

Dipen Hamal

Near Real-Time Communication in the WWW

Extensible Messaging and Presence Protocol

Helsinki Metropolia University of Applied Sciences
Bachelor of Engineering

Media Engineering

Bachelor’s Thesis

21 February 2012

 Abstract

Author(s)
Title

Number of Pages
Date

Dipen Hamal
Near real time communication in the World Wide Web (WWW)

49 pages + 4 appendices
28 March 2012

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Java and Dot Net

Instructor(s)

Kari Aaltonen, Thesis Supervisor & Principal Lecturer
Hannu Markanen, Supervisor & Lecturer

The goal of this project was to research real time communication protocol and the possibil-
ity of replacing flash media server with an existing open source server. Extension of the
protocol, its extensibility and performance of the open source real time server were ana-
lyzed. This project was carried out for Metropolia UAS in order to find out alternative solu-
tions for the eLearning environment project called Knowledge Practice Laboratory (KP-
Lab), running on flash media server.

The client side of the project was a browser based cross-platform application fully imple-
mented in actionscript 3. In order to run the application, browsers should have the latest
version of flash player installed. For the server side implementation and overriding the
server’s functionality, Java programming language was used. The project used the schema
provided by the server for storing information into database and it was a near real time
application.

The application was tested using all the major browsers: Mozilla, Firefox and Chrome. Per-
formance test of the server was done by registering over two thousand users and running
the automated test. The tests verified the server to be fully developed and mature
enough to be taken into consideration as a better alternative to flash media server.

Keywords XMPP Protocol, Server, plugin, extensibility, real time, KP-lab

Contents

List of Abbreviations 1

1 Introduction 3

2 What is Near-Real Time Communication? 4

2.1 Scope of Near-Real Time Communication 4

2.2 Prerequisites of Real-time Communication System 5

2.3 Collaborative e-learning 6

2.4 Flash Media Server and the Communication Protocol used 7

3 Web Communication Protocols 9

3.1 Transmission Control Protocol/ Internet Protocol 9

3.2 Mail Protocol 11

3.3 File Transfer Protocol 12

3.4 Hyper Text Transfer Protocol 12

3.5 What do they have in common? 13

4 Extensible Messaging and Presence Protocol (XMPP) 14

4.1 Description of the protocol 14

4.2 Why Real Time Collaboration Protocol? 15

4.3 Comparison of communication Protocols 16

4.4 Real Time Network 18

4.5 Connection Life Cycle 19

4.6 Extensions (XEPs) of the Protocol 20

5 Real Time Collaboration Server 21

5.1 Selection of Real Time Server 21

5.2 Support Provided by Real Time Collaboration Server 23

5.3 Plugin Support 24

6 Application Design and Implementations 25

6.1 Application Description 25

6.2 Development Tools & APIs used 26

6.3 Overall Design 27

6.4 Application Architecture 30

6.5 Application User Interface 35

7 Test and Result Analysis 39

7.1 Testing Real Time Collaboration Server 39

7.2 Result and Analysis 42

8 Conclusion 45

References 48

Appendices 1

Appendix 1: List of Active and Final XEPs. 1

Appendix 2: List of XEPs supported by Openfire. 1

Appendix 3: Report generated by monitoring service plugin. 1

Appendix 4: Glossary of Terms 1

1

List of Abbreviations

Adobe FB Adobe Flash Builder

AIM AOL (America on Line) Instant Messenger

API Application Programming Interface

CPU Central Processing Unit

DNS Domain Name System

FTP File Transfer Protocol

GSSAPI Generic Security Service Application Program Interface

GUI Graphical User Interface

HSQLDB HyperSQL Database

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol over SSL

IBM International Business Machine

IDE Integrated Development Environment

IM Instant Messaging

IMAP Internet Mail Access Protocol

IP Internet Protocol

JAR Java Archive

JOSSO Java Open Single Sign On

KPE Knowledge Practice Environment

KP-Lab Knowledge Practice Laboratory

MD5 Message Digest Algorithm

ms millisecond

MSN MicroSoft Network

MXML Macromedia eXtensible Markup Language

OSI Open Systems Interconnection

POP Post Office Protocol

REST Representational State Transfer

RFC Request for Comments

RPC Remote Procedure Calls

RTMP Real Time Messaging Protocol

RTMPT Real Time Messaging Protocol Tunneled

RTMPS Real Time Messaging Protocol over SSL (Secure Socket Layer)

RTMPE Real Time Messaging Protocol Encrypted

2

RTMPTE Real Time Messaging Protocol Encrypted and Tunneled

SASL Simple Authentication and Security Layer

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSO Single Sign-On

TCP Transmission Control Protocol

TLS Transport Layer Security

WWW World Wide Web

XAMPP X (any of these operating systems: Linux, Mac OS X, Solaris, and

Windows), Apache, MySQL, PHP and Perl

XEPs XMPP Extension Protocol

XHTML Extensible Hyper Text Transfer Protocol

XML EXtensible Markup Language

XMPP Extensible Messaging and Presence Protocol

XSF XMPP Standards Foundation

3

1 Introduction

The main aim of the thesis is to explore the already existing real-time communication

protocol, Extensible Messaging and Presence Protocol (XMPP) that is considered to be

the alternative to Real Time Messaging Protocol (RTMP) used by flash media server.

Another objective of the thesis is to determine whether Openfire, real time collabora-

tion server that has built in support for XMPP is suitable for KP-lab and capable of re-

placing flash media server.

This thesis includes the research study associated with the KP-lab, near real-time

online collaborating tool. KP-lab uses flash media server to broadcast messages and as

sync server for overall synchronization. KP-lab intends to replace flash media server

with an existing open source real time server.

People have always communicated. However the communication channel and the way

people communicate has always changed. The latest trend, Internet has always been

able to attract more users due to its simplicity to use and continuous development.

Merely used to share static information via web pages in the beginning, Internet now is

used for communicating all sorts of information and in a dynamic manner. Excessive

uses of social networking, online collaboration tools and global concentration on it for

sharing information have outlined a need for faster and reliable communication. Near

real time communication is a need that should be achieved without compromising se-

curity and reliability.

The thesis is divided into two main parts, one theoretical and one practical. Theoretical

part consists of research on XMPP and how it varies from existing protocols. Online

articles, books and research studies are used for this part. Practical part consists of

application design that supports the protocol and uses Openfire as a communication

server. This part is used to evaluate the extensibility of the protocol and overall per-

formance of the server. Tests will be carried out to determine the performance capabil-

ity of the server and obtained results will be used as evaluation criteria.

The thesis will not describe the application development and implementation of the

protocol in depth. Evaluation will be done upon the assumption that flash media server

and Openfire server have same configuration and are used under similar conditions.

4

2 What is Near-Real Time Communication?

Real time communication system is anything that allows or guarantees instant delivery

of whole information. Since the communication system depends on number of compo-

nents and their performance, it is impossible to achieve any system that has no laten-

cy, the time required for receiving input and responding to the received input. Due to

this fact, the scope of this project is limited towards achieving near real time communi-

cation.

Near real time communication over the Internet is sharing information to and collabo-

rating with others in almost real time depending on the presence of the associated

users. Any application or tools that are near-real time in nature offers synchronization,

faster response time and reliability. Latency should be comparatively low in order to be

near-real time. Also, merely being faster does not make any application real time until

and unless it is reliable. Data lost during the transmission or lesser throughput should

be extremely low or completely avoided under any circumstances.

2.1 Scope of Near-Real Time Communication

It is an undeniable fact that the one who lacks information lags behind. Unlike centu-

ries ago, when information was limited to certain group of scholars and nobles, these

days there is vast amount of information freely and easily accessible on the Internet.

Everyone who is connected to the Internet has access to information, however, the

one who gets information faster might get all the benefits. Vast amount of information

is being exchanged on the Internet and since the life is getting faster, these days get-

ting information on time matters the most.

Information delivered on time can be a life saver and might have more use than deliv-

ered late. Some of the information is always useful, however, some information that is

delivered late might just be the reference from the past. In order to preserve the im-

portance of the information and maximize its usefulness, timely delivery of information

is very important.

5

Near-real time communication is critical in many sectors where timely information is

essential. Aeronautical, space administration, finance and health sector are some of the

sectors where delay in information is unacceptable. A slight change in the shared in-

formation might deviate result into creating havoc.

Instant messaging, presence awareness technology, online gaming, application shar-

ing, desktop sharing, voice over IP, video and audio conferencing tools are some of the

real time collaboration tools [1]. Using these tools, users sense or get result immedi-

ately in timely manner and data transmission without noticeable loss or no loss at all.

2.2 Prerequisites of Real-time Communication System

Near Real time communication is said to be achieved only when the exchange of mes-

sages can be executed with in fraction of a second. This can happen only when the

processing time is very short. In order to do so, the system should be able to process

messages without requirement to store them or to perform any operations. Additional

latency caused due to polling can add to processing time completely slowing down the

system. The completely active system that incorporates event/data-driven processing

capabilities can minimize the need for polling there by reducing the latency period.

[2, 2-4].

Processing of data before storing makes the system faster. Compared to conventional

database which queries only the existing data, real time system has to deal with data

in the fly. This might push the system to wait for longer time or into loophole in case

the data received is delayed, truncated or out of sequence. To avoid this, the system

should be able to time out individual processing in order to unblock the delayed opera-

tion and handle the imperfect streams. [2, 2-4].

Another important feature that any system requires in order to achieve near real time

communication is clustering and scalability. Clustering allows application to split over

multiple machines supporting distributed operations and scalability. This helps to re-

source management, load balancing and reducing single machine from getting over-

loaded with streams. At the same time support for multi-threaded operations reduces

latency by avoiding external events. [2, 2-4].

6

The communication can with reason be referred to as near real time only when the

stream processing system can deliver response to high volume of request with very

low latency. Some of the most important rules the any system should follow to be real

time are listed below:

 Keep the data moving

 Query using SQL on streams

 Handle stream imperfections

 Generate predictable outcomes

 Integrate stored and streamed data

 Generate predictable outcomes

 Guarantee data safety and availability

 Partition and scale application automatically

 Process and response instantaneously

The system should be able to process requests with minimal overhead which can

be achieved only when the system provides supports for all the critical functionali-

ties with optimized performance. [2, 2-4].

2.3 Collaborative e-learning

Termed as Knowledge Practices Laboratory, KP-lab is an online collaboration tool that

simplifies collaboration with the team members in an innovative manner. That is why

KP-lab considers development of collaborative tools to be co-evolution process of re-

searchers, developers and user. Specially focused towards creating sharing and work-

ing with knowledge, it is suited best for education purposes or in workplaces where

team work is an essential part of project’s success. [3]

Document uploading and sharing, instant messaging, creating and editing of shared

spaces, adding members to those shared spaces, time management are some im-

portant features that KP-lab provides. Shared space is an accessible virtual working

space that contains knowledge objects and has information about their contents and

7

existing relations with each other. Figure 1 is the screen shot of the KP-Lab environ-

ment.

Figure 1. Root Space of the KP-Lab or entry point of authenticated users.

As shown in figure 1, object highlighted in red and other three similar looking objects

are shared objects. Members can be added to those objects and those members can

collaborate online in real time with the members associated with particular shared ob-

ject.

Technically speaking, KP-lab is a web based collaborating tool that runs on web server

and accessible via web browsers with flash plugin. End user’s web interface is devel-

oped using action script, scripting language and most of the server side implementa-

tion is done using Java programming language. KP-lab relies on flash media server for

broadcasting of messages and overall synchronization of the shared spaces and the

objects it contains. SyncServices API uses flash media server for overall data synchro-

nization.

2.4 Flash Media Server and the Communication Protocol used

Adobe Flash Media Server is a media streaming platform and a scripting engine. It is

used for rich Internet applications that deliver services like video on demand, live web

event broadcast, IM. [4, 1] It is a server with open socket that allows persistent con-

nection with the client. Over that connection, client can send/receive presence infor-

8

mation, audio, video and data streams. Upon connection, it allows clients to make RPC

(Remote procedure calls) on server side that calls methods on specific clients. Also, it

allows using shared objects and subscribing to them which can be used for synchroniz-

ing complex data structure and calling remote methods on multiple clients, all at one

time. Flash media server uses rtmp as communication protocol and uses HTTP in ab-

sence of rtmp. [5]

Real time messaging protocol is a TCP based protocol used for transmission of audio,

video and data between adobe flash player and flash media server. RTMP can be con-

figured into five (5) different ways depending upon the need. First type of configura-

tion is simply RTMP and it does not use any encryption and uses port number 1935 for

connection as default port. Referred to as RTMPT, tunneling over HTTP is second type

of configuration and uses port number 80 as default. Third one, RTMPS considers

about the security and uses port number 443 for connection. RTMPE is more secure

configuration and more enhanced, encrypted and faster than RTMPS. It scans the port

in the order of 1935, 443, 80 if port number is not specified. Using port number 80 as

default, RTMPTE is the most enhanced configuration that encrypts communication

channel and tunnels over HTTP. [6, 8-9]. Figure 2 shows the architecture of flash me-

dia server connection.

 Figure 2. System Architecture of flash media server connection. [6, 9].

Sends Media/data

Streams

Flash Me-
dia Server

Sends SWF

Play Swf Using
Flash Player

Web Ser-

ver

Client

HTTP

RTMP

1

2

3

9

As shown in figure 2, client gets swf from the web server and using the RTMP protocol,

client is able to send or receive media streams. Such swf files can only be played if the

client has flash player installed.

In order to deliver the media (audio and video) streams smoothly, the protocol splits

larger chunks into smaller fragments. During the RTMP session, the protocol defines

several channels to be used independently for exchanging packets. The TCP based

RTMP allows real time communication maintaining single persistent connection with the

client. [7]

3 Web Communication Protocols

Web communication protocols are the technology used to exchange information over

the Internet. With the advent of Internet, there has been a rise in number of infor-

mation exchange protocols. Depending upon the nature and capabilities provided by

the protocol, clients can have access to the information and interaction with the re-

sources stored in servers. Since protocols are dedicated to perform some specific tasks,

use of them has been widely varied depending upon correlation between the require-

ments and the capabilities they have to offer. Sometimes they can be used in combina-

tion with others to fulfill the nature of the services to be provided. Due to the incapa-

bility of existing protocols to perform all the required task or one particular task, new

protocols are being developed every now and then.

3.1 Transmission Control Protocol/ Internet Protocol

Transmission Control Protocol (TCP) and Internet Protocol (IP) are two different proto-

cols that are complementary to each other and so are referred to as one. TCP/IP de-

fines the instructions and rule that computers use to exchange information meaning

that computers at sending end and at the receiving end, both should have copy of

TCP/IP program. Figure 3 illustrates the TCP/IP connection between client and server

over the Internet.

10

Figure 3. TCP/IP connection using IP address

As shown in figure 3, client request the Domain Name Service (DNS) server asking the

ip address of someserver.com. DNS server will translate the domain name into its des-

ignated ip address and sends it back to the client. Then the client sends request to the

web server with that particular ip address.

IP, the lower layer or also network layer in Open Systems Interconnection (OSI) model

is the protocol used to route information to the proper address. It does not guarantee

security and reliable data transmission. However it is the foundation of internet as eve-

ry packet exchanged are routed using it. [8, 28] Each computer connected to the In-

ternet/network is assigned a unique ip address. It makes sure that the information is

sent to the intended address. Every packet sent contains an ip address and control

information enabling it to be controlled and guided to the required destination [9, 15-

16]. It is a connectionless protocol and therefore does not keep track of the routes

taken. It depends on TCP for reliable delivery of information. It supports routing, data

fragmentation, identification of the protocol, multicasting and broadcasting and pre-

vents loop in the network. [8, 28-31]

TCP, the higher layer, guarantees reliable data transmission between two end points.

It breaks down the information into several smaller packets and assigns different route

to each packet for faster transmission. Upon arrival at the destination, all the packets

11

are reassembled. If any data are out of order or corrupted, it reorders the packet

thereby reducing the loss of information during transmission. It requires IP address

and port number of both client and server in order to make a connection. [9, 42]

3.2 Mail Protocol

Electronic mails or Emails are sent over the TCP connection. Sending and receiving of

emails requires combination of two protocols: Simple Mail Transfer Protocol (SMTP)

and Post Office Protocol (POP) or Interactive Mail Access Protocol (IMAP). SMTP is re-

sponsible for sending emails to the destination server and used port number 25 as de-

fault port. Due to its inability to queue messages, it requires either of most commonly

used POP3 or IMAP at the receivers end. All of these protocols use TCP connection for

transmission and delivery of emails. POP3 or IMAP allows for saving, downloading,

creating and deleting of individual messages from mail boxes. [9, 51-52]. Figure 4

shows how mail server sends and receives email.

Figure 4. Email sending and receiving.

As illustrated in figure 4, mail server sends or receives email using SMTP protocol. Up-

on receiving emails, it stores them using either POP3 or IMAP. Authorized client can

then download, save, or delete email from mail server.

12

3.3 File Transfer Protocol

File transfer protocol (FTP) is a protocol used to copy file/s from one host to another

host across TCP/IP connection. Unlike client-server application, it creates two connec-

tions between the hosts. It uses connection over port number 20 to transfer data and

uses connection over port number 21 to send control information. Only authorized us-

ers are allowed to request transfer of files. Its limited use for only transferring files has

kept it safe from being exploited by hackers. [9, 50] More practical use of it can be

seen in a websites that allows uploading and downloading of documents. Figure 5

shows two modes of FTP connection.

Figure 5. Establishing FTP connection in different modes.

As shown in figure 5, FTP connection can be done in two ways. In the case of Active

mode, both client and server open the port however in case of passive mode, only

server opens the port for connection to listen for incoming traffic.

3.4 Hyper Text Transfer Protocol

Web pages designed using Hypertext Markup Language (HTML) and accessible via web

browsers are transferred using Hypertext Transfer Protocol (HTTP). HTTP is used to

communicate between web browser and web servers over the TCP/IP connection in

order to transfer data. It is request response protocol i.e. client sends request to the

server establishing TCP/IP connection and server sends response to the request and

13

the connection is closed when the response is complete. It uses port number 80 as

default port for establishing connection. [9, 48] Figure 6 shows the request response

model of HTTP connection.

Figure 6. Request-Response model of HTTP

As shown in figure 6, client sends request to the server. Before responding to the re-

quest from the client, server checks all the necessary information and finally responds

with the data requested if requested data exists.

A more secure and stateful protocol is Hypertext Transfer Protocol over secure socket

layer (HTTPS). It is HTTP with SSL support to secure the connection between two

communicating computer and encrypt information during the transmission. It uses port

number 443 as default port. Any web page transferred using this protocol uses https:

at the front of its Uniform Resource Locator (URL).

3.5 What do they have in common?

Except TCP/IP, all other protocols (FTP, email protocols, HTTP) connectionless, state-

less and are based over TCP/IP connection. Stateless means all the transactions or

interactions that happen between client/Server are independent of others. It also

means that the computer keeps no record or track of state of interactions and each

transaction has to be handled based entirely on the information it carries. Connection-

less mean the connection is terminated every time the transaction is complete.

14

TCP/IP might be considered not to be stateless and connection less. However, each

packets travel independently without any reference to other packets. Even though TCP

connection is maintained as long as all the packets are received, it is immediately dis-

connected after all the packets are received. Also TCP does not reassemble the packets

based on the state that is maintained however it does so based on the information

carried by packets. [9, 16, 42]

Stateless design requires extra additional information to be added every time there is a

transaction and server needing to interpret that information every time resulting in

increase of overhead. Computer expects new and complete data every time new re-

quest is made. Connection less design requires connection to be established every time

new request is made there by adding to the overhead.

4 Extensible Messaging and Presence Protocol (XMPP)

4.1 Description of the protocol

Previously referred to as Jabber, Extensible Messaging Presence Protocol (XMPP) is an

open-source IM protocol designed to support real-time messaging, presence manage-

ment and request-response services. Like any other existing communication protocols,

it defines a format for exchanging data. Even though, it is based on client-server archi-

tecture, peer-to- peer communication is also allowed between two clients or two serv-

ers as shown in figure 7. [10, 3-5]

Figure 7. Communication between servers and clients. [11]

15

Figure 7 illustrates the communication between servers and clients. It shows that cli-

ents on different servers can communicate with each other via two communicating

servers. Even direct client to client communication can be maintained after the clients

authenticate with their servers.

XMPP allows exchanging XML stanzas in near real time. Use of XML as data exchange

format gives communication an added benefit of rich and extensible structure. XML

makes it more human readable and easily debugged. With an easily extensible ability

of XML, it gains an ability to add new features that are both backward and forward

compatible. Support for encrypted communication between end to end through use of

Transport Layer Security (TLS) and strong authentication mechanism via Simple Au-

thentication and Security Layers (SASL) make it more secure and helps eliminating

spams and unauthorized messages. XMPP supports mainly small bits of information

exchange which gives XMPP extremely low latency making it extremely useful for real

time communication. However, it can function as signaling layer for moving large

blocks from point to point. [12, 4]

It can be used in two ways: one for creating services and other for creating applica-

tion. Some of the services that can be created using it are channel encryption, authen-

tication, presence sharing and detection, buddy list, notifications, one-to-one messag-

ing, multi-party messaging, service discovery, peer-to- peer media sessions. It can be

used to make any kind of real time applications. Some of its important implementations

are seen in gaming industry, collaborative shared spaces, synchronization, geolocation,

groupchatting, designing system controls, data syndication, middleware and cloud

computing. [13, 4-6] Though it was primarily designed for instant messaging (IM), its

ability is not limited just to IM. Any tasks that benefit from exchange of structured

messages can rely heavily on it.

4.2 Why Real Time Collaboration Protocol?

Due to the increase in the use of Internet for online collaboration and communication,

real-time communication is increasingly becoming necessity for web applications. Since

XMPP provides polling based solutions which in turn reduces the response time and

latency, it perfectly favors the real time communication. Just being faster is not the

16

only feature that real time communication requires. Communication over the Internet

has to be reliable and secure. It has built in support for Transport Layer Security (TLS)

and Simple Authentication and Security Layer (SASL) making it more secure. In addi-

tion, it can be customized according to the needs.

XMPP is an open source, open standard protocol without platform dependency which

makes it easier to implement and standardize. Server based on it, especially eJabbered

are rapidly developing into more than just instant messaging servers. Such servers are

easy to setup, scale and create a cluster out of many servers. It is based on decentrali-

zation meaning anyone can run their own XMPP server without the need to have cen-

tral master server. [11] This favors any companies, organizations, offices, schools or

even households to have their own private network which can be separated from pub-

lic networks behind the firewall. Many successful startups have used this protocol.

Chesspark, online multiplayer chess gaming site, is developed based on this.

XMPP provides best solution for the problems that existing web framework cannot

solve or do not attempt to solve [14]. Many Internet giants including Google, Facebook

and Twitter have used this to provide the best solutions proving it to be the best solu-

tion lying around. Google Wave used this protocol as the base for their federation pro-

tocol i.e.; server to server communication. Facebook uses XMPP for real time messag-

ing. This has also motivated larger number of developers to indulge into it.

4.3 Comparison of communication Protocols

Even though XMPP is not as mature as HTTP, it can over shadow many of HTTP capa-

bilities with its ability to communicate in real time, extensibility, security and many oth-

er features that it has to offer. However there are certain points where it still looks like

a child in front of a giant when compared with HTTP. Table 1 shows the comparison

between two protocols: decade old XMPP and much matured HTTP.

17

Table 1. Comparison of two different communication protocols
Comparisons XMPP HTTP

Pushing Da-

ta

Application receives notifications when-

ever new information is available with-

out needing to request server for in-

formation thereby reducing latency

almost to zero. It is bidirectional.

HTTP Client gets new information

only when server responds to the

client’s request. It is unidirectional

totally based on request-response.

Pleasing

Firewalls

It is firewall friendly. As client initiates

the connection, the server can push all

the data on the same connection like in

response to the HTTP request upon

connection establishment.

HTTP callbacks and arbitrary con-

nection are very hard to implement

in practice in the presence of fire-

wall.

Improving

Security

Since, it is built on top of TLS and SASL

technologies; it provides solid founda-

tion of security for XMPP connections.

HTTPS (HTTP in combination with

SSL/TLS) also called secure HTTP

provides security though it depends

upon the correctness of implemen-

tation of the web browser, server

software and cryptographic algo-

rithms supported.

Bigger and

Better Op-

tions

It includes three different low level

tools: <presence>, <message>, and

<iq> and hundreds of extensions

It supports handful of operations:

GET, POST, PUT, DELETE and so

on.

Statefulness It is stateful which makes scalability a

challenge as tools used to scale HTTP

can be used. However it’s increasing

popularity and with maturity, it might

see some tools especially dedicated for

its scalability.

It is stateless Protocol making it

easier to scale.

Maturity As it is new compared to HTTP, there

are very limited number of dedicated

developers, specialized severs and

libraries.

There is larger number of develop-

ers who understand it easily, more

libraries and much matured HTTP

server exists.

More Over-

head

It does not focus on short lived session

and simple request causing more over-

head to set up, maintain and destroy

XMPP sessions.

HTTP is session less protocol so it

drops connection immediately after

handling the request thereby result-

ing in lesser overhead.

[12, 28-30]

18

Based on the comparisons provided in table 1, it could be said XMPP has the potential

to solve many problems that HTTP has not been able to do. Its extensibility and securi-

ty makes it better than HTTP and also it is real time in nature compared to HTTP’s re-

quest-response model.

4.4 Real Time Network

Also referred to as real time network, XMPP network needs certain actors to be a com-

plete network. Servers, Clients, Components and plug-ins are those actors that com-

plete the network.

Server

XMPP server is the backbone of the network. Server’s role is to route xml stanzas from

one user to another whether they are on the same network or are on the remote net-

work. Beside that server provides basic messaging and presence features. [12, 6]

XMPP Network is formed when two or more servers communicate with each other.

Like Google wave, when set of public XMPP servers are able to communicate with each

other, and then it is termed as federated XMPP networks. Such servers are easy to set

up and are available for almost all platforms. It allows users to connect to it and com-

municate messages.

Clients

Client is another important actor of the network. Clients make the majority of enti-

ties/actors that are connected to the servers. Though some servers allow anonymous

login, clients need to authenticate to the servers if anonymous login is restricted. Cli-

ents can send xml stanzas, messages or presence which is tunneled by server to the

required destination or targeted users. Usually, clients in the network are human i.e.

IM users; however, automated services also exist as bots. [12, 7]

Components

Components are other entities that connect to the server except clients. Components

enhance the capabilities to the server by providing additional services. They have their

address and identity within the server though they run externally and communicate

over component protocol. Each component becomes a separately addressable entity

within the server and act as a sub-server. Components can manage roster and server

19

allows them to internally route or manage stanzas for themselves. Though they need

to authenticate to the server, authentication is not as complicated compared to the

SASL client’s authentication. [12, 7]

Plug-ins

Server behavior or capabilities can be extended simply by using plug-ins. Plug-ins for

servers are generally a set of software components that add specific abilities to serv-

ers. These are the components written in same programming language as servers are

written in. Plug-ins may overlap with components to greater extent; however, they are

not portable between different servers and have less overhead compared to external

components as they do not require communicating over network socket and serializing

XML. [12, 8]

4.5 Connection Life Cycle

Connection

XMPP based communication is all about exchange of XML stanzas. Stanzas can be ex-

changed only via XMPP stream. XMPP stream cannot exist without the connection to

the XMPP server. In order to connect to the server, client should provide the valid cre-

dentials. Similar to the E-mail services, each client has unique identity that has “@”

symbol as suffix followed by server’s domain name. Only after the connection is estab-

lished, users are able to exchange stanzas. [12, 18]

Stream Set Up

XMPP stream gets started immediately after the connection with server is established.

It is opened after sending <stream:stream> element to the server and then the server

opens the stream and responds back by sending the similar stream opening tag. When

streams are opened from the both end, stanzas are ready to be exchanged. After the

stream is set up, server immediately responds by sending a <stream:features> ele-

ment that outlines all the available features on the stream. [12, 19]

Authentication

XMPP allows secure communication. Authentication is based on SASL protocol and

supports various authentication mechanisms depending on the server used. Plain-text

and MD5 digest based authentication are generally used authentication mechanism;

20

however, Kerberos or token based authentication can also be done though they are a

bit more complicated to achieve. After authentication, client binds a resource for the

connection and starts a session. Server to server authentication is slightly different as

they need to exchange TLS certificates and verify each other. Also sometimes, receiver

verifies the sender’s identity via DNS by using dialback protocol. [12, 20]

Disconnection

Final stage of the connection life cycle is disconnecting. Disconnecting involves two

steps: terminating the session and disconnecting. Sending unavailable presence to the

server before sending the closing </stream:stream> tag is the optimal way to termi-

nate session. By doing so, any arriving stanza is received safely. After receiving the

closing stream tag, server terminates its stream related to that particular client. [12,

20]

4.6 Extensions (XEPs) of the Protocol

Since XMPP is extensible and an open standard, developers can define new extensions

that focused towards solving existing problems or adding new feature to the protocol.

With consent to transfer ownership to XSF, developers can submit specifications to

XMPP Extensions Editor which upon approval from XMPP council is published as exper-

imental extensions. To have the status of Final, thus created new extension has to go

through several refining and reviewing. [15]

XEP States

 Experimental – Upon acceptance of new extensions proposal by XMPP council,

such protocols are deemed experimental and published as experimental XEP. It

is the initial stage of protocol specification before getting the status of Draft

with possibilities of many modifications.

 Proposed – It is the state at which the experimental extensions are considered

suitable to advance towards state of Draft or Active.

 Draft – After all discussions, technical reviews and upon approval from the

council, the new extension is granted the state of Draft with issuing advices not

to be used in very critical application. It is hoped to be implemented in produc-

tion environment.

21

 Final – Any extension is considered in Final state after it has been in Draft state

for at least six (6) months and has very less chance of modifications. With im-

plementation in at least two codebases, it is granted the status of Final. After

the extension is in Final state it is considered safe to be deployed.

 Active – Any extension that is approved to advance from being experimental

automatically get the status of Active.

 Deferred – Deferred status is applicable if the extension is not updated in

twelve (12) months’ time.

 Retracted – Upon receiving the request from the author to remove extension

from further considerations, XMPP Extensions Editor grants status of Retracted

to the extension.

 Rejected – If XMPP councils deems the extension to be unacceptable and re-

jects from further processing, then it gets the status of Rejected.

 Deprecated – Any extension is deprecated if it is outdated by modern protocol

and no more implementations are encouraged.

 Obsolete – All those deprecated extensions are made obsolete when the council

determines not to use them in any kind of application development. [15]

Appendix 1 shows the lists of active and final XEPs.

5 Real Time Collaboration Server

Any server that has a built in support for the XMPP protocol is XMPP server. Previously

referred to as Wildfire, Openfire is XMPP based real time collaboration server written in

Java programming language. It is an open-source, independent of the operating sys-

tem that provides a very secure platform. It provides full support to Spark, XMPP based

real-time collaboration client and compatible to most of the XMPP clients.

5.1 Selection of Real Time Server

Out of many existing XMPP servers, there was a need to select the one that matches

our requirement and fits into our criteria. Being open-source was the first and a very

important requirement. Second was to be able to support real-time collaboration. Easy

to set-up and configuring was another additional requirement. Since Openfire is open-

source real time collaboration and a cross-platform server, these two reasons were

22

good enough to select it for our research purpose. Besides it happened to be written in

Java programming language with clear and good documentation which made it easier

to understand and implement. Among all the existing XMPP servers, it is easier to set-

up and logs all the information that makes administering easy. Also it allows configur-

ing to set up any secured connections. With full support to the protocol, it is easily

extendable. It comes with several features that support streaming communication.

[16, 11-12]

Having met those important requirements, Openfire was deemed the best alternative.

Benefits provided by it were not limited to only meeting those requirements. It has its

own embedded database that can be used for small scale deployment. For large scale

deployment and if required, it could be connected to external MySQL, Oracle, Microsoft

SQL Server, PostgreSQL or IBM DB2 database by simply providing link to those data-

bases. Another very appealing feature is it’s user interface. Graphical User Interface

(GUI) is very easy to use and straightforward not needing to have high level of tech-

nical understanding. It also allows remote access via web browsers.

Openfire is secure as SSL encryption can be enabled in communication includes sensi-

tive information. It also provides with additional feature that allows preventing anony-

mous users from accessing into the system and using the service. In case the default

authentication is not suitable when security is not a major concern, it can be overwrit-

ten suiting to the needs and required methods of authentication. It not only supports

for monitoring users, servers and server connections but also logs all the anomalies

which could be referred later on to monitor.

Openfire allows installing plug-in to add new services that are not its native feature.

Many new plug-ins are being developed every day and there are exists many useful

plug-ins such as content filtering, broadcast, monitoring service and packet filtering. It

also supports clustering which can help solve scalability issues.

23

5.2 Support Provided by Real Time Collaboration Server

Openfire is developed to support the XMPP protocol defined by Request for Comments

(RFC) 3920 and RFC 3921. In addition, it also provides support for numerous exten-

sions to the protocol that are defined through the XEP process at xmpp.org. Table 2

and 3 lists the support provided by Openfire to the extension.

Table 2. Basic IM Protocol Suite Support. [17]

Specification Supported

RFC 3920: XMPP Core Yes

RFC 3921: XMPP IM Yes

XEP-0030: Service Discovery Yes

XEP-0077: In-Band Registration Yes

XEP-0078: Non-SASL Authentication Yes

XEP-0086: Error Condition Mappings Yes

Table 2 lists all extensions that Openfire provides to the basic IM functionalities. As

shown in the table, service discovery, in-band registration and non-sasl authentication

are some to the basic IM functionalities that it provides support for.

Table 3. Intermediate IM Protocol Suite Support. [17]

Specification Supported

XEP-0073: Basic IM Protocol Suite Yes

XEP-0004: Data Forms Yes

XEP-0020: Feature Negotiation No

XEP-0045: Multi-User Chat Yes

XEP-0047: In-Band Bytestreams Yes

XEP-0065: SOCKS5 Bytestreams Yes

XEP-0071: XHTML-IM Yes [1]

XEP-0096: File Transfer Yes

XEP-0115: Entity Capabilities Yes

24

Table 3 lists all extensions that Openfire provides support to the intermediate IM func-

tionalities. As shown in the table, file transfer, entity capabilities, data forms, feature

negotiation are some of the intermediate IM functionalities and it provides full support

to these extensions. Appendix 2 lists all the extensions that it provides support for.

5.3 Plugin Support

Openfire has web-based admin console plugin installed as default. This makes running

and operating it very easy. Admin console could be accessed via browser by simply

providing the linking url: http://localhost:9090 or http://127.0.0.1:9090 in case the it is

installed locally in the same computer or using the ip address or domain name of the

server in case it is required to access admin console on the remote computer/server.

Domain name of the remoter server could also be replaced by the IP address of the

computer.

Several other plugins are supported for achieving specific tasks. One of the most im-

portant plugin support is broadcast plugin. This plugin would enable broadcasting

messages to the large number of user. By default, this plugin would send messages to

all the users of the system. However, it could be also used to send the message to the

specific group of people. Another important and the most used plugin is user service

plugin. Manually creating users was very time consuming and hectic. This plugin would

allow adding, deleting and modifying users by simply sending the HTTP request to the

server. For our test, it was very useful and proved very fruitful as it was possible to

create and register multiple users at one time by executing Java Application to send

multiple requests.

Another plugin is search plugin which helps searching of the users registered in the

same server. Search could be made by user’s name, username and the email. Moni-

toring service plugin can also be installed and it allows monitoring the server statis-

tics, chat archiving and viewing chat logs. Many more plugins like Clustering, Email

Listener, Content Filter, Presence Service, Registration and Subscription are also sup-

ported.

25

Installation of plugins to Openfire is very easy. As all the available open source plugins

could be viewed under the plugins page of the admin console and by simply pressing

plus (+) at the side of the desired plugin, it could be installed. Plugins not listed as

available and that are commercial can also be installed by simply uploading the JAR file

to the plugins page of the admin console. They can also be deployed by copying the

JAR file to the plugin directory inside of Openfire’s installation directory.

6 Application Design and Implementations

Since the client side user interface for Knowledge Practices Environment (KPE) lab is

flash application and was designed and implemented using actionscript, this project

used actionscript as a scripting language for design and implementation. Adobe Flash

Builder (FB) has been the best choice of KPE developers for designing, improving and

maintaining the client side that is the reason why this project considered FB as the

most suitable among the available Integrated Development Environments (IDEs). The

project used the latest version of FB at that time. In order to design the client that

supports XMPP in full and to meet the requirements, the project also used two differ-

ent Application Programming Interfaces (APIs): XIFF and Smack. For testing the per-

formance, the project used The Grinder as a load testing framework. The project used

Openfire as main collaboration server and XAMPP as web server for the application and

database to store the data.

6.1 Application Description

The application has been created as a chat client for the Openfire server. Even though

the main idea behind this project is to find out whether the server is capable enough to

serve KP-lab, the whole project has been implemented outside of it. However, those

implementations are applicable to the lab as well. Also being a web based application,

this implementation genuinely suits to the operating environment of the KP-lab. Basi-

cally, this application can be used for authentication, IM, presence information sharing,

profile creating, conference meeting also called multi user chat and broadcasting of

messages. The application also has drawing capability as an additional feature.

26

To really determine the performance capability of the real time server in relation to the

eLearning lab, the project also included a simple drawing board where the users could

draw something over the direction of mouse dragging. When the users are drawing

lines or anything visible, it would also broadcast the coordinates of the mouse pointer

continuously, if the position of mouse pointer is changed. As a result of this, the other

users registered with the server and who are currently logged in would also get the

same drawing on their drawing board. In other words, the system would draw the

same drawing onto their canvas based on the broadcasted canvas.

6.2 Development Tools & APIs used

XAMPP is an open source cross platform development server. Developers can use it to

test web application without the need to connect to the Internet and deploying to the

production server. It is easy to install and requires no configuration. Since default con-

figuration is not good enough from security point of view, it is better to limit its scope

to development purpose only but not use it for production purpose. It is the compila-

tion of free softwares: Apache HTTP (web) server, MySQL database server to store

data, PHP for server side scripting and Perl.

Adobe FB is an Eclipse based development tool for building mobile, desktop and rich

Internet applications. Applications are built using actionscript. However, it is also pos-

sible to carry out development work based on other programming languages such as

PHP and Java. It has built in support for android based devices, IOS and Blackberry

tablets.

The Grinder is a framework that allows running distributed test suitable for measuring

the performance of anything that has Java API. Load testing being the main criteria,

this is useful for testing HTTP web servers, Simple Object Access Protocol (SOAP) and

Representational State Transfer (REST) web services, application servers and some

custom protocols. All the tests are written in Jython, a powerful scripting language.

Jython is an implementation of the high-level, dynamic, object-oriented lan-

guage Python seamlessly integrated with the Java platform. This project used three

point five (3.5) version of The Grinder. [18]

27

XIFF is open source flash library that supports XMPP protocol for creating instant mes-

saging and presence client. Extension architecture makes it possible to extending the

protocol according to the needs. The library also includes the extension that supports

XML-RPC over XMPP, Multi-user conferencing (XEP - 0045), Service browsing (XEP-

0030) and Extensible HTML (XHTML) message support (XEP-0071). Since the client

side of this project was a flash application, this API was the most important one and

specifically used.

Similarly, Smack is an open source client library used for the same purpose as XIFF.

However, it could be used if the client is based on Java but not flash. Even though the

client side of this project was totally based on flash, this library was also used to over-

ride the services provided by the Openfire. For example, it was used to create custom-

ized authentication that could replace the authentication method provided by the serv-

er in order to make it suitable for this project’s purpose. Default authentication was

easily overridden by creating a plugin for the server. Plugin used was a Java Archive

(JAR) application that was created using Java programming language. It was placed in

the plugin directory of the server in order to override authentication method.

SchemaSpy was also used as a support for this project. It is basically a java based tool

for creating visual representation out of metadata of a schema in a database. The out-

put created by it can be viewed in a browser.

6.3 Overall Design

Application client is based on open source flex application framework. It is entirely tag-

based, event driven and fully implemented in Macromedia eXtensible Markup Language

(MXML). All the visual components are designed using MXML. It is XML based markup

language for designing user interface and it is combined with actionscript in order to

achieve the project’s objectives. It is event driven in a sense that any interaction with

the application can provoke events which can be utilized to execute some actions that

might result in a different view, some processing or results depending upon the need

of the application. The application utilizes the user inputs from mainly two input devic-

es: keyboard and mouse to generate events. For example, when a user of the applica-

tion clicks a visual component of the user interface, the component, if programmed to

28

generate event, will generate event which could execute some actions. Application

framework allows to fully separate view code from the other codes used for imple-

menting application logic.

Application client is web based and can be accessible only via web browsers that have

flash player plugin installed and in any platform. The client is exported as swf file or

simply flash file and to be able to access from web browser over the Internet, it was

deployed to the web server.

Table 4. MXML code used for designing login user interface.

<s:states>
<s:State name="loginState"/>
<s:State name="ConnectedState"/>
</s:states>
<s:Form includeIn="loginState" x="158" y="134" width="265"
height="153">
 <s:FormItem label="UserName">
 <s:TextInput id="userName" text="user0"/>
 </s:FormItem>
 <s:FormItem label="Password">
 <s:TextInput id="password" text="abcd" />
 </s:FormItem>
 <s:FormItem label="Server">

 <s:TextInput id="server" change="onServerInputChange()"
text="{ChatManager.serverName}"/>

 </s:FormItem>
 <s:FormItem>

<s:Button id="btnConnect" label="Connect"
click="connectEvent(event)"/>

 </s:FormItem>
</s:Form>

The piece of code, entirely based on MXML as shown in table 4 is used to create the

user interface for login form. When deployed, it will generate two input field for the

user to provide login credentials along with a button which will direct to another view,

ConnectedState when clicked and if the information provided are correct.

29

Table 5. EventHandler for connect button used for authenticating user.

Figure 8 displays the output generated by this piece of code as shown in table 5

when run in web browsers.

Figure 8. User interface for user login.

When the connect button as shown in figure 8 is clicked it will generate and dispatch

event which is handled or listened by existing event listener/s. As shown in figure 9,

connect() method from table 5 will also be executed which is responsible for the whole

login process. Depending upon the response from the connect() method, the view of

the application will be updated.

The whole cycle from user interaction with the application to event generation, event

handling and result processing (view updating in this case) has been clearly shown in

the figure 9. The figure again utilizes the login process.

public function connectEvent(event:Event):void
{
if (!userName.text.match(pattern))
 Alert.show("Missing UserName");

else if (!password.text.match(pattern))
 Alert.show("Missing password");
else if (!server.text.match(pattern))
 Alert.show("Missing Server");
else
 connect();
}

30

Figure 9. Eventhandling for authenticating users.

When successfully connected to the server, it would authenticate the user with the

provided credentials. If the credentials are valid, the view would be updated to the

connected state. As shown in the figure 9, the action controller or Openfire, real time

server in this case would respond according to the login credentials provided. Depend-

ing upon the response from the server, the view of the application will be updated.

The application utilizes the same phenomena for other processes as well. However

being the real time, IM application and based on XMPP protocol, it is also capable of

getting response from server without any user interaction. Such response would also

generate result or update views. For example, if the client associated with the server

would send some messages to the client that has logged in, the server would direct

those messages to that particular client and in response to that event, the application

would create a pop up window that includes information about the user who is sending

the message and the message itself.

6.4 Application Architecture

Whether the Openfire was running with the embedded database or the external MySQL

database, the application always used only one database. In case of the embedded

database System, the server used the built in database with its own schema for storing

information related to users, services and property of the server itself. As shown in

31

figure 10, the server is shipped with built in HSQLDB which it uses as back end data

storage. HSQLDB is SQL relational database engine written in Java and very useful for

persistent data storage due to its flexibility, smaller size and faster processing capabil-

ity.

Figure 10. System Architecture with embedded database.

In case of the external MySQL database, database used the schema provided by the

Openfire. As shown below in figure 11, all the information is stored in external MySQL

database. This application used Openfire, MySQL database as external database run-

ning on XAMPP accessible over localhost or IP address, 127.0.0.1.

Figure 11. System Architecture when external database is connected.

The server would fetch all the necessary information related to user, authentication,

presence, properties and others from the external database, Openfire.

The schema provided by the server had all the necessary tables and with all the neces-

sary relationships. Therefore, it was not necessary to create extra tables. However, it

32

does allow creating our own tables with custom fields that matches our needs and al-

lows configuring that would allow communicating with the server. For example, the

project used the external database with default schema and also created a table

named user_provider that would only store necessary information, username and

password only, related to users. The server was configured so that it would authenti-

cate users based on the information fetched from the newly created database table,

user_provider instead of the default table, ofuser. For that purpose custom user pro-

vider, a userProvider plugin was created for the server. Also the following piece of code

as shown in the table 6 could be used to configure the server so that it would use the

table named user_provider instead of table, ofuser for authentication and storing of

user information.

Table 6. Configuration of Openfire

<jive>
 ...
 <provider>
 <auth>
 <className>org.jivesoftware.openfire.auth.JDBCAuthProvider</className>
 </auth>
 <user>
 <className>org.jivesoftware.openfire.user.JDBCUserProvider</className>
 </user>
 </provider>
 <jdbcAuthProvider>
 <passwordSQL>SELECT password FROM user_provider WHERE
username=?</passwordSQL>
 <passwordType>plain</passwordType>
 </jdbcAuthProvider>
 <jdbcUserProvider>
 <loadUserSQL>SELECT name FROM user_provider WHERE
username=?</loadUserSQL>
 <userCountSQL>SELECT COUNT(*) FROM user_provider</userCountSQL>
 <allUsersSQL>SELECT username FROM user_provider</allUsersSQL>
 <searchSQL>SELECT username FROM user_provider WHERE</searchSQL>
 <usernameField>username</usernameField>
 ...
 </jdbcUserProvider>
 ...
 </jive>

Table 6 displays the some contents from the configuration file of Openfire used for

system configuration. In order to configure the the server, changes have to be made

in configuration file, Openfire.xml that exists in the installation directory of the server

and the service has to be restarted for making changes. However, the use of custom

user provider and authentication was only for the purpose of testing the server’s con-

33

figuration and flexibility. The whole project was designed to depend on the default

schema provided by the server.

The schema consists of thirty four (34) tables and it uses ofuser table for storing all the

necessary information related to user creation. The table includes information such as

username as primary key, name, email, creation date, modification date, plain and

encrypted password. User authentication is also done based on the user information

available in ofuser table. Upon registration, user could change information about their

presence, create profile, add/ remove users to/from their friend lists, create groups,

and rooms. The information related to those actions is stored respectively into table

ofPresence, ofvcard, ofroster, ofrostergroup. Figure 12 illustrates the schema of the

database design and the relation between the existing tables.

34

Figure 12. Schema of the database design used by Openfire.

35

The schema also provides with a table named ofpubsub for storing information about

publishing and subscription. However, this application has not utilized this table as it

does not require notification from any services nor does it publish anything that could

be subscribed.

6.5 Application User Interface

As explained earlier, the application’s user interface can only be accessed via web

browsers. Upon opening the application, it will load the login page. The login page

cannot be bypassed and the users can be able to use the application only when they

provide the valid credentials. When the authentication is complete, the users can ac-

cess into the application. The application has a simple outlook and it is easy to use the

interface in a sense that anybody with basic computing knowledge can use the applica-

tion in the way it was meant to be used.

Figure 13. View presented after successful user authentication.

Figure 13 shows the view of the application after the user has authenticated. The user

interface lists the people who are under different group headings as categorized by the

user. The user interface consists of drop down menu bar which allows the user to per-

form certain actions. Each menu items when clicked will perform an action which is

responsible for generating different views as popups on top of the main application.

Under the XIFF CHAT menu items, the application has a menu button which when

clicked will generate a popup as shown in the figure 14 which allows users to update

their profile information. It also allows uploading the profile picture of the user.

Exchange of Stanzas between

Openfire and Application Client.

36

Figure 14. Profile Updates Figure 15. Pop up window for chatting

Similarly, figure 15 is the resultant view of the application when the user double clicks

on one of the users from his friends’ list. On that new popup window, the user can

start a conversation with the particular user whose user id is displayed on top of that

window. The application will result in the same view when one of the users from the

friend’s list performs the same action.

The application has two (2) menu buttons: Add Contact and Remove Contact under

the contact menu item. Add contact allows adding a person to the friend’s list and re-

move contact allows removing people from the friend’s list. For both purposes, authen-

ticated user has to provide the user id of the particular person. The user id consists of

the username suffixed with the domain name (mielikki.mobile.metropolia.fi in our case)

of the server following ‘@’ symbol. If some other users will also add this user, s/he will

get an invitation in the form of popup and when accepted, the application will start

exchanging the presence information between the users. Also, if this user is removed

by another user, the application will stop sharing the presence information and the

users will not be listed under each other’s list of friends. Application does have a drop

down menu for changing the presence which on changing will send the current pres-

ence to other users in the friend’s list via the server.

The application also allows starting a conference which is a multi-user chat room. Au-

thenticated user can start a conference room with unique id and can send invitation or

get invitation to join the room. Members for the room can be either manually added or

selected from the friend list. The conference looks as shown in figure 16. Each user

who has joined the room can view what others have written or sent.

37

Figure 16. Process of starting a Conference.

Similarly broadcasting is one of the important features of the application. Broadcasting

of messages can be of two types. User can broadcast the message as normal or alert

(notification) type. Normal type of broadcast is received both by online and offline us-

ers and when the normal broadcast is received, a new popup window similar to chat

window appears with messages and information about the sender. However alert type

is received by only online users and when it is received, the application gets the notifi-

cations and displays the number of new broadcast received. Alert type message in-

Upon sending the invitation

the conference will start

If Joins Room upda-

38

cludes the message and sender’s username and can be read by simply hovering the

mouse icon over the small computer icon aligned with the menu bar.

 Receiving End
Figure 17. Broadcasting of messages.

Figure 17 shows the broadcasting of alert type messages and the view that is displayed

at the receivers end. Since broadcasting of coordinates is very important use case for

KP-lab, this application also includes similar feature. In this application, broadcasting of

coordinates is utilized to draw some figures on the drawing board based on the coordi-

nates broadcasted. Figure 18 displays the figure drawn based on the received coordi-

nates of mouse pointer which is exactly similar to the one drawn by the broadcaster

Figure 18. Image drawn based on co broadcasted coordinates.

Total Number of Notification

Reading message on mouse

hover over the icon
Broadcasting Alert Type Messages

39

Figure 18 also displays the application’s compatibility with three major browsers: Mozil-

la Firefox, Google Chrome and Internet Explorer. Also it shows how efficiently Openfire

broadcasts the coordinates.

7 Test and Result Analysis

The application worked very smoothly when only two users are communicating with

each other or a user broadcasts message to all the registered users. The total number

of registered users was only twenty five (25) in the beginning. Since KPE is an online

collaboration tool that has thousands of registered users, in worst case scenario there

might come a time when all of those users log in and start using the service simultane-

ously. In order to cope with that situation, Openfire should be capable of handling all

the transactions smoothly without loss of data and on timely manner. Failure to do so

would cause system failure and the idea of real-time collaboration would make no

sense.

7.1 Testing Real Time Collaboration Server

Registering thousands of users for this small scale research project was not possible

and even asking them to use the application simultaneously was out of question. In

order to test the XMPP Server, Openfire’s capability and performance in the worst case

scenario, a simple system was again created with one server (Openfire), MySQL data-

base and two clients in LAN. Figure 19 illustrates the system architecture and the sys-

tem configuration of the server and clients used.

40

Figure 19. System Architecture for the application.

Openfire, real time collaborating server and MySQL database were installed in the

same computer. The server was optimized to fully utilize the memory and was as-

signed almost all available memory capacity to JVM. The server was connected to the

external MySQL database installed on the same computer accessible over localhost.

Using the user service plugin, five thousands users were created and registered to the

server. In order to test the server, the Grinder was used for load testing. It used the

Jython to send multiple HTTP requests to the server from two clients. Table 7 shows

the piece of script used to send HTTP request.

MySQL
(Localhost)

Client A

Client B

Openfire Server

192.168.100.102. System: 64-bit Operating System

Processor: Intel Core i7 CPU Q720 @1.67GHz

Installed Ram: 4 GB

192.168.100.101. System: 64-bit Operating System
Processor: Intel Core i5 CPU M480 @2.67GHz
Installed RAM: 4 GB (3.80 Usable)

192.168.100.100.
System: 32-bit Operating System
Processor: Intel Core 2Duo CPU
E8300@2.83GHz
Installed RAM: 1 GB

JAVA Memory

989.88 MB

41

Table 7. Jython Script used for sending HTTP request.
agentID = int(grinder.properties["grinder.agentID"])

processID = int(grinder.processName.split("-").pop())

host = '192.168.100.100'

domain = 'dipenh-pc'

boshUrl = 'HTTP://' + host + ':7070/HTTP-bind/'

boshWait = 1

userPrefix = 'user'

numThreads = 1

Create an HTTPRequest for each request

request101 = Test(101, 'Initiate a BOSH session').wrap(HTTPRequest(url=boshUrl))

request201 = Test(201, 'Authenticate').wrap(HTTPRequest(url=boshUrl))

request301 = Test(301, 'Bind resource').wrap(HTTPRequest(url=boshUrl))

request401 = Test(401, 'Request a session from the server').wrap(HTTPRequest(url=boshUrl))

request501 = Test(501, 'Get roster').wrap(HTTPRequest(url=boshUrl))

request601 = Test(601, 'Change presence').wrap(HTTPRequest(url=boshUrl))

request701 = Test(701, 'Send one to one message').wrap(HTTPRequest(url=boshUrl))

request801 = Test(801, 'Make an empty request to the server').wrap(HTTPRequest(url=boshUrl))

request901 = Test(901, 'Terminate the session').wrap(HTTPRequest(url=boshUrl))

Most of the time only one client, Client A as shown in figure 19 was used to send the

HTTP request. Final test was done using both clients. Several tests were carried out

before actually recording the tests. Three tests, two by Client A and the final test using

both Client A and Client B were recorded for further analysis. For test one (1), Client A

used five (5) processes and one hundred (100) threads in two (2) runs. For test two

(2), five (5) processes, one thousand (1000) threads in three (3) runs. For the final

test, Client A used five (5) processes and one thousand (1000) threads in two(2) runs

and Client B used six (6) processes and one thousand (1000) threads in one (1) run.

The Grinder processed the entire HTTP request to be sent to Openfire. The test in-

volved sending nine (9) different types of requests using a random usernames from

among the registered users. Following are the lists of HTTP request sent to the server:

 request 101: Initiate BOSH session for HTTP bind.

 request 201: User Authentication

 request 301: Binding resource

 request 401: Requesting a session from Openfire

 request 501: Getting Roster

 request 601: Changing Presence of the authenticated user

 request 701: Sending one to one message to random user.

42

 request 801: Pinging to the server. Sending empty request

 request 901: Finally terminating the session.

7.2 Result and Analysis

While running the test, hundreds and thousands of users were authenticated to Open-

fire via HTTP request. All of those users were authenticating, requesting session, fetch-

ing roster, changing their presence information, sending messages, sending empty

request and terminating the session simultaneously. During this test session, the server

was recorded consuming JAVA memory up to three hundred and seventy eight point

thirty three (378.33) MB which is just over thirty eight (38) percentage of the total

memory assigned. Since the Monitoring Service plugin was installed to the server, it

was also easy to monitor the number of connected and active users, packets count or

number of packets sent and received by server, active conversations in the admin con-

sole provided by the server. Figure 20 generated by monitoring service plugin displays

the information about the connected users, active conversations and packets ex-

changed per minute during the first recorded test session.

Figure 20. Image generated by Monitoring Service Plugin.

During the test, admin console of the Openfire was a bit slower and after the number

of connected clients reached above two thousand, admin console was very slow to

respond and the monitoring service was not able to perform at all. It was not able to

generate any reports regarding the number of connected users, active conversations

43

and also information about the packets exchanged. These reports generated by using

the monitoring service were mere reflection of information regarding the connected

users and packets exchanged. In order to measure the real time nature, response time

from the server and it’s reliability were the most important thing to be measured. Ap-

pendix 3 contains the pictorial representation of first test, showing number of active

users and the number of packets transferred in detail.

The Grinder framework has additional feature of recording all the test results in a sepa-

rate log directory. It collects and records all the data related to the HTTP request and

time measurement of all the response to the request. It records all the details of the

necessary information and separately for each process created. Table 8 and 9 illus-

trate the summary of information collected during the first and final tests respectively.

Table 8. Time Measurement when 473 users are active.

Table 9. Time Measurement when 2154 users were active.

44

Out of the information collected using the Grinder, time to resolve host, time to estab-

lish connection, and time to first byte were of most importance. Also, the number of

HTTP errors would provide important information regarding the reliability of the real

time server. Table 8, representing the first test with 473 active users, shows that the

Grinder carried out five thousand four hundred and sixty six (5466) successful tests

without any failures and only two hundred and four (204) response errors. Mean time

to resolve host, identifying i.p. address of the server from DNS was only zero point two

(0.2) milliseconds (ms) and it took fraction of second to establish connection with the

server which certainly proved that Openfire is very efficient. Average time to receive

first byte from the server was just fractions of seconds more than one (1) second.

This test displays the real time nature of the server.

Compared to the first test, final test using two thousand one hundred and fifty four

(2154) users executed using two different clients showed a bit different result. As

shown in the table 8, the Grinder executed twelve thousand six hundred and seven

(12607) successful test but with one thousand and sixteen (1016) failures. However

compared to the mass number of tests, HTTP response error was only four hundred

and three (403). Time to resolve host was zero point zero four (0.04) ms and time to

establish connection with the Openfire was one thousand seven hundred and ninety

one point seventy three (1791.73) ms which is more compared to the first test. Also

average time taken to receive first byte was seven thousand six hundred and twenty

two point nine (7622.9) ms which is comparatively very long.

During the final test, CPU usage of both the clients reached 100 percent and the

memory usage was recorded even up to 3.8 GB. Due to the maximum usage of

memory, JRE ran out of memory and The Grinder killed few processes during the tests.

One of the clients crashed and had to be stopped. Both the clients were very slow due

to excessive usage of CPU and memory. Also this could be the reason why the time to

receive first byte was longer compared to the first test because this could have created

longer time lag or delay between starting the test for individual threads and sending

HTTP requests. At the same time, Openfire had only 16.22 MB of segmented cached

memory of which segments for offline messages, user presences might have been to-

tally consumed during the first test. Openfire depends on its cached memory for better

performance. Due to the lesser remaining cached memory; it must have served the

45

compromised performance. However, it did not crash during this test and it was rec-

orded to consume 421 MB of memory at some point during the test.

8 Conclusion

Instant response time from Openfire and reliability on delivering message in a secure

way proved it to be a real time collaboration server. Such features enable it to be an

alternative to flash media server. It certainly performed better when there were only

hundreds of users logged in simultaneously. Also the final test with thousands of users

displayed the server’s capability and real time nature even though the server’s capacity

was very limited. Bearing in mind that Openfire was installed in a machine with similar

configuration and memory as a flash media server, its performance could have been

outstanding. The question whether the real time collaboration server, Openfire could

replace Flash Media Server could have been easily answered if the whole project im-

plementation was done for KP-lab itself. However, there were certain technical prob-

lems that prevented for doing so. In order to test it, different implementations were

done allowing KP-lab to run on flash media server to prevent any cause of failure that

might stop KP-Lab or affect its performance.

If the test was done for KP-lab, there was maximum probability of having two issues:

data redundancy and security & synchronization. Other problems could also occur but

those were minor issues and could be ignored. Problem with data redundancy could

occur because Openfire has its own database schema that defines relationship be-

tween different tables. This schema could be used in the existing database or the

Openfire could be configured to authenticate users from the existing database. Howev-

er, the access to the existing database was restricted and not accessible. For this rea-

son, a separate database was needed and the table associated with users of newly

created database had to be filled with all users’ information in order to authenticate

against the Openfire.

The second problem with security issues and data synchronization could occur if we

tried to overcome the first problem. Users could authenticate against Openfire as

anonymous users. However, if anonymous login was allowed, there would be a maxi-

mum possibility that anyone could send HTTP request to Openfire as an anonymous

46

user which could bring unwanted messages and results. Also, there could be a serious

problem of data synchronization due to authorization issues if the users were using the

service as anonymous users. Furthermore, single sign on mechanism could be em-

ployed for authenticating users. However, JOSSO authentication was implemented for

KP-lab and Openfire could provide SSO service only via GSSAPI or Kerberos.

Based on the performance of the Openfire and the test results, it certainly proved

XMPP to be the best protocol for real time communication and turned out to be one of

the best platforms for real time communication and collaboration. However, it lags be-

hind flash media server in some of the sectors. Unlike flash media server, it does not

support exchanging of audio/ video streams and remote shared objects. However there

is already a plugin called Redfire, red5 plugin for Openfire, which could be used to de-

liver audio/video stream along with XMPP messaging and signaling. In place of remote

shared object, Openfire could use pubsub, powerful protocol extension to XMPP to

subscribe to items and getting updates from them upon information updates.

Openfire’s performance capability is unquestionable. Internet giant, Google used

Openfire as XMPP server for Google Wave. Openfire was used as federated server in

order to communicate between the servers using the federation protocol, extension of

XMPP protocol. Even though Google Wave was a major failure not because it was

technically inefficient but because of other reasons, it was very sophisticated and real

time in nature. Because Openfire is being used increasingly for commercial purposes in

many institutions and organizations, it is developing and improving rapidly. One of its

advantages is that it can support for plugins and XMPP extensively.

Openfire is not just platform independent and based on open protocol; it is open

source which gives it a huge advantage over flash media server. Since XMPP is also

capable of cross protocol communication with Yahoo, AIM, MSN and other protocol,

Openfire gains more advantage over flash media server. Although, Openfire may not

provide support for audio/video streams, KP-lab does not provide any service that in-

volves audio/video. Therefore, flash media server’s advantage over Openfire might not

be so meaningful unless KP-lab starts services related to media streaming. With so

many features and extensibility, Openfire could be used in place of flash media server.

It seems quite useful for KP-lab to start using Openfire and actually testing the perfor-

47

mance. Even though replacement of flash media server immediately could mean a dis-

aster for KP-lab, it would be a good idea to start using some services provided by

Openfire in the beginning and gradually move towards replacing service provided by

flash media server one after another.

48

References

1. Real time Collaboration [online].
URL: HTTP://searchdomino.techtarget.com/definition/real-time-collaboration.
Accessed 3 February 2012.

2. Stonebraker Michael. The 8 Requirements of Real-Time Stream Processing
[online].
URL: HTTP://www.cs.brown.edu/~ugur/8rulesSigRec.pdf
Accessed 27 February 2012.

3. KP-lab. Short Introduction [online].
URL: HTTP://www.KP-lab.org/project-overview/objectives-of-the-project.
Accessed 5 February 11 2012.

4. Adobe. Adobe Flash Media Server Installation Guide [online].
URL:HTTP://livedocs.adobe.com/flashmediaserver/3.0/docs/
flashmediaserver_install.pdf.
Accessed 5 February 2012.

5. Tzurel Avi. Flash Media Server Family [online].
URL: HTTP://www.slideshare.net/DSPIP/flash-media-server-2990582
Accessed 4 February 2012.

6. Adobe. Flash Media Server 3 [online].
URL: HTTP://www.scribd.com/doc/40390941/16/
Flash-Media-Server-communication-protocol-RTMP
Accessed 3 February 2012.

7. Introduction to Real Time Messaging Protocol [online].
URL: HTTP://www.playerdiy.com/blog/
introduction-of-rtmp-real-time-messaging-protocol
Accessed 3 February 2012.

8. Chandra Praphul, Lide David. Wi-Fi Telephoney: Challenges and Solutions for
Voice over WLANs. Burlington, USA: Elsevier Inc.; 2007.

9. Rhee Man young. Internet Security: Cryptographic principles, algorithms and
protocols. West Sussex, England: John Wiley & Sons Inc.; 2003.

10. Lee Stephen, Smelser Terence. Jabber Programming. NY, USA: M&T Books;
2002.

49

11. Isode. Isode's Presence, Real Time Messaging and XMPP Strategy [online].
URL: HTTP://www.isode.com/whitepapers/xmpp.html.
Accessed 26 December 2011.

12. Moffitt Jack. Professional XMPP programming with javascript and jquery. USA:
Wrox Press; January 2010.

13. Saint-Andre Peter, Smith Kevin, Troncon Remko. XMPP: The Definitive Guide.
CA, USA: O’Reilly Media Inc.; 2009.

14. Elankumaran Pradeep. Why XMPP will be huge very soon [online]. Intridea;
16 February 2009.
URL: HTTP://intridea.com/2009/2/16/
why-xmpp-will-be-huge-very-soon?blog=company
Accessed 2 January 2012.

15. Saint-Andre Peter. XEP-0001: XMPP Extension Protocols [online]. XMPP stand-
ards foundation; 10 March 2012.
URL: HTTP://xmpp.org/extensions/xep-0001.html#intro.
Accessed 5 January 2012.

16. Sharma Mayank. Openfire Administratin: A practical step-by-step guide to roll-
ing out a secure instant Messaging service over your network. Birmingham, UK:
Packt. Publishing Ltd.; 2008

17. Ignite realtime. Protocol Support [online].
URL:HTTP://www.igniterealtime.org/builds/openfire/docs/latest/documentation/
protocol-support.html.
Accessed 6 January 2012.

18. Aston Philip. The Grinder, a java load testing framework [online].
URL: HTTP://grinder.sourceforge.net/.
Accessed 8 January 2012.

Appendix 1

Appendices

Appendix 1: List of Active and Final XEPs.

Number Name Type Status Date

XEP-0001 (PDF) XMPP Extension Protocols Procedural Active 2010-03-

XEP-0002 (PDF) Special Interest Groups (SIGs) Procedural Active 2002-01-

XEP-0004 (PDF) Data Forms Standards Final 2007-08-

XEP-0009 (PDF) Jabber-RPC Standards Final 2011-11-

XEP-0012 (PDF) Last Activity Standards Final 2008-11-

XEP-0019 (PDF) Streamlining the SIGs Procedural Active 2002-03-

XEP-0027 (PDF) Current Jabber OpenPGP Usage Historical Active 2006-11-

XEP-0030 (PDF) Service Discovery Standards Final 2008-06-

XEP-0049 (PDF) Private XML Storage Historical Active 2004-03-

XEP-0053 (PDF) XMPP Registrar Function Procedural Active 2008-10-

XEP-0054 (PDF) vcard-temp Historical Active 2008-07-

XEP-0055 (PDF) Jabber Search Historical Active 2009-09-

XEP-0068 (PDF) Field Standardization for Data Forms Informational Active 2011-10-

XEP-0076 (PDF) Malicious Stanzas Humorous Active 2003-04-

XEP-0077 (PDF) In-Band Registration Standards Final 2012-01-

XEP-0082 (PDF) XMPP Date and Time Profiles Informational Active 2003-05-

XEP-0083 (PDF) Nested Roster Groups Informational Active 2004-10-

XEP-0085 (PDF) Chat State Notifications Standards Final 2009-09-

XEP-0100 (PDF) Gateway Interaction Informational Active 2005-10-

XEP-0114 (PDF) Jabber Component Protocol Historical Active 2012-01-

XEP-0126 (PDF) Invisibility Informational Active 2005-08-

XEP-0127 (PDF) Common Alerting Protocol (CAP) Over Informational Active 2004-12-

XEP-0128 (PDF) Service Discovery Extensions Informational Active 2004-10-

XEP-0130 (PDF) Waiting Lists Historical Active 2006-09-

XEP-0132 (PDF) Presence Obtained via Kinesthetic Excita- Humorous Active 2004-04-

XEP-0133 (PDF) Service Administration Informational Active 2005-08-

XEP-0134 (PDF) XMPP Design Guidelines Informational Active 2004-12-

XEP-0138 (PDF) Stream Compression Standards Final 2009-05-

XEP-0143 (PDF) Guidelines for Authors of XMPP Extension Procedural Active 2011-07-

XEP-0145 (PDF) Annotations Historical Active 2006-03-

XEP-0146 (PDF) Remote Controlling Clients Informational Active 2006-03-

Appendix 1

Number Name Type Status Date

XEP-0147 (PDF) XMPP URI Scheme Query Components Informational Active 2006-09-

XEP-0148 (PDF) Instant Messaging Intelligence Quotient Humorous Active 2005-04-

XEP-0149 (PDF) Time Periods Informational Active 2006-01-

XEP-0153 (PDF) vCard-Based Avatars Historical Active 2006-08-

XEP-0157 (PDF) Contact Addresses for XMPP Services Informational Active 2007-01-

XEP-0160 (PDF) Best Practices for Handling Offline Mes- Informational Active 2006-01-

XEP-0169 (PDF) Twas The Night Before Christmas (Jabber Humorous Active 2009-12-

XEP-0170 (PDF) Recommended Order of Stream Feature Informational Active 2007-01-

XEP-0174 (PDF) Serverless Messaging Standards Final 2008-11-

XEP-0175 (PDF) Best Practices for Use of SASL ANONY- Informational Active 2009-09-

XEP-0178 (PDF) Best Practices for Use of SASL EXTERNAL Informational Active 2011-05-

XEP-0182 (PDF) Application-Specific Error Conditions Procedural Active 2008-03-

XEP-0183 (PDF) Jingle Telepathy Transport Humorous Active 2006-04-

XEP-0185 (PDF) Dialback Key Generation and Validation Informational Active 2007-02-

XEP-0199 (PDF) XMPP Ping Standards Final 2009-06-

XEP-0201 (PDF) Best Practices for Message Threads Informational Active 2010-11-

XEP-0202 (PDF) Entity Time Standards Final 2009-09-

XEP-0203 (PDF) Delayed Delivery Standards Final 2009-09-

XEP-0205 (PDF) Best Practices to Discourage Denial of Informational Active 2009-01-

XEP-0207 (PDF) XMPP Eventing via Pubsub Humorous Active 2007-04-

XEP-0222 (PDF) Persistent Storage of Public Data via Informational Active 2008-09-

XEP-0223 (PDF) Persistent Storage of Private Data via Informational Active 2008-09-

XEP-0239 (PDF) Binary XMPP Humorous Active 2008-04-

XEP-0245 (PDF) The /me Command Informational Active 2009-01-

XEP-0263 (PDF) ECO-XMPP Humorous Active 2009-04-

XEP-0295 (PDF) JSON Encodings for XMPP Humorous Active 2011-04-

Appendix 2

Appendix 2: List of XEPs supported by Openfire.
Specification Suite

XEP-0004: Data Forms Intermediate

XEP-0012: Last Activity -

XEP-0013: Flexible Offline Message Retrieval -

XEP-0030: Service Discovery Basic

XEP-0033: Extended Stanza Addressing -

XEP-0045: Multi-User Chat Intermediate

XEP-0049: Private XML Storage -

XEP-0050: Ad-Hoc Commands -

XEP-0054: vcard-temp -

XEP-0055: Jabber Search [2] -

XEP-0059: Result Set Management -

XEP-0060: Publish-Subscribe -

XEP-0065: SOCKS5 Bytestreams Intermediate

XEP-0077: In-Band Registration Basic

XEP-0078: Non-SASL Authentication Basic

XEP-0082: Jabber Date and Time Profiles -

XEP-0086: Error Condition Mappings Basic

XEP-0090: Entity Time -

XEP-0091: Legacy Delayed Delivery -

XEP-0092: Software Version -

XEP-0096: File Transfer Intermediate

XEP-0106: JID Escaping -

XEP-0114: Jabber Component Protocol -

XEP-0115: Entity Capabilities Intermediate

XEP-0124: HTTP Binding -

XEP-0126: Invisibility -

XEP-0128: Service Discovery Extensions -

XEP-0138: Stream Compression -

XEP-0163: Personal Eventing via Pubsub -

XEP-0175: Best Practices for Use of SASL ANONYMOUS -

XEP-0203: Delayed Delivery -

Appendix 3

Appendix 3: Report generated by monitoring service plugin.

Appendix 4

Appendix 4: Glossary of Terms

APIs

interface implemented by an application which allows other applications to com-

municate with it.

authentication

the process of determining whether someone or something is, in fact, who or

what it is claims to be.

clustering

connecting two or more computers together in such ways that they behave like a

single computer.

connectionless protocol

refers to network protocols in which a host can send a message without estab-

lishing a connection with the recipient.

cross-platform

 that can run on any platform or operating systems.

database

organized collection of data.

data redundancy

repetition of field in two or more tables in a database system..

event

an action that is usually initiated outside the scope of a program and that is han-

dled by a piece of code inside the program.

eventhandler

an asynchronous callback subroutine that handles inputs received in a program.

firewall

a device or set of devices designed to permit or deny network transmissions

based upon a set of rules and is frequently used to protect networks from unau-

thorized access.

IDEs

software applications that provide comprehensive facilities to computer pro-

grammers for software development.

latency

the time required for receiving input and responding to the received input.

load balancing

 distributing workload across multiple computers or a computer cluster.

Appendix 4

logging

keeping log of all communications.

Openfire

real time collaboration server based on XMPP protocol.

packet

the unit of data that is routed between an origin and a destination on the Inter-

net or any other packet-switched network.

peer-to-peer

also termed as P2P, it refers to a computer network in which each computer in

the network can act as a client or server for the other.

plugins

tools or application to extend the functionality.

polling

refers to actively sampling the status of an external device by a client program as

a synchronous activity.

presence

information that conveys ability and willingness of a potential communication

partner. Such as "Free to chat", "Away", "Offline".

protocol

special set of rules that communicating components should follow in order to

communicate.

roster

 the name of the contact list for XMPP.

scalability

the ability to retain performance levels when adding additional processors.

schema

cognitive framework or concept that helps organize and interpret information.

server

a program or a computer that fulfills request of the client programs/computers.

service discovery

automatic detection of devices and services offered by these devices on a com

puter network.

session

a series of interactions between two communication end points that occur during

the span of a single connection.

SSO Authentication

Single sign-on (SSO) is a property of access control of multiple related, but inde-

pendent software systems. It is the ability for a user to enter the same id

Appendix 4

 and password to logon to multiple applications within an enterprise.

stateless protocol

a communications protocol that treats each request as an independent transac-

tion that is unrelated to any previous request.

stream

to transfer data to a computer so that it can be used as it is downloaded.

synchronization

an adjustment that causes something to occur or recur in unison.

system architecture

the conceptual model that defines the structure, behavior, and more views of a

system.

throughput

output relative to input.

