

Justyna Inglot

Advanced Image Processing with
Matlab

Bachelor’s Thesis
Information Technology

May 2012

DESCRIPTION

Date of the bachelor's thesis

07.05.2010

Author
Justyna Inglot

Degree programme and option
Information Technology

Name of the bachelor's thesis

Advanced Image Processing with Matlab

Abstract

The world of the computer graphics is evolving rapidly every day. The market is full of image

processing applications. But how many of them really contribute to the growth of the science and

technology? Is there any program that combines image processing functionalities with programming

techniques ? The answer to these questions is Matlab.

Matlab is a software that provides a high level programming language, many thematic libraries and

easy implementable Graphic User Interface mechanisms.

This paper presents information on wide aspects of the computer graphics, introduction to Matlab

and its Image Processing Toolbox. Later, the thesis focuses on the methods of creating a GUI using

built-in GUIDE tool. All theoretical studies are followed by an implementation of an image processing

application. A very important step of software production is testing. Few examples of test scenarios

along with short descriptions are listed in the final part of this paper.

Solutions presented in this thesis leaves an open door for the future development. Possibilities and

ideas are illustrated in the last chapter.

Subject headings, (keywords)

Matlab, image processing, graphics, gui, graphical user interface, transformation, digital filters, co-
lormap, color models, rgb, cmyk, guide, image processing toolbox

Pages Language URN

57 p.+ app.8

English

Remarks, notes on appendices

Tutor

Matti Koivisto

Employer of the bachelor's thesis

Mikkeli University of Applied Sciences

CONTENTS

1 INTRODUCTION .. 1

1.1 First look over the topic .. 1

1.2 Main objectives of the study ... 2

1.3 Realization methods and techniques ... 3

2 COMPUTER GRAPHICS .. 4

2.1 Computer graphics in details ... 4

2.2 Color systems .. 5

2.3 Color maps .. 7

2.4 File formats ... 9

2.5 Image transformations... 10

3 MATLAB ENVIRONMENT ... 12

3.1 What exactly is Matlab? .. 12

3.2 Data representation ... 13

3.3 Endless possibilities .. 15

4 IMAGE PROCESSING TOOLBOX ... 18

4.1 Color transformation functions ... 18

4.2 Spatial transformation functions ... 20

4.3 Open, Save, Display functions .. 21

4.4 Other functions .. 22

5 MATLAB ”GUIDE” TOOL .. 25

5.1 User friendly graphical interface ... 25

5.2 Main components of GUI ... 27

5.2.1 Common knowledge .. 27

5.2.2 Buttons and Sliders .. 29

5.2.3 Axes ... 30

5.3 Creating menu ... 31

6 DESIGN AND IMPLEMENTATION OF AN IMAGE PROCESSING

APPLICATION .. 34

6.1 Where to start ? ... 34

6.2 Designing the window .. 34

6.2.1 Menu File ... 36

6.2.2 Menu Transformations ... 37

6.2.3 Menu Filters and Help ... 38

6.3 General rules of coding ... 38

6.4 Testing new application .. 42

7 CONCLUSION .. 47

7.1 Evaluation of the final outcome and benefits of the study 47

7.2 Future development... 48

BIBLIOGRAPHY .. 50

APPENDICES

LIST OF FIGURES

Figure 1. Cube of RGB color model

Figure 2. Comparison of RGB and CMYK color systems

Figure 3. The example of three dimensional matrix, built in Matlab

Figure 4. Ready-built colormaps from Matlab’s Image Processing Toolbox

Figure 5. Comparison of photographs processed with Image Processing Toolbox

Figure 6. Example of graphical user interface with some of the components

Figure 7. Property Inspector

Figure 8. An example of Property Inspector for slider bar

Figure 9. An example of Property Inspector for axes

Figure 10. An exemplary menu created in Menu Editor

Figure 11. Simple, GUI with ready – built menu

Figure 12. GUIDE Quick start window

Figure 13. First step of designing the application window

Figure 14. First part of menu bar designing

Figure 15. Second part of menu bar designing

Figure 16. Finished menu bar, some options presented

Figure 17. Inactive menu options

Figure 18. Informative message box

Figure 19. An example of crop function

Figure 20. Procedures of changing the colormap

Figure 21. Removal of the noise for the grayscale picture

Figure 22. Illustration of the lightness options and their correction

Figure 23. Comparison of a high resolution image before and after compression

Figure 24. Comparison of a low resolution and small size image before and after

compression

LIST OF TABLES

Table 1. Examples of image enhancing filters

Table 2. Exemplary hypothetical matches between GUI elements and image

processing functions

1

1 INTRODUCTION

1.1 First look over the topic

Every single day world is evolving very fast. Rapid development of the computer

technology has affected all the scientific areas. Medicine, automation, data analysis,

finances, biology, chemistry, economics and many, many more have benefited from the

technology expansion. People got interested in the possibilities of information technology

and they have noticed that computer can help them with daily tasks. This need has

motivated software programmers to create new systems, that would incorporate the ease

of use with the effectiveness of work. Those big changes have influenced also computer

related fields, including computer graphics as well as an image processing. Soon all artists

were about to experience a huge step towards the simplification of working with graphics.

The Internet was flooded with new applications used to process pictures. Some of them

are free and some others are commercial.

In the same time programmers were working on designing a system, that would perform

operations on vectors and matrixes in a simple, interactive way. Not long time after

creating Matlab, it became very popular, especially among teaching facilities. Many

libraries has been developed, among them Image Processing Toolbox (Moler [referred

16.04.2012]). In comparison to other image processing programms it doesn’t score many

points. First of all, it is not free. Secondly, it does not provide an easy learnable

environment – some programming skills are needed. On the other hand it gives multiple

opportunities of illustrating mathematical equations. ’Normal’ applications lose with

Matlab in the area of an image recognition and filters adaptation. No program works

better with using for example morphological transformation than Matlab. It also gives a

lot of possibilities for creating linear and nonlinear filters. High level programming

language that hides unnecessary details from designers can definitely be considered as an

asset too. In order to decide if Matlab is the right tool to implement a software with, the

future programmer has to take a closer look on the main purpose of the application.

2

1.2 Main objectives of the study

There are few goals resultant from this thesis. Main purpose is to learn new informa-

tion from the topic of an image processing area. In additional, dissertation presented

here will cover material from following fields:

1. Computer graphics

− Raster and vector graphics;

− Additive and subtractive color models;

− Various colormaps and their attributes;

− Selected file formats;

− Commonly used image transformations;

2. Matlab

− Quick glance on what Matlab is;

− Data representation;

− Exemplary toolboxes and libraries;

3. Image Processing Toolbox

− Image enhancement functions;

− Spatial transformation commands;

− Selected filters usage;

4. Matlab’s Guide Tool

− Main controllers of Graphic User Interface;

− Property Inspector appliance;

− Creation of the menu;

Matlab’s library Image Processing Toolbox has mostly found usefulness in medical

purposes and mathematical problems. This thesis has been created to demonstrate the

ability of Matlab to have a ’regular’ image processing functionality as well.

In order to achieve that I will design and implement an image processing application.

Methods of realization are described in the following subchapter.

3

1.3 Realization methods and techniques

There are many ways to support the learning process. Finding information might be a

hard task if is it not well structured. The most helpful tools are written materials. Stu-

dies of previously mentioned topics are based on few books concerning image

processing and Matlab. Some of the information may be withdrawn from Cracow’s

University of Technology lectures. Other valuable pieces of data might be found on

the Internet. The website of Matlab’s producer – Mathworks is also a wide source of

the toolboxes, as well as their functions and parameters.

After a broad study of all the topics of interest, the project of an application will be

created. In order to achieve that, a sketch draft will be drawn in the beginning. Then

the main window will be built, along with all the elements of the Graphical User Inter-

face. This process will be supported with Matlab’s GUIDE tool, described later. The

next step of application production is designing the menu bar. Before programming

the actual code, it is very important to define possible constraints and errors. Specifi-

cation of these problems in the early stage of the project management may have cru-

cial influence on the program structure. Whole process of creating the application will

be followed by few tests along with results and comments. Finally, I will present con-

clusions and point out the areas of the future development.

4

2 COMPUTER GRAPHICS

2.1 Computer graphics in details

To understand better the idea of computer graphics, the definition should be taken into

consideration. Everything that refers to the representation and manipulation of image

data by a computer stands for term computer graphics. What also can be called with

that term are various technologies used to create and manipulate images. There are

two types of computer graphics – raster and vector (Ozimek, Lectures from Computer

Graphics on Cracow University of Technology, 2009a).

Raster graphics is a way of presenting images as a grid of small rectangles – pixels.

Those grids, also known as matrixes are often called bitmaps. Each matrix is built out

of certain amount of rows and columns. Looking deeper, each row contains some

quantity of pixels and each pixel is assigned its position and color in the image. More

pixels image contains – more accurate picture will be. Important information is that

every bitmap is characterized by size given in pixels and by number of bits per pixel.

The second feature is called a color depth, which represents the number of colors that

can be used to present the image (Ozimek, Lectures from Computer Graphics on Cra-

cow University of Technology, 2009a). It can be easily calculated with proper amount

of bits used to encode all the colors (1 bit = 2 colors, 2 bits = 4 colors, 3 bits = 8 col-

ors, etc.).

Raster graphics has also one additional trait: image resolution. It is strictly connected

with size of an image, the amount of rows (height) and columns (width) mentioned

before define resolution. There is also a different way to describe that term – the reso-

lution is given as one number, which is the quantity of all the pixels that image con-

tains divided per one million. This is a product of multiplying number of rows per

number of columns and it is presented in megapixels. That outcome is also the amount

of pixels that influences on size of an image, while saved on the hard drive. More pix-

els will need more space to store them. Also known fact is that more pixels give more

detailed image. The conclusion would be to save pictures with high resolution but

skillfully optimize the size while saving.

5

Vector graphics differs from raster graphics in many ways. The biggest difference is

that images, described with vector graphics are not made from grid of pixels. They are

composed of paths, which are defined by the start and the end point, together with

curves, angles and other points along the path. Lines, squares, triangles can also be

used to represent path (TechTerms.com [referred 23.03.2010]). One of the main assets

of a vector graphics is that it can be scaled without losing the quality. File size of vec-

tor image is smaller and not dependable on the dimensions of the picture. Taking into

consideration both types of graphics, their advantages and disadvantages can be pre-

sented. Firstly, the main difference is the size of image file. Because raster graphic

files are depending on the amount of pixels, they consume much more disk space.

When it comes to ability of scaling, vector graphics seems to be better choice because

it is easily scalable without losing the quality.

Raster graphic images lose the quality while zooming in and it becomes “pixelated”.

Secondly, saving images as a raster graphic gives the user bigger variety of file for-

mats. Vector graphics images do not provide many exterior file formats for saving

them separately from the vector graphic processing programs. Other dissimilarity re-

fers to transforming one type of graphics into another. Vector graphics can be easily

saved as bitmaps, which requires giving the resolution. On the other hand changing

raster graphics into vector image is a very difficult process. In conclusion, both types

complement one another, giving the users great amount of possibilities.

2.2 Color systems

Thinking about computer graphics, more features should be taken under the investiga-

tion. In order to understand their meaning, color systems (or often called color mod-

els) need to be presented. Color system used in computer graphics is usually described

as a three color system. It means that each color on the image is depicted with three

numerical values. Those values describe the color used in the picture. Because of

those three important numbers, all color systems have been divided into two groups:

additive and subtractive. For each one different algorithm is applied.

Additive color systems are based on adding three primary colors – red, green and blue

to black and mixing them towards getting new colors. More colors are mixed, more

close to white new result is. This color system is mostly used in computer graphics.

6

Subtractive color model operates on rules opposite to additive systems. Three numeri-

cal values are subtracted from white in order to create new color tones. Primary colors

used here are cyan, magenta and yellow. More colors are mixed, more close to black

new color is. Subtractive model is commonly used while printing. Both systems are

complementary to each other (Ozimek, Lectures from Computer Graphics on Cracow

University of Technology, 2009b).

There are three well known, common color systems: RGB, CMYK and HSV. First

one, additive system RGB stands for red (R), green (G) and blue (B). It is widely used

for any image file formats. Graphics that is using RGB model represents each pixel as

a three numerical values in brackets. First value is the amount of red, second stands

for green and the third one is blue. Those values are used to create color presented on

the screen. All values can’t outreach 255 and can’t be lower than 0. For example trip-

let (0,0,0) stands for black when (255,255,255) goes as white color. Every other mix

of values stands for different color. For better understanding how colors are changing,

Figure 1 presents the cube of RGB color. Axe X stands for red, Y for green and Z for

blue. With moving along all axes different colors can be created.

Figure 1. Cube of RGB color model (Wikimedia Commons [referred 25.03.2010])

What is worth mentioning, RGB systems are directed at device. It means that on dif-

ferent device colors can be seen differently. To make printing world easier other color

7

system is used. CMYK is commonly known as system using four color tones to create

new colors. Cyan (C), magenta (M), yellow (Y) and black (K – not to confuse with B

like blue) are the main components of this system. Algorithm of formation new colors

is subtractive. CMYK system can use three or four values to represent percentage of

primary colors used. Opposite to RGB system, white stands as (0,0,0,0). It is impor-

tant that values have to range between 0 and 100. From combination (100,100,100)

black should be created but in reality it is muddy brown. This is why fourth value is

added to steer amount of K value to get real black color – (100,100,100,100). The

difference between RGB and CMYK system is shown in Figure 2.

Figure 2. Comparison of RGB and CMYK color systems (Wikimedia Commons [re-

ferred 25.03.2010])

2.3 Color maps

Basic knowledge about image properties and colormaps is important for image

processing. Colormap is a set of limited colors used in displaying image. There are

few different colormaps such as bitmap, grayscale, index color, highcolor and trueco-

lor. This chapter describes each one of them briefly.

Bitmap can be defined in many various ways. Usual meaning of bitmap is map of bits.

Considering image processing, bitmap gives the user possibility to store one bit per

pixel. Information included in that bit defines if the pixel has color (bit = 1) or doesn’t

have a color (bit = 0). White color is often used as option of “having the color”.

8

Therefore bitmap is commonly used to store black-white images. Other definition says

that each pixel may contain more bits to store the information. For example eight bits

per pixel can be used to code 256 tones of grayscale (www.wisegeek.com [referred

25.03.2010]).

Grayscale is a colormap that usually stores information about the image in eight bits

per pixel. Like mentioned before, with eight bits it is possible to create scale of 256

shades of gray. Sometimes grayscale is described as carrying only one pixel which

stores information about brightness of black. Result is a scale of different tones of

gray. All range of gray may be represented as RGB triple value. All three numbers

have to be equal, for example (123,123,123) or (3,3,3).

Another useful colormap is called indexed colormap. Each pixel of image stores in-

formation about index to the place in colors array, for example set by the user. The

biggest palette can contain 256 colors. Indexed color is very useful. It saves comput-

er’s memory and disk space. Smaller color palettes can be used to represent icons and

pictures with small range of colors. Indexed colormap also supports setting transparent

color. Picking transparent pixels is very helpful when it comes to images with irregu-

lar shapes. Thanks to that feature object on image can be put on a background without

necessity of deleting rectangular shape (Vanderburg et al. 1996, chapter 12).

More advanced colormap is called truecolor. Information about the image is stored in

24 bits, which equals 3 bytes. Each color from RGB model gets 8 bits for storage of

information about shade and channel of color. Truecolor system uses at least 256

tones of each color (red, green and blue), which gives huge range of usable colors -

16.777.216 possible variations. This system is often used in high quality photographs

and complex images (Ozimek, lectures from Digital image processing, 2010a).

There are plenty of colormaps but one more worth describing is called highcolor. It

offers very wide range of colors, bigger than in truecolor system. The description of

point on the image contains 16 bits of information. This amount allows to code from 0

to 65535 different values for one RGB color, which gives 65535*65535*65535 color

variations. The precision in highcolor system is twice much better than in truecolor.

Mostly because that highcolor is used while photographing more prevalent colors, for

example skin tones or skies (Ozimek, lectures from Digital image processing, 2010a).

9

In truecolor and highcolor system images, picture can be separated into three RGB

channels. Each color channel might be useful while processing computer graphics.

Having the knowledge about colormaps and color systems is very important when it

comes to image processing.

2.4 File formats

For people working with advanced graphics it is quintessential to understand similari-

ties and differences between image files formats. One of the biggest dissimilarities is

the algorithm used to compress the size of a file. There is lossless and lossy algorithm.

Lossless way reduces size without losing quality of picture but also it cannot compress

file to a very small size. Lossy method allows decreasing image size but not without

consequences – quality of picture becomes poor (Ozimek, lectures from Digital image

processing, 2010b).

File formats can also be divided with regard to type of graphics. From raster graphics,

among others, the most commonly used formats are JPEG, GIF and PNG. When it

comes to vector graphic there are not many formats because most of them are formats

specified by an image processing program, like for example AutoCAD (.dwg) or Co-

relDraw (.cdr). EPS format is worth noticing. It can be implemented to save both

types of graphics. First group compared will be raster graphics formats and it is based

on lectures from Digital image processing, provided by Cracow University of Tech-

nology.

Abbreviation JPEG stands for Joint Photographic Experts Group. The compression for

this file type is lossy. Information that is discarded while compression cannot be no-

ticed with human eye though. JPEG supports about 16 millions of colors.

One less demanding way of saving files is GIF format. Acronym GIF translates as

Graphic Interchange Format. It is limited to 256 colors, therefore may be used for

simple web images, logos, etc. Despite lossless compression, GIF has worse quality of

picture mostly due to small range of colors.

10

Another format is PNG which stands for Portable Network Graphics. This format is

supported by web browsers, although not by all of them. It was made as an answer to

GIF but PNG supports truecolor mode and can compress file from 5-25% more. From

similarities between those two formats, transparency plays a big role. Both formats

allow transparent pixels to be present in the picture. The main difference between

PNG and GIF is, that the second one is able to be saved as animations, when first one

does not.

When it comes to vector graphics EPS – Encapsulated PostScript, is mostly known

format. What is interesting, it can save raster graphics as well as vector images. It con-

tains information needed for printing and very often small-sized preview of the image.

EPS format files usually take bigger disk space than other graphic files formats. Most

often users save vector graphics in their “natural environment” in order to keep ability

of processing them later.

2.5 Image transformations

There is a group of transformations that are about to improve the properties of an im-

age. Brightness, contrast, hue, saturation and threshold are the most widely used.

Brightness, called also luminance helps when image is too dark or too light. Some

value is added to RGB colors in order to make picture lighter and some value is sub-

tracted from those components to make image darker. Changing contrast is making

difference in properties of the picture which makes the object more distinguishable

from the background (Ozimek, lectures from Digital image processing, 2010c). High-

er contrast underlines shadows and highlights of the image. Properties hue and satura-

tion are connected with each other. They both refer to color manipulation. Hue

changes the way picture is perceived. It can tinge picture with any color, so it will be

seen like it was behind a color filter. Saturation of color means that the color can be

fully saturated or faded. The last value from possible saturation decrease results in

grayscale.

Thresholding is a bit more complicated operation. Input image is usually in grayscale

but color picture also works. Output image is a bitmap, where black stands for back-

ground pixels and white for foreground objects. The only parameter of thresholding

11

process is intensity. Each pixel on the image is compared with intensity threshold. If

intensity of pixel is higher than the parameter, pixel is set to be white on the output

image. Otherwise, pixel becomes black. Thanks to that method density of threshold

can be set by the user.

The other group of transformations applies to changes in size or shape of the image.

Extending width and height, rotation and twisting image against the axes are just small

piece of the whole group containing coordinates transformations. When talking about

rotation the angle is the parameter. Most common are 90 degrees clockwise and coun-

terclockwise rotations. They apply to change picture from horizontal to vertical and

vice-versa. Other operations are not described because of their simple nature.

12

3 MATLAB ENVIRONMENT

3.1 What exactly is Matlab?

The name ‘Matlab’ comes from two words: matrix and laboratory. According to The

MathWorks (producer of Matlab), Matlab is a technical computing language used

mostly for high-performance numeric calculations and visualization. It integrates

computing, programming, signal processing and graphics in easy to use environment,

in which problems and solutions can be expressed with mathematical notation. Basic

data element is an array, which allows for computing difficult mathematical formulas,

which can be found mostly in linear algebra. But Matlab is not only about math prob-

lems. It can be widely used to analyze data, modeling, simulation and statistics. Mat-

lab high-level programming language finds implementation in other fields of science

like biology, chemistry, economics, medicine and many more.

In the following paragraph which is fully based on the MarthWorks, ‘Getting started

with Matlab’, I introduce the main features of the Matlab.

Most important feature of Matlab is easy extensibility. This environment allows creat-

ing new applications and becoming contributing author. It has evolved over many

years and became a tool for research, development and analysis. Matlab also features

set of specific libraries, called toolboxes. They are collecting ready to use functions,

used to solve particular areas of problems. Matlab System consist five main parts.

First, Desktop Tools and Development Environment are set of tools helpful while

working with functions and files. Examples of this part can be command window, the

workspace, notepad editor and very extensive help mechanism. Second part is The

Matlab Mathematical Function Library. This is a wide collection of elementary func-

tions like sum, multiplication, sine, cosine, tangent, etc. Besides simple operations,

more complex arithmetic can be calculated, including matrix inverses, Fourier trans-

formations and approximation functions. Third part is the Matlab language, which is

high-level array language with functions, data structures and object-oriented pro-

gramming features. It allows programming small applications as well as large and

complex programs. Fourth piece of Matlab System is its graphics. It has wide tools for

displaying graphs and functions. It contains two and three-dimensional visualization,

image processing, building graphic user interface and even animation. Fifth and last

13

part is Matlab’s External Interfaces. This library gives a green light for writing C and

Fortran programs, which can be read and connected with Matlab.

3.2 Data representation

Data representation in Matlab is the feature that distinguishes this environment from

others. Everything is presented with matrixes. The definition of matrix by MathWorks

is a rectangular array of numbers. Matlab recognizes binary and text files. There is

couple of file extensions that are commonly used, for example *.m stands for M-file.

There are two kinds of it: script and function M-file. Script file contains sequence of

mathematical expressions and commands. Function type file starts with word function

and includes functions created by the user. Different example of extension is *.mat.

Files *.mat are binary and include work saved with command File/Save or Save as

(Mrozek & Mrozek, 2001, 64-65).

Since Matlab stores all data in matrixes, program offers many ways to create them.

The easiest one is just to type values. There are three general rules:

• the elements of a row should be separated with spaces or commas;

• to mark the end of each row a semicolon ‘;’ should be used;

• square brackets must surround whole list of elements.

After entering the values matrix is automatically stored in the workspace (MathWorks,

2002, chapter 3.3). To take out specific row, round brackets are required. In the 3x3

matrix, pointing out second row would be (2,:) and third column (:,3). In order to re-

call one precise element bracket need to contain two values. For example (2,3) stands

for third element in the second row. Variables are declared as in every other pro-

gramming language. Also arithmetic operators are represented in the same way – cer-

tain value is assigned to variable. When the result variable is not defined, Matlab

creates one, named Ans, placed in the workspace. Ans stores the result of last opera-

tion. One command worth mentioning is plot command. It is responsible for drawing

two dimensional graphs. Although this command belongs to the group liable for

graphics, it is command from basic Matlab instructions, not from Image Processing

toolbox. It is not suitable for processing images, therefore it will not be described.

14

Last paragraph considers matrixes as two-dimensional structures. For better under-

standing how Matlab stores images, three-dimensional matrixes have to be explained.

In three dimensional matrixes there are three values in the brackets. First value stands

for number of row, second value means column and third one is the extra dimension.

Similarly, fourth number would go as fourth dimension, etc. The best way to under-

stand it, is to look at Figure 3, which presents the method of pointing each element in

this three dimensional matrix.

Figure 3. The example of three dimensional matrix, built in Matlab (Ozimek, lectures

from Digital image processing, 2010a)

As mentioned before, Matlab stores images in arrays, which naturally suit to the re-

presentation of images. Most pictures are kept in two-dimensional matrices. Each

element corresponds to one pixel in the image. For example image of 600 pixels

height and 800 pixels width would be stored in Matlab as a matrix in size 600 rows

and 800 columns. More complicated images are stored in three-dimensional matrices.

Truecolor pictures require the third dimension, to keep their information about intensi-

ties of RGB colors. They vary between 0 and 1 value (MathWorks, 2009, 2.12).

The most convenient way of pointing locations in the image, is pixel coordinate sys-

tem. To refer to one specific pixel, Matlab requires number of row and column that

stand for sought point. Values of coordinates range between one and the length of the

row or column. Images can also be expressed in spatial system coordinates. In that

case positions of pixel are described as x and y. By default, spatial coordinates corres-

15

pond with pixel coordinates. For example pixel (2,3) would be translated to x=3 and

y=2. The order of coordinates is reversed (Koprowski & Wróbel, 2008, 20-21).

3.3 Endless possibilities

As mentioned earlier, Matlab offers very wide selection of toolboxes. Most of them

are created by Mathworks but some are made by advanced users. There is a long list

of possibilities that this program gives. Starting from automation, through electrical

engineering, mechanics, robotics, measurements, modeling and simulation, medicine,

music and all kinds of calculations. Next couple of paragraphs will shortly present

some toolboxes available in Matlab. The descriptions are based on the theory from

Mrozek&Mrozek (2001, 387 – 395) about toolboxes and Mathworks.com.

Very important group of toolboxes are handling with digital signal processing.

Communication Toolbox provides mechanisms for modeling, simulation, designing

and analysis of functions for the physical layer of communication systems. This tool-

box includes algorithms that help with coding channels, modulation, demodulation

and multiplexing of digital signals. Communication toolbox also contains graphical

user interface and plot function for better understanding the signal processing. Simi-

larly, Signal Processing Toolbox, deals with signals. Possibilities of this Matlab li-

brary are speech and audio processing, wireless and wired communications and analog

filter designing.

Another group is math and optimization toolboxes. Two most common are Optimiza-

tion and Symbolic Math toolboxes. The first one handles large-scale optimization

problems. It contains functions responsible for performing nonlinear equations and

methods for solving quadratic and linear problems. More used library is the second

one. Symbolic Math toolbox contains hundreds of functions ready to use when it

comes to differentiation, integration, simplification, transforms and solving of equa-

tions. It helps with all algebra and calculus calculations.

Small group of Matlab toolbox handles statistics and data analysis. Statistics toolbox

features are data management and organization, statistical drawing, probability com-

puting and visualization. It also allows designing experiments connected with statistic

16

data. Financial Toolbox is an extension to previously mentioned library. Like the

name states, this addition to Matlab handles finances. It is widely used to estimate

economical risk, analyze interest rate and creating financial charts. It can also work

with evaluation and interpretation of stock exchange actions. Neural Networks Tool-

box can be considered as one of the data analyzing library. It has set of functions that

create, visualize and simulate neural networks. It is helpful when data change nonli-

nearly. Moreover, it provides graphical user interface equipped with trainings and

examples for better understanding the way neural network works.

Some toolboxes do not belong to any specific group but they are worth mentioning.

For example Fuzzy Logic Toolbox offers wide range of functions responsible for

fuzzy calculations. It allows user to look through the results of fuzzy computations.

Matlab provides also very useful connection to databases through Database Toolbox.

It allows analyzing and processing the information stored in the tables. It supports

SQL (Structured Query Language) commands to read and write data, and to create

simple queries to search through the information. This specific toolbox interacts with

Oracle and other database processing programs. And what is most important, Data-

base Toolbox allows beginner users, not familiar with SQL, to access and query data-

bases.

Last but not least, very important set of libraries – image processing toolboxes. Map-

ping Toolbox is one of them, which is responsible for analyzing geographic data and

creating maps. It provides compatibility for raster and vector graphics which can be

imported. Additionally, as well two-dimensional and three-dimensional maps can be

displayed and customized. It also helps with navigation problems and digital terrain

analysis.

Image Acquisition Toolbox is a very valuable collection of functions that handles re-

ceiving image and video signal directly from computer to the Matlab environment.

This toolbox recognizes video cameras from multiple hardware vendors. Specially

designed interface leads through possible transformations of images and videos, ac-

quired thanks to mechanisms of Image Acquisition Toolbox.

Image Processing Toolbox is a wide set of functions and algorithms that deal with

graphics. It supports almost any type of image file. It gives the user unlimited options

17

for pre- and post- processing of pictures. There are functions responsible for image

enhancement, deblurring, filtering, noise reduction, spatial transformations, creating

histograms, changing the threshold, hue and saturation, also for adjustment of color

balance, contrast, detection of objects and analysis of shapes. Some of those and more

functions will be described in details in the next chapter.

18

4 IMAGE PROCESSING TOOLBOX

4.1 Color transformation functions

As mentioned previously, this chapter will describe in details some of the Image

Processing Toolbox functions. For ability to distinguish them from the text, they will

be written in italics. For better understanding parameters that all functions take, they

will be shown in the brackets next to the name of given function. ‘A’ will mean ex-

emplary input image. All descriptions are based on the website www.mathworks.com,

which provides wide compendium of knowledge about all Matlab functions, including

those from Image Processing Toolbox. First group of operations is responsible for

changes and information concerning color transformation of images.

Couples of functions do not change anything in the picture but they are crucial when it

comes to gain information about it, without need of opening the actual object of inter-

ests. Isbw(A) returns value 1 if the image is black&white, and value 0 otherwise.

Some operations have sense only when executed on binary graphic files. For example

adjusting contrast, brightness or other changes, usually made on colorful pictures,

would not work with black&white images. Function isgray(A), similarly to previous

one, checks colormap of the image. As the name suggests, this time function returns

value 1 if the picture is grayscale and value 0 otherwise. It may also become useful

while deciding if some operations can be performed on the file. Isrgb(A) informs if

examined file is the RGB image. These three functions are essential when it comes to

deciding about changing the colormap or color system. Knowing if the picture is

black&white, grayscale or RGB determines what transformations can be done to the

file. There would be no point in trying to make some changes to the image, if they are

inoperative for some color models or maps.

Command colormap(map) is connected with the previously mentioned, however, it is

not Image Processing Toolbox function. It exists in Matlab main library. It sets current

image colormap to one that stands in the brackets as a parameter. There is about twen-

ty ready-built colormaps in Matlab. Some interesting examples of them are: hsv, jet,

gray, hot and bone. Hsv stands for hue-saturation-value colomap. It starts from red

and goes through yellow, green, cyan, blue, magenta and comes back to red. It is very

often used to display periodic functions in Matlab. Jet is a variation of hsv but it starts

19

with dark blue and goes through cyan, green, yellow and red. Parameter gray changes

colormap to shades of gray. Next one, called ‘hot’ ranges colors from black, red,

orange, yellow to white. Bone parameter is similar to grayscale but it contains tinge of

blue, for more ‘electronic look-like’ effect. Both bone and hot color tables are used in

medical diagnostics (Cracow University of Technology,[07.04.2010]). Other color-

maps can be seen in Figure 4, below.

Figure 4. Ready-built colormaps from Matlab’s Image Processing Toolbox

(www.mathworks.se [referred 14.04.2012])

There are three more functions connected with changing colormap of image. Im2bw

produces black&white picture from grayscale, indexed or RGB file. There is couple of

possible ways of defying parameters. To convert grayscale to binary graphics it is

enough to put in the brackets name of file as a parameter. Optionally, there is a place

after the comma for level of threshold that will be used while conversion. Default val-

ue is 0.5 which stands for average density of threshold. This constant must range be-

tween zero and one. If the input picture is RGB, im2bw converts it first to gray shades

and then to black&white. When dealing with indexed image, user can also put color-

map of it in the brackets, just after name of the file. Similar operation existing in the

toolbox is rgb2gray. It converts RGB image to grayscale by eliminating the hue and

saturation from it. Two of standard Matlab library function can be also considered as

image processing operation. Rgb2hsv and hsv2rgb are responsible for changing co-

lormap from RGB to hsv and vice-versa. Each map is a matrix with some number of

rows and three columns. In the RGB image those columns represent intensity of red,

blue and green color and respectively in hsv image, hue, saturation and color value.

20

Another smaller group of functions are those responsible for picture enhancements.

Imadjust adjusts image intensity values. As an additional parameter user is allowed to

specify two squared brackets ranges. Pixels that do not belong to those ranges are

clipped. That is how this procedure increases contrast of the input image. Other func-

tion that is responsible for contrast changes is imcontrast, which creates ready-built

contrast adjustment tool. It takes opened picture as an object of contrast customiza-

tion. Unfortunately, this tool works only with grayscale images.

A very useful function of the main Matlab library is brighten command. It brightens

or darkens image opened in the axes. Parameter of this procedure has to differ from

between minus one and one. For all values from -1 to 0, it tones down the colormap

and correspondingly, from 0 to 1, lightens it. Since zero makes no changes, it is ex-

cluded from both ranges. Brighten command works for all types of colormaps.

Last function described here will be roicolor. It selects specific region of interest,

based on a one or more colors. It takes three values as parameters. First is the name of

file, then after the comma lower value of color and after that, higher value of color.

The result will be a bitmap, containing white and black areas. If color on original pic-

ture was between two values given as parameters, area will be white. Two the same

values will mark only one color area. It is very important to know colormap of

processed image. Parameters will vary from 0 to 255. Each number points different

color, which is dependable from colormap.

4.2 Spatial transformation functions

Spatial transformation functions are separate group that is responsible for all changes

concerning size, rotating and cropping an image. A simple and effective command is

imresize. It takes two arguments in the round brackets – the name of the picture and

after the comma, a value that stands for multiplier. If this number is between zero and

one, then the result image is smaller. Respectively, if this constant is greater than one,

therefore the output picture is bigger than the original.

Image Processing Toolbox offers a function that rotates pictures. It is called imrotate

and it usually takes two arguments inside the brackets. First is the name of the file in

the apostrophes and the second, is the angle of rotation. Positive values stand for

21

counterclockwise direction of rotation, therefore negative numbers go as clockwise

oriented turning. There is third additional parameter, used to determine if the modified

picture should stay the same size or should it be cropped to the size of original one.

First option can be gained with putting a word ‘loose’ on the third place in the brack-

ets. Text ‘crop’ will make the output image the exact size as the input one. If this pa-

rameter is not specified by the user, default value leaves picture non-cropped.

There is an independent function responsible for cropping operation. Imcrop cuts the

image to the selected rectangle. A user defines the area with mouse and as a result,

cropped image is displayed in a new figure, if not specified differently. Holding key-

board button Shift down instead of rectangle, picked area will be a square. Matlab’s

Image Processing Toolbox offers wide range of functions, designed to deal with spa-

tial transformations but the most important ones are described above.

Matlab’s main library offers two additional functions, which are worth mentioning.

Fliplr flips the image along vertical axis. The same way, flipud flips picture along

horizontal axis. The only disadvantage is, that both commands are defined to work

with two-dimensional matrixes. Therefore only bitmaps and grayscale pictures can be

processed by this procedure.

4.3 Open, Save, Display functions

This group of Image Processing Toolbox handles basic operations like opening, clos-

ing, displaying and saving the image file. In addition Matlab’s library contains couple

of useful commands. Imread deals with reading image from graphics file. As a para-

meter in the brackets it takes the name of the file and its extension. Among supported

formats are bmp, gif, jpeg, png and tiff. Imread returns a two-dimensional array if the

image is grayscale and a three-dimensional one, if the picture is color. The function

mentioned above, allows also reading an indexed image and an associating colormap

with it. In order to do that, instead of giving one variable as a result, user needs to put

second variable that will stand for the map, just after the comma in square brackets.

Complementary, function imwrite writes the image to the graphics file. It supports the

file formats as mentioned before, with imread command. Each file extension has its

own syntax but there is one simple that works for most of them. It takes three parame-

22

ters in the brackets: first - the array with the image, second – the name of the new file,

third – the file format. Interesting part is the specification of this function, which de-

pends from the file extension. Usually after all obligatory parameters, there is a place

for extra ones, after the comma. For example for a gif file format optional criterions

can be ‘TransparentColor’, which specifies the color that will be treated as the trans-

parent one. ‘DelayTime’ sets the delay in seconds between images in case of gif ani-

mation. ‘LoopCount’ defines the number of times to repeat the animation. All addi-

tional parameters are followed by the values. For a jpeg file possible attributes are

‘Mode’ and ‘Quality’. In the first one values are either ‘lossy’ or ‘lossless’, which

indicates the method of compression. As it comes to quality, it’s a number between 0

and 100 which saves the image in specific size – higher the number is – higher the

quality and the size of the file. All optional parameters, for other file formats can be

found in the Matlab documentation.

A very useful function exists in Image Processing Toolbox. Imshow is responsible for

displaying an image. It works with black&white, grayscale and color pictures. Simply,

matrix that includes a graphic file or just a filename can be treated as a parameter for

this procedure. Alternatively, the image can be displayed with its colormap. Map

should be given after the comma in the brackets, along the filename. The shown pic-

ture has to be in the current directory or specified by the path to the file.

4.4 Other functions

Last paragraph of this chapter will describe miscellaneous functions from Image

Processing Toolbox and Matlab’s main library. Often used imfinfo displays various

information about the image. Among all the data fields, returned by this procedure

there are nine of them that are the same with every file format. Those are:

• Filename – contains name of the image;

• FileModDate – last date of modification;

• FileSize – an integer indicating the size of the file, in bytes;

• Format – graphic file extension format;

• FormatVersion – number or string describing the file format version;

• Width – width of the image in pixels;

• Height – height of the image in pixels;

• BitDepth – number of bits per pixel;

23

• ColorType – indicates type of the image, either ‘truecolor’ for RGB image,

‘grayscale’ for grayscale image or ‘indexed’ for an indexed image.

Image Processing Toolbox function impixel may become helpful when pixel color

values (red, green and blue) are required. Normal syntax of this procedure displays the

image and waits for the user to specify the pixels with the mouse. Pixels can be de-

termined also non-interactively. Impixel takes three parameters in that case – first one

is a matrix containing the image, second and third one are numbers of coordinates of

the selected pixel. Its colors are returned to the workspace variable Ans.

Small function, imcontour handles only grayscale graphic files. It draws a contour plot

of the image data. The least complex syntax of this procedure requires a two-

dimensional input matrix, which contains the grayscale image. Different command

that handles only black&white or grayscale files – imfill, fills holes in the picture. The

construction of this function allows user to select regions to flood-fill interactively,

with a mouse. Optionally, useful parameters may be string ‘holes’, placed after matrix

containing a black&white image. As a definition of a hole Matlab defines small dark

areas, surrounded by light pixels.

Very complex function – fspecial, creates predefined filters that can be used while

processing the image. As a parameter it takes one value, which states the type of the

filter. More interesting possibilities of them might be ‘disk’, ‘motion’ and ‘unsharp’.

Value ‘disk’ returns a circular averaging filter with a radius specified by the user. The

default radius is 5. The result of using this filter is the picture becoming blurred. ‘Mo-

tion’ filter answers with linear motion of a camera. User can determine the amount of

pixels moved and the angle of motion. Default values returns the picture as it was

blurred by 9 pixels of horizontal camera movement. Complementary, parameter ‘un-

sharp’ is responsible for sharpening blurred image. Although the name states diffe-

rently, this filter is mostly used to acuminate smudged picture. Figure 5 shows com-

parison of original photography with the ones processed in Matlab, by function fspe-

cial (first picture is original, second one motion blurred and third one sharpened).

24

Figure 5. Comparison of photographs processed with Image Processing Toolbox

Every filter specified by function fspecial can be used only with help of imfilter com-

mand. This particular operation applies change to the file, resulting with the same-

sized output image. It is important to remember that those two commands works to-

gether and are commonly used while filtering graphic files.

25

5 MATLAB ”GUIDE” TOOL

5.1 User friendly graphical interface

According to Galitz (2002, 15, 41 - 51), a graphical user interface can be defined as

set of techniques and mechanisms, used to create interactive communication between

a program and a user. The author of the book underlines the importance of designing

process by presenting essential rules. Proper visual composition is a must. The aim is

to give the user aesthetically pleasant working environment. Colors, alignment and

simplicity of look should be considered carefully. Every function, button or any other

object should have its meaning, simple and understandable by an average program

user. Similar components should have analogous looks and usage. Functions ought to

perform quickly and result with wanted outcome. Flexibility can be perceived in this

topic as being sensitive to each user’s knowledge, skills, experience, personal perfor-

mance and other differences that may occur. A good interface is simple, limits the

number of actions and do what it is expected to do. It is not an easy task to design an

efficient and user-friendly graphical interface.

Luckily, Matlab provides a helpful tool called ‘GUIDE’. After typing guide into Mat-

lab’s command line, a quick start window appears. From the choice of exemplary po-

sitions it is recommended to pick ‘Blank GUI’. In the new window it is possible to

drag and drop each object into the area of the program. On the left side of the created

figure there is a list of possible components. The list includes a push button, slider,

axes, static and edit texts – which will be described in details in the next paragraph. It

also contains objects that will be briefly explained below (solely based on Math-

works.com):

• Toggle Button – once pressed stays depressed and executes an action, after the

second click it returns to the raised state and performs the action again;

• Check Box – generates an action when checked and indicates its state (checked

or not checked), many options might be ticked in the same time;

• Radio Button – similar to the check box, but only one option can be selected at

any given time, function starts working after the radio button is clicked;

• Listbox – displays a list of items and enables user to select one or more from

them;

• Pop-up Menu – open a list of choices when the arrow is pressed;

26

• Panel – groups all components what makes interface easy and understandable,

positions of all objects are relative to the panel and do not change while mov-

ing the whole panel;

• Button Group – similar to the panel but able to manage specific behavior of

radio and toggle buttons that are logically grouped;

• ActiveX Component – allows displaying ActiveX controls that are interactive

technology extensions of html. They enable sound, Java applets and anima-

tions to be integrated in a Web page.

An example of GUI with random components is presented in Figure 6.

Figure 6. Example of graphical user interface with some of the components

After the first time saving, GUIDE stores the interface in two files- .fig file, where the

description of whole graphic part is placed and .m file, where the code that controls

the actions can be found. Each object properties are kept in the .fig file and can be set

directly from GUIDE tool, thanks to ready-built Property Inspector. All actions, usual-

ly called ‘callbacks’ can be modified and changed in the .m file. Every single compo-

nent has ‘Tag’ property, which is used while creating the name of the callback refer-

27

ence. To get access to each attribute, Matlab offers command set. It requires reference

to the object that is about to be changed and the name of the property, followed by its

value. Among other characteristics, there is an action trigger - callback operation. It is

important to know, that any element can have its own specific implementation of this

function. Besides operations responsible for actions of objects, there are two addition-

al functions implemented in .m file:

• Opening function – executes tasks before the interface becomes visible to the

user;

• Output function – if needed, it returns variables to the command line.

There is much more behind mechanisms and techniques of programming GUI but this

topic will be explained closely in the next chapter.

5.2 Main components of GUI

5.2.1 Common knowledge

All operative user interface components of Matlab GUI are called ‘uicontrols’. They

all contain various selections of properties to be set. After a programmer double-clicks

an object created in GUIDE, a window of Property Inspector appears. It is a list of all

changeable traits of the component, represented by Figure 7, below.

Figure 7. Property Inspector

28

Most of GUIDE controls have common properties, responsible for the same characte-

ristics of a component. In addition every object has several supplementary features.

Each attribute can be queried with command get and changed by command set, as

mentioned before.

First group of attributes is responsible for control of visual style and appearance.

‘Backgroundcolor’ defines color of the rectangle of the uicontrol. Similarly, ‘Fore-

groundcolor’ sets tinge of the string that figures on the button. Important field ‘CData’

allows to put a truecolor image on the button instead of the text. Parameter ‘String’

places given word on the button. Line ‘Visible’ can take either on or off value, the

object can be visible or not. Even not seen, it still exists and allows getting all the in-

formation about it.

Next collection of properties concerns information about the object. ‘Enable’ defines

if the button is on, off or inactive. Option ON states that uicontrol is operational. Re-

spectively, alternative OFF, states disability of proceeding any action on the button. In

this case label is grayed out. Selecting inactive value allows showing component as

enabled, but in real, it is not working. The kind of uicontrol is decided by ‘Style’ field.

Possible values of this parameter are: pushbutton, togglebutton, radiobutton, check-

box, edit, text, slider, listbox and popupmenu. Every created object has its name,

stored in ‘Tag’ property. It assists in maintaining the application and navigates among

the components. Another useful attribute is ‘TooltipString’. Every time a user rolls a

mouse over the uicontrol and leaves it there, a text set in this place is shown. Those

small hints can be helpful in case object is not completely understandable. Last feature

from this group is ‘UserData’. It allows connecting any data with the component and

can be reached with get function.

Third category deals with positioning, fonts and labels. ‘Position’ parameter is respon-

sible for placement of the object. It requires four values which are: the lower left cor-

ner of the component (distance from the corner of the figure) and its height and width.

‘Units’ field is used by Matlab for measurements and interpretation of distance. At-

tainable values can be inches, centimeters, points, pixels and characters. Pixels are

default setting. There is couple of font properties. With them a programmer can decide

‘FontAngle’ (normal, italics or oblique), ‘FontName’ (font family), ‘FontSize’ and

29

‘FontWeight’ (light, normal, demi or bold). Parameter ‘HorizontalAlignment’ deter-

mines the justification of the text of the ‘String’ property. Possibilities to set are left,

right and center.

Last group of properties considers all actions performed by the application. Attribute

‘ButtonDownFcn’ executes callback function whenever a user presses the mouse but-

ton while the pointer is near or in five pixel-wide border around the component. There

is a field named ‘Callback’ containing a reference to either M-file or valid Matlab

expression. Whenever an object is activated, a callback function will be executed.

Two next features – ‘CreateFcn’ and ‘DeleteFcn’ work in the way opposite to each

other. First one specifies a callback routine that performs action when Matlab creates

an uicontrol. Respectively, second trait starts an operation every time uicontrol object

is destroyed. This characteristic is definitely an asset, because a programmer can set

some actions just before a component will be removed from the application. A more

complex field, called ‘Interruptible’, contains information concerning actions trig-

gered by the user, during executing of one of callback functions. This property can

take on or off value. In the first case, Matlab will allow second operation to interrupt

first one. Accordingly, if off is the selected option, the main callback will not be inter-

fered.

There are properties important only for particular uicontrols. Next four paragraphs

will briefly describe some of the components and their additional features.

5.2.2 Buttons and Sliders

Push buttons are important components because they allow a user to interact with the

program on a visual and simple level. Usually buttons are suggestive and they convey

their main purpose. When it comes to sliders, they are not less valuable than buttons.

Thanks to sliders, users can change for example brightness or contrast of the image,

with some certain steps. Field ‘Style’ takes argument pushbutton or slider, dependable

from the type of uicontrol. There are four parameters, connected together. ‘Min’ and

‘Max’ specify the minimum and maximum slider values. Defaults are 0 for minimum

and 1 for maximum. Matlab will not allow defining the lowest number bigger than

expected utmost numeral. Using both properties, ‘SliderStep’ attribute can be deter-

mined. As the name suggest, this characteristic calculates the size of the step which

30

a user may modify, by clicking arrows on this component. The step of the slider is a

two element vector. By default it equals the bracket [0,01 0,1], which sets one percent

change for clicks on the arrow button and ten percent modification for clicks in the

middle. Also feature ‘Value’ relies on previous numbers. It is set to the point, indi-

cated by the slider bar and a programmer can access it with get function.

Figure 8 shown below, represents exemplary Property Inspector for a slider bar.

Figure 8. An example of Property Inspector for a slider bar

5.2.3 Axes

Axes component contains several additional attributes. ‘Box’ property defines whether

the region of the axes will be enclosed in two – dimensional or three – dimensional

area. Options ‘XTick’, ‘XTickLabel’ and ‘YTick’, ‘YTickLabel’ allow a programmer

to define what values will be displayed along the horizontal and vertical axis. As a

separator, the easiest way is to use this line ‘|’. Also the location of both lines can be

set with help of ‘XAxisLocation’ and ‘YAxisLocation’ features. ‘XGrid’ and ‘YGrid’

creates the grid that might be useful while cropping or resizing processed image (Mar-

chand&Holland, 2003, 248-283).

31

Besides all graphical attributes responsible for outer look of the axes, this object con-

tains also all features common for different components.

A lot of properties will not be described here because they refer to appearance of

graphs, drawn with plot command, while this paper treats about image processing.

Therefore, axes will be used as an area of picture input and display.

Figure 9 illustrates Property Inspector for an interface component - axes.

Figure 9. An example of Property Inspector for axes

5.3 Creating menu

Every decent application should have the menu bar. An average computer user is ac-

customed to possibility of getting most things done with the help of the menu. That is

why Matlab enables programmers to create two kinds of menus:

• Menu bar objects – drop-down menus whose titles are situated on the top of

the figure;

• Context menu objects – pop-down menus that appear after a user right – click

one of the component.

To create both of them, GUIDE offers Menu Editor. They are implemented with two

objects – uimenu and uicontextmenu.

32

After entering GUIDE Menu Editor it is possible to create a hierarchical menu, with-

out any limitations of items amount. This tool helps programmers on many levels.

Process of making menu becomes intuitive and simple. It enables setting of menu

properties with Property Inspector, for every menu and submenu element. Creating

context menu requires changing the tab into ‘Context Menus’. Then the process goes

similarly to the menu bar building. There are several properties that can be set just

after new menu is generated. ‘Label’ defines the name of the item that will be dis-

played to the user. ‘Tag’ value determines the name, needed to identify the callback

function. ‘Separator above this item’ is responsible for a slim line between logically

divided menu elements. Another attribute ‘Check mark this item’ displays a check

next to the menu item and indicates the current state of this item. To ensure that users

can select any option, property ‘Enable this item’ has to be marked. (Mar-

chand&Holland, 2003, 432-440).

Menu Editor is presented in Figure 10, below.

Figure 10. An exemplary menu created in Menu Editor

Next I will describe the properties of the menu. These descriptions are solely based on

Marchand&Holland’s (2003, 434 – 440) book, chapter 10th.

33

The ‘Accelerator’ field defines the keyboard equivalent that a user can press to acti-

vate particular uimenu object. Presence of the shortcuts is valuable addition to the

GUI. Thanks to them the time and effort of action is reduced. Sequence Ctrl + Accele-

rator selects the menu item. Only items that do not have a submenu can be connected

with some shortcut. ‘Callback’ is previously explained reference to the function that

performs an action. Whenever a menu item has a submenu, all elements from there are

called ‘children’ of the mentioned item. Parameter ‘Children’ lists all submenu ele-

ments in a column vector. If there is no ‘children’, the field becomes an empty matrix.

Another feature decides if an option is available to the user. If it is not then ‘Enable’

value is set to off. In that case, the name of the menu item is dimmed and indicates

that it is not possible to select it. For nicer visual effect, a programmer can change the

font color of the menu labels with ‘ForegroundColor’ attribute.

When it comes to the context menu, only one option is responsible for it. ‘UICon-

textMenu’ as a default, takes ‘none’ parameter. If the context menu was created be-

fore, its name should appear in the list of options. After selecting it, a user can enjoy

right– click menu for the given component. Figure 11 presents ready- built menu.

Figure 11. Simple, GUI with ready – built menu

34

6 DESIGN AND IMPLEMENTATION OF AN IMAGE PROCESSING

APPLICATION

6.1 Where to start ?

Every process of creating a computer program should be preceded with careful con-

sideration of the task. In this chapter I will describe how to implement an image

processing application with a Graphical User Interface using Matlab. As mentioned in

earlier stages of the thesis, the program should be able to perform basic operations on

various images. Rotation, cropping, changing the colormap, blurring, sharpening are

only couple of examples of program’s functionality.

Particular steps taken towards achieving the goal are in order: design of the window

together with the procedure of placing the elements of GUI, construction of the menu

bar. Ready prototype of the application will be tested against some scenarios with re-

gard to the common usage examples. So how to begin this interesting journey of soft-

ware implementation ?

6.2 Designing the window

It is a good practice to start the window design with sketching a draft. With the project

on paper is it easier to imagine and plan functions, buttons and all other elements of

the application. Matlab will help in creating the program on the computer. After typ-

ing guide command, the choice window appears. There are two tabs, one stands for

creating new a GUI and the other one for opening an application that already exists.

From the first tabs is it possible to pick either some template or a blank project. To

start designing from the beginning, a blank GUI should be selected. Figure 12, shown

below, presents the quick start window.

35

Figure 12. GUIDE Quick start window

Creating a new application window requires well thought draft. All components need

to be positioned in logical and functional way. Menu items have to be understandable

for the user. Chaos and mess should not be present in the layout of the program.

First thing is adjusting the size of the window. In the Property Inspector, in the field

‘position’, two last values stand for width and height, respectively. Two reminding

numbers set position of the figure on the screen. Next thing determines if users are

allowed to resize the window. For the safety reasons, resizing is not an expected ac-

tion.

Thinking about the purpose of the program, axes in which image will be displayed are

second created component. Background color was changed to the same color as the

figure background, so if there is no picture loaded, white unused area is not seen. Axes

ticks were deleted because they are mainly used for various kinds of plots – not for

photographs processing. Thin, black border shows the area, where image will be

loaded.

Brightness of the image can be regulated with next element that is placed on the right

side of the axes. Buttons ‘+’ and ‘-‘ will allow quick and convenient method of chang-

ing luminosity of the picture. Static Textbox positioned above will tell the user what is

the purpose of the buttons. Second static textbox was designed to show the user in-

36

formation, which he/she would like to withdraw from the image. At the end of design-

ing GUI one button was created: restoring function. It will be responsible for loading

the original picture to the axes in case the user did not like the effect of transforma-

tions. In all components the font was changed to the Arial type, size of 12 and dark

blue color. The outlook of the application window after the first step of designing

process is presented in Figure 13.

Figure 13. First step of designing the application window

Very important part of designing an application is creating a menu. Menu bar for this

program will contain: File, Transformations, Filters and Help headings. Each heading

will be briefly described in next paragraphs.

6.2.1 Menu File

Menu item ‘File’ contains five elements, which are: Open, Save, Save with compres-

sion, Info about the file and Exit. It is necessary to change each element’s label and

tag property. The reason is enabling easier maintenance within the components. Also

setting the ‘Accelerator’ field will make the application more familiar to users. Acce-

lerator parameter is responsible for a shortcut to the function. Well known combina-

tions are ctrl+o for opening a file, ctrl+s for saving the picture, ctrl+I for image infor-

mation and ctrl+q for quitting the application. More of them may be created to make

37

the program easier to use for an experienced user. Shortcut keys are displayed next to

the menu options. Subheadings have the same names as labels or better recognition.

For example subheadings for File heading have ‘Open’, ‘Save’, ’Exit’ tags. Those tags

menu items will be connected with a proper function that will execute an expected

action. Figure 14 presents menu item ‘File’ creation.

Figure 14. First part of menu bar designing

6.2.2 Menu Transformations

The outlook of the Transformations menu heading is presented on the diagram below.

Figure 15. Second part of menu bar designing

38

As shown in Figure 15, ‘Transformations’ menu heading will allow a user to rotate,

flip and crop the image. There are two options for the rotation angle – 90 degrees

clockwise and 90 degrees counterclockwise. It will be available to flip the picture ei-

ther vertically or horizontally, however, this option will become enabled only if the

picture is black&white or in grayscale. As explained in previous section, functions

fliplr and flipud are operable only on those kinds of pictures.

6.2.3 Menu Filters and Help

Two headings considered in this paragraph are ‘Filters’ and ‘Help’. First one includes

three different ways to blur an image, sharpening, adding and removing noise along

with circulating effect of the picture. All those operations are based on imfilter and

fspecial functions, explained previously. It is worth mentioning that option ‘add noise’

is created mostly to show the functionality of Matlab and function that removes the

noise from the image. Next option is a histogram equalization and correction of con-

trast. It is also possible to convert a color picture into the grayscale or make it a bit-

map.

Last main menu item is ‘Help’. It is not that important for the application to work but

often users want to know facts about the program, the author and how it actually

works. Figure 16 shows fully designed menu bar.

Figure 16. Finished menu bar, some options presented

6.3 General rules of coding

After creating the graphical user interface it is time to connect it with Matlab func-

tions. There are two ways of doing it: the first one demands from a programmer cod-

39

ing in .m file, where he has to create all the components. What is more, properties for

each element must be set using only text. This is not the fastest method. Thankfully,

GUIDE mechanism comes in handy here. It is enough to drag and drop the objects

into the workspace and set their parameters with Property Inspector, mentioned earli-

er. With this option the application will need an additional .fig file that contains the

interface. The technique used in this thesis mixes both – visual creation of the GUI

along with programming inside the .m file.

Every application needs to be very carefully thought through. The programmer has to

remember about user mistakes as well as unexpected and unusual order of actions.

Next paragraph will present how the problem of limits and constraints was handled.

Just after opening the application, the buffer of the image is empty therefore no opera-

tions can be performed. First adjustment was to disable menu options until the picture

is loaded. Of course options of opening, closing and getting help stay active. During

the opening of the image, the type of the input file is checked. Respectively, some of

the functions get activated only for grayscale pictures. Next thing is the message box

that shows up to inform the user about the type of the image and available processing

options. Figures 17 and 18 present both adjustments.

Figure 17. Inactive menu options

Figure 18. Informative message box

Next I will describe how the functions explained above are actually implemented. In

the couple of next paragraphs I will point out the most important parts of the code.

Full listing can be found in Appendix 1.

40

Starting with the procedure of opening the file there are couple of methods used in

order to prevent errors. Firstly, the image is loaded into the two variables, one for us-

ing and one for restoring. Thanks to the command handles followed with a ‘dot’, vari-

able becomes global. Function uigetfile allows selecting the file from the computer.

Instruction if prevents from receiving an error when the user decides to cancel open-

ing. Command srtcat connects the name of the file with its path. This brings the pos-

sibility of using imread to load the picture. Later on imshow presents the image and all

the changes in GUI are updated with guidata command. Below are selected fragments

of the code.

[filename, pathname]=uigetfile(
{'*.jpg';'*.gif';'*.png';'*.bmp';'*.tif';'*.eps'}, 'Select file');

if filename ==0
 return;
end

handles.var=strcat(pathname,filename);
handles.plik=imread(handles.var);
handles.oryginal = imread(handles.var);

axes(handles.axes);
imshow(handles.plik);

if isgray(handles.plik) == 1

set(handles.histogram,'Enable','On');
guidata(hObject, handles);

msgbox('The image is in grayscale - all fuctions active','Message');

Another function from the menu bar is saving the file. As discussed previously, it can

happen with or without the compression. Statement uiputfile along with imwrite are a

fairly good mechanism of writing files. Compression allows to decrease the size of an

image which is presented in the chosen piece of code below.

[FileName,PathName]=uiputfile({'*.jpg';'*.tif';'*.png';'*.gif'},'Save
image');
imwrite(handles.plik,[PathName FileName],'Quality',50);

Next functionality worth mentioning is getting some information about the processed

picture. Imfinfo helps to obtain that goal. Since metadata is stored in a structure type, it

is necessary to use ‘dot’ construction to access it. All information are connected to-

gether with strvcat command, which not only joins the text but also separates them

41

with one empty line. Later set function embeds that string text into the information

field.

i = imfinfo(fullfile(handles.pathname, handles.filename));
A1 = i.Filename;
A = strvcat('File Name: ',A1);
C1 = num2str(i.FileSize);
C2 = strcat(C1,'Bajts');
C = strvcat('File Size: ',C2);
I = strvcat(A,C,D,E,F,G,H);
set(handles.text3,'String',I);

An example of spatial transformation is presented in the lines below.

handles.plik = imrotate(handles.plik,-90,'bilinear','loose');
handles.plik = fliplr(handles.plik);
handles.plik = imcrop(handles.plik);

Very important part of the application are filters. Blurring can be acquired with three

different methods, described in the previous section. Each filter is based on connecting

two powerful commands – fspecial and imfilter. Adding noise takes a parameter such

as ‘salt&pepper’, while removing noise is done with a median filter. Some of the func-

tions changes state of others, meaning their activation mode. There would not be

much sense in trying to change grayscale picture into a grayscale, for example. Addi-

tionally, histogram equalization option was created in menu. Also a procedure that

corrects contrast. Examples of code are illustrated below.

H = fspecial('gaussian');
handles.plik = imfilter(handles.plik,H);

H = fspecial('unsharp',0.05);
handles.plik = imfilter(handles.plik,H,'same');

handles.plik = imnoise(handles.plik, 'salt & pepper',0.02);
handles.plik = medfilt2(handles.plik);

handles.plik = histeq(handles.plik);
handles.plik = imadjust(handles.plik);

Different type of functions, used in the application are those converting color to

grayscale and grayscale to bitmap. Since after transforming image to the black and

white it is not possible to regain the color data, most of the options are switched off.

handles.plik = rgb2gray(handles.plik);

42
set(handles.skala_szarosci,'Enable','Off');

handles.plik = im2bw(handles.plik);
set(handles.kontrast,'Enable','Off');
set(handles.skala_szarosci,'Enable','Off');

After creating the first prototype of the program, an extra starting window was de-

signed. It allows selecting a language from English and Polish. To achieve expected

results openfig and close commands were used. Parameter for close is gcf, which

stands for handle to the current figure.

close(gcf);
openfig(english);

When the user decided that he wants to end image processing, he can close the pro-

gram from ‘File’ menu or with a shortcut ctrl+q.

6.4 Testing new application

The next and final step on the way of creating a new application is testing. This stage

is very important. It helps to find mistakes or malfunctions of the program. What

counts is the amount of tests and also the performed scenarios. Users from a different

groups, variety of file formats, individual needs, distinct sequences of actions – all

those factors are influential. Thanks to Polish and English language version, more

tests from different users could be performed. Every comment was carefully thought

out and suggestions for changes appeared. They are discussed in one of the last para-

graphs concerning future possibilities of development. For the purpose of the thesis

couple of scenarios were selected and presented on the next few figures, along with

short descriptions. All images used for testing come from author’s own materials.

The firstly tested scenario was a very simple operation of cropping selected part of an

image. As presented in Figure 19, this procedure can be successfully used to zoom in

a specifically chosen piece of the picture.

43

Figure 19. An example of crop function

Transformation from color to grayscale and then to the bitmap is shown in Figure 20.

Figure 20. Procedures of changing the colormap

The next tested process was adding an artificial noise and then removing it with the

median filter. The results is presented in the next figure (Figure 21).

Figure 21. Removal of the noise for the grayscale picture

The last scenario that will be presented in this thesis is mostly about changing the

brightness of the image. Firstly, the photography was loaded, then converted to the

grayscale. The next two steps demonstrate operations of darkening and brightening.

Finally, histogram was equalized, contrast corrected and the picture was saved with

compressing option. The size of the compacted file was approximately two times

44

smaller than the original. In the end, master copy was restored. Results of all steps in

this scenario are shown in Figure 22.

Figure 22. Illustration of the lightness options and their correction

There were more small tests performed but only couple of them are presented above.

All those tests resulted with couple of conclusions. The main observation is that the

program works well, although the functionality is simple and it could be wider. Func-

tions from the group of opening, saving and closing the picture handled all the situa-

tions correctly. Even when a user tried to load an invalid file format it resolved with

an error but did not affect the structure of the program. The message explaining that

some of the operations are not working with color images appeared in correct mo-

ments. Additionally, after loading a colorful picture, specific parts of the menu bar

stayed inactive. That prevents users from trying to operate incompatible procedures on

wrong input image. The ‘Open file’ window selects the file formats properly. When it

comes to saving the picture with the compression, quality difference is present. In

order to significantly decrease the size of the saved file it was necessary to compro-

mise the quality. Figures 23 and 24 illustrate the comparison of an original picture and

the compressed one.

45

Figure 23. Comparison of a high resolution image before (on the left) and after (on

the right) compression

Figure 23 proves that if the input image has high resolution and big size, the differ-

ence after compression is almost invisible. Figure 24 represents the results of compac-

tion of a small size picture.

Figure 24. Comparison of a low resolution and small size image before (on the left)

and after (on the right) compression

As shown in Figure 24, the difference between compressed and original file is irrele-

vant, while the size decreases 8 times.

All possible options regarding spatial transformations are working correctly. The

‘crop’ function allows a user to drag the rectangle around the fragment of the picture.

As shown in Figure 19, this command can be successfully used for zooming as well.

Scenario test demonstrated in Figure 20 checks the ability of the program to convert a

color image into a grayscale and then into a bitmap. In my opinion the outcome of

both commands is good, especially the bitmap. It is worth mentioning that the default

level of threshold, calculated by Matlab produces a satisfactory effect.

46

Another test was performed only to show how median digital filter deals with noise

reduction. It is not perfect but the result is still fair.

Figure 22 illustrates a spectrum of the brightness alterations. The buttons responsible

for adjusting the lightness subtract small numerical value from the picture every time

a user wants to decrease the brightness and respectively adds the same value to lighten

an image. The same test checks if the ‘restore’ button works correctly. The ability to

reconstruct the original picture is very important for users. It gives them the feeling

that if something goes wrong during the transformations, they can always go back to

the original copy.

Overall evaluation of my image processing application is positive. The only with-

draws are the limited functionality towards some specific colormaps and narrow

amount of existing functions and filters. Those conclusions leaves the application

open for future development.

47

7 CONCLUSION

7.1 Evaluation of the final outcome and benefits of the study

After wide studies of topic-related areas the prototype of an image processing applica-

tion was designed and implemented. During the first stage of the development the

Graphical User Interface was created. It required careful consideration of the purpose

of the program, in order to place elements correctly. The actual programming part

introduced me to some challenges concerning mostly connecting functionality with

the GUI objects. The most difficult part was to realize that not all of the functions can

be implemented for any type of the graphic file. Just to call out an example – opera-

tions responsible for flipping the picture vertically and horizontally work only for

grayscale images. Learning about the constraints and possibilities of errors helped me

to understand how important it is to plan and think through all the details of the new

software in the beginning of the work. To sum up, the outcome of this thesis is a sim-

ple program that presents possibilities of Matlab and the GUIDE tool.

In addition to the practical part of the thesis, the other goal was to learn new informa-

tion from various areas related to the computer graphics and Matlab in general.

Theory presented in this thesis covers quite precisely the most important topics within

the computer graphics, such as colormaps, file formats, vector and raster graphics to-

gether with color systems. Great amount of time was given into getting to know the

Image Processing Toolbox – one of the libraries of Matlab suite. Finding out what is

the range of possible image transformations that can be done with this toolbox helped

me to realize that Matlab is a great piece of software and may be widely used in many

purposes.

Overall idea behind my thesis was to show that Matlab is not only good for compli-

cated and complex mathematical drawings but also provides a broad collection of reg-

ular image processing functions. Of course it is great for medical image transforma-

tions and recognition but that is not all. Many programmers do not realize the full po-

tential of Matlab and the Graphical User Interface tool that it provides.

Despite the outcome of my thesis, including the image processing application, the

topic stays open to the future modifications and development.

48

7.2 Future development

Even though the aim of the study was completed, there is still a lot of possibilities for

future development. Matlab is a powerful tool, which provides a lot of opportunities.

Wide selection of the libraries, filled with multiple choice of available functions gives

the programmer almost unlimited chance of growth. A simple image processing appli-

cation can become a complex piece of a new software. Image Processing Toolbox

implements many functions that were not used in my application. Among them there

is a group of morphological operations such as dilation, erosion, morphological open-

ing and closing, filling certain areas and more. IPT also provides couple of methods of

a thresholding. A big collection of functions implement different types of filters. Some

of them are needed in the process of image adjustments and others are responsible for

object recognition. Examples of linear and nonlinear filter including their effects are

presented in Table 1.

Table 1. Examples of image enhancing filters (Ozimek, lectures from Digital image

processing, 2010d)

Category Filter Effect

LINEAR

High-pass filter
Sharpening,

underlining contours

Low-pass filter
Reduction of the noise,

smoothing out

Laplace’s filter sharpening

Edge detection filter Detection of all directions

edges and corners Corner detection filter

NON-LINEAR

Median filter
Noise reduction without

blur effect

Minimum filter
Decrease the brightness of the

edge objects

Maximum filter
Increase the brightness of the

edge objects

Additionally, the GUIDE tool described in Chapter 5 gives the programmer multiple

selection of elements, which can be used to create a friendly user interface. Those ob-

49

jects can be connected with different functionalities, resulting with plenty combina-

tions. Table 2 illustrates few examples of possible solutions.

Table 2. Exemplary hypothetical matches between GUI elements and image

processing functions

GUI element Idea for implementation

Button Finding round objects with one click

Edit text Entering text and saving it in metadata structure

Edit text Input RGB data to find and select area of that color

Slider
Three sliders for RGB channels control

Four sliders for CMYK channels control

ActiveX - Flash Flash animation

ActiveX - SQL Database with images, selectable with SQL query

There are many possibilities for the future development of the application created

within this thesis. Matlab is a powerful tool that provides with multiple methods and

techniques required for building even very complex programs. The functionality and

the design are limited only by the programmer’s imagination. But is there a place for a

Matlab-created image processing application among many free software that already

exist ? It is hard to answer that question one way. As any other program, Matlab has

its advantages and disadvantages. It depends strictly on the purpose for the new soft-

ware. In my opinion basic image processing – maybe not, but anything more than

simple transformations is eligible for Matlab environment. Especially when it is about

complex modifications including using digital filters in the image enhancements.

Overall, Matlab is developing very fast and it is becoming more and more popular

among researchers. Maybe someday it will prevail in the computer software world?

There is nothing left but wait and see what future will bring.

50

BIBLIOGRAPHY

Books

Galitz, Wilbert O. 2002. The Essential Guide to User Interface Design – An Introduction
to GUI Design Principles and Techniques. United States of America. John Wiley & Sons.

Gonzales, Rafael C. – Woods, Richard E. – Eddins, Steven L 2008. Digital Image
Processing using Matlab. Second Edition. United States of America. Gatesmark Pu-
blishing.

Koprowski, Robert – Wróbel, Zygmunt 2008. Praktyka przetwarzania obrazów z
zadaniami w programie Matlab. Warszawa. Akademicka Oficyna Wydawnicza EXIT.

Marchand, Patrick - Holland, Thomas O. 2003. Graphics and GUIs with Matlab.
United States of America. Chapman&Hall/CRC.

Mrozek, Bogumiła – Mrozek, Zbigniew 2001. Matlab 6; Poradnik użytkownika.
Warszawa. Wydawnictwo PLJ.

The MarthWorks 2004. Getting started with Matlab. Version 7. United States of
America. The MathWorks.

The MarthWorks 2009. Image Processing Toolbox 6 User’s Guide. United States of
America. The MathWorks.

The MarthWorks 2007. Matlab 7. Creating Graphical User Interfaces. United States
of America. The MathWorks.

Vanderburg, Glenn L. 1996. Tricks of the Java programming gurus. United States of
America. Sams Publishing.

Unpublished sources

Ozimek, Agnieszka 2009a. Computer Graphics. Materials from Lecture no. 1. Cra-
cow. Cracow University of Technology.

Ozimek, Agnieszka 2009b. Computer Graphics. Materials from Lecture no. 4. Cra-
cow. Cracow University of Technology.

Ozimek, Agnieszka 2010a. Digital image processing. Materials from Lecture no. 4.
Cracow. Cracow University of Technology.

Ozimek, Agnieszka 2010b. Digital image processing. Materials from Lecture no. 7.
Cracow. Cracow University of Technology.

Ozimek, Agnieszka 2010c. Digital image processing. Materials from Lecture no. 3.
Cracow. Cracow University of Technology.

51

Electronic sources

Moler, Cleve 2004. The origins of Matlab. Matlab News & Notes. Cleve’s Corner.
12.2004. Available in www-format:
URL:www.mathworks.se/company/newsletters/news_notes/clevescorner/dec04.html?
s_cid=wiki_matlab_3.

Vector Graphic 2012. The Tech Terms Computer Dictionary. Referred 23.03.2010.
Available in www-format:
URL:http://www.techterms.com/definition/vectorgraphic.

Cube of RGB color model 2010. Wikimedia Commons. Referred 25.03.2010.
Available in www-format:
URL:http://commons.wikimedia.org/wiki/File:RGBCube_d.svg.

Comparison of RGB and CMYK color systems 2010. Wikimedia Commons. Re-
ferred 25.03.2010. Available in www-format:
URL:http://commons.wikimedia.org/wiki/File:RGB_and_CMYK_comparison.png.

Bitmap 2010. WiseGEEK clear answers for common questions. Referred 25.03.2010.
Available in www-format:
URL:http://www.wisegeek.com/what-is-a-bitmap-image.htm.

Ready-built colormaps from Matlab’s Image Processing Toolbox 2012. Math-
Works Documentation. Available in www-format:
URL:http://www.mathworks.se/help/techdoc/ref/colormap.html.

http://www.techterms.com/definition/vectorgraphic�
http://commons.wikimedia.org/wiki/File:RGBCube_d.svg�
http://commons.wikimedia.org/wiki/File:RGB_and_CMYK_comparison.png�
http://www.wisegeek.com/what-is-a-bitmap-image.htm�
http://www.mathworks.se/help/techdoc/ref/colormap.html�

52

APPENDICES

Appendix 1: Full code listing.

function varargout = english(varargin)
% ENGLISH M-file for english.fig
% ENGLISH, by itself, creates a new ENGLISH or raises the exist-
ing
% singleton*.
%
% H = ENGLISH returns the handle to a new ENGLISH or the handle
to
% the existing singleton*.
%
% ENGLISH('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in ENGLISH.M with the given input ar-
guments.
%
% ENGLISH('Property','Value',...) creates a new ENGLISH or rais-
es the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before english_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to english_OpeningFcn via varar-
gin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows
only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help english

% Last Modified by GUIDE v2.5 12-Jun-2010 15:29:43

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @english_OpeningFcn, ...
 'gui_OutputFcn', @english_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before english is made visible.

53
function english_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to english (see VARARGIN)

% Choose default command line output for english
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes english wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = english_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in button1.
function button1_Callback(hObject, eventdata, handles)
% hObject handle to button1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = handles.oryginal;
axes(handles.axes);
imshow(handles.plik);
set(handles.w_pionie,'Enable','Off');
 set(handles.w_poziomie,'Enable','Off');
 set(handles.kontrast,'Enable','Off');
 set(handles.dodaj_szum,'Enable','Off');
 set(handles.usun_szum,'Enable','Off');
 set(handles.kontrast,'Enable','Off');
 set(handles.histogram,'Enable','Off');
 set(handles.skala_szarosci,'Enable','On');
guidata(hObject, handles);

% --- Executes on button press in button2.
function button2_Callback(hObject, eventdata, handles)
% hObject handle to button2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles.plik = handles.plik-5;
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

54

% --- Executes on button press in button3.
function button3_Callback(hObject, eventdata, handles)
% hObject handle to button3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = handles.plik+5;
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);
% ---
-
function plik_Callback(hObject, eventdata, handles)
% hObject handle to plik (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function przeksztalcenia_Callback(hObject, eventdata, handles)
% hObject handle to Przeksztalcenia (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function filtry_Callback(hObject, eventdata, handles)
% hObject handle to Filtry (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function pomoc_Callback(hObject, eventdata, handles)
% hObject handle to Pomoc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function otworz_Callback(hObject, eventdata, handles)
% hObject handle to Otworz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Loading the Image
[filename, pathname]=uigetfile(
{'*.jpg';'*.gif';'*.png';'*.bmp';'*.tif';'*.eps'}, 'Select file');
if filename ==0
 return;
end
handles.pathname = pathname;
handles.filename = filename;
handles.var=strcat(pathname,filename);
handles.plik=imread(handles.var);
handles.oryginal = imread(handles.var);
%Wczytywanie obrazu do axes
axes(handles.axes);
imshow(handles.plik);

55
%Ustawianie funkcji aktywnych w zależności od pliku
set(handles.zapisz,'Enable','On');
set(handles.zapisz_jako,'Enable','On');
set(handles.informacja_o_pliku,'Enable','On');
set(handles.w_lewo,'Enable','On');
set(handles.w_prawo,'Enable','On');
set(handles.wytnij,'Enable','On');
set(handles.gaussa,'Enable','On');
set(handles.w_ruchu,'Enable','On');
set(handles.lekkie,'Enable','On');
set(handles.wyostrzenie,'Enable','On');
set(handles.skala_szarosci,'Enable','On');
set(handles.czarno_bialy,'Enable','On');
set(handles.button1,'Enable','On');
set(handles.button2,'Enable','On');
set(handles.button3,'Enable','On');

if isgray(handles.plik) == 1
 set(handles.w_pionie,'Enable','On');
 set(handles.w_poziomie,'Enable','On');
 set(handles.kontrast,'Enable','On');
 set(handles.dodaj_szum,'Enable','On');
 set(handles.usun_szum,'Enable','On');
 set(handles.kontrast,'Enable','On');
 set(handles.histogram,'Enable','On');
 set(handles.skala_szarosci,'Enable','Off');
msgbox('The image is in grayscale - all fuctions active','Message');
else
msgbox('The image is not in grayscale - some functions inac-
tive','Message');
end

guidata(hObject, handles);

% ---
-
function zapisz_Callback(hObject, eventdata, handles)
% hObject handle to Zapisz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[FileName,PathName]=uiputfile({'*.jpg';'*.tif';'*.png';'*.gif'},'Save
image');
imwrite(handles.plik,[PathName FileName]);

% ---
-
function zapisz_jako_Callback(hObject, eventdata, handles)
% hObject handle to Zapisz_jako (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[FileName,PathName]=uiputfile({'*.jpg';'*.tif';'*.png';'*.gif'},'Save
image');
imwrite(handles.plik,[PathName FileName],'Quality',50);

56
% ---
-
function informacja_o_pliku_Callback(hObject, eventdata, handles)
% hObject handle to Informacja_o_pliku (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
i = imfinfo(fullfile(handles.pathname, handles.filename));
A1 = i.Filename;
A = strvcat('File Name: ',A1);
C1 = num2str(i.FileSize);
C2 = strcat(C1,'Bajts');
C = strvcat('File Size: ',C2);
D1 = i.Format;
D = strvcat('File Format: ',D1);
E1 = num2str(i.Width);
E = strcat('Width: ',E1,' pixels');
F1 = num2str(i.Height);
F = strcat('Height: ',F1,' pixels');
G1 = i.ColorType;
G = strvcat('Color Type: ',G1);
H1 = num2str(i.BitDepth);
H2 = strcat(H1,'bits per pixel');
H = strvcat('Bit Depth: ',H2);
I = strvcat(A,C,D,E,F,G,H);
set(handles.text3,'String',I);
guidata(hObject, handles);

% ---
-
function zamknij_Callback(hObject, eventdata, handles)
% hObject handle to Zamknij (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(gcf);
% ---
-
function obroc_Callback(hObject, eventdata, handles)
% hObject handle to Obroc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function w_prawo_Callback(hObject, eventdata, handles)
% hObject handle to w_prawo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = imrotate(handles.plik,-90,'bilinear','loose');
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function w_lewo_Callback(hObject, eventdata, handles)
% hObject handle to w_lewo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = imrotate(handles.plik,90,'bilinear','loose');
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

57
% ---
-
function odbij_Callback(hObject, eventdata, handles)
% hObject handle to Odbij (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function w_pionie_Callback(hObject, eventdata, handles)
% hObject handle to w_pionie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = fliplr(handles.plik);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);
% ---
-
function w_poziomie_Callback(hObject, eventdata, handles)
% hObject handle to w_poziomie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = flipud(handles.plik);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function wytnij_Callback(hObject, eventdata, handles)
% hObject handle to Wytnij (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = imcrop(handles.plik);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function rozmazanie_Callback(hObject, eventdata, handles)
% hObject handle to Rozmaz (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ---
-
function lekkie_Callback(hObject, eventdata, handles)
% hObject handle to lekkie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

H = fspecial('disk',2);
handles.plik = imfilter(handles.plik,H,'replicate');
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

58
% ---
-
function gaussa_Callback(hObject, eventdata, handles)
% hObject handle to gaussa (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
H = fspecial('gaussian');
handles.plik = imfilter(handles.plik,H);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function w_ruchu_Callback(hObject, eventdata, handles)
% hObject handle to gaussa (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
H = fspecial('motion',5,3);
handles.plik = imfilter(handles.plik,H);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function wyostrzenie_Callback(hObject, eventdata, handles)
% hObject handle to wyostrzenie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
H = fspecial('unsharp',0.05);
handles.plik = imfilter(handles.plik,H,'same');
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function dodaj_szum_Callback(hObject, eventdata, handles)
% hObject handle to dodaj_szum (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = imnoise(handles.plik, 'salt & pepper',0.02);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function usun_szum_Callback(hObject, eventdata, handles)
% hObject handle to usun_szum (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = medfilt2(handles.plik);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

59
% ---
-
function histogram_Callback(hObject, eventdata, handles)
% hObject handle to histogram (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = histeq(handles.plik);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function kontrast_Callback(hObject, eventdata, handles)
% hObject handle to kontrast (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = imadjust(handles.plik);
axes(handles.axes);
imshow(handles.plik);
guidata(hObject, handles);

% ---
-
function skala_szarosci_Callback(hObject, eventdata, handles)
% hObject handle to skala_szarosci (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = rgb2gray(handles.plik);
axes(handles.axes);
imshow(handles.plik);
if isgray(handles.plik) == 1
 set(handles.w_pionie,'Enable','On');
 set(handles.w_poziomie,'Enable','On');
 set(handles.kontrast,'Enable','On');
 set(handles.dodaj_szum,'Enable','On');
 set(handles.usun_szum,'Enable','On');
 set(handles.kontrast,'Enable','On');
 set(handles.histogram,'Enable','On');
 set(handles.skala_szarosci,'Enable','Off');

else
end
guidata(hObject, handles);

% ---
-
function czarno_bialy_Callback(hObject, eventdata, handles)
% hObject handle to czarno_bialy (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.plik = im2bw(handles.plik);
axes(handles.axes);
imshow(handles.plik);
set(handles.w_pionie,'Enable','Off');
 set(handles.w_poziomie,'Enable','Off');
 set(handles.kontrast,'Enable','Off');
 set(handles.dodaj_szum,'Enable','Off');
 set(handles.usun_szum,'Enable','Off');
 set(handles.kontrast,'Enable','Off');
 set(handles.histogram,'Enable','Off');
 set(handles.skala_szarosci,'Enable','Off');

60
guidata(hObject, handles);

% ---
-
function instrukcje_Callback(hObject, eventdata, handles)
% hObject handle to instrukcje (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
I = strvcat('INSTRUCTION',' ','Functions will be activated after
loading graphic file.','Select ~File~ and ~Open~ from menubar, then
select the file and click ~OK~.');
set(handles.text3,'String',I);
guidata(hObject, handles);

% ---
-
function o_programie_Callback(hObject, eventdata, handles)
% hObject handle to o_programie (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
I = strvcat('Application for image processing with Matlab','Created
as a project of Bachelors','thesis.',' ',' ','Release version 1.0.',
'Version 1.1 planned for 2012.');
set(handles.text3,'String',I);
guidata(hObject, handles);

% ---
-
function o_autorze_Callback(hObject, eventdata, handles)
% hObject handle to o_autorze (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
I = strvcat('Justyna Inglot is the author of the application .','
','In case of any questions, do not hesitate to contact me:','
','jiii@wp.pl');
set(handles.text3,'String',I);
guidata(hObject, handles);

	1 Introduction
	1.1 First look over the topic
	1.2 Main objectives of the study
	1.3 Realization methods and techniques

	2 Computer graphics
	2.1 Computer graphics in details
	2.2 Color systems
	2.3 Color maps
	2.4 File formats
	2.5 Image transformations

	3 matlab environment
	3.1 What exactly is Matlab?
	3.2 Data representation
	3.3 Endless possibilities

	4 Image processing toolbox
	4.1 Color transformation functions
	4.2 Spatial transformation functions
	4.3 Open, Save, Display functions
	4.4 Other functions

	5 Matlab ”guide” tool
	5.1 User friendly graphical interface
	5.2 Main components of GUI
	5.2.1 Common knowledge
	5.2.2 Buttons and Sliders
	5.2.3 Axes

	5.3 Creating menu

	6 design and implementation of an image processing application
	6.1 Where to start ?
	6.2 Designing the window
	6.2.1 Menu File
	6.2.2 Menu Transformations
	6.2.3 Menu Filters and Help

	6.3 General rules of coding
	6.4 Testing new application

	7 conclusion
	7.1 Evaluation of the final outcome and benefits of the study
	7.2 Future development

	BIBLIOgraphy

