrivateAc

cess=<true> 

 

(AWS. Amazon EKS 

cluster endpoint access 

control) 

az aks create -n 

<private-cluster-name> -

g <private-cluster-

resource-group> --load-

balancer-sku standard --

enable-private-cluster 

 

(Microsoft. 2020) 

 

4.3.3 Container-centric OS 

There are inherent attack surfaces to every OS allowing for exploits. In 

containers, there is no need to have additional attack surface and it is highly 

recommended to use a Container-specific OS (CSO) which reduces the 

likelihood of exploiting host OS vulnerability thereby compromising the workloads.   

The host OS to be used must not allow the containers to mount directories on the 

host’s filesystem or tampering of the filesystem.  

 

The use of CSO reduces the attack risks associated with share kernel as there is 

not the availability of the application library/package managers as present in the 

general-purpose OS and improper user access rights (Souppaya et al. 2017). 



 

By default, GKEs runs the Container-Optimized OS (COS) which has a minimal 

OS footprint such as read-only filesystem, file-system integrity check, locked-

down firewall and audit logging. (Google. 2020a).  

 

4.3.4 Role-Based Access Control (RBAC) 

The criticality of the principle of least privilege (PLP) cannot be overemphasized 

in any infrastructure and Kubernetes is not an exception. Using PLP reduces the 

blast radius of an attack in case of a compromise. (Hausenblas & Rice. 2018). 

RBAC in Kubernetes involves some elements which are subject, resources, 

verbs, roles, and role bindings as depicted in figure 20. 

 

 
Figure 20 RBAC fundamentals in Kubernetes 

 

The subjects are the entities requesting access to the Kubernetes API and the 

subjects could be users, groups, or service accounts (SA). The resources are the 

actual API available for use within the cluster while the verbs are the sets of 

actions specified in a role defining the permitted operations on the resources by 

the subjects. The summary of the verbs is CRUD (Create, Read, Update and 

Delete) actions and the Role bindings attach a role to the subject. 

 

4.4 Securing the Container Runtime  

Images transitions to container runtime after being deployed. At the runtime, 

there are new security concerns as new threats are discovered either due to 

misconfiguration or vulnerabilities in the container application libraries and 

dependencies. A survey by StackRox in 2019 shows that most organisations find 

it challenging securing the container runtime as shown in figure 21. (StackRox. 



 

2019). This section describes some of the risks to be considered in the container 

runtime. 

 

 

 
Figure 21 Container lifecycle security concerns (StackRox 2019) 
 

 

4.4.1 Secret Management 

Every application always requires some form of credentials to function as 

expected. The credentials otherwise known as secrets could be access tokens to 

make some API calls or even database (DB) credentials for some frontend 

application. It is a common practice to see application developers hardcoding 

these secrets to the application.    

 

The PLP must be applied to the secrets granted to the containers and different 

set of secrets should be applied to different environments. For instance, the 

development secret must not be the same as the production environment.  In 

addition to the PLP, secrets must be encrypted at rest using CMEK as well as in 

transit using TLS. 

 

26 %

30 %

44 % Build

Deployment

Runtime



 

The secrets could be stored using the native Kubernetes storage or some other 

third-party solutions. By default, Kubernetes stores its secret with other 

configurations in the etcd, which is open-source which poses as a distributed and 

reliable key-value store for critical data of distributed systems. (Etcd Authors. 

2020). The etcd values are stored as base64 encoding which could be easily 

decoded, for example using the echo command on a Linux OS as seen below. 

echo YmFzZTY0IGRlY29kZXI= | base64 --decode 
  

Organisations should ensure in addition to the encryption provided by the CSP, 

customer-managed encryption keys (CMEK) are also used to encrypt the 

workloads. Encryption key rotation policies should be applied to ensure that there 

are controls in place to rotate keys or revoke in case of a comprise. (Hausenblas 

& Rice. 2018). The use of third-party secret management solutions such as 

Conjur and Hashicorp vault are more secure because they separate secrets from 

the container workloads, provides a single secret management pane for all 

applications and prevents committing secrets to SCM. (CyberArk Conjur). 

 

 
Figure 22 Third-party secret management solution workflow (CyberArk Conjur) 
 



 

4.4.2 Micro-segmentation 

The limitation of network traffic by dividing networks into small segments thereby 

reducing blast radius in a situation of a malicious attack or a breach referred to as 

micro-segmentation. It requires the implementation of a distributed firewall 

regulating access to the network traffic according to pre-defined security rules 

based on each resource. (Mujib & Sari 2020).    

 

This leads to the concept of identity-based micro-segmentation (IBMS), 

implementing IBMS to secure the workloads eliminates the assumption that IP 

based network reachability means network authorization as shown in Figure 23. 

 

 
Figure 23 Traditional IP Connection request (Palo-Alto 2020a). 
 

IBMS will apply several known metadata about a workload to provide a set of 

cryptographically signed identity dynamically learned from the cloud-native 

sources such as the system information, cloud provider and the container 

orchestrator. (Palo Alto 2020). Table 5 shows some cryptographic unique identity 

for the cloud-native identity source. 

 

 

 

 



 

Table 5 identity-based micro-segmentation (Palo Alto. 2020). 
 

Cloud-native identity source Cryptographic unique identity 

System Information OS 

services 

Hostnames 

Cloud Provider IAM roles 

Other CSP metadata 

Container Orchestrator Kubernetes service accounts 

Namespaces 

Docker images 

App labels  

 

 
  

Figure 24 shows the 3-way handshake of the IBMS in which the cryptographic 

identity is used to first authenticate client and server workloads. Based on the 

matching attributes, the network is authorised. The nonce is the arbitrary value 

used only once within the lifetime of a cryptographic session. (Rogaway. 2002). 

 

 
Figure 24. IBMS Connection Request (Palo Alto .2020) 
 
 



 

By default, k8s allows Intra pod traffic within a cluster without restrictions. To limit 

traffic, Kubernetes uses network policies to declaratively configure how pods 

communicate with one another using a combination of allowed pods, allowed 

namespaces and IP block. (kubernetes.io 2020a).  

 

K8s implements micro-segmentation with network plugins such as calico, Canal, 

Cilium, CNI-Genie etc. Most public clouds such as AWS, GCP and Azure 

supports some of the Kubernetes network plugins such as calico that helps to 

implement the rules defined in the network policies. (Calico 2019).  Defining the 

rules on the k8s nodes is a time-consuming task to do manually that is not worth 

the effort as the containers are ephemeral which means the rules will have to be 

recreated every time the containers are created. (Rice 2020). 

 

Moreover, a k8s cluster in a production environment will have more than one 

node, which means all nodes within the cluster must have all the rules defined for 

them. Leveraging on the k8s network policy objects provides the easy 

management and automation of the rules.  The network policies could also be 

dynamically using container-native tools capable of learning about the normal 

container workloads network traffics. 

 

Some best practices for using micro-segmentation to protect the cloud container 

workloads is having a default deny rule, default-deny egress, limit pod-to-pod 

traffic by allowing only pods with the right label to communicate and finally, allow 

only predefined ports for each container. (Rice 2020). 

 

4.4.3 Service Mesh 

Service mesh (SM) in k8s provides secure communication for the services of a 

container cluster. It provides mutual TLS (mTLS) encrypting communications 

within container workload infrastructure and protecting the infrastructure from 

MiTM attack. Unlike the network policies operating from OSI layer 3 to 4, service 

mesh secures the container workloads from OSI layer 5 to 7 which is the session 

to application layer respectively. (Rice 2020).  

 



 

 
Figure 25 Service Mesh mTLS (Amazon AWS App Mesh) 
 

In addition to securing the communication between the services with mTLS, 

which gives authentication and authorization for the services, SM provides the 

possibility of creating policies that are enforced across the infrastructure. (Google 

2020d). For Cloud-managed k8s services, there are managed service mesh 

solutions such as GCP’s Anthos service mesh (ASM) and AWS App Mesh. SM is 

made of proxies called sidecars because they run alongside the services. All the 

requests between the microservices are routed through the proxies for security, 

traffic management and monitoring. 

 

 
Figure 26 Service Mesh sidecars (RedHat. What is service mesh?) 
 



 

If service mesh will be used, it is recommended to have some controls that 

ensure that the sidecars are present in all the containers and possibly have a 

complementary solution to restrict the traffic flow between the containers as well 

as external IP addresses or domains. 

 

4.5 Threats and mitigation 

Microsoft Azure security team presented the first Kubernetes attack matrix using 

the MITRE ATT&CK framework. It shows threat landscape, tactics, and the 

techniques an adversary could use to exploit a Kubernetes infrastructure. 

(Weizman 2020b) 

 

This matrix includes forty techniques with nine tactics that an attacker can use to 

compromise a container workload as shown in Figure 24.  Usually, the 

mitigations for the threats have overlapping security controls, organisations 

should ensure policies are in place to secure the container workloads within the 

Cloud.  

 

 
Figure 27. Kubernetes attack Matrix (Weizman 2020b) 
 

The attacks on the container workloads could be resolved either within 

Kubernetes itself, at the CSP or other cloud-native tooling such as the container 

registries.20 of the 40 threats can be mitigated by implementing security controls 



 

in Kubernetes itself, 6 techniques could be mitigated implementing controls in 

toolchains, 3 mitigated at the CSP and 11 mitigated with a set of controls in k8s 

and at the CSP. (Dang 2020). The details of the individual technique are 

presented in this chapter. 

 

4.5.1 Initial Access 

This tactic refers to an attacker gaining access to the GKE, AKS or the EKS 

clusters deployed using the cloud account credentials. The compromise of a 

cloud account means the possibility of gaining access to the management plane.  

Table 6 details the techniques and recommended mitigation for the initial access 

tactic. 

 

Table 6 Initial Access Mitigation (Dang. 2020) 
 

Technique Mitigation security 

controls 

Using Cloud 

Credentials 

 Avoid the use of shared 
accounts 

 Configure Cloud IAM to 
restrict access to 
privileged credentials. 

 Implement PLP 

CSP 

Compromised images 

in the registry 

 Only use private registries 
 Implement Trust image 

policy 
 Developers to use only 

approved base image. 
 Limit access to the 

registry 
 Continuous VC scans of 

the registry 

 

Tools (Registry) 

kubeconfig file  Always use the latest 
version of Kubernetes 
clients 

 Authenticate to the API 
server using a third-party 
DAP 

Kubernetes 



 

Application 

vulnerability 

 Implement workload 
identity  

 Scan images for 
vulnerabilities 

 Limit external access to 
pods with network policies 

 Implement admission 
controls to prevent 
high/critical severity 
images from deployment 
 

CSP 

K8s  

Exposed Dashboard  Use private endpoint to 
dashboard  

 Delete/disable dashboard 
if not required 

 Restrict ingress traffic to 
the dashboard  

 

K8s 

 

4.5.2 Execution 

This tactic allows the attacker to run the malicious codes inside the cluster and 

table 7 shows the techniques used to exploit container workloads and the 

possible mitigations to secure the container workloads in the cloud. 

 

Table 7 Execution phase mitigation (Dang 2020). 
 

Technique Mitigation security controls 

Exec into containers  Implement RBAC 
with PLP access 
to pods 

 Delete 
unnecessary 
processes from 
containers 

 Run pods with RO 
file system 

K8s 

Bash/cmd inside a 

container 

 Limit access to 
the workloads 

CSP 

New container  Implement RBAC 
to create pods 

K8s 



 

Application exploit  Scan images for 
vulnerabilities 

 No container 
should have code 
execution 
vulnerabilities 

K8s 

SSH server running 

inside a container 

 Policy to prevent 
SSH server 
process in 
containers 
 

 Have monitoring 
and audit all SSH 
servers running in 
the containers 

K8s and Tooling 

 
 

4.5.3 Persistence 

In the persistence phase, the attackers establish backdoors to ensure that 

persistence access to the cluster is maintained if initial connectivity access is lost. 

The techniques involved in this stage is presented in table 8. 

 

Table 8 Persistence Mitigation (Dang 2020). 
 

Technique Mitigation security controls 

Backdoor container Implement RBAC to 

create pods and 

abstractions that create 

pods 

K8s 

Writable hostPath 

mount 

 In CSP limit node 
lifetime to 24hrs 
and automatically 
provision new 
nodes as a 
replacement. 
 

 Policy to 
limit/disallow host 
mount 

 
 

CSP 

K8s 



 

 Make required 
host paths as RO 

 

Kubernetes CronJob RBAC with PLP to 

create pods and jobs 

K8s 

 
 

4.5.4 Privilege Escalation (PE) 

The PE tactics involve the techniques used by the attacker to have an elevated 

right within the clusters. Some of the access rights could be gaining access to the 

nodes from the containers, privilege elevation in the container and possibly 

access to cloud infrastructure, especially in environments without RBAC or 

misuse of cloud service accounts.  

The techniques and the possible mitigations for the PE tactic are presented in 

table 9. 

 

Table 9 Privilege Escalation mitigation (Dang 2020). 
 

Technique Mitigation security controls to 

configure 

Privileged container  Restrict the use of 
running privileged 
container 
workloads  
 

 If any implement 
RBAC and 
network policies 
to restrict network 
access to the 
privileged 
workloads. 

K8s 

Cluster-admin binding  RBAC to limit 
admins with 
access to cluster-
admin role and 
admins able to 
create role 
bindings. 

K8s 



 

 Avoid the use of 
cluster-admin role 
and grant groups 
with granular 
permissions with 
PLP 

hostPath mount  In CSP limit node 
lifetime to 24hrs 
and automatically 
provision new 
nodes as a 
replacement. 

 Implement a 
policy to prevent 
host mount in 
container 
workloads 

 Use pod security 
policies to specify 
the allowed file 
path to be 
mounted 

 

CSP 

K8s 

Access Cloud 

resources 

 Implement 
workload identity 
where applicable. 

 limit node lifetime 
to 24hrs and 
automatically 
provision new 
nodes as a 
replacement. 

 Implement a 
policy to prevent 
host mount in 
container 
workloads 

 Use pod security 
policies to specify 
the allowed file 
path to be 
mounted 

 

CSP 

K8s 

 



 

4.5.5 Defense Evasion 

In the defense evasion, the attacker uses different tactics to prevent being 

detected and hide all trails leading to its activities. Details of the techniques and 

possible mitigation are presented table 10 below. 

 

Table 10 Defense Evasion Mitigation (Dang 2020). 
 

Technique Mitigation security controls to 

configure 

Clear container logs  Restrict host 
mounts 

 In CSP limit 
access to the 
cluster workloads 
and implement 
PLP 

 Implement a 
SIEM system to 
collect logs or 
have persistence 
storage. 

K8s 

 

CSP 

 

 

Tool 

Delete K8s events  Limit workload 
access to the 
nodes. 

 Enable the 
logging supported 
features  

K8s  

CSP 

Pod/container name 

similarity 

 Implement RBAC 
for Pod creations 
APIs 

 Use PLP for 
access to the 
cluster 

K8s 

Connect from a Proxy 

server 

 Restrict access to 
the k8s API 
server 

CSP 

 

4.5.6 Credential Access 

In this tactic, the attacker starts using techniques to steal sensitive credentials 

such as passwords, service tokens, service accounts, secret key stores in the 



 

cluster, the cloud or application credentials. Table 11 shows the recommended 

mitigations. 

 

Table 11 Credential Access mitigation (Dang 2020). 
 

Technique Mitigation security controls 

List k8s secrets  Use namespaces 
to limit the scope 
of a secret 

 Implement secret 
rotation. 

 Store secrets 
outside of the 
container 
workloads 

K8s 

Mount service 

principal 

 limit node lifetime 
to 24hrs and 
automatically 
provision new 
nodes as a 
replacement. 
 

 Use pod security 
policies to specify 
the allowed file 
path to be 
mounted. 
 

 

CSP 

K8s 

Access container 

service account 

 Service accounts 
should have 
RBAC with PLP. 

 Avoid the use of 
the cluster-admin 
role 

K8s 

Applications 

credentials in 

configuration files 

 Ensure no secrets 
are written to 
manifest files. 

 Scan files to 
identify secrets 
stored in the SCM 

K8s 

Tools 

 
 



 

4.5.7 Discovery 

In this phase, the attacker explores ways to identify more resources within the 

k8s cluster thereby allowing an attacker to make lateral movement within the 

container workload infrastructure. By default, k8s does not restrict traffic between 

the pods, hence making the discovery exercise and enumeration easier to do.  

Some of the discovery would include getting instance metadata (such as SSH 

pub keys, network configs,) and running pods using 

https://<NODE IP>:10255/pods/. With network policies, access to the kubelet 

port can be restricted as follows: 

 

apiVersion: crd.projectcalico.org/v1 
kind: GlobalNetworkPolicy 
metadata: 
  name: deny-access-to-kubelet-port 
spec: 
  types: 
  - Egress 
  egress: 
  - action: Deny 
    protocol: TCP 
    destination: 
     nets: 
     - 0.0.0.0/0 
     ports: 
     - 10255 
    source: {} 
  

Other recommended mitigations to the discovery tactic are in table 12 below. 

 

Table 12 K8s Discovery mitigation (Dang 2020). 
 

Technique Mitigation security controls 

Access the K8s API 

server 

 Restrict users and 
SA with access to 
the k8s API 
server 
 

 Use private 
clusters 

 

K8s 

CSP 



 

 Access to 
external clusters 
to be limited to 
only trusted IPs 

Access Kubelet API  Implement 
network policies 
to block pod 
access to the 
Kubelet port 

K8s 

Network mapping  Implement micro-
segmentation to 
restrict traffic 
between pods. 

K8s 

Access Kubernetes 

dashboard 

 Don’t use the 
Kubernetes 
dashboard, rather 
use the cloud 
console 
dashboard  

K8s 

Instance API  Enable metadata 
concealment or 
workload identity 
 

 Implement egress 
network policy to 
restrict to the 
cloud metadata 
services 

 

CSP 

 

 

 

4.5.8 Lateral Movement 

The lateral movement tactics focus on navigating through the container clusters 

to gain access to other resources within the cluster, underlying node and 

ultimately other cloud resources within the infrastructure.  

For instance, every workload in AKS has a service principal (SP) used for the 

creation and management of the resources used for cluster operations. The SP is 

stored in /etc/kubernetes/azure.json, so an attacker with access to the credentials 

can access and modify the resources. Table 13 shows the recommended 

mitigation actions. 



 

 

Table 13 Lateral Movement Mitigation (Dang 2020) 
 

Technique Mitigation security controls 

Access cloud resource  limit node lifetime 
to 24hrs and 
automatically 
provision new 
nodes as a 
replacement. 
 

 Enable metadata 
concealment or 
workload identity 
 

 Implement a 
policy to prevent 
host mount in 
container 
workloads 
 

 Use pod security 
policies to specify 
the allowed file 
path to be 
mounted 

 

CSP 

K8s 

Container service 

account 

 Implement RBAC 
with PLP for SA 
and role bindings 

K8s 

Cluster internal 

networking 

 Implement 
network policies 
to restrict inter 
pod network 
traffic  

K8s 

Applications 

credentials in 

configuration files 

 Ensure no secrets 
are written to 
manifest files. 
 

 Scan files to 
identify secrets 
stored in the SCM 

Tools 

K8s 

Writable volume 

mounts on the host 

 In CSP limit node 
lifetime to 24hrs 
and automatically 

K8s 

CSP 



 

provision new 
nodes as a 
replacement. 
 

 Policy to 
limit/disallow host 
mount 

 
 

 Make required 
host paths as RO 

 

Access K8s dashboard  Do not use the 
Kubernetes 
dashboard, rather 
use the cloud 
console 
dashboard 
 

K8s 

Access tiller endpoint  If using Helm, 
upgrade to the 
latest version of 
Helm 

Tools 

 
 

4.5.9 Impact 

The last tactic of the Kubernetes attack matrix is the impact where the attacker 

finally launches the offensive to destroy the entire container workloads, cause a 

denial of service and obtain other hack values from the infrastructure. In mid-

2020, there was a large-scale campaign where attackers have impacted the 

cloud container workloads by compromising them for cryptojacking attack. 

(Weizman 2020a). Recommended mitigation techniques are contained in table 

14. 

 

Table 14 Impact Mitigation (Dang 2020). 
 

Technique Mitigation security controls 

Data Destruction  Actively monitor 
the audit logs 
 

K8s 

CSP 



 

 Implement RBAC 
with PLP to SIEM 

 
 Restrict access to 

k8s nodes and 
configuration APIs 
from CSP 

 
 

Resource Hijacking  Restrict access to 
k8s cluster nodes  

 

 RBAC with PLP to 
create pods 

 
 Do not deploy 

public images in 
production without 
scanning for VC 

 

K8s 

CSP 

Denial of service  Always deploy the 
latest version of 
k8s available from 
the CSP 

 

 Only permit 
allowed 
connections 
between pods. 

 

 Restrict access to 
the cluster API 
and internally 
consumed 
services to only 
allowed IP. 

 

 Implement 
effective 
monitoring and 
alert security 
solution 

K8s 

CSP 

 
 



 

 

5 CONTAINER SECURITY STANDARDS AND PUBLICATIONS 

Cybersecurity consists of several standards with different sets of policies used to 

protect critical infrastructures across different industries. The recommended 

policies are sets of proven guidelines that could help secure the infrastructure. 

Also, organisations have different standard compliance requirements needed by 

law. For the container security and the findings done in this thesis work, the 

examined standards and publication are from NIST, CIS, CSA, PCI and 

publications from IEEE and leading container security vendors such as StackRox, 

Aquasec, Palo Alto, Microsoft and Oracle just to mention a few. 

 

5.1 NIST Special Publications 

The NIST special publication 800-190 is a comprehensive set of guidelines to 

secure application container technologies. It presents the threats and the 

countermeasures to consider when planning, implementing, and maintaining a 

container technology infrastructure. (Souppaya et al. 2017.)  

 

The publications focus on the risks associated with container images, the image 

registries, host OS, orchestrator, and the container runtime.  Organisations are 

responsible to implement the countermeasures using any of the security tools 

with the technological capabilities to address the risks described in the special 

publication 800-190. Some of the solutions providing the CWPP include Aquasec, 

Twistlock, Neuvector, StackRox, Sysdig, Anchor and many others. 

 

5.2 CIS  

CIS publishes several benchmarks to configure the infrastructure from the OS, 

Cloud providers, network devices, browsers etc. It has also published 

recommended best practices for docker and Kubernetes virtualization. 

The CIS benchmark for Kubernetes provides a set of general guidelines to 

securely configure the open-source Kubernetes infrastructure.  

For users consuming the Kubernetes CMS such as GKE and EKS, the security of 

container workloads is a shared responsibility between the users and the CSP. 



 

To ensure that the right set of controls are implemented, the applicable CSP 

Kubernetes benchmark such as CIS GKE benchmark and CIS EKS benchmark 

should be applied as they are a subset of the CIS Kubernetes Benchmark 

addressing the specific risks of using the Kubernetes Cloud Managed services. 

(Google. 2020b). 

 

Security solutions that support the k8s CMS benchmarks should be deployed for 

an automated audit and continuous compliance monitoring. A manual check 

could as well be done using the open-source kube-bench for the worker nodes as 

follows; kube-bench node --benchmark cis-1.5 

 

5.3 PCI Secure Cloud Computing Guidelines 

The PCI Cloud computing guidelines prescribed standards to fulfilled by 

organisations accepting payment cards. It has defined some minimum 

requirements to deploy application container workloads. One of the policies 

relating to secret management is required to ensure that secrets are not stored 

within the cluster. 

 

“Access controls to both the orchestration framework and the containers 

themselves such that different workloads do not have access to keys, identity 

tokens and other sensitive information used by other containers in the cluster” 

(Cloud Special Interest Group. 2018). Other recommended policies have been 

discussed in this research work. 

  

5.4 Cloud Security Alliance 

The Cloud security alliance, CSA have created a set of guidelines across 14 

different domains to ensure a secured Cloud architecture, adequate governance 

in the Cloud and Operating the Cloud securely. (Mogul et al. 2017).  It is a highly 

recommended standard for cloud workloads. 

 



 

6 RESULTS AND DISCUSSION 

This research seeks to answer the three research questions identified at the 

beginning of this thesis as specified in chapter 2.1. The research questions are 

listed below with the discussion and findings to the questions are presented in the 

topics are contained in this chapter. The applicable security controls from the 

results presented in this section are also implemented by the commissioner. 

 

 What security controls should be implemented to protect the container 
workloads in the Cloud?”.  

 What is the current threat landscape of containers and what are the 
recommended mitigation? 

 What cloud controls can be utilized to secure the container workloads 
deployed in the cloud?  

 

6.1 What security controls should be implemented to protect container 
workloads in the cloud? 

Securing the container workloads is not a “press one-button” approach to 

security, it requires a well-planned approach to secure the containers irrespective 

of the orchestration tool. This research shows that container security must be part 

of their entire lifecycle; from the build to running phase and every element in-

between. 

 

The building of base images must comply with the industry standard and 

hardened using the recommended benchmark such as the CIS benchmark. 

Having a hardened base image is not enough because threats and vulnerabilities 

are always evolving, so organisations must have continuous security as part of 

the CI/CD to ensure that vulnerability and compliance are always monitored. 

  

The challenge most organisations face is using processes and tools not designed 

for securing container workloads in the cloud, processes such as patch 

management and tools to be adopted must adapt rapidly a containerized 

infrastructure and able to interpret the cloud constructs and provide more context 

about any vulnerabilities or misconfigurations.   

 



 

Establishing a list of trusted images to be used for deployment, implementing 

RBAC with PLP and ensuring that all data at rest and in transit are always 

encrypted will further strengthen the security posture of the container workloads 

in the cloud.  

 

In the runtime, employing a defense-in-depth approach helps further secure the 

containers. Limiting access between containers with the use of micro-

segmentation is a recommended practice to ensure that container workload is 

only allowed to connect with specified namespaces and ports.  The runtime must 

be continuously monitored for any deviation from set security policies and 

immediately remediated based on the associated risk factor. 

 

It is highly recommended that organisations implementing container workloads 

should at the minimum ensure that the infrastructure follows the NIST special 

publication 800-190 and the CIS benchmark for the adopted k8s cloud-managed 

service. 

 

6.2 What are the current threat landscape of containers and recommended 
mitigation? 

Attackers are constantly exploiting the vulnerabilities associated with containers 

either in the runtime or images stored in registries such as a malicious image 

being downloaded over 5million times from docker hub (Goodin. 2018). The main 

container threats in the cloud include application vulnerability, misconfigured 

cloud IAM, insufficient RBAC with PLP, secret exposure, malicious container 

images, overly permissive network, and insecure orchestrator configurations. 

 

This study shows that the threat landscape of the containers is no different from 

the non-containerized applications concerning the tactics which are shown from 

in the matrix from chapter 4.5. There is however some peculiarity with the 

containers especially for the orchestrator being considered in this research which 

is the Kubernetes. 

 



 

The uniqueness includes the presence of a control plane being the central 

management system to control the operations of all the nodes and containers in a 

container cluster. An adversary with access to a misconfigured and vulnerable 

control plane can exploit and impact the normal operations of the cluster. 

 

Most of the identified threats can be mitigated by implementing effective RBAC 

with PLP, using micro-segmentation and having a cloud-native runtime security 

solution. Security minded organisations should build their compliant images and 

use private registries instead of utilizing publicly available images. 

 

6.3 What cloud security controls can be utilized to secure the workloads 
deployed in the cloud? 

Deploying in the cloud comes with its own risk and the required level of 

applicable security control to be implemented in the cloud depends on the 

deployment model being adopted, either IaaS or PaaS.  The k8s cloud managed 

services are the PaaS services, which means the security of the underlining 

infrastructure is the responsibility of the CSP based on the shared responsibility 

model. 

 

When deploying container workloads in the cloud, IAM is a critical foundation 

element that must be configured with RBAC. IAM services such as GCP “cloud 

IAM Conditions” provides a possibility to define the required set of permissions 

for the human and service accounts needed by the cluster. 

 

It was interesting to see how k8s clusters are publicly available on the internet 

with the majority of them available on the public cloud, this shows that the use of 

private clusters should be defined as a guardrail in the cloud. In addition to this 

and reducing the attack surface. Besides, some cloud providers by default create 

a publicly accessible load balancer with firewalls allowing access from 0.0.0.0/0, 

this should be reviewed to ensure that the services are not publicly exposed by 

creating private load balancers. The research shows using minimalistic OS 

should be favored over the full feature OS for the container workloads.  

 



 

6.4 Recommended future research. 

Container technologies and especially using Kubernetes as orchestrator 

continues to evolve and develop new features and tools to manage them. The 

threat to the containerized infrastructure is also evolving so is the security 

standards to protect containers and the use of the cloud also adds additional 

complexity to the security of the workloads if not configured properly.  

 

This research did not examine in detail the specifics of different cloud provider 

when deploying the container workloads in the cloud and this presents an 

opportunity for research and learning on the capabilities of different cloud 

providers to securely deploy container workloads. An additional research 

proposal is identifying the specific monitoring metrics to effectively implement 

situation awareness for a containerized infrastructure in the cloud. 
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APPENDIX 

Appendix 1 VC scanning code for Image build in CI/CD  

The code snippet below assumes that the CI/CD pipeline environment is based 

on Jenkins with the integration of Prisma Cloud Jenkins plugin for the 

vulnerability and compliance scanning.  

node { 
   stage('Preparation') { 
       // for display purposes 
       echo "Preparing" 
   } 
#Building of the container image based on ubuntu 
   stage('Build') { 
       // Build an image for scanning 
       sh 'echo "FROM ubuntu:14.04" > Dockerfile' 
       sh 'echo "MAINTAINER Aqsa Fatima <aqsa@twistlock.com>" >> Dockerfile
' 
       sh 'echo "RUN mkdir -p /tmp/test/dir" >> Dockerfile' 
       sh 'docker build --no-cache -t dev/ubun2:test .' 
   } 
#Scan of the image after build before pushing to the registry 
    stage('Scan') { 
    prismaCloudScanImage ca: '',  
        cert: '',  
        dockerAddress: 'unix:///var/run/docker.sock',  
        ignoreImageBuildTime: true,  
        image: 'ubun*',  
        key: '',  
        logLevel: 'info',  
        podmanPath: '',  
        project: '',  
        resultsFile: 'prisma-cloud-scan-results.json' 
} 
#Publish result of the scan 
    stage('Publish') { 
        prismaCloudPublish resultsFilePattern: 'prisma-cloud-scan-
results.json' 
    } 
#Push image to registry after passing admission control 
    stage('push to registry') { 
        ... 
        ... 
    } 
 
} 


