

Juha Hyvärinen

SURFACE RECONSTRUCTION OF POINT CLOUDS CAPTURED WITH

MICROSOFT KINECT

SURFACE RECONSTRUCTION OF POINT CLOUDS CAPTURED WITH

MICROSOFT KINECT

 Juha Hyvärinen
 Bachelor’s Thesis
 Spring 2012

 Degree Programme in Information
 Technology and Telecommunications

 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology and Telecommunications

Author: Juha Hyvärinen
Title of thesis: Surface Reconstruction of Point Clouds Captured with Microsoft Kinect
Supervisors: Pekka Alaluukas (OUAS), Jarkko Vatjus-Anttila (CIE)
Term and year of completion: spring 2012 Pages: 42 + 4 appendices

The main motivation behind this thesis was to create a new method of content creation for virtual
spaces. This thesis focuses on how an already captured point cloud has to be processed for the
optimal results of the object reconstruction.

In this thesis realXtend Tundra, which is an open source framework for virtual spaces, is used as
a target platform. The point cloud processing is integrated with Tundra in such a way that a user
can import real world objects to the Tundra virtual space with an easy-to-use procedure. This
thesis is based on the work done in the bachelor thesis of Miika Santala, who researched the
capturing of real world objects to a point cloud by using Microsoft Kinect and the Point Cloud
Library libraries (38). In this thesis, the open source Point Cloud Library was used for the point
cloud processing.

The thesis was commissioned by the Chiru project, Intel and Nokia Joint Innovation Center,
Center for Internet Excellence, University of Oulu, which concentrates on researching and
developing new 3D based user interaction paradigms.

As a result, a working process for object capturing was achieved. A real world object can be
captured to a point cloud and processed to the Ogre mesh, which can be added to a virtual space
scene. The whole toolset is implemented to the realXtend Tundra framework as a module.

Keywords: Microsoft Kinect, realXtend, point cloud, Point Cloud Library, surface reconstruction

4

CONTENTS

1 INTRODUCTION 7

2 RESEARCH PROBLEM 8

3 USED TOOLS AND TECHNOLOGIES 10

3.1 Redmine 10

3.2 Git 10

3.3 Qt Framework and Qt Creator 10

3.4 RealXtend 11

3.4.1 Tundra Module 13

3.4.2 Ogre 13

3.5 Point Cloud Library 14

3.6 Meshlab 15

3.7 Polygon Mesh 16

4 POINT CLOUD PROCESSING METHODS 18

4.1 Point Cloud 18

4.2 Point Cloud Filtering 18

4.3 Moving Least Squares 19

4.4 Normal Estimation 19

4.5 Greedy Projection Triangulation 20

5 IMPLEMENTING OBJECT RECONSTRUCTOR 21

5.1 Cloud Filtering 22

5.2 Mesh Reconstruction 24

5.2.1 Surface Smoothing 24

5.2.2 Surface Reconstruction 26

5.3 Mesh Conversion 27

5.3.1 Mesh Conversion with External Tools 27

5.3.2 Mesh Conversion with Ogre ManualObject 27

5.4 Integration with Tundra 28

6 RESULTS 31

6.1 Surface Smoothing 31

6.2 Surface Reconstruction 32

6.3 Mesh Conversion 33

6.4 Object Rendering 34

5

6.5 Saved Binary Meshes 36

7 CONCLUSION 37

REFERENCES 39

APPENDICES

Appendix 1. RealXtend Licence

Appendix 2. Polygon Mesh with Inconsistent Normal Data

Appendix 3. MLS Processing Parameters

Appendix 4. Material File for Captured Object

SYMBOLS AND ABBREVIATIONS

3D Three-dimensional

API Application Programming Interface

Chiru Name of the project started by Intel, Nokia and CIE

CIE Center for Internet Excellence

LLUDP Linden Labs UDP, an UDP based protocol for Second Life

MLS Moving Least Squares

Ogre Object-Oriented Graphics Engine

OpenNI Open Natural Interaction

PCL Point Cloud Library

PCD Point Cloud Data -file format

SSE Streaming Single Instruction, Multiple Data Extensions

VTK Visualization Toolkit

XML Extensive Markup Language

7

1 INTRODUCTION

The purpose of this bachelor thesis is to enable an object reconstruction for the virtual space

environment by reconstructing a 3D object from a point cloud. The point cloud is a data structure

holding multi-dimensional data in it. Most commonly, point clouds are used to represent three-

dimensional data and usually those are X, Y and Z coordinates.

In this thesis, it is described how point cloud data can be transformed into a polygon mesh, which

can be imported to a realXtend Tundra scene. The need for the implementation comes from the

point of view of a user who may want to create a personalized virtual space but is not skilled in

3D modeling. The research goal of this thesis was to achieve easy importing of any objects into a

virtual space where it can be manipulated and used as a building block for a fully personalized

virtual space.

The 3D acquisition from a physical object to a point cloud is done by a co-worker and the results

are described in the bachelor thesis of Miika Santala (38). The field of this thesis is limited to

reconstructing an object from a point cloud that has already been captured converting the

resulting mesh to the Ogre mesh format and importing it into the realXtend Tundra scene. Tundra

is an open source framework for virtual spaces. The Ogre mesh can be used directly in Tundra.

The whole dataflow is integrated to Tundra; hence it works seamlessly with other software

components in that framework. All algorithms used in this thesis were profiled by measuring the

time consumed in the algorithm code. Also, the rendering times of the captured objects were

measured and the most expensive code blocs were identified.

This thesis is a part of a larger project which aims to create new user experiences and study 3D

user interfaces in a virtual space environment. This particular part of the work supports the

possibilities for content creation in virtual spaces. The captured objects could be then transferred

between different devices and virtual spaces. This way, it is easy to create fully personalized

spaces into a virtual environment without any previous experience in 3D modeling or knowledge

about the technology under the hood.

This thesis was commissioned by the Chiru project, Intel and Nokia Joint Innovation Center,

Center for Internet Excellence, University of Oulu. The project focuses on researching the 3D-

internet and the new user interface paradigms.

8

2 RESEARCH PROBLEM

In this thesis, the main goal was to achieve capturing of a real world object, which can be used in

virtual spaces. It was predefined a requirement of the Chiru project that only a CPU (Central

Processing Unit) of a computer can be used for data processing. Commonly this kind of data

processing is done with a GPU (Graphics Processing Unit). Due to the limitations in the

processing power, the requirement for real time processing was not the primary concern and the

target was set to the semi-real time process. In this thesis, a method is proposed how the point

cloud can be transformed into a mesh format supported by the realXtend Tundra.

In the literature, the object capturing and surface reconstruction has got quite much attention,

since more and more content for virtual environments is needed and the accuracy levels required

have also risen (1, 5-7, 10, 13, 16, 18, 19, 26, 31, 35-38). The problem of the object capturing can

be divided into several sub-problems: cloud smoothing, surface reconstruction, surface coloring,

hole filling, point cloud filtering and mesh simplification. Furthermore, the point cloud processing

can be divided into four main steps: pre-processing, determination of the global topology for the

surface of the object, generation of the polygonal surface and post-processing. (37.)

Microsoft Kinect is a commercial depth camera with RGB color data. Kinect is designed to work

as a game controller for the Microsoft Xbox 360 recognizing the motion of the player. The data

acquired from Kinect is low resolution and inherently noisy even though it is compelling compared

to other commercially available depth cameras (18). Still, it is sufficient for the object capturing

and reconstruction in the range where the measurement errors are the smallest (16). The two

main problems with the scanned point cloud data are the holes in the data cloud and the

scattered points due to the scanning errors. In addition, It is not possible to build solid objects

from partial point clouds.

During the surface reconstruction, the unevenly divided points can cause holes in the final mesh.

A bigger problem is the missing data from a large surface area, and because of that it is

impossible to determine programmatically whether it should be solid or if there really is supposed

to be a surface gap. Usually, the missing data results from the scans with less than a perfect

camera positioning. The restrictions for the camera placement can arise from hardware

limitations; Kinect, for example cannot, capture any data closer than 0.5 meters. (6.) Also, uneven

surfaces are difficult to capture, since scans from every direction would be needed.

9

Typical artefacts in the acquired data are holes caused by the sensor restrictions or measurement

error based noise (37). Both of these defects can cause outliers to a resultant cloud. Techniques

have been developed to avoid these kinds of errors. One removes outliers with a robust algorithm

and creates a solid object from the remaining points. The resulted object is intended to be solid

even when there are large numbers of points outside the surface (31). Another technique tries to

create methods able to learn called neural network based surface reconstruction methods (10).

When the visually best possible clone from the original object is required, coloring the resulted

mesh is maybe even more important than the shape. There are three possible ways to color the

mesh. The first one is to use an external material file, which refers to a color texture map file with

the given surface parameters such as lighting. The second one is to directly add color data into

each polygon in the mesh. The third one is to use 3D texture materials which consist of a set of

sliced 2D textures. The resulting set of planes is blended together with the mesh. Each polygon in

the mesh can obtain texture data from the corresponding part of the 3D texture cube based on

the coordinates of the polygon (4). In this thesis, the polygon coloring technique is used. Finally,

some methods are needed to export the produced mesh in a format that can be imported into a

Tundra scene.

10

3 USED TOOLS AND TECHNOLOGIES

This work is based on open source libraries and frameworks. In this chapter, these technologies

are presented with more detailed information.

3.1 Redmine

Redmine is a flexible open source project management tool published under the GNU General

Public License v2. It is written with the Ruby on Rails framework. It is cross-platform and cross-

database software. Its user interface is web-based and therefore it can be used with almost any

client hardware from mobile browsers to desktop computers. (34.)

Project management tools are used for supervising the work, marking and tracking the changes

in the tasks that have to be done and estimating the time needed to complete larger tasks. The

Chiru project uses Redmine for the management.

3.2 Git

Git is an open source distributed version control system, originally created by Linus Torvalds for

the Linux kernel development management. It is designed for the speed and efficiency on large

projects. (35.) With Git, each developer always has a full local copy of the repository with the

development history. Therefore, a network connection is not mandatory for changing branches or

for viewing the commit history after the repository is loaded to a local computer.

In the Chiru project, Github was used as a central repository server, storing all the data in a cloud.

Even if a local hard drive was to break or the computer stolen, all data would be protected. In

Github, it is possible to store projects in the Git format and from there the data is usable with the

Git tools. Github is free for an unlimited number of developers for public projects, without any

storage capacity limitations. Only when a private repository is needed, the service has a price tag.

(9.)

3.3 Qt Framework and Qt Creator

Haavard Nord started to develop the Qt framework in 1991, and the first version became

available in May 1995. The most famous feature of Qt is a concept for signals and slots, and it

came up in 1992 by Eirik Chambe-Eng. From the very beginning, one of the main goals of Qt has

been to create a framework that can be run natively with GUI on Unix, Macintosh and Windows.

11

Qt has always had dual licensing models, one for open source products and another for

commercial use. (3.) Currently, Qt is licensed under the GNU Lesser General Public License

(LGPL) version 2.1 by Nokia. Additionally, its commercial licensing is maintained by Digia and it is

called Qt Commercial. (11.) The realXtend project is build by using the Qt framework with the

open source licence.

Qt Creator is a development environment designed for the Qt based software development and it

is deployed with the Qt framework. Qt Creator (Figure 1) supports the highlighting for multiple

programming languages, and projects can be created either with qmake or with cmake.

FIGURE 1. User interface of Qt Creator

3.4 RealXtend

RealXtend is an open source framework for virtual worlds and the name is owned by the

realXtend Foundation. The development of realXtend began in 2007 and it was officially launched

a year later. RealXtend is licensed under the Apache 2 license and therefore anyone can use its

source code freely, even in commercial closed source projects. A copy of realXtend licence is

presented in Appendix 1. The initial funding came from the City of Oulu, private investors and

local companies. The development work has mainly been done in Oulu. The idea is originally

from Juha Hulkko, who wanted an open source virtual world platform to compete with the

restricted, closed source systems. (12.)

12

From the beginning of the development, the target was to create a generic platform that could be

easily modified to fulfill for specific needs. The architecture of the Tundra scene is designed to be

extensible in a way that nothing is hardcoded as opposed to OpenSimulator with the Second Life

(LLUDP) protocol, which is mostly predefined into the platform. The functionality of the scene is

defined by the entities in it. Each entity can contain multiple entity components, which then

defines the functionality of that entity. For example, when the entity component EC_RigidBody is

a part of the entity, it also belongs to the physics world and is under the laws of physics defined in

the scene. (2.)

In 2011 the realXtend association was created. The association coordinates the collaboration and

development work between the interested parties. Users, developers and companies can

propose the needed functionality or sub-projects to the association and it can suggest these

proposals to the Foundation. The Foundation then starts to find funding for these suggestions.

Currently, there are seven member companies in the association (32). Similar organizational

setups are also used in Blender and Mozilla. (27.)

The current incarnation of the realXtend is Tundra, which is a combined server and viewer

application for virtual worlds. In spring 2012, the realXtend Tundra has reached to release the

version 2.3.2. A Tundra client (Figure 2) is connected to the technology demonstration scene

made by Ludocraft.

13

FIGURE 2. RealXtend Tundra client, connected to Ludocraft Circus scene

3.4.1 Tundra Module

In Tundra, it is possible to extend the functionality by creating a plug-in type of module. The

Kinect module is an example of the extensions made such as a module, making it possible to

guide an avatar in a virtual space with a movement captured by the Kinect. Other modules

available are, for example, scripting support for JavaScript and Python.

At the startup it can be defined which modules are loaded. With this design, the memory footprint

of the running software and the startup time are significantly lower, compared to a case where all

available modules would be loaded at the startup. (33.)

3.4.2 Ogre

Ogre (Object-Oriented Graphics Rendering Engine) is used in Tundra as a graphics rendering

engine. As the name says, it is a rendering engine as opposed to a game engine. It is maintained

and developed by a relatively small core team, but a growing community also contributes new

features to it. Since Ogre is not a scripting kit, it requires more knowledge of the programming

than commercial game engines, at least intermediate skills in C++ and in the object oriented

14

programming are essential. (17.) Currently, Ogre supports Direct3D and OpenGL as rendering

targets. The Direct3D support includes the DirectX versions 9 and 10 (20), but there is a

preliminary support for DirectX 11 as well, and it should be included to the next version of Ogre.

There is no official estimation for the release date but unofficially it will be released by the end of

2012. The version number is going to be 1.8, also known as Byatis. (22.) Ogre is cross-platform

software, which can be used with Windows, Linux and Mac OSX.

Since most of the OpenGL code is integrated into Ogre, it offers a possibility to use a lower level

OpenGL Application Programming Interface (API) together with an easier-to-use high level API. A

part of this higher level API offers a possibility to create 3D objects directly from the program code

and then reuse those objects with every rendering frame without a need to specifically redraw

them. In Ogre, this functionality for the object creation is wrapped inside of ManualObject class

(21). Self created objects can also be serialized and saved into a hard disk with build-in

functionality, if needed.

The Ogre scene is an abstract representation of a 3D environment and it may contain various

components, for example, static geometry such as terrain, meshes such as chairs or avatars,

lights for illumination of the scene and cameras for viewing the scene (23). There are different

kind of scenes varying from indoor scenes mainly consisting of hallways and rooms populated

with a furniture and artwork to large outdoor scenes consisting of a terrain of rolling hills, trees

and grass.

3.5 Point Cloud Library

The Point Cloud Library (PCL) is an open source project for point cloud processing. It is released

under the BSD licence and it is free for commercial and research use. PCL is aimed to be a

cross-platform library and it is successfully compiled and deployed on Linux, Windows, MacOS

and Android. (28.)

PCL provides many state-of-the art algorithms for point cloud processing. PCL is designed to be

a fully templated, modern C++ library written with the performance and efficiency in mind. The

data structures used in PCL use SSE optimizations, and with the third party libraries it supports

the multi-core parallelization. The algorithms in PCL are designed to work together in a way that

the result from the first method can be passed on to the next processing method. The data is

passed around using the Boost shared pointers, and therefore no data copies are needed when

the data is already present in the main memory of the system. (1.)

15

For the data acquisition, PCL provides the OpenNI (Open Natural Interaction) wrappers API,

which makes it possible to use many publicly available capturing devices such as Primesense

PSDK, Microsoft Kinect, Asus XtionPro and Live (25). PCL can also export and import multiple

different data formats with its import and export implementations. This design makes it possible to

capture data with a different computer than from the one used for the final data processing. (29.)

PCL is integrated with the Visualization Toolkit (VTK) to achieve its own visualization library. With

this library, it is possible to quickly test and prototype the results received from the point cloud

processing. The visualization works with n-dimensional point cloud structures. In this thesis, the

visualization library was used to visualize the point data, the wire frame model from the

reconstructed data and the surfaces created with the surface reconstruction. The properties and

settings available for the visualization are, for example, colors for points and background, point

size and opacity.

PCL is also shipped with a pre-build dedicated viewer program for the point cloud visualization

called PCD Viewer. With the PCD Viewer it is possible to select what data the user wants to be

visible. For the polygon meshes, different combinations for inspection are vertex data with and

without colors, a wireframe model or a model with surfaces. Also, the surfaces and wireframe

model can be colored with the color data specified in the vertex.

The development of PCL is financially supported by many companies including Willow Garage,

NVIDIA, Google and Toyota. The development also happens in other organizations and

companies geographically distributed around the world, for example by Intel, Icar, Australian

National University and Eindhoven University of Technology. (28.) Since the PCL provides all

required functionality from the data acquisition to the surface creation, it was selected to the

implementation of this thesis.

3.6 Meshlab

Meshlab is an open source project designed to be a portable and extensible system for

processing and editing the unstructured 3D triangular meshes. The Meshlab is licensed under the

terms of the GNU General Public License (GPL). Even though it is free to use, everyone using it

in an official or a commercial project should explicitly cite that Meshlab has been used in that

project. Also, a small description about the project it was used for should be posted to the

Meshlab user forums. (14.)

16

From the beginning of the Meshlab development, there have been three main goals in mind; ease

of use, so that it can be used without a strong knowledge about the 3D modeling; scanning

oriented, meaning that it should focus on the mesh processing instead of the mesh editing; and

efficiency so that it should be capable of handling millions of primitives which often is the case

when scanned objects are involved. (7.)

Meshlab is based on the VCG library and it has been developed at the Visual Computing Lab of

ISTI-CNR. The project started in the late 2005 with a funding from European Commission, and

the initial work was mainly done by a handful of students. Many of those initial developers

continued working with Meshlab even after their studies did not require it anymore. (39.)

Currently, Meshlab provides a full tool chain for the object recreation from the scanner raw data to

the final clean ready-to-be-used 3D models (7).

The main features and tools of Meshlab, listed by the developers, include various kinds of filters,

and more can be done if those do not fulfill the requirements. The mesh cleaning filters are made

for the removal of duplicated, unreferenced vertices, null faces and small isolated components.

The remeshing filters provide edge collapse simplification functionality with a possibility to

preserve the texture coordinates.

For the surface reconstruction, there is a whole toolset. With the toolset the surfaces can be

recreated from the points, and the surfaces can also be subdivided. The merging of multiple

meshes is possible with the surface reconstruction tools. Under the remeshing tools there are

also filters for feature preserving smoothing and for hole filling. For the mesh healing, Meshlab

provides interactive mesh painting tools for color painting, selection painting and smoothing.

Last but not least, the 3D scanning tools in Meshlab provide a possibility for the alignment with

the Iterative Closest Point algorithm based on the range map for putting the meshes into the

same reference space and register different raw range maps. The rendering included in Meshlab

is based on the OpenGL Shaders making it possible to write an individual shader to suit the

requirements precisely. (13.)

3.7 Polygon Mesh

The polygon mesh is a widely used data format to store 3D models, when those are being drawn

with hardware. The elements of the 3D models are typically vertices, edges, faces, polygons and

17

surfaces. Every vertex has its own position, and two vertices create an edge. Three edges create

one face, hence the face is a closed set of edges.

A polygon consists of a set of faces, and if a system supports multi-sided faces, there is no

difference between the polygons and faces. Usually, the rendering systems do not have a support

for multiple sided faces, which leaves no choice than to present the polygons with multiple faces.

The surfaces, also called as a smoothing group, can provide additional data for the mesh

calculations in the renderer. With this extra data, it is possible to create relatively round objects

only from few faces. In the high resolution meshes, the smoothing groups are obsolete, since the

faces are already so small. In a polygon mesh, each polygon is constructed from three vertices

and each vertex can be part of the multiple polygons (Figure 3).

FIGURE 3. Polygon mesh visualization. Faces are marked with alphabets from A to F and

vertices are marked with numbers from one to eight.

In Figure 3 it can be seen that each face of the polygon mesh is composed from three vertices.

For example, face A is constructed from vertices one, two and four. Also, it can be seen that most

of the vertices are a part of the multiple faces, for example vertex two is a part of faces A, B and

C. (5.)

18

4 POINT CLOUD PROCESSING METHODS

Implementation of the used cloud processing methods is modular, and therefore the methods can

be easily changed. Some of these methods, presented here, were used in the final

implementation, and some only during the research stage. In this chapter, these different

processing algorithms are described only briefly.

4.1 Point Cloud

A point cloud is a data structure holding multi-dimensional data in it. Most commonly, the point

clouds are used to represent the three-dimensional data and usually those are X, Y and Z

coordinates. The common usage for the point data is to represent an outer surface of some

object. Beside the geometrical coordinates, the point clouds can contain color data for each point,

normal directions or both. When data is added to a point, the cloud dimensions increase. When

the color data is added to the three-dimensional geometric cloud, it becomes four-dimensional.

Stanford University have collected various point clouds of the laser scanned objects into their 3D

scanning repository, since not all the interested research parties had the possibility to get laser

scanners back then. (40.) All point clouds in the repository are free to use for research purposes.

The most famous scanned object in the scanning repository of Stanford University is the Stanford

bunny. The bunny was originally scanned in 1993 and it is widely used by different studies as a

test point cloud.

Industrial quality equipment is not mandatory anymore for the object scanning, since with the

current consumer class equipment, such as Microsoft Kinect or Asus XTionPRO, it is possible to

acquire point clouds with a decent accuracy. Therefore, the point cloud acquisition has got more

interest from curious developers.

4.2 Point Cloud Filtering

The clouds can be filtered with various different ways. The methods used in this thesis are based

on the range filtering or density filtering.

In the range filtering, the decisions are solely made based on the point distance from the camera.

In this filtering method, the points outside of the given range are removed from the resulted cloud.

A common way to implement this kind of filtering technology is to use a pass through method.

19

Density filtering is an abstract name for a point cloud filtering step and it can be done with several

different algorithms. In this step, the point cloud density is usually reduced based on a range

between the points in a cloud. This usually reduces the cloud size significantly with the object still

being recognizable.

In the pass through filtering, all points with matching values in a predefined value range are

passed through without any modifications to their data. The pass through filtering is one of the

basic filtering methods and it is fast and simple to use. It is implemented in PCL as a template

class and therefore supports all predefined point types. (29.)

In the voxel grid filtering, the original point cloud is divided into tiny boxes with a defined leaf size.

The amount of filtering can be controlled with the leaf size. The average values from the points

inside every box are calculated and a new point cloud is produced from the values. The resultant

point cloud has as many points in it as there are boxes in the original cloud. (30.)

4.3 Moving Least Squares

The Moving least squares (MLS) is a smoothing algorithm for the point cloud data. It is used for

approximating the original surface presented by the vertices in a local neighborhood in the point

cloud. MLS is considered to belong to a class of the meshless interpolation methods, and there

are several competitive ways to implement the MLS method (19). All those methods try to

achieve the noise reduction in the point data which represents the surface. MLS used in PCL

does its approximation by using a bivariate polynomial height function, which is defined on a

reference plane. Also, the normal values for each point in the cloud are calculated and stored for

the later use during the MLS processing. (26.)

4.4 Normal Estimation

In the computer graphics, the surface normals are used for generating the correct shadows based

on the lightning. In the surface reconstruction, the normals define the direction of the polygon

faces. The normal estimation of the geometric surface is usually a trivial task, but the points in the

point cloud do not have any surface, they only represent one. For this reason, the task is non-

trivial.

There are basically two different approaches for the normal estimation. The first one is to

reconstruct the surface, which the points represent, and calculate the normals from that. The

20

second one is to approximate the normal data directly from the point cloud. Since many methods

doing the surface reconstruction need normals as their input data, the estimation is commonly

done directly from the point data. (36.)

4.5 Greedy Projection Triangulation

The Greedy projection triangulation works by keeping a list of the possible points, where a mesh

can be grown. This method continues to extend a mesh as long as there are points available. The

Greedy projection triangulation can handle the unorganized point clouds coming from multiple

scans with multiple connected parts. The best results are achieved in the situations where the

processed cloud is locally smooth and the transitions with different density areas are also smooth.

In PCL, the triangulation projection is working locally but some parameters can be set to specify

the wanted features. There are parameters for setting the neighborhood size for search, the

search radius for the maximum length of the edge as well as the minimum and maximum angles

for the triangles. In cases with sharp edges, the maximum angle between the surfaces can also

be specified. Also, in some cases it is essential that all the surfaces are facing the same direction.

In this case, the normal data can be forced to be consistent in the dataset. Appendix 2 presents a

picture of a polygon mesh with the inconsistent normal data, and therefore all surfaces are not

facing the same direction. (30.) The Triangulation algorithm itself could fairly easily support the

parallel processing, but it is not implemented in PCL and it is not known if the implementation of a

multithreaded version is even planned (24).

21

5 IMPLEMENTING OBJECT RECONSTRUCTOR

Before choosing which algorithms to use in the implementation, they were first tested in a

standalone application. If the algorithm worked and the results were adequate, it was added to

the Tundra integration as well. The algorithm testing was first done with different surface

reconstruction methods with various different point clouds. This approach provided valuable

information about the initial performance of the algorithms available, and based on that

information, it was decided if any additional processing steps were needed.

In the beginning of this work, the actual acquisition code was not in a usable state yet, so all of

the initial tests were done with the high quality laser scanned point clouds from the 3D repository

of Stanford University.

It is not recommended to use extremely accurate clouds for reconstruction tests in cases where

the actual input data is much more inaccurate. For this reason, the testing was changed to use

the raw clouds acquired by using Microsoft Kinect as soon as possible. An ideal situation for the

object capturing is when the object is about one meter away from the Kinect camera (Figure 4).

FIGURE 4. Picture of an office chair capturing situation

22

5.1 Cloud Filtering

The final filtering process implementation was done by a co-worker but it is briefly explained,

since it is an important part of the object capturing work flow and therefore also of the surface

reconstruction (38). Even though the filtering is an important processing step for the real use

case, all surface reconstruction methods described here can be applied also to the unfiltered

clouds.

With the point cloud filtering two main problems had to be solved. Filtering is used to reduce the

time needed for the surface reconstruction and finding the object of interest. An unfiltered point

cloud captured with Microsoft Kinect (Figure 5) contains 307200 points in total, but some of the

points may contain only color data. If the position of the point is unknown in the depth field, it

cannot be visualized in a 3D environment. Therefore, only the points including also depth data

are visualized.

FIGURE 5. Unfiltered point cloud captured with Microsoft Kinect and visualized with the

visualization library of PCL

During the filtering process the following three different filtering methods were applied:

1. Filtering by depth

2. Filtering by density

3. Cluster extraction

23

In the depth filtering state, all points that are further than 1.4 meters away from the camera are

removed. The pass through filtering was used for the implementation of this step. The minimum

range of the Kinect sensor is 0.5 meters, thus the points from the range of 0.5 meters to 1.4

meters were preserved.

The density filtering was done by using a voxel grid filter. The voxel grid leaf size was set to

0.005, which corresponds to 0.5 millimeters in the real world. After the density filtering, the

number of points was reduced by 81.1% in average.

The third and the last applied filter is a cluster extraction, which is achieved with the point cloud

segmentation. The segmentation removes the largest planar component found from the point

cloud after the depth filtering. It is highly likely that this planar is either a floor or a table under the

object of interest. In the tests, this method worked in most cases. Only in some rare cases,

partials from the floor were left to the final point cloud. Also, sometimes the floor part of the cloud

was falsely recognized to be an object of interest. The final point cloud after all the filtering

methods were executed (Figure 6) is the input data for the mesh reconstruction.

FIGURE 6. The final point cloud after all filtering methods are applied. The point cloud has 22539

points total in it.

24

5.2 Mesh Reconstruction

The mesh reconstruction is divided into two phase procedure, where the first step is cloud

smoothing and the second is surface reconstruction. From the general data flowchart of the

implementation (Figure 7), the phases can be seen more accurately. The point cloud smoothing

is done with the MLS algorithm and the surfaces are reconstructed from the smoothed point

cloud.

FIGURE 7. General data flowchart of the implementation

In the implementation, the decision in which the mesh conversion method was used had to be

done in the program code by changing one signal connection inside the ObjectCaptureModule

and it could not be changed during the runtime.

5.2.1 Surface Smoothing

The MLS algorithm was chosen for the smoothing, because the initial test results with it were very

good and it was well documented. The smoothing was an optional step, but it was selected for

the data path since it made the final meshes look much better. As a comparison, in an

unsmoothed mesh reconstruction (Figure 8) the edges are rough and the surfaces are not clean.

25

FIGURE 8. Polygon mesh created from captured point cloud and meshed with greedy projection

triangulation

The MLS algorithm calculates the real position for the surface by estimating possible errors in the

position data based on the positions of the neighboring points. All points in the neighborhood are

then moved on the estimated surface. When the search radius is too large, the shape of the

original surface is most probably lost during the MLS processing.

The MLS processing needs XYZ-data as an input and the all other inputted data fields are

preserved. Optionally, it is possible to calculate the normal directions from the point data in the

cloud with the MLS algorithm. The decision is left for the programmer whether the directions are

wanted to be calculated with the MLS algorithm. They can also be calculated somewhere else if

needed. Since the used MLS process supports the multithreading, it was decided to calculate

even the normal data with the MLS algorithm.

The parameters needed by the MLS algorithm were tested manually to find which values gave

the best results with the used input data. Some initial values for the testing were found from the

PCL tutorials. The used parameters in the MLS process are presented in Appendix 3.

The MLS processing was done with a version supporting the multithreaded processing. That way

the processing time could be somewhat reduced. The resulting clouds, meaning the smoothed

clouds and normals for each point, are combined into one point cloud containing five dimensions,

26

which includes the following data: the point positions in the X, Y and Z axes, the point color data

in the RGB format and the point normal data.

5.2.2 Surface Reconstruction

For the surface reconstruction, it was decided to use the greedy triangulation algorithm provided

by PCL. The input point cloud for the triangulation is the output point cloud from the MLS process.

In the greedy triangulation process, the surfaces are estimated by creating triangles from the

point data. Each created triangle represents one face in a final polygon mesh.

The usual number of the points in the input cloud in the test scenarios was between 20 000 and

30 000 points. Still, it needs to be remembered that only one input cloud was used in the tests

and the number of the points will be much higher if the multiple clouds are combined. Hence, the

filtering should be more aggressive if the input consists of more than one cloud.

The finalized mesh is presented in Figure 9, after the MLS algorithm has been used for the point

cloud smoothing and the surface reconstruction has been done with the greedy projection

triangulation.

FIGURE 9. Polygon mesh created from smoothed point cloud and surfaces reconstructed with

greedy projection triangulation

27

5.3 Mesh Conversion

The polygon mesh is converted either to a VTK file, which is written to the hard disk or to an Ogre

ManualObject, which can be imported directly to the Tundra scene with the memory copying. The

implementation using the VTK files was done first because it was a more straight forward method

and the working demonstration was needed quickly. This was done even though it was known

from the beginning that using system calls from the program code to execute the third party

executables and scripts is bad design. In the mesh converter, the earlier constructed polygon

mesh is transformed to an Ogre mesh and there are two possible ways to achieve this

conversion.

5.3.1 Mesh Conversion with External Tools

The polygon mesh, which resulted from the mesh conversion with external tools, was saved to

the disk in the VTK file format. Saving the polygon mesh was done with the exporting functionality

in PCL. The supported file formats for the exporting were VTK and Point Cloud Data (PCD). The

VTK format was chosen to the implementation, since the scripts implemented earlier for other

tasks were extended relatively easily to support the VTK file format for the data conversions as

well.

The conversion from the VTK file to an Ogre XML file was done with a Python script. The script

was written earlier by a co-worker for another task and it was extended with the VTK file reading

support. The Ogre XML file was then converted to the Ogre binary format with a command line

tool, called OgreXMLConverter, which was bundled in the Ogre tools. Also, this conversion was

first done by reading the XML file from the hard disk and after the conversion written as an Ogre

binary file back to the hard disk.

5.3.2 Mesh Conversion with Ogre ManualObject

Another option for the polygon mesh conversion to the Ogre mesh format is implemented by

using the Ogre ManualObject class. The difference to the external tool chain is that with

ManualObject all conversions can be done in the main memory.

Three steps are needed for the data conversion from the polygon mesh to the Ogre

ManualObject:

28

1. The vertex color data from the input cloud has to be normalized because the Ogre

ManualObject uses the floating point values between 0.0 and 1.0. In the polygon mesh,

the color data is saved as an 8-bit unsigned integer, meaning it can have values between

0 and 255.

2. The vertex position data, normalized color data and normal data have to be added to the

ManualObject. This data is read from a smoothed point cloud, which was combined with

the point normal data.

3. The vertices in the ManualObject have to be indexed; otherwise it could not be possible

to convert the ManualObject to an Ogre mesh. The indexing data is read from the

polygon mesh and it is added to the ManualObject after all vertices have been placed.

The ManualObjects can also be converted into an Ogre mesh, which can be saved to the hard

disk with the serialization functionality of Ogre for later use.

5.4 Integration with Tundra

The implementation of this thesis was done as a Tundra module. The module had two data

processing layers in it. The main layer handled the communications with Tundra, the user input

and the messages from the scripting layer, which provided a primitive user interface for the object

capturing. The architectural design of the integration is presented in Figure 10.

FIGURE 10. Architectural picture of ObjectCaptureModule integration to Tundra

29

The point cloud capturing and the point cloud filtering were done in the CloudProcessor, which

was done in a separate work (38). The surface reconstruction, the mesh conversion to the Ogre

mesh and exporting it to a Tunda scene was done in the MeshReconstructor. The processed data

and acknowledgments about the processing state were transferred between the classes with the

Qt signals. All the data processing was done in a separate thread to ensure that the program was

usable all the time without freezing the user interface.

The data from the CloudProcessor was passed back to the ObjectCaptureModule, which then

forwarded the data to the MeshReconstructor. The mesh reconstruction was implemented as a

separate class and it was designed to work independently after the initial data was given for the

reconstruction. This design made the multithreading easy.

The final transformation from the polygon mesh, created with PCL, was done in the mesh

converter class. Within the mesh converter, the earlier reconstructed polygon mesh was

transformed to the Ogre ManualObject. During this step the vertices are copied from the polygon

mesh to the Ogre ManualObject with normalized color values for each vertex, and then the

polygons are indexed.

A new entity was created to the Tundra scene by the MeshConverter and it also added all the

entity components needed for the visualization of the reconstructed object. These entity

components were EC_Placeable and either EC_OgreCustomObject or EC_Mesh, based on

which conversion method was used. The EC_Placeable identifies the location of the entity in a

Tundra scene. The EC_OgreCustomObject and the EC_Mesh make it possible to represent a

mesh in a Tundra scene. The EC_OgreCustomObject converts the Ogre ManualObject to the

Ogre mesh internally.

Also, a small scene was created for testing and demonstration purposes. When an object was

added to the scene, a user could manipulate the created mesh with tools provided by Tundra,

which included the possibility to rotate, move and scale the object. The object selected for the

editing was highlighted and the manipulators for the object editing appeared around the object.

Figure 11 is from the test scene after an office chair has been captured with the Microsoft Kinect.

30

FIGURE 11. On the left side there is a reconstructed object in the Tundra test scene. The Kinect

output is shown on the gray screen object in the scene. On the right side the reconstructed object

is being manipulated with the tools provided by Tundra.

31

6 RESULTS

The surface reconstruction from a point cloud and conversion from a polygon mesh to the Ogre

mesh format was implemented to Tundra. With the toolset provided, it is possible to capture

simple objects to a virtual space with the Microsoft Kinect. This process is highly automated and

only few clicks are needed from the user. Earlier experience about the object capturing or

advanced technical knowledge is not required.

With the implementation, recognizable objects can be created and imported to a virtual space.

Since the integrated data acquisition only supports the capturing of one point cloud per object,

there are some restrictions for the shape and the type of the captured object. The objects with a

high number of small details which have to be seen, or a shape which needs scans from multiple

directions, cannot be captured. The best results are achieved with the objects which do not have

any shiny surfaces and a shape, which is recognizable even if only one capture has been taken.

A better data acquisition has already been developed, but it has not yet been integrated to

Tundra.

All measurements were run on a computer with an Intel Q8400 processor running at 2.66GHz, a

main memory of 4GB, an nVidia Quadro 600 -graphics card and a hard drive with a capacity of

500GB. The operating system used in the tests was Linux Ubuntu 11.10. In a sense of the

processing power, it represents an average computer, a few years old.

6.1 Surface Smoothing

The surface smoothing with the MLS process was tested in the Tundra client by capturing objects

of different sizes with the Microsoft Kinect. The number of points in the final filtered point cloud

varied from 3045 to 34789 points. The time consumed in the MLS process was measured for

each test case. Figure 12 presents how long the cloud smoothing took with the MLS.

32

FIGURE 12. Time needed for the MLS surface smoothing

From the measured data can be seen that the time needed for the MLS processing grows almost

linearly when the number of the points increases. The calculated correlation factor R2 for the

linear regression is 0.9827 out of a maximum value of 1.0, meaning that small variations with the

measured results are most probably caused by measurement errors. The cloud smoothing of an

office chair used as a test object took averagely 0.35 seconds.

6.2 Surface Reconstruction

The measurements for the surface reconstruction were done in the Tundra client. The input point

cloud used for the surface reconstruction came from the MLS smoothing process. The time

consumed in the surface reconstruction program code was measured (Figure 13).

33

FIGURE 13. Time needed for surface reconstruction with greedy projection triangulation

The time needed for the surface reconstruction grows almost linearly when the number of the

points increases. The surface reconstruction of an office chair used as a test object took

averagely 10 seconds.

With the multithreading, the processing time of the greedy projection triangulation could be

reduced significantly, since the algorithm itself should scale well with the parallel processing. The

implementation of the greedy projection triangulation in the PCL did not support the

multithreading.

6.3 Mesh Conversion

The conversion times were benchmarked with both implemented methods by running 11 different

sized polygon meshes through the conversion methods. The time consumed by these processes

was measured (Figure 14).

34

FIGURE 14. Mesh conversion times with two competitive methods, by using external tools and by

creating Ogre ManualObject directly in memory

The time needed for the data conversion with the external tools grew linearly with the size of the

input polygon mesh. The time needed for the processing can be estimated when the number of

the vertices is known. The formula for this estimation is presented in Figure 14 next to the VTK

curve. Most likely the conversion speed was limited by the speed of the hard drive, when saving

the temporary files needed by the process.

As can be seen from the measurement results in Figure 14, the time needed for the Ogre

ManualObject conversion grew almost linearly in the direct relation to the size of the inputted

polygon mesh. The conversion time needed for the Ogre ManualObject creation was measured to

be between 245 and 442 times faster than the conversion with the external tools. The conversion

with the ManualObject is likely to be even more efficient if the processing times could have been

measured more accurately. With such small processing times of the ManualObject, the

background processes running on the same computer can have a large impact on the results.

6.4 Object Rendering

Since two different data paths were implemented from the polygon mesh to the Ogre mesh, even

the rendering performance was briefly inspected in these cases. The tests were run in a simple

test scene where there were two static objects and two captured objects. The captured objects

were reconstructed from the same input cloud and therefore they both had exactly the same

number of vertices and indices. The processing time needed for one Tundra frame was

calculated from the average frame time values during a few seconds, in a situation where the

35

mouse cursor was over the object. Only one of the captured objects was visible at the time.

These frame times are presented in Figure 15.

FIGURE 15. Processing time for single frame when number of vertices varies in rendered object

As it can be seen from Figure 15, the mesh created with the Ogre ManualObject needs

significantly more processing time for the rendering. Furthermore, the time needed for the

rendering grew linearly when a rendered mesh has more vertices in it. For some reason, the

mesh converted from the VTK file did not have a similar behavior, and the rendering time was

very close to the constant one regardless of the amount of the vertices. The reason for this

behavior was tried to be solved with the build-in profiler in Tundra.

The results from the profiling showed that the slowest block was the EC_Mesh_Raycast. When

the custom object was used, the EC_Mesh_Raycast consumed from 81% to 91% of the

processing time per one frame. With a mesh loaded from the hard disk, the EC_Mesh_Raycast

needed only from 8% to 24% of the processing time in a single frame.

Furthermore, if the Ogre ManualObject was serialized to the hard disk and then again loaded

from there into the EC_Mesh, it was rendered as fast as the mesh converted from the VTK file.

The reason for this remained a mystery, since there was no time to investigate that behavior

within the timetable of this thesis. Most probably, the EC_Mesh and EC_OgreCustomObjects are

treated differently by the ray casting.

The hardware culling was turned off from the Ogre material file to achieve the mesh being visible

from all directions. By default, Ogre does the culling for the faces in the mesh in order to save

36

processing time. When the culling is activated, only the front side of each face is rendered and

therefore it is invisible from the backside. The Ogre material file used for the reconstructed

objects is presented in Appendix 4. The same material file was used for both mesh types. The

mesh color is saved per vertex since this way every face in a mesh has its own color based on

the color defined in the vertices.

6.5 Saved Binary Meshes

It should also be noted that when the meshes are saved to the hard disk in an Ogre binary

format, the version exported from an Ogre ManualObject is significantly smaller in size. The

reason for this is unknown since the input data is exactly the same in both situations, and in the

resulting mesh, there was no difference in the number of vertices or indices.

The VTK file is listed here as a comparison. It was used as the input data for the external tools

converting method. The VTK was saved in a text format and others were saved as Ogre binary

meshes. In Figure 16, the file sizes in the three used file formats are presented.

FIGURE 16. Mesh file sizes with different conversion methods

As expected, a mesh serialized from an Ogre ManualObject becomes linearly larger when the

mesh contains more vertices. With the VTK file and the Ogre mesh converted from it, there was

some variety in the size, and both of those were always larger than the mesh created from the

ManualObject. The reason for such a large difference between the two methods, which should

create identical data, could not be identified within this thesis because of the time limitations.

37

7 CONCLUSION

A working data flow for the object capturing was implemented. A simple real world objects can be

captured to a point cloud and processed to the Ogre mesh. Created mesh can be imported to the

Tundra scene quickly and easily. The whole toolset is implemented to the realXtend Tundra

framework as a module. The processing time for the surface reconstruction of a captured office

chair is about ten seconds.

The main problems which were found are associated to the polygon faces. In the PCL version

1.4, it is not possible to force all polygon faces into one direction, and for this reason, the mesh

seems to be full of holes (Appendix 2). This problem was managed to get around by forcing the

hardware culling off for the imported objects from the material file specified for the object.

Basically it doubles the rendering time for a single object. PCL 1.5 introduces new options, which

allow the forcing of all polygons facing to one direction. Another problem, which even the newer

version would not solve, was that the direction for the faces could not be forced, and in the tests

which was ran, those always faced to the wrong direction. Part of the problem was that the

captured objects were only partials from the real world objects.

Future work will include investigations about the problems which were found during the

measurements. As it was expected, the mesh conversion times from a polygon mesh to the Ogre

ManualObject were significantly shorter than the converting times with the external tools. Even

though, it was unexpected that there was such a large difference in the rendering times, since the

input data was identical to both converting methods.

Optimizations for the rendering path of the Ogre ManualObject should be done since currently the

imported Ogre ManualObject is very heavy to render and it cannot be exported to other formats

than Ogre mesh. To fix this, some work should be done with the optimization and possibly create

separate texture materials for the object, which can be rendered on top of the captured object. In

addition, a possibility to use 3D textures should be investigated. This way, the amount of vertices

in an object could be dramatically reduced without losing the accuracy compared to the original

object.

Some strange behavior was also found from the data conversions, and it will be researched

further in the future. When the mesh was saved as a VTK file and converted from that to the Ogre

38

binary mesh, file size was five times larger than the file serialized directly from the Ogre

ManualObject to the Ogre binary mesh.

There is also a need to create support for importing and exporting meshes, for other formats

preferably at least in a Collada format (8). This part of the work should also include the Collada

support reimplementation for Tundra 2, which was originally made by Joni Mikkola for Tundra 1

(15).

39

REFERENCES

1. 3D is here: Point Cloud Library (PCL). Robotics and Automation (ICRA), 2011 IEEE

International Conference on; 2011.

2. Alatalo T. An Entity-Component Model for Extensible Virtual Worlds. Internet Computing,

IEEE 2011 sept.-oct.;15(5):30.

3. Blanchette J & Summerfield M. 2008. C++ GUI Programming with Qt 4, Second Edition. the

United States of America: Prentice Hall.

4. Boada, I. Navazo, I. Scopigno, R. Multiresolution volume visualization with a texture-based

octree. The Visual Computer. Volume 17, Number 3 (2001), 185-197.

5. Botsch M, Steinberg S, Bischoff S, Kobbelt L. OpenMesh - a generic and efficient polygon

mesh data structure. 2002.

6. Bernardini F, Rushmeier H. Volume 21 (2002), number 2 COMPUTER GRAPHICS forum

The 3D Model Acquisition Pipeline.

7. Cignoni, P. 2008. Meshlab: an Open-Source 3D Mesh Processing System. Ercim news 73

April 2008, 47-48.

8. COLLADA - Digital Asser Schema Release 1.5.0. Date of data acquisition 4 April 2012.

Available at: http://www.khronos.org/files/collada_spec_1_5.pdf.

9. Github Plans & Pricing. Date of data acquisition 18 April 2012. Available at:

https://github.com/plans.

10. Neural mesh ensembles 3D Data Processing, Visualization and Transmission, 2004. 3DPVT

2004. Proceedings. 2nd International Symposium on title Neural mesh ensembles; sept.; ;

2004.

11. Nokia. Qt Licensing. Date of data acquisition 10 April 2012. Available at:

http://qt.nokia.com/products/licensing/.

40

12. Manninen T. Hollström H. Pirkola J. & Wittenberg V. REALXTEND: Avoimen lähdekoodin

virtuaalimaailmajärjestelmä realXtend luo pohjan 3D Internetille. Date of data acquisition 23

April 2012. Available at:

http://www.kauppalehti.fi/5/i/yritykset/lehdisto/hellink/tiedote.jsp?selected=kaikki&oid=200811

20/12270739024580.

13. MeshLab project page. Date of data acquisition 18 April 2012. Available at:

http://meshlab.sourceforge.net/.

14. Meshlab licensing. Date of data acquisition 18 April 2012. Available at:

http://sourceforge.net/apps/mediawiki/meshlab/index.php?title=Licenses.

15. Mikkola, J. Collada Importer for RealXtend, Oulu University of Applied Science, Bachelor’s

Thesis, 2011

16. Interactive 3D modeling of indoor environments with a consumer depth camera. Proceedings

of the 13th international conference on Ubiquitous computing New York, NY, USA: ACM;

2011.

17. Junker, G. Pro OGRE 3D Programming (Expert’s Voice in Open Source). The United States

of America: Apress; 2006.

18. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera.

Proceedings of the 24th annual ACM symposium on User interface software and technology

New York, NY, USA: ACM; 2011.

19. Kolluri R. Provably good moving least squares. ACM Trans.Algorithms 2008 may;4(2):18:1-

18:25.

20. Ogre Current Features. Date of data acquisition 4 April 2012. Available at:

http://www.ogre3d.org/tikiwiki/Current+Ogre+Features.

21. Ogre API Documentation: ManualObject. Date of data acquisition 4 April 2012. Available at:

http://www.ogre3d.org/docs/api/html/classOgre_1_1ManualObject.html.

22. Ogre ByatisNotes. Date of data acquisition 4 April 2012. Available at:

http://www.ogre3d.org/tikiwiki/ByatisNotes.

41

23. Ogre Scene. Date of data acquisition 4 April 2012. Available at:

http://www.ogre3d.org/tikiwiki/tiki-index.php?page=-scene.

24. Oliker, L.; Biswas, R.; , Parallelization of a dynamic unstructured algorithm using three

leading programming paradigms, Parallel and Distributed Systems, IEEE Transactions on ,

vol.11, no.9, pp. 931- 940, Sep 2000

25. OpenNI organization. Date of data acquisition 20 April 2012. Available at:

http://75.98.78.94/default.aspx.

26. Pauly, M. 2003. Shape modeling with point-sampled geometry. ACM Transactions on

Graphics 22 (3), 641-650.

27. Presentation of realXtend.org by Toni Alatalo at NVWN Montly Meeting. Date of data

acquisition 20 April 2012. Available at: http://nordicworlds.net/2011/04/16/presentation-of-

realxtend-org-by-toni-alatalo-at-nvwn-monthly-meeting/.

28. Point Cloud Library: About. Date of data acquisition 6 April 2012. Available at:

http://pointclouds.org/about.html.

29. Point Cloud Library API Documentation. Date of data acquisition 6 April 2012. Available at:

http://docs.pointclouds.org/1.5.1/.

30. Point Cloud Library Tutorials. Date of data acquisition 6 April 2012. Available at:

http://pointclouds.org/documentation/tutorials/.

31. Spectral surface reconstruction from noisy point clouds. Proceedings of the 2004

Eurographics/ACM SIGGRAPH symposium on Geometry processing New York, NY, USA:

ACM; 2004.

32. RealXtend association. Date of data acquisition 23 April 2012. Available:

http://realxtend.wordpress.com/realxtend-association/.

33. realXtend: a Platform for Networked 3D Applications. Date of data acquisition 10 April 2012.

Available at: https://github.com/realXtend/doc/blob/master/acm_multimedia/overview.rst.

34. Redmine, Redmine wiki. Date of data acquisition 4 April 2012. Available:

http://www.redmine.org/projects/redmine/wiki/.

42

35. Loeliger, J. 2009. Version control with Git. O'Reilly Media: New York.

36. Estimating surface normals in noisy point cloud data. Proceedings of the nineteenth annual

symposium on Computational geometry New York, NY, USA: ACM; 2003.

37. Remondino F, Institut für Geodäsie und Photogrammetrie (Zürich). From point cloud to

surface the modeling and visualization problem. Zurich: ETH, Swiss Federal Institute of

Technology Zurich, Institute of Geodesy and Photogrammetry; 2003.

38. Santala M, 3D Content Capturing and Reconstruction Using Microsoft Kinect Depth Camera,

Oulu University of Applied Science, Bachelor’s Thesis, 2012.

39. Scarano, V. 2008. Meshlab: an Open-Source Mesh Processing Tool. Eurographics

Association 2008, 129-136.

40. The Stanford 3D Scanning Repository. Date of data acquisition 4 April 2012. Available at:

http://graphics.stanford.edu/data/3Dscanrep/.

43

APPENDIX 1/1

REALXTEND LICENCE

Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to

44

APPENDIX 1/2

REALXTEND LICENCE

 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one

45

 APPENDIX 1/3

REALXTEND LICENCE

 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,

46

 APPENDIX 1/4

REALXTEND LICENCE

 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

47

APPENDIX 2

POLYGON MESH WITH INCONSISTENT NORMAL DATA

48

APPENDIX 3

MLS PROCESSING PARAMETERS

Polynomial fit = true
Polynomial order = 2
Search method = KdTree<pcl::PointXYZRGB>
Search radius = 0.03
SqrGaussParam = 0.0009

49

APPENDIX 4

MATERIAL FILE FOR CAPTURED OBJECT

material CapturedObject
{
 technique
 {
 pass
 {
 cull_hardware none
 ambient vertexcolour
 diffuse vertexcolour
 specular vertexcolour
 emissive 0.1 0.1 0.1
 }
 }
}

