

Edwin Guchu

Implementation of cloud infrastructure using open source
software

Helsinki Metropolia University of Applied
Sciences
Bachelor of Engineering

Degree Programme in Information Technology
Thesis
23rd March 2012

2

Author

Title

Number of Pages

Date

Edwin Guchu
Implementation of cloud infrastructure using open source
software
43 pages + 7 appendices
23rd March 2012

Degree Bachelor of Engineering

Degree Programme Information Technology

Instructor(s)

Sakari Lukkarinen, Lecturer

The purpose of this thesis is to demonstrate and show the technical and logical part of
building an open source cloud. The process of doing this took two main different
approaches in making it work. This thesis will explain and demonstrate the two ideas
which were diskless booting distributing computing and Ubuntu Enterprise Cloud based on
Eucalyptus. In order to understand the technologies used, a project on building the cloud
was done at the premises of the Metropolia University of Applied Sciences in Leppävaara,
Espoo.

In this project, the installation and configuration were done on two Ubuntu servers and
one client Ubuntu desktop computer in both approaches. As the project went on,
challenges were encountered which caused the change to different ways of facing the aim
and the objective of the project. Regarding the first approach of building a cloud
computing environment, explanations on how the idea came about, how to use preboot
execution environment, booting through the network and managing the cluster computers
remotely from the servers are all included in this thesis. Drawbacks of this approach are
also explained in this documentation.

Regarding the second approach, Ubuntu Enterprise Cloud based on Eucalyptus was used
as the preferred technology. This thesis will explain, demonstrate and show the process
and the outcome of using this technology. Virtualization Technology and distributed
computing among other techniques were used in this approach. In addition to this, a
simple demonstration of the user interface will be discussed.

The results of this thesis show the best and most efficient method of building a cloud,
private, public or hybrid. The results also show how to run an open source based cloud
computing environment and how to use it as a new beginner in the cloud environment.
Open source based cloud computing infrastructures are currently implemented in many
different ways. This thesis illustrates one of the implementations.

Keywords Cloud computing, open source, Eucalyptus, Virtualisation
Technology, PXE

3

Contents

Abbreviations and Terms 4

1 Introduction 6

2 Basic cloud computing infrastructure 8

2.1 Cloud computing overview 8

2.1.1 Service delivery models in computer clouds 11

2.2 Approaches of Architecture 14

2.2.1 PXE Diskless booting 14

2.2.2 UEC and Eucalyptus 16

3 PXE Diskless Booting 17

3.1 Overview and Design 17

3.2 Topology 18

3.3 Installation processes on the server 19

4 UEC and Eucalyptus 25

4.1 Architectural Design 25

4.2 Installation and development 28

4.3 Working on the Instances 33

5 Benefits and Drawbacks of using Eucalyptus 39

6 Discussion 40

7 Conclusion 41

8 References 42

Appendices

Appendix 1. DHCP server configuration

Appendix 2. TFTP-hpa configuration files

Appendix 3. Network configuration for the cloud controller

Appendix 4. Euca-describe availability verbose results

Appendix 5. Bundling of the images

Appendix 6. Step for installation of server 1 in UEC and Eucalyptus

Appendix 7. Step for installation of server 2 in UEC and Eucalyptus

4

Abbreviations and Terms

Cloud computing environment

Is Internet computing whereby servers provide resources, software and data

to computers and other services on demand.

Amazon Web Service (AWS)

Is a collection of web services that together make up a cloud computing

platform.

Preboot eXecutional Environment (PXE)

Is the basic interface that allows computers with no operating systems to

load, to be configured and booted remotely by an administrator from the

network.

Eucalyptus (Elastic Utility Computing Architecture for Linking Your Programs To Useful
Systems).

 Is an open source software platform that implements cloud services.

DHCP (Dynamic Host Configuration Protocol)

 Is a network configuration protocol that hosts the Internet Protocol.

TFTP (Trivial File  Transfer Protocol)

Is a file transfer protocol used by boot files between machines in a local
network.

NFS (Network File System, protocol)

Is a sharing file system protocol that allows a user on a client computer to
access files from an allowed server.

BIOS (Basic Input/ Output Operating System)

 Is the first code that is run when the PC is powered on.

5

UEC (Ubuntu Enterprise Cloud)

Is a cloud computing module that provides distributions of a Linux based
operating system.

EC2 (Elastic Computing Cloud)

Is a type of cloud services that delivers scalable computing capacity in a
cloud.

S3 (Amazon Simple Storage Service)

Is an online storage infrastructure used to store and retrieve data at any
given time anywhere connected to the Internet.

KVM (Kernel Virtual Machine)

 Is virtualization software used by Linux kernel.

API (Application Programming Interface)

Is a source code in programming designed to be used as an interface by
software components to interact with each other.

NC (Node Controller)

Is a server used to host virtual machines in Eucalyptus and Ubuntu Enterprise
Cloud.

CC (Cluster Controller)

Is a control computer that manages several peripheral node controllers.

CLC (Cloud Controller)

Is the entry-point into the cloud for administrators, project managers and
cloud users. It is responsible for querying the nodes for resources.

WS3 (Walrus Simple Storage Services)

Is a storage service in Eucalyptus that is compatible with Amazon’s S3. It
allows users to store data in bucket–based storage services.

EMI (Eucalyptus Machine Image)

Is a combination of a Virtual disk image, kernel and ramdisk images as a
virtual machine.

6

1 Introduction

In the last five years, IT companies have been working hard and investing much in creating

and developing a cloud computing environment. The cause of this is high demand and

greater competition in the innovative world of computer industry. Due to high demand of

software and applications, companies ought to have their software and projects online,

thus the need of building an efficient cloud computing environment. In the current days of

the Internet, high network speeds, efficiency and security have been perfected to greater

heights. Thus, almost everyone can now upload sensitive details over the network.

As companies continue to evolve with the latest technology and businesses are

approaching the international market, the individuals in different sectors in the international

companies would like to work on their projects or software from wherever they are apart

from their offices. Here is where cloud computing comes in. It would enable companies and

individuals to use the same software and platforms from wherever they are connected to

the Internet and not tunneling to their office computers. Currently, many databases,

applications and software are found on the Internet and they are owned by different

companies. Web developers and software engineers can use development tools on the

Internet without downloading, and users can use applications on the Internet from

anywhere in the world. This is a wave that has and will continue fascinating many.

The purpose of this project has been to show how to build a cloud computing environment

using open source software and what to consider while determining the perfect software to

use. The project was initiated by the Metropolia University of Applied Sciences and the aim

was to build a fully functional computer cloud system. Interest in the project arose due to

the fact that cloud computing is part of the latest technology. Another reason was to gain

the understanding of how cloud computing works and to learn how to build and maintain a

functional system. There was a chance to build a cloud from scratch using open source

software without any complicated hardware and also to add more experience on Linux

distribution.

The scope of this project was limited to a description of setting up the environment

required for this project in the University of Applied Sciences. In this case, the project was

mostly focused on the infrastructure. Also, a requirement was the testing of all the

functionality of this cloud by using a physics and mathematical simulation software called

COMSOL.

7

However, a few limitations were encountered. In this project, troubleshooting and research

in the two approaches took most of the project time. The reason for this was that the

project members had less experience on these approaches though they had the ideas of

how to work towards achieving the goal of the project. Due to these limitations, the testing

part of COMSOL software on these two approaches was left out of this thesis.

8

2 Basic cloud computing infrastructure

2.1 Cloud computing overview

Cloud computing has many definitions but in this thesis cloud computing is understood to

be the delivery of computing services rather than computing products. It can also be

explained as internet computing whereby shared servers provide resources, software and

data to computers and other devices on demand through the network (i.e. the Internet)

[1]. Apart from the World Wide Web (www) structure, the cloud structure is made up of

hardware, networks, storage, services and interfaces that enable the delivery of computing

as a service. Cloud services include the delivery of software, infrastructure and storage over

the Internet based on user demand.

Distributed computing refers to the use of different resources from different computers

being used simultaneously to solve computational problems. In distributed computing,

problems are divided into many tasks, each of which is solved by one or more computers.

The understanding of a cloud computing environment brought with it many ideas and

approaches of using computers working together simultaneously to perform a common

task. As cloud computing becomes a more integral part of the IT world, many companies

have invested much in building up public and private clouds. Companies such as Amazon,

Google, Microsoft, Salesforce, Skytap and Rackspace Cloud have laid their ground on

providing cloud computing services to companies and individuals. [2.]

Most of these cloud computing environments are built on Virtualization (Hypervisor)

technology, for example Amazon Web Service (AWS). Virtualization provides a means to

separate a computer’s physical hardware, the operating system and applications by

simulating software. This software hypervisor is installed into the computer. The software

also uploads files that define a virtual computer. A virtual appliance is an application that is

grouped together with all the components that it needs in order to run with an operating

system [3].

The virtualization of computers and operating systems hides the physical characteristics of

computers to the users. The hypervisor is part of virtualization, which allows many virtual

operating systems to run on the same computer simultaneously. With this software in

mind, companies and research institutes widen the cloud computing field for more virtual

machines to work together to build a bigger cloud with better functionalities.

9

The world of cloud computing has different parties involved [4]:

• The end user who does not really have to know anything about the

underlying technology.

• The business management who needs to take responsibility for overall

 governance of data or services living in a cloud.

• The cloud service provider who is responsible for IT hardware and

maintenance.

Figure 1 below illustrates the generation phases of computing since the beginning of its

development to the present technology. These different technologies truly explain where

the idea of cloud computing came from and if there is room for more phases.

In phase 1, powerfull mainframes were used by many users through dummy terminals. In

phase 2, stand-alone PCs became powerful enough to meet the needs of the users and so

the development of the PC computers continued up to date. In phase 3, servers, laptops,

PCs and printers were all connected together through a local network to share resources

and increase performance and conveniences. In phase 4, local networks were connected

together with other networks to form a global network called the Internet. In phase 5, grid

computing provided shared computing power and storage through a distributed computing

system. The current development is at phase 6. This phase looks similar to the grid phase

but the cloud phase is bigger with more servers, more capacity. It is also open to the world

and mostly secure. In the cloud phase, most resources are shared on the Internet in a

scalable and simple way [2].

10

Figure 1. Six phases of computer paradigm (Adapted from[4,4]).

There are basic features that need considerations when building an efficient cloud for an

institute or a company. These are listed below [1]:

• Elasticity and scalability. This means that the service needs to be available at all

times and to be designed to scale upward for high periods of demand and

downward for lighter ones. The cloud should be able to scale when

additional users are added and when the application requirements change.

11

• Application programming interfaces (APIs). APIs need to be standardized for

cloud services. These interfaces provide the instructions on how two

applications or data sources can communicate with each other. A standardized

interface lets the customer link a cloud service with ease instead of resorting to

custom programming.

• Measurement and performance monitoring. This is a feature with service

management that monitors and measures the working condition, thus maintaining

the required service level for the organization.

• Security. Is an essential factor in a cloud. Handing over critical information or

application infrastructure to a cloud service provider requires making sure that

the information cannot be compromised.

• Billing and metering. These services should be a built-in service that bills

customers. This is common for the public clouds.

• Self-service provisioning. This should enable customers to easily get cloud

services without going through a lengthy process.

2.1.1 Service delivery models in computer clouds

Figure 2 shows the three distinct models of cloud services: Infrastructure as a Service,

Platform as a Service, and Software as a Service. In reality, the lines between the different

delivery models are often thin. For example, a Software as a Service (SaaS) vendor might

decide to offer separate infrastructure services to customers.

Figure 2.Types of cloud services (Adapted from [5]).

12

Software as a Service (SaaS) is a cloud delivery model that has existed for the last

eleven years. A SaaS is an implementation of an application or process that is developed on

a cloud platform and hosted in a cloud infrastructure. An example of this kind of a service

is the Microsoft cloud. A Microsoft cloud user can order a Microsoft office space and use

Microsoft Word for his/her documentation through the Internet and then save it under the

cloud storage services. A SaaS provider on the other hand, delivers domain-specific

applications or services over the Internet and charges the end users on a pay-per-usage

basis. There are two types of SaaS providers on the Internet as explained below.

 Simple multi-tenancy: Each customer has its own resources that are segregated

from those of other customers. This amounts to a relatively inefficient form of multi-

tenancy.

 Fine-grain multi-tenancy: This offers the same level of segregation but is far more

efficient. All resources are shared, but customer data and access capabilities are

segregated within the application. [5.]

Infrastructure as a Service (IaaS) is the delivery of computer hardware (servers,

networking technology, storage, and data center space) as a service. This may also include

the delivery of operating systems and virtualization technology to manage the resources.

Instead of going through capacity planning, installation and configuration processes, the

IaaS model allows a cloud user or customer to start a new project quickly by renting

computing resources. The key characteristic of an IaaS cloud is elasticity and scalability,

enabling computing resources to scale up and down. Most IaaS cloud providers offer

scalability under customer control with direct self-service interfaces, through which

consumers can request to scale, control, and manage computing resources. An IaaS cloud

is also referred as a resource cloud. According to the different types of resources offered,

IaaS cloud can be further divided into three sub-categories: Computing as a Service

(CaaS), Storage as a Service, and Database as a Service (DaaS).

Platform as a Service (PaaS) includes the delivery of more than just infrastructure. It

delivers a solution stack or an integrated set of software that provides everything a

developer or software engineer needs to build an application (i.e. design, development,

debugging, testing, and deployment). Most PaaS vendors lock developers into particular

development platforms and debugging tools. However, they do not allow direct

communication with lower computing infrastructures. Some certain programming

applications might be provided with limited functionalities of infrastructure control and

management.

13

All the cloud services models function differently from each other though all of them

working hand in hand with each other. Table 1 shows the different technologies in cloud

computing service models. With different cloud services providers, they have different

technologies they use in supporting their service models. Table 1 illustrates the kind of

applications used in different service model.

Table 1. Types of service delivery models (Adapted from [4,25]).

Service Type IaaS PaaS SaaS

Service category VM rental,

online storage

Online operation,

online database,

messaging, queue

Application and

software rental

Service

customization

Server template Logic resource

template

Application template

Service accessing

and using

Remote console,

web 2.0

Development tools

and cloud

Web 2.0

Service monitoring Physical resources

monitoring

Logic resource

monitoring

Application

monitoring

Service

measurements

Physical resource

metering

Logic resource usage

metering

Business resource

usage metering

Service security Storage encryption

and isolation,

SSL/SSH

Data isolation

operation

environment

isolation, SSL

Data isolation

operation

environment

isolation, SSL, web

authentication and

authorization

Service categories are divided into three models. In Iaas, virtual machines and storage

capacities are rented out to a cloud user and the user can decide on what to do with it. On

the other hand, Paas and SaaS are more on software and applications rentals. Service

access and usage are also different in these models. In Iaas, remote access via the console

is applicable and also through the Web 2.0.

14

2.2 Approaches of Architecture

The IT department of the Metropolia University of Applied Sciences delivered 100 standard

desktop computers for this project. These computers are the normal Desktop PCs which

were previously used in the classrooms, and the idea was to build a fully functional cloud

computing structure using these computers. Apart from the computers, there were also two

network switches supplied for the project.

Some of the factors which were put into consideration were how many resources there

were in these computers (i.e. memory, processor power, hard disk space) and what the

power consumption of all these computers was. Other considerations were how much work

force was needed to monitor the machines, even in terms of maintenance and

troubleshooting and the kind of software to be used in the building of the cloud. According

to the criteria of this project, the cloud is required to be open source based. Open source

software is computer software that is available in source code and has a right reserved for

copyright holders. It is provided under a free software license that permits users to read,

study, improve and also distribute the software [6]. Open source software is mostly not

commercial, meaning it can be downloaded for free from the Internet. Such software is

often developed and improved by the public. In this project, no commercial software was

used apart from COMSOL, whereby Metropolia got a license to use the software for this

project.

Considering the criteria used in this project, there were a variety of approaches in building

this cloud. Here are demonstrations of the two ideas used in building this cloud:

 Preboot Executional Environment (PXE).

 Ubuntu Enterprise Cloud (UEC) and based on Eucalyptus.

The above techniques are demonstrated in the next chapters. The preferred working

technique helped the project to fulfil its aim.

2.2.1 PXE Diskless booting

The Preboot Execution Environment (PXE) is an industry standard client/server interface

that allows networked computers that are not yet loaded with an operating system to be

configured and booted remotely by an administrator.

15

 The PXE code is typically delivered to a boot disk that allows a computer to communicate

with the network server so that the machine can be remotely configured and its operating

system can be remotely booted. Most computers sold since the year 2001 are implemented

with two useful features on the Ethernet interfaces: wake–on–LAN and network boot [7].

Wake–on–LAN: Wake on Local Area Network is the ability to switch on or off a remote

computer through special network packets from the administrative server within the local

network. This only works with network cards and motherboards that are wake–on–

LAN compliant. For example, when the PC shuts down, the Network Interface Card (NIC)

still gets power, and keeps listening on the network for the special packet to arrive.

This packet must contain a certain byte-sequence but can be encapsulated in any kind of

packet, for example IP packets.

Network boot: There are several ways computers can boot over a network, but the main

and most used is PXE. PXE is a Dynamic Host Configuration Protocol (DHCP) extension and

all that is needed is an up-to-date DHCP server and a Trivia File Transfer Protocol (TFTP)

server. A DHCP server and a TFTP server can be set up to handle PXE boot requests. [7.]

When a PXE boot is in action, there are three major steps provided:

1) The Dynamic Host Configuration Protocol (DHCP), which allows a cluster computer

to receive an IP address to gain access to the network servers.

2) A set of application program interfaces (API) that are used by the cluster’s Basic

Input/Output Operating System (BIOS) or a downloaded Network Bootstrap Program

(NBP) that automates the booting of the operating system and other configuration

steps.

3) A standard method of initializing the PXE code in the PXE ROM chip or boot disk.

The advantages of using PXE include:

 The cluster machine does not necessarily need an operating system or even a hard

disk.

 The machine can be rebooted in the event of hardware or software failure. This

allows the administrator to diagnose and perhaps fix the problem.

 Since PXE is vendor-independent, new types of computers can easily be added to

the network [8].

16

Currently, some IT companies use PXE with their computer systems.

2.2.2 UEC and Eucalyptus

Eucalyptus is a software platform in Ubuntu for the implementation of private and public

cloud computing on cluster computers. It is open source software which began as a

research project in the University of California, the USA. It exports a user interface that is

compatible with the Amazon EC2 (elastic cloud computing) compatible and S3 (Storage 3)

cloud platform. Eucalyptus stands for (Elastic Utility Computing Architecture for Linking

Your Programs to Useful Systems). It uses a variety of virtualization technologies including

VMware, Xen and KVM hypervisors to implement the cloud abstractions it supports. In this

project the KVM hypervisor (Kernel based virtual machine) was used in building the virtual

machine which will be used by the Eucalyptus.

The Eucalyptus cloud computing platform has five high-level components:

- The Walrus storage controller which provides a basic storage mechanism for

persistent storage and access control of virtual machine images and user data.

- The Storage controller (SC) that provides the storage uses by the virtual machines.

- The Cloud controller (CLC) provides a compliant web interface to manage the

Eucalyptus infrastructure.

- The Node controller (NC) controls the Virtual Machines, inspects and terminates the

VM instances.

- A Cluster controller (CC) controls the whole virtual network, the relation between

the running nodes and also the relation between the instances and the external

user.

All these components can work simultaneously either from a single server or multiple

servers.

17

3 PXE Diskless Booting

3.1 Overview and Design

The idea here is to have this kind of a cloud where all the 100 computers that will be in our

cloud are under one master server that will be able to manage this cloud. All the computers

working together form a cluster. This cluster of computers have only the hardware parts

(CPU boxes) connected to a switch via the Ethernet cable and plugged to the power

source, in this case an electric switch. They will be booting from the network and

everything else is done from the administrative (master) server. The point is to utilize the

resources from this cluster in a distributional way, in this case the Central Processing Unit

(CPU) capacity, hard disk space, and the memory capacities of these computers. The

technology used is distributed computing. The cluster computers will be booting from a

master server which will be having the Debian (Ubuntu 10.04 LTE) Image for the cluster to

boot from. The process of a computer booting from the network is diskless booting. For a

complete diskless boot, the cluster computers need to have a network card that is

compatible with PXE (Preboot execution Environment).

The server will have to run a Trivial File   Transfer Protocol (TFTP) daemon to share the

kernel/boot sector along with NFS (Network File System, protocol) to share the root

directory. The configuration of the Trivial File  Transfer Protocol (TFTP), NFS (Network File

System, protocol) and Dynamic Host Configuration Protocol (DHCP) are configured to one

server which is the master server. The COMSOL software will then be installed into the

cluster computers through the network from the server that is running the Debian based

Ubuntu Server 10.04 LTE Operating System. COMSOL Multiphysics software is a finite

element analysis, solver and simulation software for various physics, engineering

applications and complex mathematics. COMSOL can run a task on many cores in parallel

(shared -memory processing) [9].

All 100 computers are connected to the university internal private IP network through the

network switches to the server. A functioning cloud should perform this kind of a task.

When a complex mathematical or physics problem is submitted to the COMSOL simulator

on the server, the server can distribute the problem to the cloud (cluster computers) and

the computers will all do different tasks in solving the different parts of the problem.

18

Then they will send back the solutions to the server and the server will compile the

solutions it gets from the cluster to form one conclusive answer to the complex query. This

is the idea of the distribution computing in the cloud. The forwarding and passing of these

problems through the network is done by the NFS network protocol.

3.2 Topology

According to the topology and the structure of the laboratory room in which the project

was being carried out at Metropolia, there were some limitations with the size of the room.

Because of this reason, the best and more reasonable way to proceed on with the project

was to use only three computers from the 100 computers. From the three machines, one

represents the master server where the Ubuntu server 10.10 LTE was installed and the

other two worked as cluster computers which perform PXE booting from the server. Figure

3 shows the topology design for the PXE booting system.

Figure 3. The topology setup in the lab room at Metropolia Leppaävaara campus

According to figure 3 above, the idea of this topology is to configure the master server to

be a PXE (Preboot eXecution Environment) boot server. In the project, the server

performed the Wake-on-LAN and network booting onto the cluster computers.

19

In general, for the cluster computers to perform the network booting, the BIOS for these

computers needs to be enabled to Wake-on-LAN. To add on this, the cluster boot sequence

should also be adjusted to PXE options as the first boot sequence. Table 2 summarizes the

benefits of PXE diskless booting.

Table 2 Benefits of PXE Diskless booting

Benefits of PXE diskless booting topology in the project:

 -Saves power consumption.

 -Reduces time to configure individual PCs.

 -Easier to monitor the 100 computers from the server.

 -Easier to maintain and troubleshoot the private cloud.

PXE is the most efficient and convenient way for dealing with a large scale of cluster

computers.

3.3 Installation processes on the server

Table 3 describes a list of the minimum requirements needed on a server in the installation

of the server applications:

Table 3 List of minimum requirements on a server for the installation of PXE boot

Requirement

 An operating system that can support all the server applications, for example Ubuntu 11.04

 An Ubuntu system with nfs-kernel-server, dhcp-server, tftpd server (the server)

 PXE-bootable system (the clients)

 A minimum disk space of 50 GB on the server to hold the client file system

 A minimum of 2mbps network connection between the client and the server

The features of the master server were the following: Hard disk 250 Gb, RAM memory 2Gb,

Dual Core processor 2.26 GHz, Two Network Interface Card (eth0 and wireless NIC Wlan).

According to the topology in figure 3, the server is running Ubuntu server 10.10 LTE and

the installation of this operating system was done from a bootable CD. During the

installation of this OS in the server, the network cards were enabled so as for internet

access. The wireless network card was for accessing the Internet and the other interface

(eth0) is for the cloud network.

20

Through this interface, all the requirements of the cloud will be passed through this

interface. The IP address allocated for it was a private network 10.94.204.0/24 and on the

eth0 interface was configured as 10.94.204.1/24. In this private network address, there

were 254 IP addresses for this project. In this PXE technique, the first few addresses are

used.

When the OS installation is complete, and the server is connected to the Internet via Wlan,

the next step is to update the operating system. This process is important because of

compatibility issues. Since every system has different types of hardware, the updating of

the OS is always the first step after the OS is installed and running. After the updating

process, the OS will run efficiently according to the system it has been installed in. The

command used to update is sudo apt-get update.

While all the basic installation and the updating are done, the following installations are

performed to achieve diskless booting over the network:

 DHCP Server

 TFTP server: tftp1

 NFS server: nfs1

 PXE image location on NFS server

The first step in PXE booting is the installation and the configuration on the DHCP server.

The command to install is sudo apt-get install dhcp3-server. During the

installation, a dhcp file system is installed automatically. After the installation, configuration

to the dhcp file system is set up to offer a /tftpboot/pxelinux.0 as a boot file. To add on this

configuration, a set of IP addresses are set for the client computers, in this case, addresses

from 10.94.204.100 to 10.94.204.200 are set for the dhcp clients. However, for this set

up, it is easier to assign fixed IP addresses to the PXE client machines. Also to add on this

configuration, it is advisable to include the MAC address and the IP address of the server as

hardware Ethernet identity. The configured file is nano /etc/dhcp3/dhcpd.conf and

the configured set up can be found in appendix 1. After the entire configuration on dhcp is

done, restarting dhcp is the next step and it is done by /etc/init.d/dhcp3-server

restart.

The next configuration is the TFTP server set up. The purpose of the TFTP server in PXE

approach is to allow and make room for a root directory to be installed and run on it. To

get this protocol server on the project server, the sudo apt-get install tftp-hpa

command is used to download and install it. Modification of the root directory is necessary

so as to make this file run as a root directory.

21

This is done by nano/etc/default/tftpd-hpa file. This file name is tftp-hpa file and

the change is to edit the tftp directory part into “/srv/tftp”. After the changes, it is saved

under the same name. From this point, a directory called /srv/tftp/pxelinux.cfg is created

by the mkdir –p /srv/tftp/pxelinux.cfg command. In this directory, the PXE boot

files are saved in it. While creating the directory, copying the boot files from the server

system is also done. During the copying process, a default boot configuration file is created

called /srv/tftp/pxelinux.cfg/default and this is where the configuration is done.

Copying bootfile

sudo cp /usr/lib/syslinux/pxelinux.0

/srv/tftp/pxelinux.cfg

Creating the default configuration file /tftpboot/pxelinux.cfg/default

LABEL ubuntu

kernel vmlinuz-2.6.32-33-generic

append root=/dev/nfs initrd=initrd.gz netboot=nfs

nfsroot=10.94.204.2:/srv/tftp/ ip=dhcp rw

 The label of the OS to be used in the PXE boot is Ubuntu. Kernel is a program that

constitutes the central core of a computer operating system [10]. Vmlinuz is the name of

the Linux kernel executable. Vmlinuz is a compressed Linux kernel which can be executable

and bootable. In this case, the kernel vmlinuz version of the Ubuntu is vmlinuz-2.6.32-33-

generic. Initrd, also known as (initial ramdisk), is the process of loading temporary file

systems in to the Read Access Memory (RAM) in the booting process in Linux.

According to the servers’ boot system, the booting system file is initrd.gz. In order for this

process of loading the temporary boot file system to occur, a tool called Initial RAM file

sharing (intramfs- tool) needs to be installed. This will be the next installation process to be

done.

The correct way of finding this kernel vmlinuz version from the server system is by using

this command uname-r. This means that the PXE client will be running the same OS

structure as the server. After the tftp configuration is done and permissions are set, the

service is then restarted to work with the new configuration set up. Tftp is restarted by

/etc/init.d/tftpd-hpa restart . The results of the configurations of the tftp files

can be found in appendix 2.

22

While the DHCP server and TFTP server are running perfectly, the need of a nfs-kernel

server, initramfs-tools and syslinux come in place. Syslinux in this case is a collection of

lightweight boot loaders in Linux that are used in network booting through the enabled PXE

network card.

On the other hand, intranfs-tools is used in the process of loading the temporary files to

the memory in the booting process. Network File Sharing (Nfs)-kernel server is the

functionality behind the transportation of the boot files to the client computers. All these

tools can be downloaded and installed using one command. Sudo apt-get install

nfs-kernel-server syslinux initramfs-tools is the command used for the

tools.

Network file sharing (NFS) should be the first to configure after the downloading and

installation is done. As NFS is installed, it creates a file named /etc/export and it uses

this file to identify what local directories are available for the NFS clients.

In the NFS export file, it is configured to use the /srv/tftp/pxelinux.cfg file to store

the operating system files that are used in the booting process. This is done by modifying

the export file to know the host machine, by adding the IP address of the host (server) and

the network’s IP address that will be sharing this file. Then the file is allowed to be

exported and it is restarted by sudo exportfs –a and /etc/init.d/nfs-kernel-

server restart.

Initramfs-tools and syslinux are configured together by loading the OS onto the initial PXE

boot file which is /srv/tftp/pxelinux.cfg/default. After all the installation and

configuration are done and the functions are working as required, the testing of the client

machines will take place. This means trying to boot the client PCs from the server. The

client PCs are configured to perform diskless booting, and for this to happen. Several steps

are taken to complete the booting process of the machine. Figure 4 illustrates the steps

taken in the diskless booting process.

23

Figure 4. PXE communication process.

At this point, the cluster computers are to be tested for the diskless booting. The first

process is to connect them to the power source, connect the network cards using the

Ethernet cable to a private switch that is also shared by the server. Through the BOIS

setting, network booting is configured. On the switch, it is configured with a single Virtual

Local Area network (vlan) and all the interfaces are open.

 To add on the switch configuration, fast Ethernet interfaces are enabled to span tree

portfast. This feature enhances the switch network reliability, security and enables better

management.

Figure 5 illustrates one of the cluster computers performing a diskless booting. It starts by

getting the IP addresses from the DHCP server as in step 1 in figure 5. Then from the

cluster computer BIOS, it looks for the boot file from its own hard disk. Since there was no

operating system on the hard disk, the cluster machine requests for a pxelinux.0 file

24

system through Trivial File Transfer protocol (TFTP) as in step 2. Since the server was

configured with the TFTP server, the file system is delivered to the cluster machine. The

cluster machine loads the pxelinux.cfg and while it loads, through Network file System

(NFS) step 3, booting configurations are requested. From the NFS server the boot

configurations, which are the Vmlinuz and the initrd.gz, are sent to the cluster machine for

the booting and running of the Ubuntu Operating system.

Figure 5. A screenshot of one of the cluster machines performing PXE booting.

The cluster computer will complete loading and installing the boot file on the Read Access

Memory (RAM) and then booting the Ubuntu 10.04 operating system. This operation is

successful when the Ubuntu logo appears on the cluster screen. The cluster machines are

running Ubuntu 10.04 OS. The next process is some post installation and configurations

which are done from the server remotely. The OS is then updated after it is up and

running. Drivers are installed according to the necessity of them in this project scope. The

secure Shell (ssh) client is installed on the machines and a security checkup via ssh is

performed as part of the post installation. Then lastly, COMSOL should be installed onto the

computers. Due to compatibility issues that occurred while the updating of the OS was

being performed, some of the above steps did not go through. Due to this reason, the

challenge to continue with this approach increased leading to a stand still on this approach

and a chance to try another design to target the aim of this project.

25

4 UEC and Eucalyptus

The Ubuntu Enterprise Cloud (UEC) is Ubuntu’s Eucalyptus powered cloud platform. The

Debian Linux distribution Ubuntu has gone to greater lengths to integrate Eucalyptus into

their distributions. This means that Eucalyptus and the Ubuntu server can be installed both

at the same time. While UEC provides the core function of Eucalyptus, it has some

noticeable differences from Eucalyptus. These differences are as follows: UEC adds an

image store that allows users with a repository of pre-creating images kept in Ubuntu.

Secondly, the registration process is based on zero networking configuration (Zeroconf)

implementation that is used in the discovery and in the integrating of components with

UEC. Lastly, the UEC color scheme web user interface is designed to confirm with Ubuntu’s

current theme [11].

Eucalyptus is software based on an open source platform that is available in debian Linux

distribution. This helps in creating and managing a private and hybrid cloud. It provides an

Elastic Compute Cloud (EC2) compatible cloud platform and a simple storage service (S3)

cloud storage platform which is the same as what Amazon Web Service (AWS) does. UEC

enables Virtualization Technology (VT) that allows any Ubuntu server to run Kernel Virtual

Machine (KVM) as a hypervisor. Hypervisor is a hardware virtualization technique that

allows multiple operating systems to run concurrently on a host computer. Hypervisor

creates an operating platform for the virtual machines (instances) and provides the

execution of this guest operating system.

4.1 Architectural Design

Eucalyptus provides an Infrastructure as a Service (IaaS) type of cloud. This can be either

a private or Hybrid cloud. It also provides an interface that lets users to access computer

resources available in the network. These resources can be storage, network and

processing units. Eucalyptus is designed to have an extensive web service based

architecture that enables it to export Application Programming Interfaces (APIs) to the user

via client tools. Eucalyptus is now implementing industrial standard Amazon Web Services

(AWS) APIs [12]. When Eucalyptus is installed, it comes with some command line tools

called Euca2ools.These tools are used by Eucalyptus internally to communicate with

Eucalyptus cloud installation including Amazon Elastic Compute Cloud (EC2).The table

below shows some features of Eucalyptus in the cloud industry.

26

Table 4. Features of Eucalyptus in cloud computing.

Features of Eucalyptus

 Compatible with Amazon Web Services

 Secure communication with the internal processes

 Supports Linux and Windows virtual machines

 Supports multiple clusters in single cloud

 User and group management

 Account reporting and monitoring

As mentioned earlier, Eucalyptus has various components that work together to make the

open source cloud work efficiently. For a simple and minimal cloud infrastructure, the

components can be divided into two parts. The front end and the node end. The front end

comprises of a cloud controller, cluster controller, Walrus storage and storage controller

while the node end has one or more node controllers. The functions of these components

are described below.

Node controller NC

This is a node computer/server that enables virtualization technology to run Kernel Virtual

Machine (KVM) and the hypervisor. KVM is automatically installed when the user chooses to

install the node controller at the beginning of the OS installation. The virtual machines (VM)

are running on KVM and are controlled by Ubuntu Enterprise Cloud (UEC) and they are

known as instances. A node controller runs on each node (computer) and controls the life

cycle of the running instances in it. These instances running to the NC have different

resources. These resources are determined by the physical resources of this NC, for

example the number of core processors, the size of memory and the available disk space.

The simple features NC has are like collection of data related to the resources available and

reporting to the Cluster Controller and management of the instance life cycle.

Cluster controller (CC)

Cluster controllers manage one or more node controllers and the instances in them. CC

manages the network for the instances running on the nodes using different modes of the

network mode of Eucalyptus. CC interacts with the node controller on one side and Cloud

Controller (CLC) on the other side. The simple feature CC has includes receiving instances

requested from CLC and deploying them.

27

 It also checks which NC is available for it to deploy an instance and controls the virtual

network for this instance in the NC. Lastly, it collects information about the registered NC

and reports to the Cloud Controller.

Walrus Storage Controller (WS3)

WS3 provides a simple storage service (S3) using Representation State Transfer (REST)

and Software Of Unknown Pedigree (SOUP) applications which are compatible with Amazon

Simple Storage Service. WS3 is a simple file storage system. Some functions WS3 has

include storing images of the machines, storing snapshots and serving files using S3

applications.

Storage Controller (SC)

SC provides block storage to be used by the instances. It is almost similar to the Elastic

Block Storage (EBS) service used in AWS. It provides storage for snapshots created by

Eucalyptus.

Cloud Controller (CLC)

CLC provides a web graphical interface to the user for managing and monitoring the UEC

infrastructure on one side and on the other side it interacts with the rest of the Eucalyptus

components. Some functions of CLC are monitoring the running instances, deciding which

cluster to use for the instances. It also has a comprehensive knowledge on the available

resources in the cloud.

28

Figure 6. The main components of a simple private Eucalyptus cloud (Adapted from [13]).

As shown in figure 6, CLC is at the top of the front end of the whole cloud infrastructure.CC

and SC are connected to the CLC through either regular or private network. Then, the NC’s,

located at the node’s end, are always connected to a private cloud.

4.2 Installation and development

In this topology approach, the idea was to build a private cloud from the resources offered

by the IT department of the Metropolia University of Applies Sciences. As mentioned

earlier, the resources were the basic 100 desktop computers, a network switch and

Ethernet cables. This topology approach was designed and carried out in the same

laboratory as the previous topology. There was not enough space in the laboratory for all

the 100 computers and so the best option was to use the minimum resource to create a

simple working cloud. After this structure works on a small scale topology, it can be

transferred to a larger infrastructure. Due to space limitations, three basic computers were

used and a network switch was made to connect the computers to form a private network.

Figure 7 shows the topology design which was used to build this UEC cloud based on

Eucalyptus.

29

 Figure 7. Simple Eucalyptus cloud topology built in the laboratory [14].

Ubuntu Server 10.04 LTE was installed on two of the computers which then became server

1 and server 2 while Ubuntu Desktop 10.04 was installed the client 1 computer. The

Ubuntu desktop operating system was installed on to the client 1 computer because of the

graphical interface. A browser like Firefox or Internet Explorer was needed for the access of

the web interface of UEC to be able to interact with the cloud in the private network. UEC

and Eucalyptus have simple installation steps and do not need complex hardware to

support the cloud. Table 5 illustrates some hardware suggestions that can be used

efficiently with UEC and Eucalyptus.

Table 5. Hardware used for a basic private cloud using Eucalyptus [Adapted from 14].

Hardware Server1 Server 2 Client 1

 Minimum Used Minimum Used Minimum Used

CPU 1 GHz 2*2 GHz VT

extension

VT,64Bit,Multicore VT

extension

VT,64bit,multicore

Memory 1 GB 2 GB 1 GB 2 GB 1 GB 2 GB

Disk 5400rpm

IDE

7200rpm

SATA

5400rpm

IDE

7200rpm SATA 5400rpm

IDE

7200rpm SATA

Disk space 40 GB 200 GB 40 GB 230 GB 40 GB 230 GB

Networking 100Mbp 100Mbp 100Mbps 100Mbps 100Mbps 100Mbps

30

Installation of server 1

Since the computer does not have any OS, it is booted from a bootable CD that has Ubuntu

Server 10.04 64 bit. The steps for the installation in server 1 are illustrated in appendix 6

but a brief explanation of the installation is described in this section. From the booting

menu of the bootable CD, Install Ubuntu Enterprise Cloud was selected as the boot option.

The installation step continued with region options, language options and time zone menu.

As the installation continued, an IP address was required since server 1 has two network

interfaces that connect to the Internet on one side and to the node controller on the other

interface. The interface facing the public network (Internet) is Eth0 as shown in figure 7.

Completing the IP address set up, the next essential part of the installation is the selection

of components to be installed in this server. According to the topology in figure 7, the cloud

controller, walrus storage, cluster controller, and the storage controller in it are then

installed on server 1 machine. All these components are installed by selecting at this point

of the installation. The network interface Eth1 facing node controller is configured and it

should be the network gateway for the node controller. The next stage is setting up the

cluster name to Metrocloud, then selecting the Eucalyptus IP range which was from

10.94.204.100 to 10.94.204.200. When all the steps on installation and configuration are

done, the server is restarted to implement the installed items.

The post configuration and installations which are done after the cloud controller is running

include setting up a static IP address for the interface facing the node controller, restarting

the network and upgrading Eucalyptus. The installation of Network Time Protocol (NTP)

package was done after the installation process of cloud controller (CLC). The CLC will act

as a NTP server for all the components of the UEC. The time on all components will have to

sync with the NTP server to assure the connection of all the components in the UEC

network are working correctly. When the UEC network is working correctly, all the

components will have the clock source from the NTP server and will show the same time

setting. All these configurations are found in appendix 3.

Installation on server 2

The installation of server 2 was the same as of server 1 but crucial minor changes were

made in the cloud installation mode. The steps are found in appendix 7. Server 2 is a basic

desktop computer with the components given in table 5. The same bootable CD used in

server 1 was used in server 2. At the booting menu options, Ubuntu Enterprise Cloud was

the installation option for this server.

31

The installation process continued normally with region options, language options and

keyboard layout options. At this point of the installation process, the IP address was set for

the network interface. The only interface server2 has is facing the cloud controller. The IP

address was set in the same private network as the cloud controller. As the installation

proceeds, the Eucalyptus menu of the components is shown.

Since the interfaces are on the same private network, server 2 will automatically recognize

there is a cloud controller in the network. Thus server 2 will select itself as a node

controller (NC). This is because in every Eucalyptus private cloud, there cannot be two

cloud controllers on a single UEC. Confirmation is required for the user installing the OS.

The next step is to configure the IP address of the CLC and the network gateway. After the

OS is completely installed, the computer is then restarted for it to boot from its own hard

disk.

The post installation and configuration on the node controller include updating the OS,

upgrading Eucalyptus and installing the of Network Time Protocol (NTP) package. The

purpose of this NTP is to synchronize with the NTP server. After installing NTP, the file is

then configured to indicate server 1 as the NTP server by the IP address of server 1 eth1

network interface as shown in figure 7. One of the Eucalyptus files in the node controller

NC /etc/eucalyptus/eucalyptus.conf is then configured to fit with the dhcpd

network, Pubinterface and Privinterface as br0. After all the post configurations,

eucalyptus –nc is restarted.

For the cluster controller on server 1 to communicate with the node controller on server 2,

there is a need for secure communication. SSH public keys are used in this connection.

Secure Shell (SSH) is a network protocol used for secure communication between two

computer devices. SSH uses (public/ private- key) cryptography to authenticate a remote

computer to be allowed to get access into the secured computer. The key is installed into

the node controller (NC) for the cluster controller (CC). This is done by creating a tempory

Eucalyptus user password on the NC. Then from the cluster controller CC, a command that

will copy the SSH identification and the public key from the NC will be set. This is done so

that when the cluster controller accessed the node controller remotely, the identity and the

public key will be saved on the SSH files of the NC for the authentication process. The

command used for this is sudo –u eucalyptus ssh-copy-id –i

eucalyptus/.ssh/id_rsa.pub eucalyptus@10.94.204.10.

mailto:eucalyptus@10.94.204.10

32

After the identity and keys are copied by trying remote access to the NC by using the

password installed on the NC, the password is deleted but the SSH information is saved

and cannot be changed anymore.

Installation on the client computer

The purpose of client 1 machine is that it is used by the cloud administrator to configure

and interact with the cloud setup. This machine is where the setting up of the virtual

machines (instances) and the monitoring of the cloud components is done from. Ubuntu

Desktop 10.10 LTE 64 bit OS is installed on this machine and it is considered to be on the

public network. It obtains the IP address through the Dynamic Host Configuration Protocol

(DHCP) server on the Internet. After the installation of the OS, the Kernel Virtual Machine

(KVM) platform is then installed by the apt-get qemu-kvm command. Eucalyptus tools

called euca2ools are then installed by apt-get install euca2ools. These tools are

installed on the client computer to be able to manage the cloud. For the client computer to

interact with the cloud, a web interface of the cloud controller is used. On the browser

address bar, https://10.94.204.2:8443 is the address used to access the CLC web interface.

The IP address used is for the CLC eth0 that is facing the public Internet. The default

username is admin and the password is changed after the first login. A screenshot of the

web interface can be found in figure 8.

Figure 8. Screenshot of CLC web interface.

33

After signing in as an admin and providing an email ID for the admin, the next step is to

download the credential archives from the credential tab of the web interface and saving

them in the root/.euca directory on the client computer. It is necessary to extract the

credentials archive to get the source eucarc script that makes sure the environment

variables used by the euca2ools are set into the right place. To verify that euca2ools are

communicating with UEC efficiently, the euca-describe-availability verbose

command is used and the results should show the number of instances the NC can host.

Appendix 4 illustrates the results of verifying a command.

4.3 Working on the Instances

The instances in Eucalyptus are created from Eucalyptus Machine Image (EMI). The

instances consist of the virtual machines that are used by the cloud user to install any

software on the instance and a cloud user can use the instance anywhere through the

Internet. EMI is equal to Amazon Machine Image (AMI) used in Amazon. EMIs are

combinations of Virtual disk images, Eucalyptus Kernel Image (EKI), Eucalyptus Ramdisk

Image (ERI) images and an xml file that contain the metadata about the image [14].

According to this project, Linux OS Ubuntu was installed into the instances. Table 6

illustrates what a Eucalyptus Machine Image (EMI) is made of.

Table 6. An example of an Ubuntu EMI.

XML file Name Type of Image ID name in Eucalyptus

Vmlinuz-2.6.28-11-

generic.manifest.xml

Kernel Image EKI – 954313A7

Initrd.img-2.6.28-11-

generic.manifest.xml

Ramdisk Image ERI – D1C61489

Ubuntu-9.04-

X86_64.img.generic.xml

Kernel + ramdisk images

Eki-954313A7+eri-D1C61247

EMI – 4DC61247

The process of creating an EMI is called bundling. Bundling of this EMI is a process that has

multiple steps. Bundling differs between Linux and Windows images. The bundling process

is done on the node controller (NC) from the client computer. Table 7 briefly defines the

steps taken when bundling an image from the NC.

34

Table 7. Multi-steps involved in bundling an EMI.

1. Creating a virtual disk image/ space

2. Installing the OS on this virtual image

3. Installing required applications, for example COMSOL

4. Making the OS ready to run under UEC

5. Registering the images with UEC

6. Testing the images

Bundling of a Linux Image

Bundling, as shown in table 7, is to create some disk space where the virtual machine is

built on. This means that much space should be allocated for the virtual machines because

of elasticity purposes. The disk space is built with kernel virtual machine (KVM) and the

command to this is kvm-img create –f raw image.img 20G . The more space is

allocated, the more time it will take in creating this hard disk space.

Installation of the OS was done and in this project, the virtual machines were running Linux

distribution Ubuntu. In the UEC web interface, there was some examples of Linux distro

OS. Another option to this can be downloading an Ubuntu ISO image direct from the

Internet. In this project, the OS were downloaded from the UEC web interface. Installation

is also done by KVM and the command for the installation was sudo kvm –m 512

/home/metropolia/desktop/euca-ubuntu-9.04-x86_64.iso–drive

file=image.img,if=scsi,index=0 –boot d –net nic –net user –

nographic –vnc :0 . In the disk space named image.img, which was created in the

first step, the ISO image was to be installed and a KVM instance tool was to be booted

from it. On the command line above, the –nographic option is given for the virtual machine

not to display any graphical output. For any graphical output from the instances, Virtual

Network Computing (VNC) is used. VNC is a program installed onto a computer that allows

it to share its desktop with a remote computer.

Registering the images to Eucalyptus is the final process in bundling the images. The files

that are needed for this image to be uploaded and registered to Eucalyptus are Vmlinuz-

2.6.28-11-generic.manifest.xml, Initrd.img-2.6.28-11-generic.manifest.xml and

35

Image.img.xml. Each file has to be registered in three steps : Euca-bundle-image, Euca-

upload-bundle, and euca-register mybucket .

 While the registration of these files are taking place, a random identity is produced for

each process as shown in table 6 and with that identity is then registered and identified on

Eucalyptus with it. Commands on the registering of these files can be found on appendix 5.

After all the files have been uploaded and registered on Eucalyptus, a fixed random identity

will be given to this new Eucalyptus Machine Image (EMI) and it is the identity used when

launching this instance.

Bundling is repeatedly done with different OS ISO images with different applications.

Launching and managing of instances is followed after the bundling and registration

process is done. Launching of the instances can be done in two different ways: either by

using the command line or using graphical tools like add-on found on the Firefox browser.

Launching is done from the public network, and in this project, it is done from the client

computer. The tool used to manage and launch Eucalyptus instances in this project is

Hybridfox. Hybridfox is an open source Mozilla Firefox add-on extension that allows a cloud

used to launch, mount volume, map IP addresses and monitor the Eucalyptus instances.

Some features of this Hybridfox are illustrated in table 8.

Table 8 Features of Hybridfox [15].

Features of Hybridfox

 List available Eucalyptus machine images (EMI)

 List running Instances

 Launch new instances

 Manage security group and rules

 Manage Elastic Block storage (EBS) volume

Installing Hybridfox is done by downloading it from the Google Hybridfox website [15]. The

reason for downloading is to be able to open Hybridfox. Launching is done from Tools on

the menu bar of Firefox. When running Hybridfox for the first time, selection of the region

is done. In the project the region name is Metropolia. After naming the region, another

essential process is to feed in the value of Eucalyptus Elastic cloud computing (EC2) _URL

which is found from the credentials downloaded on the client computer from the web

interface of the cloud controller. Here the credentials were named as euca-credentials-

metropolia, and they also come with EC2_access_key and EC2_secret_key which are also

found in the credential files. Figure 9 shows a screenshot of the Hybridfox working on the

client computer.

36

Figure 9. Screenshot of Eucalyptus instances using Hybridfox.

Figure 9 shows the available instances that are ready to be launched by any cloud used.

Launching one of the instances through Hybridfox is simpler compared to the command

line. On Hybridfox, launching an instance is done by right clicking on the available emi- ID

image and it will give options on what size the user would like to use. After selecting the

size as shown in figure 10, launch needs to be clicked on and it will appear running in the

Hybridfox instances.

Figure 10. Launching an Instance using Hybridfox.

37

Launching this instance, the user will be using it as a personal computer through the

Internet with a certain application on it. From Hybridfox it will show the IP address of this

instance. When using the Ubuntu terminal command line, the user will use Virtual Network

Computing (VNC) software and the IP address of the instance to see the graphical interface

of this running instance. The command to run the graphical interface of an instance

through vnc is vncviewer 10.94.204.101 :1 where the IP address is for the

instance.

At this point the instances are up and running and the end user can use these instances in

as many applications installed in these instances as possible. As an administrator, the name

of the applications installed in these instances is included in the instance name. For

example, if an instance is purposely for the COMSOL software, the end user of the cloud

should know where to find it by the name. Using Hybridfox, a user can identify which

instance to use and what kind of application it has and he/she can also choose the capacity

of the instance.

In this topology of UEC and Eucalyptus as shown in figure 7, the idea of building instances

on server 2 worked and the end user on the client computer could see the instances on the

node controller. Since the server 2 machine is just a basic desktop computer with normal

components as shown in table 5, a command from the client computer is used to check the

sizes of the instances available to be used on the single node controller. The output of the

command euca-describe-availability-zones verbose is shown on table 9.

Table 9. Description of the number and sizes of instances of server 2.

. ~/.euca/eucarc

euca-describe-availability-zones verbose

AVAILABILITYZONE metrocloud 10.94.204.1

AVAILABILITYZONE |- vm types free / max cpu ram disk

AVAILABILITYZONE |- m1.small 0004 / 0004 1 192 2

AVAILABILITYZONE |- c1.medium 0004 / 0004 1 256 5

AVAILABILITYZONE |- m1.large 0002 / 0002 2 512 10

AVAILABILITYZONE |- m1.xlarge 0002 / 0002 2 1024 20

AVAILABILITYZONE |- c1.xlarge 0001 / 0001 4 2048 20

Table 9 shows the number and sizes of the instances available on server 2. To add more

resources for the instances available to the end user of this cloud, an installation of another

Node Controller (NC) is done in the same way as in server 2. The new NC is installed in the

same network as server 2. After installing the NTP client software, it synchronizes with

server 1 and joins the cluster, and the resources change as table 9 shows.

38

There will be more instances with bigger capacities. Eucalyptus proved to be the best

option for the project’s Infrastructure as a Service (IaaS) and the next step is to install the

COMSOL software into one of the c1.X.large VM types.

Due to minimum time left for my term in this project, the installation of COMSOL was done

by a different team and will not be included in this thesis. Since UEC and Eucalyptus were

working properly, the next step is to discuss the benefits and drawbacks of using this

approach.

39

5 Benefits and Drawbacks of using Eucalyptus

As discussed and illustrated in the previous chapter, Eucalyptus was successfully used in

this project and in this chapter, the benefits and drawbacks to this approach are discussed.

The thesis project handles two approaches. The first one, PXE diskless booting, proved not

to be successful because of the following reason:

 Too many protocols configured manually

 Much time spend on troubleshooting

 Not enough documentation

 Compatibility problems

On the other hand, UEC and Eucalyptus approach demonstrated some advantages of using

this technique for the cloud needed in this project. Some of the advantages are listed

below. UEC and Eucalyptus

 are open source.

 come with an Eucalyptus cloud computing API interface.

 compatible with Amazon Web Services (AWS).

 supports public, private and hybrid cloud models.

 come with a management tool designed to build, deploy, and manage one’s own

cloud.

 provide elasticity and scalability properties in the cloud.

 support Windows and Linux virtual machines.

 secure data communication between the cloud components.

 provides user and group management.

 offer monitoring facility and accounting reports.

Some of the challenges Eucalyptus demonstrated are the following:

 Security – It should be compatible with the institution security policies.

 Client side interface – For the cloud user to be able to use this cloud, he/she should

have an idea of working with it, He/she should know how to bring up an instance

by command line or using Hybridfox.

 More documentation – For troubleshooting purposes, there is little material about

Eucalyptus troubleshooting, but using the Eucalyptus website, solutions can be

found on the forums.

While using UEC and Eucalyptus, the merits were greater than the demerits and so the

choice became the best option in this project.

40

6 Discussion

Due to time limitations, I was not able to complete the part of installing the COMSOL

software on the UEC and Eucalyptus infrastructure; however, the working condition of this

infrastructure could allow any software installation to be done on it. On the other hand,

with extensive research on building and managing of an Infrastructure As A Service (IaaS),

I was able to understand clearly what hardware, network and application are required

when building a cloud.

The aim of the project was to find out if it is possible to build a cloud computing

environment from normal desktop computers at the Metropolia University of Applied

Sciences . This goal was achieved through the second approach which was Ubuntu

Enterprise Cloud (UEC) and Eucalyptus topology. The approach proved to support the

hardware provided for the project. It was also noticed that the hardware is elastic and

scalable to whatever size required according to the demand of this cloud.

The success of Eucalyptus working with the hardware at hand also opened a door for the

development of applications that make the cloud mobile. Eucalyptus lays a foundation for

applications that will make this cloud also interact with mobile devices. This kind of

application could be designed after Eucalyptus is extracted on a large scale.

Open source cloud computing provides a large avenue of innovation and according to the

findings of this project, better designs in large scale can be created and more technical

challenges are better dealt with. A strong conclusion on this project is that it is possible to

build an open source cloud computing environment that can host multiple applications,

expand the cloud on demand and also provide storage to a cloud user and to be easily

accessed through the Internet.

41

7 Conclusion

This project was aimed at finding out how to build a cloud infrastructure using open source

software and what kind of resources are needed in building the cloud. In the project,

different approaches were used. UEC and Eucalyptus proved to be successful in fulfilling

the goal of the project.

The project results proved that it is possible to use normal desktop computers (nodes)

linked together to build a cluster. The cluster works with the cloud controller being able to

form a Ubuntu Enterprise Cloud (UEC) that can support any operating system and any

software application that can be installed into a computer or server. As a cloud developer,

it is possible to monitor and also expand the cloud environment using the Eucalyptus frame

work based on UEC.

Though the COMSOL software was not installed into the instances, I was able to get the

basic and advanced knowledge of three cloud computing models, Infrastructure as a

Service, Platform as a service and also Software as a Service. At this point in this project, I

was able to conclude that with the basic knowledge of Linux distributions and networking,

it is possible for a cloud developer to exploit the full potential of open source software in

cloud computing that can be scalable, elastic and reliable to the demand.

42

8 References

1. Kaufman M, Hurwitz J, Bloor R, Halpe F. Cloud computing for dummies.

New Jersey: Wiley publishing, Inc; 2010.

2. Cloud Computing. Cloud computing companies [online]. 2012.

URL:http://www.yescloudcomputing.com/cloud-computing-companies/.

Accessed 15th January 2012.

3. Krutz Ronald L., Vines Dean Russell, editor. Cloud security: A comprehensive guide

to secures cloud computing: Wiley Publishing, Inc; 2010.

4. Furht Borko, Escalante Armando, editors. Handbook of cloud computing.

London: Springer; 2010.

5. Hurwitz Judith, Bloor Robin, Halper Fern. Cloud computing delivery models [online].

2011. URL:http://www.dummies.com/how-to/content/cloud-computing-delivery-

models.html. Accessed 17th January 2012.

6. Kavanagh Paul, editor. Open source software: Implementation and management.

Elsevier Digital Press; 2004.

7. Kegel Dan. Remote network boot via PXE [online]. 27th October 2002. URL:

http://www.kegel.com/linux/pxe.html. Accessed 20th January 2012.

8. TechTarget. Preboot Execution Environment (PXE) [online]. March 2000.

URL:http://searchnetworking.techtarget.com/definition/Preboot-Execution-

Environment. Accessed 24th January 2012.

9. Introduction to COMSOL Multiphysics 4: Building a model [online]. 2011.

URL:http://www.comsol.com/products/tutuorials/introduction/.

Accessed 25th January 2012.

43

10. Bellevue Linux. Vmlinuz definition [online]. 29th March 2005.

URL: http://www.linfo.org/vmlinuz.html. Accessed 25th January 2012.

11. Eucalyptus community. The Ubuntu enterprise cloud and Eucalyptus: Eucalyptus

and Ubuntu [online]. 14thJanuary2010. URL:http://open.eucalyptus.com/forum

/ubuntu-enterprise-cloud-uec-eucalyptus-and-ubuntu. Accessed 29th January 2012.

12. Eucalyptus system. Enterprise cloud, on-premise enterprise cloud IaaS [online].

2011. URL: http://www.eucalyptus.com/products/eee. Accessed 1st February 2012.

13. Cecaro Fabia. Ubuntu enterprise cloud canonical online virtual training [online]. 14

December 2009 URL :http://blog.vmengine.net/2009/12/14/ubuntu-enterprise-

cloud-canonical-online-virtual-training/. Accessed 6th February 2012.

14. Girikumar Yogesh. Eucalyptus beginner’s guide – UEC edition [PDF]. May 2010.

URL: http://open.eucalyptus.com/participate/wiki/private-cloud-computing-

comprehensive-beginners-guide. Accessed 10th January 2012.

15. Hybridfox ,Compute cloud [online]. 2011.

URL : http://code.google.com/p/hybridfox/. Accessed 28th January 2012.

Appendix 1

 1 (7)

Appendix 1

Dhcp server configuration

Nano /etc/dhcp3/dhcpd.conf

GNU nano 2.2.2 File: /etc/dhcp3/dhcpd.conf

#option domain-name "";

option domain-name-servers cluster.metropolia.fi;

default-lease-time 600;

max-lease-time 7200;

authoritative;

subnet 10.94.204.0 netmask 255.255.255.0 {

range 10.94.204.100 10.94.204.201;

option subnet-mask 255.255.255.0;

option broadcast-address 10.94.204.255;

option routers 10.94.204.99;

filename "pxelinux.0";

}

hostpxe_client {

hardwareethernet 00:18:8b:8d:11:78;

fixed-address 10.94.204.99;

}

next-server 10.94.204.99;

filename "pxelinux.0";

allowbootp;

allow booting;

next-server tftp1.dev.local;

use-host-decl-names on;

if substring (option vendor-class-identifier, 0, 9) =

"PXEClient" {

filename "pxelinux.0";

 }

}

A slightly different configuration for an internal subnet.

subnet 10.94.204.0 netmask 255.255.255.0 {

range 10.94.204.100 10.94.204.201;

option domain-name-servers cluster.metropolia.fi;

option domain-name 10.94.204.99;

option routers 10.94.204.99;

option broadcast-address 10.94.204.255;

default-lease-time 600;

max-lease-time 7200;

Appendix 2

 2 (7)

Appendix 2

Tftp-hpa configuration files

 GNU nano 2.2.2 File: /srv/tftp/pxelinux.cfg/default

include mybootmenu.cfg

default ubuntu-installer/i386/boot-screens/vesamenu.c32

Label Ubuntu

kernel vmlinuz-2.6.32-33-generic

append root=/dev/nfs initrd=initrd.gz netboot=nfs

nfsroot=10.94.204.2:/srv/tftp/ ip=dhcp rw

prompt 0

timeout 100

#/etc/default/tftp-hpa

TFTP_USERNAME=”tftp”

TFTP_DIRECTORY=”/srv/tftp”

TFTP_ADDRESS=”0.0.0.0:69”

TFTP_OPTION=”--secure”

Appendix 3

 3 (7)

Appendix 3

Network Configuration of the cloud controller

 GNU nano 2.2.2 File: /etc/network/interfaces

#auto lo

#iface lo inet loopback

iface eth1 inet static

address 10.94.204.2

netmask 255.255.255.0

network 10.94.204.0

broadcast 10.94.204.255

gateway 10.94.204.1

root@server1:~$sudo /etc/init.d/networking restart

root@server1:~$sudo apt- get update

root@server1:~$sudo apt- get upgrade eucalyptus

root@server1:~$sudo apt- get install ntp

root@server1:~$nano /etc/ntp.conf

server 127.127.1.0

fudge 127.127.1.0 stratum 10

root@server1:~$sudo /etc/init.d/ntp restart

root@server1:~$sudo restart eucalyptus- cc CLEAN=1

Appendix 4

 4 (7)

Appendix 4

Root@client1: euca-describe-availability verbose

$ euca-describe-availability-zones verbose
AVAILABILITYZONE metrocloud 10.94.204.10

AVAILABILITYZONE j- vm types free / max cpu ram disk

AVAILABILITYZONE j- m1.small 0002 / 0002 1 192 2

AVAILABILITYZONE j- c1.medium 0002 / 0002 1 256 5

AVAILABILITYZONE j- m1.large 0001 / 0001 2 512 10

AVAILABILITYZONE j- m1.xlarge 0001 / 0001 2 1024 20

AVAILABILITYZONE j- c1.xlarge 0000 / 0000 4 2048 20

Appendix 5

 5 (7)

Appendix 5

Registering kernel image

Root@client1:~$ euca-bundle-image -i Vmlinuz-2.6.28-11-

generic.manifest.xml

--kernel true

Root@client1:~$ euca-upload-bundle -b mybucket -m

/tmp/Vmlinuz-2.6.28-11-generic.manifest.xml

Root@client1:~$ euca-register

mybucket/Vmlinuz-2.6.28-11-generic.manifest.xml

Registering ramdisk image

Root@client1:~$ euca-bundle-image -i Initrd.img-2.6.28-11-

generic.manifest.xml

--ramdisk true

Root@client1:~$ euca-upload-bundle -b mybucket -m

/tmp/Initrd.img-2.6.28-11-generic.manifest.xml

Root@client1:~$ euca-register

mybucket/Initrd.img-2.6.28-11-generic.manifest.xml

Registering disk image

Root@client1:~$ euca-bundle-image -i image.img --kernel eki-

954313A7

--ramdisk eri- D1C61489

Root@client1:~$ euca-upload-bundle -b mybucket -m

/tmp/image.img.manifest.xml

Root@client1:~$ euca-register mybucket/image.img.manifest.xml

Image Listing

Root@client1:~$ euca-describe-images

IMAGE emi-4DC61247 mybucket/image.img.manifest.xml

admin available public x86_64 machine

IMAGE eri-A2BE13EC

mybucket/Initrd.img-2.6.28-11-generic.manifest.xml admin

available

public x86_64 ramdisk

IMAGE eki�685F1306 mybucket/vmlinuz�2.6.35�22

Appendix 6

 6 (7)

Appendix 6

Steps of installation of server 1 in UEC and Eucalyptus

 Boot the server off the Ubuntu Server 10.04 CD. At the graphical boot menu, select

“Install Ubuntu Enterprise Cloud” and proceed with the basic installation steps.

 Installation allows one to set up the IP address details for one interface. In this

project eth0 which is facing the Public network is set as the IP addresses.

 Choose certain configuration options for the UEC, during the course of the install.

 Cloud controller address – Leave this blank as server 1 is the cloud controller in this

setup.

 Cloud Installation Mode – Select ‘Cloud controller’, ‘Walrus storage service’, ‘Cluster

controller’ and ‘Storage controller’.

 Network interface for communication with nodes – eth1.

 Eucalyptus cluster name – Metrocloud.

 Eucalyptus IP range – 10.94.204.100 – 10.94.204.200

Appendix 7

 7 (7)

Appendix 7

Steps of installation of server 2 in UEC and Eucalyptus

 Boot the server off the Ubuntu Server 10.04 CD. At the graphical boot menu,

select “Install Ubuntu Enterprise Cloud” and proceed with the basic installation

steps.

 Installation allows one to set up the IP address for one interface. Eth0 is set with

a private IP – 192.168.20.2

 The need to choose certain configuration options for your UEC, during the course

of the install.

 Cloud Controller Address – 10.94.204.2.

 Cloud Installation Mode – Select ‘Node Controller’.

 Gateway – 10.94.204.2 (IP of the CC).

Appendix

