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1 Introduction 
 

The main aim of the thesis is to explore the already existing real-time communication 

protocol, Extensible Messaging and Presence Protocol (XMPP) that is considered to be 

the alternative to Real Time Messaging Protocol (RTMP) used by flash media server.  

Another objective of the thesis is to determine whether Openfire, real time collabora-

tion server that has built in support for XMPP is suitable for KP-lab and capable of re-

placing flash media server.  

 

This thesis includes the research study associated with the KP-lab, near real-time 

online collaborating tool. KP-lab uses flash media server to broadcast messages and as 

sync server for overall synchronization. KP-lab intends to replace flash media server 

with an existing open source real time server. 

 

People have always communicated. However the communication channel and the way 

people communicate has always changed. The latest trend, Internet has always been 

able  to  attract  more  users  due  to  its  simplicity  to  use  and  continuous  development.  

Merely used to share static information via web pages in the beginning, Internet now is 

used for communicating all sorts of information and in a dynamic manner. Excessive 

uses of social networking, online collaboration tools and global concentration on it for 

sharing information have outlined a need for faster and reliable communication. Near 

real time communication is a need that should be achieved without compromising se-

curity and reliability.   

 

The thesis is divided into two main parts, one theoretical and one practical. Theoretical 

part consists of research on XMPP and how it varies from existing protocols. Online 

articles, books and research studies are used for this part. Practical part consists of 

application design that supports the protocol and uses Openfire as a communication 

server. This part is used to evaluate the extensibility of the protocol and overall  per-

formance of the server. Tests will be carried out to determine the performance capabil-

ity of the server and obtained results will be used as evaluation criteria.  

 

The thesis will not describe the application development and implementation of the 

protocol in depth. Evaluation will be done upon the assumption that flash media server 

and Openfire server have same configuration and are used under similar conditions.  
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2 What is Near-Real Time Communication? 
 

Real time communication system is anything that allows or guarantees instant delivery 

of whole information. Since the communication system depends on number of compo-

nents and their performance, it is impossible to achieve any system that has no laten-

cy, the time required for receiving input and responding to the received input. Due to 

this fact, the scope of this project is limited towards achieving near real time communi-

cation. 

 

Near real time communication over the Internet is sharing information to and collabo-

rating with others in almost real time depending on the presence of the associated 

users. Any application or tools that are near-real time in nature offers synchronization, 

faster response time and reliability. Latency should be comparatively low in order to be 

near-real time. Also, merely being faster does not make any application real time until 

and unless it is reliable. Data lost during the transmission or lesser throughput should 

be extremely low or completely avoided under any circumstances.  

 

2.1 Scope of Near-Real Time Communication 
 

It is an undeniable fact that the one who lacks information lags behind. Unlike centu-

ries ago, when information was limited to certain group of scholars and nobles, these 

days there is vast amount of information freely and easily accessible on the Internet.   

Everyone who is connected to the Internet has access to information, however, the 

one who gets information faster might get all the benefits. Vast amount of information 

is being exchanged on the Internet and since the life is getting faster, these days get-

ting information on time matters the most.  

 

Information delivered on time can be a life saver and might have more use than deliv-

ered late. Some of the information is always useful, however, some information that is 

delivered late might just be the reference from the past. In order to preserve the im-

portance of the information and maximize its usefulness, timely delivery of information 

is very important.  
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Near-real time communication is critical in many sectors where timely information is 

essential. Aeronautical, space administration, finance and health sector are some of the 

sectors where delay in information is unacceptable. A slight change in the shared in-

formation might deviate result into creating havoc.  

 

Instant messaging, presence awareness technology, online gaming, application shar-

ing, desktop sharing, voice over IP, video and audio conferencing tools are some of the 

real time collaboration tools [1]. Using these tools, users sense or get result immedi-

ately in timely manner and data transmission without noticeable loss or no loss at all.  
 

2.2 Prerequisites of Real-time Communication System 
  
Near Real time communication is said to be achieved only when the exchange of mes-

sages  can be executed with  in  fraction  of  a  second.  This  can happen only  when the  

processing time is very short. In order to do so, the system should be able to process 

messages without requirement to store them or to perform any operations. Additional 

latency caused due to polling can add to processing time completely slowing down the 

system. The completely active system that incorporates event/data-driven processing 

capabilities can minimize the need for polling there by reducing the latency period.   

[2, 2-4]. 

   

Processing of data before storing makes the system faster. Compared to conventional 

database which queries only the existing data, real time system has to deal with data 

in the fly. This might push the system to wait for longer time or into loophole in case 

the data received is delayed, truncated or out of sequence. To avoid this, the system 

should be able to time out individual processing in order to unblock the delayed opera-

tion and handle the imperfect streams. [2, 2-4].  

 

Another important feature that any system requires in order to achieve near real time 

communication is clustering and scalability. Clustering allows application to split over 

multiple machines supporting distributed operations and scalability. This helps to re-

source management, load balancing and reducing single machine from getting over-

loaded with streams. At the same time support for multi-threaded operations reduces 

latency by avoiding external events. [2, 2-4]. 
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The communication can with reason be referred to as near real time only when the 

stream processing system can deliver response to high volume of request with very 

low latency. Some of the most important rules the any system should follow to be real 

time are listed below: 

 

 Keep the data moving 

 Query using SQL on streams 

 Handle stream imperfections 

 Generate predictable outcomes 

 Integrate stored and streamed data 

 Generate predictable outcomes 

 Guarantee data safety and availability 

 Partition and scale application automatically 

 Process and response instantaneously 

 

The system should be able to process requests with minimal overhead which can 

be achieved only when the system provides supports for all the critical functionali-

ties with optimized performance. [2, 2-4]. 

 

2.3 Collaborative e-learning 
 

Termed as Knowledge Practices Laboratory, KP-lab is an online collaboration tool that 

simplifies collaboration with the team members in an innovative manner. That is why 

KP-lab considers development of collaborative tools to be co-evolution process of re-

searchers, developers and user. Specially focused towards creating sharing and work-

ing with knowledge, it is suited best for education purposes or in workplaces where 

team work is an essential part of project’s success. [3] 

 

 

Document uploading and sharing, instant messaging, creating and editing of shared 

spaces, adding members to those shared spaces, time management are some im-

portant features that KP-lab provides.  Shared space is an accessible virtual working 

space that contains knowledge objects and has information about their contents and 



7 

 

existing relations with each other. Figure 1 is the screen shot of the KP-Lab environ-

ment.  

 
Figure 1. Root Space of the KP-Lab or entry point of authenticated users. 

 

As shown in figure 1, object highlighted in red and other three similar looking objects 

are shared objects. Members can be added to those objects and those members can 

collaborate online in real time with the members associated with particular shared ob-

ject.     

 

Technically speaking, KP-lab is a web based collaborating tool that runs on web server 

and accessible via web browsers with flash plugin. End user’s web interface is devel-

oped using action script, scripting language and most of the server side implementa-

tion is done using Java programming language. KP-lab relies on flash media server for 

broadcasting of messages and overall synchronization of the shared spaces and the 

objects it contains. SyncServices API uses flash media server for overall data synchro-

nization. 

 

2.4 Flash Media Server and the Communication Protocol used 
   

Adobe Flash Media Server is a media streaming platform and a scripting engine. It is 

used for rich Internet applications that deliver services like video on demand, live web 

event broadcast, IM. [4, 1] It is a server with open socket that allows persistent con-

nection with the client. Over that connection, client can send/receive presence infor-
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mation, audio, video and data streams. Upon connection, it allows clients to make RPC 

(Remote procedure calls) on server side that calls methods on specific clients. Also, it 

allows using shared objects and subscribing to them which can be used for synchroniz-

ing complex data structure and calling remote methods on multiple clients, all  at one 

time.  Flash media server uses rtmp as communication protocol and uses HTTP in ab-

sence of rtmp. [5] 

 

Real time messaging protocol is a TCP based protocol used for transmission of audio, 

video and data between adobe flash player and flash media server. RTMP can be con-

figured into five (5) different ways depending upon the need. First type of configura-

tion is simply RTMP and it does not use any encryption and uses port number 1935 for 

connection as default port. Referred to as RTMPT, tunneling over HTTP is second type 

of  configuration  and  uses  port  number  80  as  default.  Third  one,  RTMPS  considers  

about the security and uses port number 443 for connection. RTMPE is more secure 

configuration and more enhanced, encrypted and faster than RTMPS. It scans the port 

in the order of 1935, 443, 80 if port number is not specified. Using port number 80 as 

default, RTMPTE is the most enhanced configuration that encrypts communication 

channel and tunnels over HTTP. [6, 8-9]. Figure 2 shows the architecture of flash me-

dia server connection. 

 

 Figure 2. System Architecture of flash media server connection. [6, 9].  
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As shown in figure 2, client gets swf from the web server and using the RTMP protocol, 

client is able to send or receive media streams. Such swf files can only be played if the 

client has flash player installed.  

In order to deliver the media (audio and video) streams smoothly, the protocol splits 

larger chunks into smaller fragments. During the RTMP session, the protocol defines 

several channels to be used independently for exchanging packets. The TCP based 

RTMP allows real time communication maintaining single persistent connection with the 

client. [7]  

3 Web Communication Protocols 
 

Web communication protocols are the technology used to exchange information over 

the  Internet.  With  the  advent  of  Internet,  there  has  been a  rise  in  number  of  infor-

mation exchange protocols. Depending upon the nature and capabilities provided by 

the protocol, clients can have access to the information and interaction with the re-

sources stored in servers. Since protocols are dedicated to perform some specific tasks, 

use of them has been widely varied depending upon correlation between the require-

ments and the capabilities they have to offer. Sometimes they can be used in combina-

tion with others to fulfill the nature of the services to be provided. Due to the incapa-

bility of existing protocols to perform all the required task or one particular task, new 

protocols are being developed every now and then.  

  

3.1 Transmission Control Protocol/ Internet Protocol 
 

Transmission Control Protocol (TCP) and Internet Protocol (IP) are two different proto-

cols that are complementary to each other and so are referred to as one. TCP/IP de-

fines the instructions and rule that computers use to exchange information meaning 

that computers at sending end and at the receiving end, both should have copy of 

TCP/IP program. Figure 3 illustrates the TCP/IP connection between client and server 

over the Internet. 
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Figure 3. TCP/IP connection using IP address 

 

As shown in figure 3, client request the Domain Name Service (DNS) server asking the 

ip address of someserver.com. DNS server will translate the domain name into its des-

ignated ip address and sends it back to the client. Then the client sends request to the 

web server with that particular ip address.  

 

IP, the lower layer or also network layer in Open Systems Interconnection (OSI) model 

is the protocol used to route information to the proper address. It does not guarantee 

security and reliable data transmission. However it is the foundation of internet as eve-

ry packet exchanged are routed using it. [8, 28] Each computer connected to the In-

ternet/network is assigned a unique ip address. It makes sure that the information is 

sent  to  the  intended  address.  Every  packet  sent  contains  an  ip  address  and  control  

information enabling it to be controlled and guided to the required destination [9, 15-

16].  It  is  a  connectionless  protocol  and  therefore  does  not  keep  track  of  the  routes  

taken. It depends on TCP for reliable delivery of information. It supports routing, data 

fragmentation, identification of the protocol, multicasting and broadcasting and pre-

vents loop in the network. [8, 28-31] 

 

TCP, the higher layer, guarantees reliable data transmission between two end points. 

It breaks down the information into several smaller packets and assigns different route 

to each packet for faster transmission. Upon arrival at the destination, all the packets 
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are  reassembled.   If  any  data  are  out  of  order  or  corrupted,  it  reorders  the  packet  

thereby reducing the loss of information during transmission. It requires IP address 

and port number of both client and server in order to make a connection. [9, 42] 

 

3.2 Mail Protocol 
 

Electronic mails or Emails are sent over the TCP connection. Sending and receiving of 

emails requires combination of two protocols: Simple Mail Transfer Protocol (SMTP) 

and Post Office Protocol (POP) or Interactive Mail Access Protocol (IMAP). SMTP is re-

sponsible for sending emails to the destination server and used port number 25 as de-

fault port. Due to its inability to queue messages, it requires either of most commonly 

used POP3 or IMAP at the receivers end. All of these protocols use TCP connection for 

transmission  and  delivery  of  emails.  POP3  or  IMAP  allows  for  saving,  downloading,  

creating and deleting of individual messages from mail boxes. [9, 51-52]. Figure 4 

shows how mail server sends and receives email. 

 

       

Figure 4. Email sending and receiving. 

 

As illustrated in figure 4, mail server sends or receives email using SMTP protocol. Up-

on receiving  emails,  it  stores  them using either  POP3 or  IMAP.  Authorized client  can 

then download, save, or delete email from mail server. 
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3.3 File Transfer Protocol 
 

File transfer protocol (FTP) is a protocol used to copy file/s from one host to another 

host across TCP/IP connection. Unlike client-server application, it creates two connec-

tions between the hosts. It uses connection over port number 20 to transfer data and 

uses connection over port number 21 to send control information. Only authorized us-

ers are allowed to request transfer of files. Its limited use for only transferring files has 

kept  it  safe  from being exploited  by  hackers.  [9,  50]  More  practical  use  of  it  can be 

seen in a websites that allows uploading and downloading of documents. Figure 5 

shows two modes of FTP connection. 

       
Figure 5. Establishing FTP connection in different modes. 

 

As shown in figure 5, FTP connection can be done in two ways. In the case of Active 

mode,  both  client  and  server  open  the  port  however  in  case  of  passive  mode,  only  

server opens the port for connection to listen for incoming traffic.   

 

3.4 Hyper Text Transfer Protocol 
 

Web pages designed using Hypertext Markup Language (HTML) and accessible via web 

browsers are transferred using Hypertext Transfer Protocol (HTTP). HTTP is used to 

communicate between web browser and web servers over the TCP/IP connection in 

order to transfer data. It  is request response protocol i.e. client sends request to the 

server establishing TCP/IP connection and server sends response to the request and 
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the  connection  is  closed  when  the  response  is  complete.  It  uses  port  number  80  as  

default port for establishing connection. [9, 48] Figure 6 shows the request response 

model of HTTP connection.  

 

 

Figure 6. Request-Response model of HTTP 

 

As shown in figure 6, client sends request to the server. Before responding to the re-

quest from the client, server checks all the necessary information and finally responds 

with the data requested if requested data exists. 

 

A more secure and stateful protocol is Hypertext Transfer Protocol over secure socket 

layer  (HTTPS).  It  is  HTTP  with  SSL  support  to  secure  the  connection  between  two  

communicating computer and encrypt information during the transmission. It uses port 

number 443 as default port. Any web page transferred using this protocol uses https: 

at the front of its Uniform Resource Locator (URL). 

 

3.5 What do they have in common? 
 

Except TCP/IP, all other protocols (FTP, email protocols, HTTP) connectionless, state-

less  and  are  based  over  TCP/IP  connection.  Stateless  means  all  the  transactions  or  

interactions that happen between client/Server are independent of others. It also 

means that the computer keeps no record or track of state of interactions and each 

transaction has to be handled based entirely on the information it carries. Connection-

less mean the connection is terminated every time the transaction is complete. 
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TCP/IP might be considered not to be stateless and connection less.  However, each 

packets travel independently without any reference to other packets. Even though TCP 

connection is maintained as long as all the packets are received, it is immediately dis-

connected after all the packets are received. Also TCP does not reassemble the packets 

based  on  the  state  that  is  maintained  however  it  does  so  based  on  the  information  

carried by packets. [9, 16, 42] 

 

Stateless design requires extra additional information to be added every time there is a 

transaction and server needing to interpret that information every time resulting in 

increase of overhead. Computer expects new and complete data every time new re-

quest is made. Connection less design requires connection to be established every time 

new request is made there by adding to the overhead. 

4 Extensible Messaging and Presence Protocol (XMPP) 

4.1 Description of the protocol 
 

Previously referred to as Jabber, Extensible Messaging Presence Protocol (XMPP) is an 

open-source IM protocol designed to support real-time messaging, presence manage-

ment and request-response services. Like any other existing communication protocols, 

it defines a format for exchanging data. Even though, it is based on client-server archi-

tecture, peer-to- peer communication is also allowed between two clients or two serv-

ers as shown in figure 7. [10, 3-5] 

 

  

Figure 7. Communication between servers and clients. [11] 
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Figure 7 illustrates the communication between servers and clients. It  shows that cli-

ents on different servers can communicate with each other via two communicating 

servers. Even direct client to client communication can be maintained after the clients 

authenticate with their servers. 

 
XMPP allows exchanging XML stanzas in near real time. Use of XML as data exchange 

format gives communication an added benefit of rich and extensible structure. XML 

makes it more human readable and easily debugged. With an easily extensible ability 

of  XML,  it  gains  an  ability  to  add  new  features  that  are  both  backward  and  forward  

compatible.  Support for encrypted communication between end to end through use of 

Transport Layer Security (TLS) and strong authentication mechanism via Simple Au-

thentication and Security Layers (SASL) make it more secure and helps eliminating 

spams and unauthorized messages. XMPP supports mainly small bits of information 

exchange which gives XMPP extremely low latency making it extremely useful for real 

time communication. However, it can function as signaling layer for moving large 

blocks from point to point. [12, 4]  

 

It  can be used in two ways: one for creating services and other for creating applica-

tion. Some of the services that can be created using it are channel encryption, authen-

tication, presence sharing and detection, buddy list, notifications, one-to-one messag-

ing, multi-party messaging, service discovery, peer-to- peer media sessions. It can be 

used to make any kind of real time applications. Some of its important implementations 

are seen in gaming industry, collaborative shared spaces, synchronization, geolocation, 

groupchatting, designing system controls, data syndication, middleware and cloud 

computing. [13, 4-6] Though it was primarily designed for instant messaging (IM), its 

ability  is  not  limited  just  to  IM.  Any  tasks  that  benefit  from  exchange  of  structured  

messages can rely heavily on it. 

 

4.2 Why Real Time Collaboration Protocol? 
 

Due to the increase in the use of Internet for online collaboration and communication, 

real-time communication is increasingly becoming necessity for web applications. Since 

XMPP provides polling based solutions which in turn reduces the response time and 

latency, it perfectly favors the real time communication. Just being faster is not the 
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only feature that real time communication requires. Communication over the Internet 

has to be reliable and secure. It has built in support for Transport Layer Security (TLS) 

and Simple Authentication and Security Layer (SASL) making it more secure. In addi-

tion, it can be customized according to the needs. 

 

XMPP is an open source, open standard protocol without platform dependency which 

makes it easier to implement and standardize. Server based on it, especially eJabbered 

are rapidly developing into more than just instant messaging servers. Such servers are 

easy to setup, scale and create a cluster out of many servers. It is based on decentrali-

zation meaning anyone can run their own XMPP server without the need to have cen-

tral master server. [11] This favors any companies, organizations, offices, schools or 

even households to have their own private network which can be separated from pub-

lic networks behind the firewall. Many successful startups have used this protocol. 

Chesspark, online multiplayer chess gaming site, is developed based on this. 

 

XMPP  provides  best  solution  for  the  problems  that  existing  web  framework  cannot  

solve or do not attempt to solve [14]. Many Internet giants including Google, Facebook 

and Twitter have used this to provide the best solutions proving it to be the best solu-

tion lying around. Google Wave used this protocol as the base for their federation pro-

tocol i.e.; server to server communication. Facebook uses XMPP for real time messag-

ing. This has also motivated larger number of developers to indulge into it.  

4.3 Comparison of communication Protocols 
 

Even though XMPP is not as mature as HTTP, it can over shadow many of HTTP capa-

bilities with its ability to communicate in real time, extensibility, security and many oth-

er features that it has to offer.  However there are certain points where it still looks like 

a child in front of a giant when compared with HTTP. Table 1 shows the comparison 

between two protocols: decade old XMPP and much matured HTTP. 
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Table 1. Comparison of two different communication protocols 
Comparisons XMPP HTTP 

Pushing Da-

ta 

 

 

 

Application receives notifications when-

ever new information is available with-

out needing to request server for in-

formation thereby reducing latency 

almost to zero.  It is bidirectional. 

HTTP Client gets new information 

only when server responds to the 

client’s request. It is unidirectional 

totally based on request-response. 

 

Pleasing 

Firewalls 

It is firewall friendly. As client initiates 

the connection, the server can push all 

the data on the same connection like in 

response to the HTTP request upon 

connection establishment. 

HTTP callbacks and arbitrary con-

nection are very hard to implement 

in practice in the presence of fire-

wall. 

Improving 

Security 

Since, it is built on top of TLS and SASL 

technologies; it provides solid founda-

tion of security for XMPP connections. 

HTTPS  (HTTP in combination with 

SSL/TLS) also called secure HTTP 

provides security though it depends 

upon the correctness of implemen-

tation of the web browser, server 

software and cryptographic algo-

rithms supported. 

Bigger and 

Better Op-

tions 

It includes three different low level 

tools: <presence>, <message>, and 

<iq> and hundreds of extensions 

It supports handful of operations: 

GET, POST, PUT, DELETE and so 

on. 

Statefulness It  is  stateful  which  makes  scalability  a  

challenge  as  tools  used  to  scale  HTTP  

can be used. However it’s increasing 

popularity and with maturity, it might 

see some tools especially dedicated for 

its scalability. 

It is stateless Protocol making it 

easier to scale.  

Maturity As  it  is  new  compared  to  HTTP, there 

are very limited number of dedicated 

developers, specialized severs and 

libraries.  

There is larger number of develop-

ers who understand it easily, more 

libraries  and  much  matured  HTTP  

server exists.  

More Over-

head 

It does not focus on short lived session 

and simple request causing more over-

head  to  set  up,  maintain  and  destroy  

XMPP sessions. 

HTTP is session less protocol so it 

drops connection immediately after 

handling the request thereby result-

ing in lesser overhead. 

[12, 28-30] 
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Based on the comparisons provided in table 1, it could be said XMPP has the potential 

to solve many problems that HTTP has not been able to do. Its extensibility and securi-

ty makes it better than HTTP and also it is real time in nature compared to HTTP’s re-

quest-response model. 

4.4 Real Time Network 
 

Also referred to as real time network, XMPP network needs certain actors to be a com-

plete network. Servers, Clients, Components and plug-ins are those actors that com-

plete the network. 

  

Server 

XMPP server is the backbone of the network. Server’s role is to route xml stanzas from 

one user to another whether they are on the same network or are on the remote net-

work. Beside that server provides basic messaging and presence features. [12, 6] 

XMPP Network is formed when two or more servers communicate with each other.  

Like Google wave, when set of public XMPP servers are able to communicate with each 

other, and then it is termed as federated XMPP networks. Such servers are easy to set 

up and are available for almost all platforms. It allows users to connect to it and com-

municate messages. 

 

Clients 

Client is another important actor of the network. Clients make the majority of enti-

ties/actors that are connected to the servers. Though some servers allow anonymous 

login, clients need to authenticate to the servers if anonymous login is restricted. Cli-

ents can send xml stanzas, messages or presence which is tunneled by server to the 

required destination or targeted users.  Usually, clients in the network are human i.e. 

IM users; however, automated services also exist as bots. [12, 7] 

 

Components 

Components are other entities that connect to the server except clients. Components 

enhance the capabilities to the server by providing additional services. They have their 

address and identity within the server though they run externally and communicate 

over component protocol. Each component becomes a separately addressable entity 

within the server and act as a sub-server. Components can manage roster and server 
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allows them to internally route or manage stanzas for themselves. Though they need 

to authenticate to the server, authentication is not as complicated compared to the 

SASL client’s authentication. [12, 7] 

 

Plug-ins 

Server behavior or capabilities can be extended simply by using plug-ins. Plug-ins for 

servers are generally a set of software components that add specific abilities to serv-

ers. These are the components written in same programming language as servers are 

written in. Plug-ins may overlap with components to greater extent; however, they are 

not portable between different servers and have less overhead compared to external 

components as they do not require communicating over network socket and serializing 

XML. [12, 8] 

4.5 Connection Life Cycle 
 

Connection 

XMPP based communication is all about exchange of XML stanzas. Stanzas can be ex-

changed only via XMPP stream. XMPP stream cannot exist without the connection to 

the XMPP server. In order to connect to the server, client should provide the valid cre-

dentials. Similar to the E-mail services, each client has unique identity that has “@” 

symbol as suffix followed by server’s domain name. Only after the connection is estab-

lished, users are able to exchange stanzas. [12, 18] 

 

Stream Set Up 

XMPP stream gets started immediately after the connection with server is established. 

It is opened after sending <stream:stream> element to the server and then the server 

opens the stream and responds back by sending the similar stream opening tag. When 

streams are opened from the both end, stanzas are ready to be exchanged. After the 

stream is set up, server immediately responds by sending a <stream:features> ele-

ment that outlines all the available features on the stream.  [12, 19] 

 

Authentication 

XMPP allows secure communication. Authentication is based on SASL protocol and 

supports various authentication mechanisms depending on the server used. Plain-text 

and MD5 digest based authentication are generally used authentication mechanism; 
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however, Kerberos or token based authentication can also be done though they are a 

bit more complicated to achieve. After authentication, client binds a resource for the 

connection and starts a session.  Server to server authentication is slightly different as 

they need to exchange TLS certificates and verify each other. Also sometimes, receiver 

verifies the sender’s identity via DNS by using dialback protocol. [12, 20] 

 

Disconnection  

Final stage of the connection life cycle is disconnecting. Disconnecting involves two 

steps: terminating the session and disconnecting. Sending unavailable presence to the 

server before sending the closing </stream:stream> tag is the optimal way to termi-

nate  session.  By  doing  so,  any  arriving  stanza  is  received  safely.  After  receiving  the  

closing stream tag, server terminates its stream related to that particular client. [12, 

20] 

4.6 Extensions (XEPs) of the Protocol 
 

Since XMPP is extensible and an open standard, developers can define new extensions 

that focused towards solving existing problems or adding new feature to the protocol. 

With consent to transfer ownership to XSF, developers can submit specifications to 

XMPP Extensions Editor which upon approval from XMPP council is published as exper-

imental extensions. To have the status of Final, thus created new extension has to go 

through several refining and reviewing. [15] 

 

XEP States 

 Experimental – Upon acceptance of new extensions proposal by XMPP council, 

such protocols are deemed experimental and published as experimental XEP. It 

is the initial stage of protocol specification before getting the status of Draft 

with possibilities of many modifications. 

 Proposed – It is the state at which the experimental extensions are considered 

suitable to advance towards state of Draft or Active. 

 Draft – After all discussions, technical reviews and upon approval from the 

council, the new extension is granted the state of Draft with issuing advices not 

to be used in very critical application.  It is hoped to be implemented in produc-

tion environment.   
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 Final – Any extension is considered in Final state after it has been in Draft state 

for at least six (6) months and has very less chance of modifications. With im-

plementation in at least two codebases, it is granted the status of Final. After 

the extension is in Final state it is considered safe to be deployed.  

 Active  –  Any  extension  that  is  approved  to  advance  from being  experimental  

automatically get the status of Active. 

 Deferred – Deferred status is applicable if the extension is not updated in 

twelve (12) months’ time. 

 Retracted – Upon receiving the request from the author to remove extension 

from further considerations, XMPP Extensions Editor grants status of Retracted 

to the extension. 

 Rejected – If XMPP councils deems the extension to be unacceptable and re-

jects from further processing, then it gets the status of Rejected. 

 Deprecated – Any extension is deprecated if it is outdated by modern protocol 

and no more implementations are encouraged. 

 Obsolete – All those deprecated extensions are made obsolete when the council 

determines not to use them in any kind of application development. [15] 

Appendix 1 shows the lists of active and final XEPs. 

5 Real Time Collaboration Server 
 

Any server that has a built in support for the XMPP protocol is XMPP server. Previously 

referred to as Wildfire, Openfire is XMPP based real time collaboration server written in 

Java programming language. It is an open-source, independent of the operating sys-

tem that provides a very secure platform. It provides full support to Spark, XMPP based 

real-time collaboration client and compatible to most of the XMPP clients.  

 

5.1 Selection of Real Time Server  
 

Out of many existing XMPP servers, there was a need to select the one that matches 

our requirement and fits into our criteria. Being open-source was the first and a very 

important requirement. Second was to be able to support real-time collaboration. Easy 

to set-up and configuring was another additional requirement. Since Openfire is open-

source real time collaboration and a cross-platform server, these two reasons were 
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good enough to select it for our research purpose. Besides it happened to be written in 

Java programming language with clear and good documentation which made it easier 

to understand and implement. Among all the existing XMPP servers, it is easier to set-

up and logs all the information that makes administering easy. Also it allows configur-

ing  to  set  up  any  secured  connections.  With  full  support  to  the  protocol,  it  is  easily  

extendable. It comes with several features that support streaming communication.  

[16, 11-12]  

 

Having met those important requirements, Openfire was deemed the best alternative. 

Benefits provided by it were not limited to only meeting those requirements. It has its 

own embedded database that can be used for small scale deployment. For large scale 

deployment and if required, it could be connected to external MySQL, Oracle, Microsoft 

SQL Server, PostgreSQL or IBM DB2 database by simply providing link to those data-

bases. Another very appealing feature is it’s user interface. Graphical User Interface 

(GUI) is very easy to use and straightforward not needing to have high level of tech-

nical understanding. It also allows remote access via web browsers. 

 

Openfire is secure as SSL encryption can be enabled in communication includes sensi-

tive information. It also provides with additional feature that allows preventing anony-

mous users from accessing into the system and using the service. In case the default 

authentication is not suitable when security is not a major concern, it can be overwrit-

ten suiting to the needs and required methods of authentication. It not only supports 

for monitoring users, servers and server connections but also logs all the anomalies 

which could be referred later on to monitor. 

 

Openfire allows installing plug-in to add new services that are not its native feature. 

Many new plug-ins are being developed every day and there are exists many useful 

plug-ins such as content filtering, broadcast, monitoring service and packet filtering. It 

also supports clustering which can help solve scalability issues. 
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5.2 Support Provided by Real Time Collaboration Server 
 

Openfire is developed to support the XMPP protocol defined by Request for Comments 

(RFC)  3920 and RFC 3921.  In  addition,  it  also  provides  support  for  numerous  exten-

sions to the protocol that are defined through the XEP process at xmpp.org. Table 2 

and 3 lists the support provided by Openfire to the extension. 

 

Table 2. Basic IM Protocol Suite Support. [17] 

Specification Supported 

RFC 3920: XMPP Core Yes 

RFC 3921: XMPP IM Yes 

XEP-0030: Service Discovery Yes 

XEP-0077: In-Band Registration Yes 

XEP-0078: Non-SASL Authentication Yes 

XEP-0086: Error Condition Mappings Yes 

 

Table 2 lists all extensions that Openfire provides to the basic IM functionalities.  As 

shown in the table, service discovery, in-band registration and non-sasl authentication 

are some to the basic IM functionalities that it provides support for. 

 

Table 3. Intermediate IM Protocol Suite Support. [17] 

Specification Supported 

XEP-0073: Basic IM Protocol Suite Yes 

XEP-0004: Data Forms Yes 

XEP-0020: Feature Negotiation No 

XEP-0045: Multi-User Chat Yes 

XEP-0047: In-Band Bytestreams Yes 

XEP-0065: SOCKS5 Bytestreams Yes 

XEP-0071: XHTML-IM Yes [1] 

XEP-0096: File Transfer Yes 

XEP-0115: Entity Capabilities Yes 
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Table 3 lists all extensions that Openfire provides support to the intermediate IM func-

tionalities.  As shown in the table, file transfer, entity capabilities, data forms, feature 

negotiation are some of the intermediate IM functionalities and it provides full support 

to these extensions. Appendix 2 lists all the extensions that it provides support for. 

 

5.3 Plugin Support 
 

Openfire has web-based admin console plugin installed as default. This makes running 

and operating it very easy. Admin console could be accessed via browser by simply 

providing the linking url: http://localhost:9090 or http://127.0.0.1:9090 in case the it is 

installed locally in the same computer or using the ip address or domain name of the 

server in case it is required to access admin console on the remote computer/server. 

Domain name of the remoter server could also be replaced by the IP address of the 

computer.  

 

Several other plugins are supported for achieving specific tasks. One of the most im-

portant plugin support is broadcast plugin. This plugin would enable broadcasting 

messages to the large number of user. By default, this plugin would send messages to 

all the users of the system. However, it could be also used to send the message to the 

specific group of people.  Another important and the most used plugin is user service 

plugin. Manually creating users was very time consuming and hectic. This plugin would 

allow adding, deleting and modifying users by simply sending the HTTP request to the 

server.  For  our  test,  it  was  very  useful  and proved very  fruitful  as  it  was  possible  to  

create and register multiple users at one time by executing Java Application to send 

multiple requests.   

 

Another plugin is search plugin which helps searching of the users registered in the 

same server. Search could be made by user’s name, username and the email. Moni-

toring service plugin can also be installed and it allows monitoring the server statis-

tics, chat archiving and viewing chat logs. Many more plugins like Clustering, Email 

Listener, Content Filter, Presence Service, Registration and Subscription are also sup-

ported.  
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Installation of plugins to Openfire is very easy. As all the available open source plugins 

could be viewed under the plugins page of the admin console and by simply pressing 

plus (+) at the side of the desired plugin, it could be installed. Plugins not listed as 

available and that are commercial can also be installed by simply uploading the JAR file 

to the plugins page of the admin console. They can also be deployed by copying the 

JAR file to the plugin directory inside of Openfire’s installation directory.   

 

6 Application Design and Implementations 
 

Since the client side user interface for Knowledge Practices Environment (KPE) lab is 

flash application and was designed and implemented using actionscript, this project 

used actionscript as a scripting language for design and implementation. Adobe Flash 

Builder (FB) has been the best choice of KPE developers for designing, improving and 

maintaining  the  client  side  that  is  the  reason  why  this  project  considered  FB  as  the  

most suitable among the available Integrated Development Environments (IDEs). The 

project  used  the  latest  version  of  FB  at  that  time.  In  order  to  design  the  client  that  

supports XMPP in full and to meet the requirements, the project also used two differ-

ent Application Programming Interfaces (APIs): XIFF and Smack. For testing the per-

formance, the project used The Grinder as a load testing framework. The project used 

Openfire as main collaboration server and XAMPP as web server for the application and 

database to store the data. 

 

6.1 Application Description 
 

The application has been created as a chat client for the Openfire server. Even though 

the main idea behind this project is to find out whether the server is capable enough to 

serve KP-lab, the whole project has been implemented outside of it. However, those 

implementations are applicable to the lab as well. Also being a web based application, 

this implementation genuinely suits to the operating environment of the KP-lab. Basi-

cally, this application can be used for authentication, IM, presence information sharing, 

profile creating, conference meeting also called multi user chat and broadcasting of 

messages. The application also has drawing capability as an additional feature. 
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To really determine the performance capability of the real time server in relation to the 

eLearning lab, the project also included a simple drawing board where the users could 

draw  something  over  the  direction  of  mouse  dragging.  When  the  users  are  drawing  

lines or anything visible, it would also broadcast the coordinates of the mouse pointer 

continuously, if the position of mouse pointer is changed. As a result of this, the other 

users  registered with  the  server  and who are  currently  logged in  would  also  get  the  

same drawing on their drawing board. In other words, the system would draw the 

same drawing onto their canvas based on the broadcasted canvas.      

6.2 Development Tools & APIs used 
 

XAMPP is an open source cross platform development server. Developers can use it to 

test web application without the need to connect to the Internet and deploying to the 

production server. It is easy to install and requires no configuration. Since default con-

figuration is not good enough from security point of view, it is better to limit its scope 

to development purpose only but not use it for production purpose. It is the compila-

tion of free softwares: Apache HTTP (web) server, MySQL database server to store 

data, PHP for server side scripting and Perl.  

 

Adobe FB is an Eclipse based development tool for building mobile, desktop and rich 

Internet applications. Applications are built using actionscript. However, it is also pos-

sible to carry out development work based on other programming languages such as 

PHP and Java.  It  has built  in support for android based devices, IOS and Blackberry 

tablets.   

 

The Grinder is a framework that allows running distributed test suitable for measuring 

the performance of anything that has Java API. Load testing being the main criteria, 

this is useful for testing HTTP web servers, Simple Object Access Protocol (SOAP) and 

Representational State Transfer (REST) web services, application servers and some 

custom protocols. All the tests are written in Jython, a powerful scripting language. 

Jython is an implementation of the high-level, dynamic, object-oriented lan-

guage Python seamlessly integrated with the Java platform. This project used three 

point five (3.5) version of The Grinder. [18] 
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XIFF is open source flash library that supports XMPP protocol for creating instant mes-

saging and presence client. Extension architecture makes it possible to extending the 

protocol according to the needs. The library also includes the extension that supports 

XML-RPC  over  XMPP,  Multi-user  conferencing  (XEP  -  0045),  Service  browsing  (XEP-

0030) and Extensible HTML (XHTML) message support (XEP-0071).  Since the client 

side of this project was a flash application, this API was the most important one and 

specifically used.  

 

Similarly, Smack is an open source client library used for the same purpose as XIFF. 

However, it could be used if the client is based on Java but not flash. Even though the 

client side of this project was totally based on flash, this library was also used to over-

ride the services provided by the Openfire. For example, it was used to create custom-

ized authentication that could replace the authentication method provided by the serv-

er in order to make it suitable for this project’s purpose. Default authentication was 

easily overridden by creating a plugin for the server. Plugin used was a Java Archive 

(JAR) application that was created using Java programming language. It was placed in 

the plugin directory of the server in order to override authentication method. 

 

SchemaSpy was also used as a support for this project. It is basically a java based tool 

for creating visual representation out of metadata of a schema in a database. The out-

put created by it can be viewed in a browser.  

 

6.3 Overall Design 
 

Application client is based on open source flex application framework. It is entirely tag-

based, event driven and fully implemented in Macromedia eXtensible Markup Language 

(MXML). All the visual components are designed using MXML. It is XML based markup 

language for designing user interface and it  is combined with actionscript in order to 

achieve the project’s objectives. It is event driven in a sense that any interaction with 

the application can provoke events which can be utilized to execute some actions that 

might result in a different view, some processing or results depending upon the need 

of the application. The application utilizes the user inputs from mainly two input devic-

es: keyboard and mouse to generate events. For example, when a user of the applica-

tion clicks a visual component of the user interface, the component, if programmed to 
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generate event, will generate event which could execute some actions. Application 

framework allows to fully separate view code from the other codes used for imple-

menting application logic.  

 

Application client is web based and can be accessible only via web browsers that have 

flash player plugin installed and in any platform. The client is exported as swf file or 

simply flash file and to be able to access from web browser over the Internet, it was 

deployed to the web server. 

 

Table 4. MXML code used for designing login user interface. 

<s:states> 
<s:State name="loginState"/> 
<s:State name="ConnectedState"/> 
</s:states>  
<s:Form includeIn="loginState" x="158" y="134" width="265" 
height="153"> 
     <s:FormItem label="UserName"> 
             <s:TextInput id="userName" text="user0"/> 
     </s:FormItem> 
     <s:FormItem label="Password"> 
             <s:TextInput id="password" text="abcd" /> 
     </s:FormItem> 
     <s:FormItem label="Server"> 

       <s:TextInput id="server" change="onServerInputChange()"                                                            
text="{ChatManager.serverName}"/> 

       </s:FormItem> 
       <s:FormItem> 

<s:Button id="btnConnect" label="Connect"           
click="connectEvent(event)"/> 

      </s:FormItem> 
</s:Form> 

 

The piece of code, entirely based on MXML as shown in table 4 is used to create the 

user interface for login form. When deployed, it will generate two input field for the 

user to provide login credentials along with a button which will direct to another view, 

ConnectedState when clicked and if the information provided are correct.  
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Table 5. EventHandler for connect button used for authenticating user. 

 

Figure 8 displays the output generated by this piece of code as shown in table 5 

when run in web browsers. 

 

 

                                                                                    

Figure 8. User interface for user login. 

 

When the connect button as shown in figure 8 is clicked it will generate and dispatch 

event which is handled or listened by existing event listener/s. As shown in figure 9, 

connect() method from table 5 will also be executed which is responsible for the whole 

login process. Depending upon the response from the connect() method, the view of 

the application will be updated. 

 

The whole cycle from user interaction with the application to event generation, event 

handling and result processing (view updating in this case) has been clearly shown in 

the figure 9. The figure again utilizes the login process. 

 

public function connectEvent(event:Event):void 
{  
if (!userName.text.match(pattern)) 
      Alert.show("Missing UserName"); 
  
else if (!password.text.match(pattern)) 
       Alert.show("Missing password"); 
else if (!server.text.match(pattern)) 
       Alert.show("Missing Server"); 
else 
        connect(); 
} 
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Figure 9. Eventhandling for authenticating users.  

 

When successfully connected to the server, it would authenticate the user with the 

provided credentials. If the credentials are valid, the view would be updated to the 

connected state. As shown in the figure 9, the action controller or Openfire, real time 

server in this case would respond according to the login credentials provided. Depend-

ing upon the response from the server, the view of the application will be updated.  

The application utilizes the same phenomena for other processes as well. However 

being the real time, IM application and based on XMPP protocol,  it  is also capable of 

getting response from server without any user interaction. Such response would also 

generate result or update views. For example, if the client associated with the server 

would  send some messages  to  the  client  that  has  logged in,  the  server  would  direct  

those messages to that particular client and in response to that event, the application 

would create a pop up window that includes information about the user who is sending 

the message and the message itself. 

 

6.4 Application Architecture 
 

Whether the Openfire was running with the embedded database or the external MySQL 

database, the application always used only one database. In case of the embedded 

database System, the server used the built in database with its own schema for storing 

information related to users, services and property of the server itself. As shown in 
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figure 10, the server is shipped with built  in HSQLDB which it  uses as back end data 

storage. HSQLDB is SQL relational database engine written in Java and very useful for 

persistent data storage due to its flexibility, smaller size and faster processing capabil-

ity.  

  

 
Figure 10. System Architecture with embedded database. 

In case of the external MySQL database, database used the schema provided by the 

Openfire. As shown below in figure 11, all the information is stored in external MySQL 

database. This application used Openfire, MySQL database as external database run-

ning on XAMPP accessible over localhost or IP address, 127.0.0.1.  

 

 
Figure 11. System Architecture when external database is connected. 

 

The server would fetch all the necessary information related to user, authentication, 

presence, properties and others from the external database, Openfire. 

 

The schema provided by the server had all the necessary tables and with all the neces-

sary relationships. Therefore, it was not necessary to create extra tables. However, it 
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does allow creating our own tables with custom fields that matches our needs and al-

lows configuring that would allow communicating with the server. For example, the 

project used the external database with default schema and also created a table 

named user_provider that would only store necessary information, username and 

password only, related to users. The server was configured so that it would authenti-

cate users based on the information fetched from the newly created database table, 

user_provider instead of the default table, ofuser.  For that purpose custom user pro-

vider, a userProvider plugin was created for the server. Also the following piece of code 

as shown in the table 6 could be used to configure the server so that it would use the 

table named user_provider instead of table, ofuser for authentication and storing of 

user information. 

 

Table 6. Configuration of Openfire 

<jive> 
  ... 
  <provider> 
    <auth> 
      <className>org.jivesoftware.openfire.auth.JDBCAuthProvider</className> 
    </auth> 
    <user> 
      <className>org.jivesoftware.openfire.user.JDBCUserProvider</className> 
    </user> 
  </provider> 
  <jdbcAuthProvider> 
     <passwordSQL>SELECT password FROM user_provider WHERE 
username=?</passwordSQL> 
     <passwordType>plain</passwordType> 
  </jdbcAuthProvider> 
  <jdbcUserProvider> 
     <loadUserSQL>SELECT name FROM user_provider WHERE 
username=?</loadUserSQL> 
     <userCountSQL>SELECT COUNT(*) FROM user_provider</userCountSQL> 
     <allUsersSQL>SELECT username FROM user_provider</allUsersSQL> 
     <searchSQL>SELECT username FROM user_provider WHERE</searchSQL> 
     <usernameField>username</usernameField> 
     ... 
  </jdbcUserProvider> 
   ... 
 </jive> 

 
 

Table 6 displays the some contents from the configuration file of Openfire used for 

system configuration.  In order to configure the the server, changes have to be made 

in configuration file, Openfire.xml that exists in the installation directory of the server 

and the service has to be restarted for making changes. However, the use of custom 

user provider and authentication was only for the purpose of testing the server’s con-
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figuration  and  flexibility.  The  whole  project  was  designed  to  depend  on  the  default  

schema provided by the server.  

 

The schema consists of thirty four (34) tables and it uses ofuser table for storing all the 

necessary information related to user creation. The table includes information such as 

username  as  primary  key,  name,  email,  creation  date,  modification  date,  plain  and  

encrypted password. User authentication is also done based on the user information 

available in ofuser table. Upon registration, user could change information about their 

presence, create profile, add/ remove users to/from their friend lists, create groups, 

and rooms. The information related to those actions is stored respectively into table 

ofPresence, ofvcard, ofroster, ofrostergroup. Figure 12 illustrates the schema of the 

database design and the relation between the existing tables.    
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Figure 12. Schema of the database design used by Openfire.  
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The schema also provides with a table named ofpubsub for storing information about 

publishing and subscription. However, this application has not utilized this table as it 

does not require notification from any services nor does it publish anything that could 

be subscribed. 

 

6.5 Application User Interface 
 

As explained earlier, the application’s user interface can only be accessed via web 

browsers. Upon opening the application, it will load the login page. The login page 

cannot be bypassed and the users can be able to use the application only when they 

provide the valid credentials. When the authentication is complete, the users can ac-

cess into the application. The application has a simple outlook and it is easy to use the 

interface in a sense that anybody with basic computing knowledge can use the applica-

tion in the way it was meant to be used. 

                                                                   
Figure 13. View presented after successful user authentication. 

 

Figure 13 shows the view of the application after the user has authenticated. The user 

interface lists the people who are under different group headings as categorized by the 

user. The user interface consists of drop down menu bar which allows the user to per-

form  certain  actions.  Each  menu  items  when  clicked  will  perform  an  action  which  is  

responsible for generating different views as popups on top of the main application. 

Under the XIFF CHAT menu items, the application has a menu button which when 

clicked will generate a popup as shown in the figure 14 which allows users to update 

their profile information. It also allows uploading the profile picture of the user.  

Exchange of Stanzas between 

Openfire and Application Client. 
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Figure 14. Profile Updates                                             Figure 15. Pop up window for chatting 

 

Similarly, figure 15 is the resultant view of the application when the user double clicks 

on one of  the  users  from his  friends’  list.  On that  new popup window,  the  user  can 

start a conversation with the particular user whose user id is displayed on top of that 

window. The application will result in the same view when one of the users from the 

friend’s list performs the same action.  

 

The application has two (2) menu buttons: Add Contact and Remove Contact under 

the contact menu item. Add contact allows adding a person to the friend’s list and re-

move contact allows removing people from the friend’s list. For both purposes, authen-

ticated user has to provide the user id of the particular person. The user id consists of 

the username suffixed with the domain name (mielikki.mobile.metropolia.fi in our case) 

of the server following ‘@’ symbol. If some other users will also add this user, s/he will 

get  an  invitation  in  the  form  of  popup  and  when  accepted,  the  application  will  start  

exchanging the presence information between the users. Also, if this user is removed 

by another user, the application will stop sharing the presence information and the 

users will not be listed under each other’s list of friends. Application does have a drop 

down menu for changing the presence which on changing will send the current pres-

ence to other users in the friend’s list via the server.  

 

The application also allows starting a conference which is a multi-user chat room. Au-

thenticated user can start a conference room with unique id and can send invitation or 

get invitation to join the room. Members for the room can be either manually added or 

selected from the friend list. The conference looks as shown in figure 16. Each user 

who has joined the room can view what others have written or sent.  
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Figure 16. Process of starting a Conference. 

 

Similarly broadcasting is one of the important features of the application. Broadcasting 

of messages can be of two types. User can broadcast the message as normal or alert 

(notification) type. Normal type of broadcast is received both by online and offline us-

ers and when the normal broadcast is received, a new popup window similar to chat 

window appears with messages and information about the sender. However alert type 

is received by only online users and when it is received, the application gets the notifi-

cations and displays the number of new broadcast received. Alert type message in-

Upon sending the invitation 

the conference will start 

If Joins Room upda-
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cludes the message and sender’s username and can be read by simply hovering the 

mouse icon over the small computer icon aligned with the menu bar.  

 

                        
 

   Receiving End  
Figure 17. Broadcasting of messages. 

 

Figure 17 shows the broadcasting of alert type messages and the view that is displayed 

at the receivers end. Since broadcasting of coordinates is very important use case for 

KP-lab, this application also includes similar feature. In this application, broadcasting of 

coordinates is utilized to draw some figures on the drawing board based on the coordi-

nates broadcasted. Figure 18 displays the figure drawn based on the received coordi-

nates of mouse pointer which is exactly similar to the one drawn by the broadcaster  

 

                                                                                                     
Figure 18. Image drawn based on co broadcasted coordinates. 

Total Number of Notification 

Reading message on mouse 

hover over the icon 
Broadcasting Alert Type Messages 
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Figure 18 also displays the application’s compatibility with three major browsers: Mozil-

la Firefox, Google Chrome and Internet Explorer. Also it shows how efficiently Openfire 

broadcasts the coordinates. 

 

7 Test and Result Analysis 

 

The  application  worked  very  smoothly  when  only  two  users  are  communicating  with  

each other or a user broadcasts message to all the registered users. The total number 

of registered users was only twenty five (25) in the beginning. Since KPE is an online 

collaboration tool that has thousands of registered users, in worst case scenario there 

might come a time when all of those users log in and start using the service simultane-

ously. In order to cope with that situation, Openfire should be capable of handling all 

the transactions smoothly without loss of data and on timely manner. Failure to do so 

would cause system failure and the idea of real-time collaboration would make no 

sense. 

 

7.1 Testing Real Time Collaboration Server 
 

Registering thousands of users for this small scale research project was not possible 

and even asking them to use the application simultaneously was out of question.  In 

order to test the XMPP Server, Openfire’s capability and performance in the worst case 

scenario, a simple system was again created with one server (Openfire), MySQL data-

base and two clients in LAN. Figure 19 illustrates the system architecture and the sys-

tem configuration of the server and clients used.  
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Figure 19. System Architecture for the application. 

 

Openfire, real time collaborating server and MySQL database were installed in the 

same  computer.  The  server  was  optimized  to  fully  utilize  the  memory  and  was  as-

signed almost all available memory capacity to JVM. The server was connected to the 

external MySQL database installed on the same computer accessible over localhost. 

Using the user service plugin, five thousands users were created and registered to the 

server.  In order to test the server, the Grinder was used for load testing. It used the 

Jython to send multiple HTTP requests to the server from two clients. Table 7 shows 

the piece of script used to send HTTP request.  

 

 

 

 

 

 

 

 

 

MySQL 
(Localhost) 

Client A 

Client B 

Openfire Server 

192.168.100.102. System: 64-bit Operating System                   

Processor: Intel Core i7 CPU Q720 @1.67GHz                           

Installed Ram: 4 GB 

192.168.100.101. System: 64-bit Operating System            
Processor: Intel Core i5 CPU M480 @2.67GHz                 
Installed RAM: 4 GB (3.80 Usable) 

192.168.100.100.                                   
System: 32-bit Operating System      
Processor: Intel Core 2Duo CPU 
E8300@2.83GHz                                
Installed RAM: 1 GB  

JAVA Memory 

989.88 MB 
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Table 7. Jython Script used for sending HTTP request. 
agentID = int(grinder.properties["grinder.agentID"])                                                                                                                  

processID = int(grinder.processName.split("-").pop())                                                                                                                    

host = '192.168.100.100'                                                                                                                                                                     

domain = 'dipenh-pc'                                                                                                                                                 

boshUrl = 'HTTP://' + host + ':7070/HTTP-bind/'                                                                                                                       

boshWait = 1                                                                                                                                                                               

userPrefix = 'user'                                                                                                                                                                  

numThreads = 1                                                                         

# Create an HTTPRequest for each request 

request101 = Test(101, 'Initiate a BOSH session').wrap(HTTPRequest(url=boshUrl))                                                             

request201 = Test(201, 'Authenticate').wrap(HTTPRequest(url=boshUrl))                                                                               

request301 = Test(301, 'Bind resource').wrap(HTTPRequest(url=boshUrl))                                                                           

request401 = Test(401, 'Request a session from the server').wrap(HTTPRequest(url=boshUrl))                     

request501 = Test(501, 'Get roster').wrap(HTTPRequest(url=boshUrl))                                                                                          

request601 = Test(601, 'Change presence').wrap(HTTPRequest(url=boshUrl))                                                                   

request701 = Test(701, 'Send one to one message').wrap(HTTPRequest(url=boshUrl))                                                            

request801 = Test(801, 'Make an empty request to the server').wrap(HTTPRequest(url=boshUrl))                                                   

request901 = Test(901, 'Terminate the session').wrap(HTTPRequest(url=boshUrl)) 

 

Most of the time only one client, Client A as shown in figure 19 was used to send the 

HTTP request.  Final  test  was  done using both  clients.  Several  tests  were  carried  out  

before actually recording the tests. Three tests, two by Client A and the final test using 

both Client A and Client B were recorded for further analysis. For test one (1), Client A 

used five (5) processes and one hundred (100) threads in two (2) runs. For test two 

(2),  five  (5)  processes,  one  thousand  (1000)  threads  in  three  (3)  runs.  For  the  final  

test, Client A used five (5) processes and one thousand (1000) threads in two(2) runs 

and Client B used six (6) processes and one thousand (1000) threads in one (1) run. 

The Grinder processed the entire HTTP request to be sent to Openfire. The test in-

volved sending nine (9) different types of requests using a random usernames from 

among the registered users. Following are the lists of HTTP request sent to the server: 

 request 101: Initiate BOSH session for HTTP bind. 

 request 201: User Authentication 

 request 301: Binding resource 

 request 401: Requesting a session from Openfire 

 request 501: Getting Roster 

 request 601: Changing Presence of the authenticated user 

 request 701: Sending one to one message to random user. 
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 request 801: Pinging to the server. Sending empty request 

 request 901: Finally terminating the session. 

7.2 Result and Analysis 
 

While running the test, hundreds and thousands of users were authenticated to Open-

fire via HTTP request. All of those users were authenticating, requesting session, fetch-

ing roster, changing their presence information, sending messages, sending empty 

request and terminating the session simultaneously. During this test session, the server 

was recorded consuming JAVA memory up to three hundred and seventy eight point 

thirty  three  (378.33)  MB  which  is  just  over  thirty  eight  (38)  percentage  of  the  total  

memory assigned. Since the Monitoring Service plugin was installed to the server, it 

was also easy to monitor the number of connected and active users, packets count or 

number of packets sent and received by server, active conversations in the admin con-

sole provided by the server. Figure 20 generated by monitoring service plugin displays 

the information about the connected users, active conversations and packets ex-

changed per minute during the first recorded test session.   

 

 
Figure 20. Image generated by Monitoring Service Plugin. 

 

During the test, admin console of the Openfire was a bit slower and after the number 

of connected clients reached above two thousand, admin console was very slow to 

respond and the monitoring service was not able to perform at all. It was not able to 

generate any reports regarding the number of connected users, active conversations 
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and also information about the packets exchanged. These reports generated by using 

the monitoring service were mere reflection of information regarding the connected 

users and packets exchanged. In order to measure the real time nature, response time 

from the server and it’s reliability were the most important thing to be measured. Ap-

pendix 3 contains the pictorial representation of first test, showing number of active 

users and the number of packets transferred in detail.  

 

The Grinder framework has additional feature of recording all the test results in a sepa-

rate log directory. It collects and records all the data related to the HTTP request and 

time measurement of all the response to the request. It records all the details of the 

necessary  information and separately  for  each process  created.   Table  8  and 9  illus-

trate the summary of information collected during the first and final tests respectively.   

 
Table 8. Time Measurement when 473 users are active. 

 
 

Table 9. Time Measurement when 2154 users were active. 
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Out of the information collected using the Grinder, time to resolve host, time to estab-

lish connection, and time to first byte were of most importance. Also, the number of 

HTTP errors would provide important information regarding the reliability of the real 

time server.  Table 8, representing the first test with 473 active users, shows that the 

Grinder carried out five thousand four hundred and sixty six (5466) successful tests 

without any failures and only two hundred and four (204) response errors. Mean time 

to resolve host, identifying i.p. address of the server from DNS was only zero point two 

(0.2) milliseconds (ms) and it took fraction of second to establish connection with the 

server which certainly proved that Openfire is very efficient. Average time to receive 

first  byte  from  the  server  was  just  fractions  of  seconds  more  than  one  (1)  second.   

This test displays the real time nature of the server. 

 

Compared  to  the  first  test,  final  test  using  two  thousand  one  hundred  and  fifty  four  

(2154) users executed using two different clients showed a bit different result. As 

shown in the table 8, the Grinder executed twelve thousand six hundred and seven 

(12607)  successful  test  but  with  one  thousand  and  sixteen  (1016)  failures.  However  

compared to the mass number of tests, HTTP response error was only four hundred 

and three (403). Time to resolve host was zero point zero four (0.04) ms and time to 

establish connection with the Openfire was one thousand seven hundred and ninety 

one point seventy three (1791.73) ms which is more compared to the first test.  Also 

average time taken to receive first byte was seven thousand six hundred and twenty 

two point nine (7622.9) ms which is comparatively very long. 

 

During the final test, CPU usage of both the clients reached 100 percent and the 

memory  usage  was  recorded  even  up  to  3.8  GB.  Due  to  the  maximum  usage  of  

memory, JRE ran out of memory and The Grinder killed few processes during the tests. 

One of the clients crashed and had to be stopped. Both the clients were very slow due 

to excessive usage of CPU and memory. Also this could be the reason why the time to 

receive first byte was longer compared to the first test because this could have created 

longer time lag or delay between starting the test for individual threads and sending 

HTTP requests. At the same time, Openfire had only 16.22 MB of segmented cached 

memory of which segments for offline messages, user presences might have been to-

tally consumed during the first test. Openfire depends on its cached memory for better 

performance. Due to the lesser remaining cached memory; it must have served the 
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compromised performance. However, it  did not crash during this test and it  was rec-

orded to consume 421 MB of memory at some point during the test. 

8 Conclusion 
 

Instant response time from Openfire and reliability on delivering message in a secure 

way proved it to be a real time collaboration server. Such features enable it to be an 

alternative to flash media server. It certainly performed better when there were only 

hundreds of users logged in simultaneously.  Also the final test with thousands of users 

displayed the server’s capability and real time nature even though the server’s capacity 

was very limited. Bearing in mind that Openfire was installed in a machine with similar 

configuration and memory as a flash media server, its performance could have been 

outstanding. The question whether the real time collaboration server, Openfire could 

replace Flash Media Server could have been easily answered if the whole project im-

plementation was done for KP-lab itself. However, there were certain technical prob-

lems that  prevented for  doing so.  In  order  to  test  it,  different  implementations  were  

done allowing KP-lab to run on flash media server to prevent any cause of failure that 

might stop KP-Lab or affect its performance.  

 

If the test was done for KP-lab, there was maximum probability of having two issues: 

data redundancy and security & synchronization. Other problems could also occur but 

those were minor issues and could be ignored. Problem with data redundancy could 

occur because Openfire has its own database schema that defines relationship be-

tween different tables. This schema could be used in the existing database or the 

Openfire could be configured to authenticate users from the existing database. Howev-

er, the access to the existing database was restricted and not accessible. For this rea-

son, a separate database was needed and the table associated with users of newly 

created database had to be filled with all users’ information in order to authenticate 

against the Openfire.  

 

The  second  problem with  security  issues  and  data  synchronization  could  occur  if  we  

tried to overcome the first problem. Users could authenticate against Openfire as 

anonymous users. However, if anonymous login was allowed, there would be a maxi-

mum possibility that anyone could send HTTP request to Openfire as an anonymous 
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user which could bring unwanted messages and results. Also, there could be a serious 

problem of data synchronization due to authorization issues if the users were using the 

service as anonymous users. Furthermore, single sign on mechanism could be em-

ployed for authenticating users. However, JOSSO authentication was implemented for 

KP-lab and Openfire could provide SSO service only via GSSAPI or Kerberos. 

 

Based on the performance of the Openfire and the test results, it certainly proved 

XMPP to be the best protocol for real time communication and turned out to be one of 

the best platforms for real time communication and collaboration. However, it lags be-

hind flash media server in some of the sectors. Unlike flash media server, it does not 

support exchanging of audio/ video streams and remote shared objects. However there 

is already a plugin called Redfire, red5 plugin for Openfire, which could be used to de-

liver audio/video stream along with XMPP messaging and signaling. In place of remote 

shared object, Openfire could use pubsub, powerful protocol extension to XMPP to 

subscribe to items and getting updates from them upon information updates. 

 

Openfire’s performance capability is unquestionable.  Internet giant, Google used 

Openfire as XMPP server for Google Wave. Openfire was used as federated server in 

order to communicate between the servers using the federation protocol, extension of 

XMPP  protocol.   Even  though  Google  Wave  was  a  major  failure  not  because  it  was  

technically inefficient but because of other reasons, it was very sophisticated and real 

time in nature. Because Openfire is being used increasingly for commercial purposes in 

many institutions and organizations, it is developing and improving rapidly. One of its 

advantages is that it can support for plugins and XMPP extensively.   

 

Openfire  is  not  just  platform  independent  and  based  on  open  protocol;  it  is  open  

source  which  gives  it  a  huge advantage over  flash  media  server.  Since  XMPP is  also  

capable of cross protocol communication with Yahoo, AIM, MSN and other protocol, 

Openfire gains more advantage over flash media server. Although, Openfire may not 

provide support for audio/video streams, KP-lab does not provide any service that in-

volves audio/video. Therefore, flash media server’s advantage over Openfire might not 

be so meaningful unless KP-lab starts services related to media streaming. With so 

many features and extensibility, Openfire could be used in place of flash media server. 

It seems quite useful for KP-lab to start using Openfire and actually testing the perfor-
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mance. Even though replacement of flash media server immediately could mean a dis-

aster for KP-lab, it would be a good idea to start using some services provided by 

Openfire in the beginning and gradually move towards replacing service provided by 

flash media server one after another.    
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Appendices 
 

Appendix 1: List of Active and Final XEPs. 

Number Name Type Status Date 

XEP-0001 (PDF) XMPP Extension Protocols Procedural Active 2010-03-

XEP-0002 (PDF) Special Interest Groups (SIGs) Procedural Active 2002-01-

XEP-0004 (PDF) Data Forms Standards Final 2007-08-

XEP-0009 (PDF) Jabber-RPC Standards Final 2011-11-

XEP-0012 (PDF) Last Activity Standards Final 2008-11-

XEP-0019 (PDF) Streamlining the SIGs Procedural Active 2002-03-

XEP-0027 (PDF) Current Jabber OpenPGP Usage Historical Active 2006-11-

XEP-0030 (PDF) Service Discovery Standards Final 2008-06-

XEP-0049 (PDF) Private XML Storage Historical Active 2004-03-

XEP-0053 (PDF) XMPP Registrar Function Procedural Active 2008-10-

XEP-0054 (PDF) vcard-temp Historical Active 2008-07-

XEP-0055 (PDF) Jabber Search Historical Active 2009-09-

XEP-0068 (PDF) Field Standardization for Data Forms Informational Active 2011-10-

XEP-0076 (PDF) Malicious Stanzas Humorous Active 2003-04-

XEP-0077 (PDF) In-Band Registration Standards Final 2012-01-

XEP-0082 (PDF) XMPP Date and Time Profiles Informational Active 2003-05-

XEP-0083 (PDF) Nested Roster Groups Informational Active 2004-10-

XEP-0085 (PDF) Chat State Notifications Standards Final 2009-09-

XEP-0100 (PDF) Gateway Interaction Informational Active 2005-10-

XEP-0114 (PDF) Jabber Component Protocol Historical Active 2012-01-

XEP-0126 (PDF) Invisibility Informational Active 2005-08-

XEP-0127 (PDF) Common  Alerting  Protocol  (CAP)  Over  Informational Active 2004-12-

XEP-0128 (PDF) Service Discovery Extensions Informational Active 2004-10-

XEP-0130 (PDF) Waiting Lists Historical Active 2006-09-

XEP-0132 (PDF) Presence Obtained via Kinesthetic Excita- Humorous Active 2004-04-

XEP-0133 (PDF) Service Administration Informational Active 2005-08-

XEP-0134 (PDF) XMPP Design Guidelines Informational Active 2004-12-

XEP-0138 (PDF) Stream Compression Standards Final 2009-05-

XEP-0143 (PDF) Guidelines for Authors of XMPP Extension Procedural Active 2011-07-

XEP-0145 (PDF) Annotations Historical Active 2006-03-

XEP-0146 (PDF) Remote Controlling Clients Informational Active 2006-03-
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Number Name Type Status Date 

XEP-0147 (PDF) XMPP URI Scheme Query Components Informational Active 2006-09-

XEP-0148 (PDF) Instant Messaging Intelligence Quotient Humorous Active 2005-04-

XEP-0149 (PDF) Time Periods Informational Active 2006-01-

XEP-0153 (PDF) vCard-Based Avatars Historical Active 2006-08-

XEP-0157 (PDF) Contact Addresses for XMPP Services Informational Active 2007-01-

XEP-0160 (PDF) Best Practices for Handling Offline Mes- Informational Active 2006-01-

XEP-0169 (PDF) Twas The Night Before Christmas (Jabber Humorous Active 2009-12-

XEP-0170 (PDF) Recommended Order of Stream Feature Informational Active 2007-01-

XEP-0174 (PDF) Serverless Messaging Standards Final 2008-11-

XEP-0175 (PDF) Best Practices  for  Use  of  SASL  ANONY- Informational Active 2009-09-

XEP-0178 (PDF) Best Practices for Use of SASL EXTERNAL Informational Active 2011-05-

XEP-0182 (PDF) Application-Specific Error Conditions Procedural Active 2008-03-

XEP-0183 (PDF) Jingle Telepathy Transport Humorous Active 2006-04-

XEP-0185 (PDF) Dialback Key Generation and Validation Informational Active 2007-02-

XEP-0199 (PDF) XMPP Ping Standards Final 2009-06-

XEP-0201 (PDF) Best Practices for Message Threads Informational Active 2010-11-

XEP-0202 (PDF) Entity Time Standards Final 2009-09-

XEP-0203 (PDF) Delayed Delivery Standards Final 2009-09-

XEP-0205 (PDF) Best Practices to Discourage Denial of Informational Active 2009-01-

XEP-0207 (PDF) XMPP Eventing via Pubsub Humorous Active 2007-04-

XEP-0222 (PDF) Persistent  Storage  of  Public  Data  via  Informational Active 2008-09-

XEP-0223 (PDF) Persistent Storage of Private Data via Informational Active 2008-09-

XEP-0239 (PDF) Binary XMPP Humorous Active 2008-04-

XEP-0245 (PDF) The /me Command Informational Active 2009-01-

XEP-0263 (PDF) ECO-XMPP Humorous Active 2009-04-

XEP-0295 (PDF) JSON Encodings for XMPP Humorous Active 2011-04-
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Appendix 2: List of XEPs supported by Openfire. 
Specification Suite 

XEP-0004: Data Forms Intermediate 

XEP-0012: Last Activity - 

XEP-0013: Flexible Offline Message Retrieval - 

XEP-0030: Service Discovery Basic 

XEP-0033: Extended Stanza Addressing - 

XEP-0045: Multi-User Chat Intermediate 

XEP-0049: Private XML Storage - 

XEP-0050: Ad-Hoc Commands - 

XEP-0054: vcard-temp - 

XEP-0055: Jabber Search [2] - 

XEP-0059: Result Set Management - 

XEP-0060: Publish-Subscribe - 

XEP-0065: SOCKS5 Bytestreams Intermediate 

XEP-0077: In-Band Registration Basic 

XEP-0078: Non-SASL Authentication Basic 

XEP-0082: Jabber Date and Time Profiles - 

XEP-0086: Error Condition Mappings Basic 

XEP-0090: Entity Time - 

XEP-0091: Legacy Delayed Delivery - 

XEP-0092: Software Version - 

XEP-0096: File Transfer Intermediate 

XEP-0106: JID Escaping - 

XEP-0114: Jabber Component Protocol - 

XEP-0115: Entity Capabilities Intermediate 

XEP-0124: HTTP Binding - 

XEP-0126: Invisibility - 

XEP-0128: Service Discovery Extensions - 

XEP-0138: Stream Compression - 

XEP-0163: Personal Eventing via Pubsub - 

XEP-0175: Best Practices for Use of SASL ANONYMOUS - 

XEP-0203: Delayed Delivery - 
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Appendix 3: Report generated by monitoring service plugin. 
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Appendix 4: Glossary of Terms 
 

APIs  

interface implemented by an application which allows other applications to com-

municate with it. 

authentication  

the process of determining whether someone or something is, in fact, who or 

what it is claims to be. 

clustering  

connecting two or more computers together in such ways that they behave like a 

single computer. 

connectionless protocol 

refers to network protocols in which a host can send a message without estab-

lishing a connection with the recipient. 

cross-platform 

 that can run on any platform or operating systems. 

database  

organized collection of data. 

data redundancy  

repetition of field in two or more tables in a database system.. 

event  

an action that is usually initiated outside the scope of a program and that is han-

dled by a piece of code inside the program. 

eventhandler  

an asynchronous callback subroutine that handles inputs received in a program. 

firewall  

a device or set of devices designed to permit or deny network transmissions 

based upon a set of rules and is frequently used to protect networks from unau-

thorized access. 

IDEs  

software applications that provide comprehensive facilities to computer pro-

grammers for software development. 

latency  

the time required for receiving input and responding to the received input. 

load balancing 

 distributing workload across multiple computers or a computer cluster. 
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logging  

keeping log of all communications. 

Openfire  

real time collaboration server based on XMPP protocol. 

packet   

the unit of data that is routed between an origin and a destination on the Inter-

net or any other packet-switched network. 

peer-to-peer 

also termed as P2P, it refers to a computer network in which each computer in 

the network can act as a client or server for the other. 

plugins  

tools or application to extend the functionality. 

polling  

refers to actively sampling the status of an external device by a client program as 

a synchronous activity. 

presence  

information that conveys ability and willingness of a potential communication 

partner. Such as "Free to chat", "Away", "Offline". 

protocol  

special set of rules that communicating components should follow in order to 

communicate. 

roster 

 the name of the contact list for XMPP. 

scalability  

the ability to retain performance levels when adding additional processors. 

schema  

cognitive framework or concept that helps organize and interpret information. 

server  

a program or a computer that fulfills request of the client programs/computers. 

service discovery 

automatic detection of devices and services offered by these devices on a com 

puter network. 

session  

a series of interactions between two communication end points that occur during 

the span of a single connection. 

SSO Authentication  

Single sign-on (SSO) is a property of access control of multiple related, but inde-

pendent software systems. It is the ability for a user to enter the same id  
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  and password to logon to multiple applications within an enterprise. 

stateless protocol  

a communications protocol that treats each request as an independent transac-

tion that is unrelated to any previous request. 

stream  

to transfer data to a computer so that it can be used as it is downloaded. 

 

synchronization   

an adjustment that causes something to occur or recur in unison. 

system architecture  

the conceptual model that defines the structure, behavior, and more views of a 

system. 

throughput  

output relative to input. 

 
 


