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Natural zeolite with the basic cell structure of AlO4 and SiO4 tetrahedron has 

the ability of sewage purification. The way to adsorb in sewage is similar to 

activated carbon, and the zeolite has a good capacity of adsorption on cations. 

 

After modification, the activated zeolite acquires a better capacity of 

adsorption, cation-exchange and ion-exchange. After surfactant modification, 

zeolite can absorb the anions and organic compounds. In this way, zeolite can 

adsorb many kinds of ions in sewage. 

 

The aims of the thesis were: study the properties of natural zeolites; the 

adsorption capacity of analcime and ZSM-5 on metals and the theory of 

modification. In the experiment, the aim was to check out the adsorption 

capacity of Cu2+ and Ni2+ by using analcime and ZSM-5 and make a compare 

of the adsorption capacity between the cations in the same zeolite and 

between the zeolites in the same cations to find out which zeolite is better and 

in the same zeolite which cation was better adsorbed. 

 

The results of the experiment were that the Cu2+ cation was adsorbed better 

than Ni2+ in both analcime and ZSM-5. The adsorption speed of Cu2+ was 

faster than Ni2+. ZSM-5 had a better adsorption capacity on both Cu2+ and Ni2+ 

than analcime, and the speed of absorbing was faster as well. In fact, during 

the experiment, there was an ion-exchange reaction, even though it took a 

small role of the experiment. The analcime and ZSM-5 contain alkali 

metal-sodium cation, so the ion-exchange process happen between Na+ 

cation, Cu2+ and Ni2+ cations during the experiment. 
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1 INTRODUCTION 

 

 

Zeolites were found about 250 years ago. They are crystalline and micro porous 

minerals and distributed broadly in nature. Stilbite was found by the Swedish 

mineralogist Axel Fredrick Cronsted in 1756. Because he observed that during 

heating a large amount of steam engendered, the material was named “zeolite”. 

The meaning of the name is boiling stone which from the classic Greek word, 

where “zeo” is from “ζεω” means “to boil” and “lithos” is from “λįθος” means “stone”. 

 

Zeolite is consist of silicon cation (Si4+), aluminium cation (Al3+) and oxygen anion 

(O2-) which form the coordinating tetrahedral. This tetrahedral is a macromolecular 

that has uniform voids and channels created in crystals. The aluminium generates 

a positive charge in the polymer and can be located on oxygen anion which is 

connected to each aluminium cation as shown in Graph 1. (Jairo Antonio & Bagre 

2005.) 

 

GRAPH 1. Basic structure formula of a natural zeolite (adapted from Mumpton; 

Flanigen & Gottardi 1983) 

 

In today’s world, there is a serious shortage of clean water. Wastewater produced 
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by various industries is a main part of sewage in the world. Wastewater from the 

industrial processes can be discharged to land and water system. There are 

usually many poisonous and toxic substances such as cationic and anionic ions, oil 

and organics that can pollute the ecosystem and human health. Therefore, many 

techniques have been developed, and many technologies appeared for wastewater 

treatment in the past decades. Till now, adsorption is the accepted one that is a 

simple and effective way for water and wastewater treatment because of the 

development of an efficient adsorbent. Many adsorbents are found and used widely 

for adsorption of ions and organics in wastewater treatment such as activated 

carbon, clay minerals, biomaterials, zeolites and some industrial solid wastes, for 

example, sludge. (Shaobin & Yuelian 2009.) 

 

Zeolitic tuffs are found in many places in the world after the first zeolitic mineral 

found in a volcanogenic sedimentary rock. Natural zeolites are used for many 

areas, such as adsorption, catalysis, building industry, agriculture and soil 

remediation. (Shaobin & Yuelian 2009.) 

 

The bases of natural zeolites are hydrated aluminosilicate minerals that have a 

porous structure with many valuable physicochemical properties such as cation 

exchange, molecular sieving, catalysis and sorption.  Because of zeolites’ 

properties, the natural zeolites used for environmental applications are gaining new 

research interests. In water and waste water treatment, natural zeolites are 

considered a promising way in environmental cleaning process. Natural zeolites 

are being used till now for ammonium and heavy metal removal because of their 

properties of ion exchange. There are still other substances such as anions and 

organic compounds in water system, which natural zeolites and their modified 

forms can be used to remove. (Shaobin & Yuelian 2009.) 

 

A concept of “molecular sieve” was proposed by McBain in 1932. His view is that 

zeolite is a kind of porous substance and the porous size can be changed to fit the 
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molecular size. Zeolite is a kind of molecular sieve, which is the most 

representative. (McBain 1932; Ping 2010.) 

 

In the 1980s, the study and research of zeolites were not only remaining in the 

experimental stage; but also focus on new application. In Japan, natural zeolites 

are used for paper making, fertilizer and soil protection because of the advantages 

of natural zeolites. 90% of natural zeolites are used in construction areas, and 

about 9% are used in advanced industrial areas. (Flanigen et al. 2001.) 

 

The aim of this thesis is to study the properties of natural zeolites, removal heavy 

metals from wastewater by using natural zeolites and comparing the adsorption 

capacity between analcime and ZSM-5. The research questions are the following: 

What are the types of zeolites (commercial and natural)? What are the applications 

of analcime? How the metal ions can be recovered by zeolites? (analcime vs. 

ZSM-5.). How can zeolites be used in water and waste water treatment? How the 

structure of natural zeolites can be modified?  

 

In the experimental part, the work is to research the adsorption capacity of 

analcime and ZSM-5 for cations (eg. Zinc, Chromium and Phosphate). This 

experiment will show the adsorption capacity of cations by using analcime and 

commercial zeolite to find out which one is better and look into how the adsorption 

capacity of analcime and ZSM-5 for cations may vary. 
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2 PROPERTIES OF NATURAL ZEOLITES 

 

 

Many kinds of natural zeolites are found in the world. Clinoptilolite, mordenite, 

phillipsite, chabazite, stilbite, analcime and laumontite are common forms to see. 

But the others, such as, offretite, paulingite, barrerite and mazzite, which are rare. 

(Shaobin & Yuelian 2009.) 

 

2.1 The structure of natural zeolites 

 

The most resourceful natural zeolite is clinoptilolite, which is also widely used in 

many areas. Their relatively independent components are found in zeolite 

structures, which are the aluminosilicate framework, exchangeable cations and 

zeolitic water. In general, the chemical formula of zeolite is Mx/n[AlxSiyO2(x+y)]·pH2O 

where M is (Na, Li, K) and /or (Ca, Mg, Ba, Sr), n is cation charge; y/x = 1-6, p/x = 

1-4. (Ping 2010; Shaobin & Yuelian 2009.) 

 

Zeolites can be divided into shelf, fibrous and flake structures based on the 

characteristics of zeolite minerals. According to the characteristics of zeolite pore 

systems, zeolites can be divided in one-dimensional, two-dimensional and 

three-dimensional. (Kallo 2001.) 

 

The main body of the framework of natural zeolites is aluminum tetrahedron and 

silicon tetrahedron. In the central place of the tetrahedron are aluminum and silicon 

with four oxygen atoms in four vertices. Replaced Si4+ by Al3+ can form a negative 

charge of the tetrahedron framework and can attract the monovalent and divalent 

cations with water together. The most conserved and stable component is 
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aluminosilicate. The water molecules can be bonded to the exchangeable ions and 

framework ions by aqueous bridges in the voids of natural zeolites. The water 

forms bridges between exchangeable cations. The chemical formula and structure 

of important zeolites are showed below in Table 1. (Shaobin & Yuelian 2009.) 

 

TABLE 1. Structural properties of some natural zeolites (Shaobin & Yuelian 2009) 

 

 

The cation that in the extra framework has a weak bonding can be removed or 

exchanged easily by a strong solution with another cation. The basic CEC (cation 

exchange capacity) of a zeolite is the replacement between Al and Si in the 

tetrahedron framework. The more amounts of Al, the more amounts of cations are 

needed to balance the charge of the tetrahedron. The CEC of the natural zeolite is 

about 2 to 4milli equivalents/g (meq/g), which is twice more than bentonite clay. 

The natural zeolites differ from the most noncrystalline ion exchangers such as 

organic resins or inorganic aluminosilicate gels. They have selectivity toward 

competing ions. The cations in the high strength-field hydration sphere can prevent 

them from approaching to the place of charge in the framework, so most cations 

have low strength-field. The cations can be held tightly and exchanged selectively 

by the zeolite. The analcime, for example, has a relatively low CEC, which is about 

2.25meq/g, the selectively cations are Cs > Rs > K > NH4 > Ba > Sr > Na > Ca > Fe > 

Al > Mg > Li. (Frediric 1999.) 
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The structure of zeolite is crystal. The diameter of pore of zeolite is 0.3 to 0.7 

nanometers (lager than the diameter of a water molecule). The property can be 

used to adsorb and filter molecules when the diameters of the molecules are 

smaller than the pores. Hence, the molecules can be screened form the mixture 

and that is called molecular sieving. (St. Clould Zeolite Mining Company 2010; Ping 

2010.) 

 

 

2.2 Ion-exchange property for natural zeolites 

 

One characteristic of zeolite is ion-exchange, which can exchange cations and 

anions with external medium. The ion-exchange functions in the isomorphous 

fashion. The following equation describes the equilibrium of ion exchange: 

 

Where ZA
+ and ZB

+ are the valences of each cation. L is a part of the zeolite 

framework holding unit, which is negative charge. (Shaobin & Yuelian 2009.) 

 

The behavior of ion-exchange depends on many factors such as framework 

structure, charge density and ion shape of the anionic framework, ionic charge and 

concentration of the external electrolyte solution. Because of the different 

environmental situations, there are many kinds of chemical composition of natural 

zeolites, and different cation exchange capacity (CEC) abilities. Table 1 below 

shows the chemical composition and cation exchange capacity (CEC) of different 

kinds of natural zeolites. The CEC values are between 0.6 to 2.3meq/g as can be 

seen from Table 1. (Shaobin & Yuelian 2009.) 

 

The frame of anionic charge can affect the maximum CEC. But it does not mean 
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the zeolites have the same ion-exchange ability when they have the common 

framework. Some zeolites have different ability of ion-exchange even though they 

have the same framework, and the ability is based on the Si/Al ratio. The cation in 

the zeolite structure can be fastened in a right position. In different spatial locations, 

the performances of cations are different. In the ion-exchange process, the reaction 

rates can be controlled through the diffusion velocity. Because of their 

characteristics, natural zeolites play a role as an inorganic ion exchange agent in 

environmental protection. Zeolites can be used to treat industrial sewage which 

contains heavy metal cations and anions, and radioactive sewage. (Curkovic, 

Cerjan-Stefanovic & Filipan 1997; Ping 2010.) 

 

 

2.3 Ion-exchange selectivity property for natural zeolites 

 

In the ion-exchange process, a few amounts of metal can be exchanged into the 

zeolites easily, but other non-metals cannot be exchanged or exchanged after 

metal cations exchanging. Because of the amount of metals can be exchanged by 

zeolites easily, the ionic exchange process of zeolite has selectivity. Ion exchange 

selectivity can be affected by factors such as the zeolite crystal structure, the cation 

properties (ionic radius and hydration energy) and the ion-exchange situations. 

(Semmens & Seyfarth 1978; Ping 2010.) 

 

The hydration free energy of cation exchange and the radius of hydrated cations 

are mostly the factors which affect to the high Si/Al ratio of the selectivity of cations 

of zeolites. In other words, the low Si/Al ratio depends on the crystal ionic radius of 

cations and the electrostatic attraction size between the zeolites anion positions 

and the cations. (Semmens & Seyfarth 1978.) 
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Because of ion-exchange conditions such as the temperature, pH and 

concentration ion-exchange selectivity can be changed. As seen from Table 2, the 

monovalent cations are better than the divalent cations of selectivity ability.  

 

TABLE 2. The selective ability of heavy metals ion-exchange comparison (adapted 

from Wang, Feng, Gu & Wu 2006; Ping 2010) 

 

Zeolite Selectivity series 

Analcime Pb2+ > Cu2+ > Zn2+ > Ni2+ 

Mordenite Cs+ > Rb+ > K+ > NH+ > Na+ > Li+ 

Chabazite Ti+ > K+ > Ag+ > Rb+ > NH4+ > Pb2+ > Na+ > Ba2+ > Sr2+ > 

Ca2+ > Li+ 

Clinoptilolite Cs+ > Rb+ > NH4+ > K+ > Na+ > Li+ (alkali metal) 

Ba2+ > Sr2+ > Ca2+ > Mg2+ (alkaline earth metal) 

 

 

2.4 Adsorption capacity for natural zeolites 

 

One of good adsorbents in wastewater treatment is activated carbon used for the 

sewage containing heavy metals. In the removal of heavy metals from the 

wastewater area, commercial zeolites are found working more efficiently and 

cheaper than the activated carbon. By decreasing the particle size of zeolite, the 

zeolites can improve the performance of the zeolite adsorption, but finer particles in 

the column can reduce the permeability in the waste water treatment. (Yong, Jae, 

Seon, Jung & Young et al. 2006.) 

 

Because the generation of the commercial zeolite is expensive, mixtures of zeolites 

and some cheaper organic and inorganic materials (such as fly ash, clays, 
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polymers and Portland cement) are used instead of the commercial zeolites for the 

specific pollutants to reduce the cost of materials. Portland cement is one of the 

most common materials which are known by its solidification and stabilization. In 

the mixture, it is used to supplement zeolite adsorption purpose. (Yong, Jae, Seon, 

Jung & Young et al. 2006.) 

 

Zeolites have the characteristic of a high adsorption capacity at the lower partial 

pressure and higher temperature of, because of the electric field in the cavities and 

polar actions of zeolites. In the process of adsorption, one common factor is the 

size of zeolite pore, but there are other factors as well such as the molecules of 

polarized groups or the molecules containing polar groups, which can react with the 

surface of zeolite strongly. The reason why the zeolites have this characteristic is 

that the zeolite itself is also a kind of polar substance. A strong partial positive 

charge is given by a cation in the electrostatic induction way can polarize the 

polarized molecule or attract the negative polar molecule in center. When the 

polarity is stronger or molecules can be polarized more easily, zeolite can adsorb 

more susceptibly. There is a strong affinity between zeolite and H2O molecule, 

because the H2O molecule is a strong polar molecule. (Gunter & Zanetti 2000.) 
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3 ANALCIME AND ZSM-5 

 

 

Analcime or also can be called analcite (from the Greek, means “weak”) is a kind of 

grey, white or colorless tectosilicate mineral as GRAPH 2 shows below, 

 

 

 

GRAPH 2. Analcime from analcime basalt. (Photo: Paleonet 2006) 

 

 

3.1 Components and structure of analcime and ZSM-5 

 

There are hydrated sodium aluminum silicates which exist in cubic form in 

crystalline in analcime. The chemical formula of analcime is NaAlSi2O6·H2O. A 

http://upload.wikimedia.org/wikipedia/commons/a/a8/Analcym,_Oregon_USA.jpg


11 

small amount of potassium and calcium are in the analcime. Silver-bearing 

synthetic variety exists as well, but the main part is sodium. The structure and 

chemical properties are more similar to the feldspathoids, even though they are 

classified to the zeolite mineral. The analcime can be found in the analcime basalt 

and other alkaline igneous rocks. It also can be found in prehnite, calcite and 

zeolite as the cavity and vesicle fillings (Cornelius.S. & Cornelis 1985.).  

 

It was a milestone in zeolite mineralogy that Taylor (1930) determinated the 

structure of analcime. Because it is not only the first solved zeolite structure, but 

also the basis to definition a new zeolite structure which is based on the discovery 

of the (Si, Al)O4 tetrahedron framework arrangement. Around the tetrad screw axes, 

there is a singly-connected 4-rings arranged in chains in the framework of analcime. 

41 and 43 screw axes are alternated and they are parallel chains. Each parallel 

chain is linked to the crystallographic axe and each 4-ring is a part of three mutually 

perpendicular chains. Each cage contains Na-cations and water molecules 

interconnect chains and in the location of T-site, it acts as a bridge connecting 3 

cages. The Si and Al distribution is random, because the T-site in the cubic space 

group is equal to the others. In the centre of the cages there are Na-cations (yellow 

in the graph) and in a unit of cell there are 24 cages. Hence, the Na-cations 

(generally 16, but can be 12 to 17) also distribute randomly in the cages, and water 

molecules (blue in the graph) occupy in the 16 sites randomly as well. (Colella, 

de’Gennaro & Aiello 2001.) There is a unit of cubic model of analcime as can be 

seen from GRAPH 3. 
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GRAPH 3. A unit of analcime in cubic form (Photo:Commission on natural zeolites) 

 

There is an idealized unit cell of Na16Al16Si32O96·16H2O (Meier, Olson & Baerlocher 

1996) and it is widespread product of low-temperature hydrothermal activity. 

(Amethyst Galleries’ Mineral Gallery 2006; Ping 2010.)  

 

ZSM-5 zeolite is used in the process of conversion and production as the adsorbent. 

The ZSM-5 zeolite is divided into aluminosilicate zeolite normally. In the ZSM-5 

zeolite, the pentasil units groups are the main parts, and they are linked by the 

oxygen atoms which are act as the bridge. One pentasil unit is composed by eight 

five-rings linked together. Normally the Al or Si atom is on the top of the eight rings 

and can be bonded by oxygen. (Lermer, Draeger, Steffen and Unger 1985.) 

 

 

3.2 Properties of analcime and ZSM-5 

 

Analcime exists in nature in different types, and the properties also differ with other 

kinds of natural zeolites. There are some macroscopic and microscopic properties 
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to realize analcime. Table 3 shows the detailed properties of analcime. (Mineral 

Data Publishing 2001.) 

 

TABLE 3. Analcime Properties (adapted from Mineral Data Publishing 2001; Ping 

2010) 

Physical properties  

Mineral group  Zeolite mineral  

Color  Clear, white or gray, with greenish, yellowish  

Luster Vitreous  

Transparency  Crystals are transparent to translucent  

Hardness  5 ～ 5.5 

Specific gravity  2.24 ～ 2.29 

Refractive index  n = 1.479 ～ 1.493 

Fusibility  3.5 

 

Chemical component 

Chemistry  NaAlSi2O6·H2O, Hydrated Sodium Aluminum 

Silicate  

Unit cell chemical 

formula  

Na16Al16Si32O96·16H2O 

Variable component  Si/Al = 1.8 ～2.8; H2O = 14 ～ 18 

Crystallographic data  

Symmetry  Cubic  Space group  Ia3d 

Structure type  ANA  Cell volume  2.590Å3 

Density  2.25 g/cm3 Unit cell 

constant  

a = 13.723 ～ 13.733Å 

 

Structure properties  

Density of framework  1.85 g/cm3 
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Pore opening  2.6Å 

Maximum CEC  4.9 meq/g 

 

It is more important for ZSM-5 zeolite to have not only Si4+ and Al3+ ions, but also 

other cations in its framework owning to its good catalytic performance and 

structure properties. The iron cations are provided that can be exchanged into 

ZSM-5 zeolites; the cations like iron cations other than Si4+ and Al3+ can fine-tuning 

the acidic sites strength and form bifunctional groups. Based on this property, the 

ZSM-5 zeolite can be modified the cavities and fit the shape selectivity better; and 

the modified ZSM-5 also can increase the concentration of Al3+ ions in the 

framework to prevent the transition temperature transporting from monoclinic to 

orthorhombic phase. The lowest Si/Al ratio known is 10, but there are some other 

cations found instead Al3+ in the framework to fit different situation. (Vetrivel, Pal & 

Krishnan 1991.) There are some ratios known below in TABLE 4. 

 

TABLE 4. Different Cations’ ratio in ZSM-5 zeolites (adapted from Vetrivel, Pal & 

Krishnan 1991) 

X/Y Lowest ratios 

Si/Al 10 

Si/Ti 67.5 

Si/Fe 36 

Si/B 16.1 

Si/Ga 10.7 

Si/Ge 2 
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3.3 The characteristics of analcime and ZSM-5 

 

Barrer (1950, 2342-2350.) found two characteristics in analcime ion-exchange, so 

that analcime can be used as an ion-sieve. One of the characteristics is that the 

analcime can exchange ions at room temperature. When the temperature 

increases, the ion-exchange occurs more easily. The reason is that there are 

smaller pores in analcime. (Barrer & Hinds 1953.) Barrer and Hinds found that, 

when the transition metals were exchanged by sodium-analcime, the amount of 

siliceous zeolites was increased; on the other side, Co2+, Ni2+, Cu2+ and Zn2+ ions 

were less favored in exchanging with sodium. When a pair of cations exchange 

with analcime, the preference of analcime depends on the size of the cations, the 

lower framework charge (high Si/Al) prefers the large cation and the higher 

framework (low Si/Al) prefers the smaller cation. K, Ti, Rb, NH4 and Ag were 

reported in the ion exchange isotherms with analcime by Barrer and Hinds. It was 

hard for very small Li+ to exchange with analcime because of its high energy of 

hydration in solution. Barrer and Hinds also found that K+, Ag+, Tl+, NH4+ and Rb+ 

cations were very easy to be exchanged by Na-analcime at high level of 

temperature; but only small amount of Sr, Mg, Co and Ni can be exchanged by 

Na-analcime. (Sudaporn, Kunwadee & Alan, 2004.) The other characteristic is that 

the hysteresis phenomenon can easily appear in the ion exchange process. (Barrer 

& Hinds 1953.) Analcime was found to be potentially used in the disposal of storage 

and titrated water by Dyer and Yusof (1987, 196; 1989, 129) after researching 

extensively on cations. 

 

The ZSM-5 zeolite usually plays a role of a catalyst. By using organic silica, the 

ZSM-5 zeolite can be synthesized. The diameter of the pores in ZSM-5 is increased 

by 2 times and the range of diameter is augmented to 1500 Å from 5 Å. ZSM-5 also 

has other advantages such as stable thermal, flexibility and certain shape 

selectivity. Depends on these advantages, ZSM-5 zeolites are widely used in the 
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catalyst and molecular sieve area.  (Viswanadham, Kamble, Singh, Kumar and 

Dhar 2008.) 

 

The reaction of preparing ZSM-5 is:  

SiO2 + NaAlO2 +NaOH + N(CH2CH2CH3)4Br+H2O = 

ZSM-5 + analcime + alpha-quartz  

The conditions under the reaction are high temperature and pressure. (Pelriae, 

Treaton.N.J 1978.) 

 

It was found that cobalt is a very good catalyst in some typical reactions; one of the 

reactions is Co over ZSM-5 zeolite, and this seems to be the best one in the 

reactions. The Co-ZSM-5 zeolites have other good characteristics as well, 

including high activities, high selectivity on linear hydrocarbons and low activities in 

the water-gas shift reaction. Hence, the Co-ZSM-5 zeolite is one of the best 

catalysts for the Fischer-Tropsch synthesis (FTS) through the natural gas 

conversion. The Co-ZSM-5 is moreover used in the autoxidation of alkanes and 

alkylaromatics reactions. (Pierella, Saux, Fernández GarcÍa, Bercoff & Bertorello 

2002.) 
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4 MODIFICATIONS OF NATURAL ZEOLITES AND ANALCIME 

 

 

Activated zeolite is formed through a variety of special processes of natural zeolites 

activation. 

 

4.1 Activation processing of zeolites 

 

Because zeolites can be activated, there should be a new CEC (cation exchange 

capacity) adsorption capacity. Activated zeolites have a better process of ion 

exchange performance. Many kinds of contaminants in sewage can be removed by 

activated zeolites. To some extent, the performance of activated zeolite is similar or 

better than activated carbon, and the cost is lower than that of activated carbon. 

Activated zeolite can be formed in many ways such as acid, base or salt treatments 

and high-temperature calcinations. The hybrid method can make the activation of 

zeolite more efficient than others. (Xing, Ding & Feng 2000, Ping 2010.) 

 

 

4.1.1 Acid treatment and high-temperature calcinations 

 

In the acid medium, the zeolite structure cannot be damaged because of the good 

acid resistance in natural zeolite. But cation such as Na+, K+ can be exchanged by 

hydrogen. The hydrogen ion in the activated zeolite can be bounded via the heavy 

metal cation when the zeolites and heavy metal ions occur ion-exchange. (Xing et 

al. 2000; Ping 2010.) 
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The first aim of acid treatment is to remove the impurities and substances from the 

cavities and pores of zeolite such as Fe2O3. The second purpose is to make more 

effective space, so that the large radius of cations such as Ca2+, Mg2+ and Na+, can 

be displaced by H+, and this is called proton exchange. But there is also a 

disadvantage in the dealumination and reduction of thermal stability of acid 

treatment. (Xing et al. 2000.) 

 

The temperature is normally controlled between 350℃ to 580℃ in the calcination 

method in the air atmosphere. The time is from 90 minutes to 120 minutes. The 

purpose of high temperature calcinations is to remove the impurities so that the 

cavities and pores are empty in zeolite. (Xing et al. 2000.) 

 

Kurama, Zimmer and Reschetilowski (2002, 301-305) reported that the natural 

Turkish clinoptilolite was modified into H-form in two methods. The first one was 

ammonium ion exchange (NH4+) by using the high temperature calcinations, and 

the other method was using the acid method directly with HCl. The data showed 

that through the acid method, the surface area and pore volume of clinoptilolite 

were increased. The volumes of pores were increased to 0.25 from 0.13 ml/g and 

the surface areas were increased from 35 to 315 m2/g. (Ping 2010.) 

 

 

4.1.2 Salt and base method 

 

Because the Ca2+ and Mg2+ can be exchanged by K+, NH4+ and Na+, the salts NaCl, 

KCl and NH4Cl can be used in the salt treatment generally. Curkobic et al. (1997, 

1379-1382) compared the effect of lead and chromium by using natural zeolites 

and activated zeolites, which were treated by NaCl. The data showed that the 

NaCl-activated zeolites’ ion exchange capacity and removal efficiency of lead and 
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chromium were increasing. NaOH solution is generally used in the base treatment. 

Hu, Wang and Shao (1997, 5-6) reported that natural zeolites were treated in the 

NaOH solution. When the concentration of NaOH was 3-5 mol/L, the process 

temperature was at 95 ± 5℃ and the ratio of liquid-solid was 3.5: 1, the activated 

zeolites had a good adsorption of Cr3+, Cd2+ and Pb2+. (Ping 2010.) 

 

 

4.2 Surfactant modification of zeolites 

 

The AlO4 tetrahedron part with a negative charge in the zeolite can exchange 

cations. The adsorption capacity of natural zeolites for anions and organic 

compounds is poor in the solution. Therefore, the surface properties should be 

changed. Organic surfactants are used as one modification method. The surfactant 

modified zeolite (SMZ) can adsorb anions, cations and non-polar organic 

molecules which are in aqueous solutions. There are some common surfactants 

that have been used in the natural zeolite modification: cetyltrimethyl ammonium 

(CTMA), hexadecyltrimethyl ammonium bromide (HDTMA), 

octadecyldimethylbenzyl ammonium (ODMBA), n-cetylpyridinium (CPD) 

benzyltetradecyl ammonium (BDTDA) and stearyldimethylbenzyl ammonium 

(SDBAC). (Wang &Peng 2009; Ping 2010.) 

 

The cationic organic surfactants have hydrophilic and hydrophobic properties as 

well. The surfactant molecules in low concentration conditions can start to form 

micelle in the solvent, which is called critical micelle concentration (CMC). 

(Bowman 2003.) 

 

The hydrophilic group or the hydrophobic tail group can bring the molecules into 

water. When the positive charge group or the hydrophobic group is trying to prevent 
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the molecules from dissolving into water, the molecules can be arranged on the 

surface of a zeolite. Hence, there will be a “monolayer” or “hemimicelle” directly on 

the surface of a zeolite. When the adsorption reaches the maximum point, the 

surfactant concentrations are higher than the critical micelle concentration (CMC). 

Hence, the surfactant molecules cannot concentrate on the surface of zeolite any 

more. (Haagerty & Bowman 1994.) 

 

The hydrophobic group has a characteristic which is hydrophobic interaction. The 

hydrophobic group can do its best to get away from water condition under this 

characteristic. In this solution condition, the activated molecules on the surface are 

self-polymerization and take shape to an “admicelle” or “bilayer”. Therefore, SMZ 

are built by complex functional groups for positively charged exchange sites formed 

by the positive groups –NR+. (Wang & Peng 2009; Ping 2010.) 

 

 

4.3 Ti and V modification method of analcime  

 

Through incorporating Ti or V, the synthetic analcime can be modified. The starting 

material selected was Egyptian kaolin. The ways such as XRD (X-Ray diffraction), 

SEM (scanning electron microscope), EDX (energy dispersive X-Ray), ESR 

(electron spin resonance), TGA (thermal gravimetric analysis) and DSC (differential 

scanning calorimetry) were used to test the ability of removal of Cu2+, Ni2+ and Pb2+ 

of the modified analcime, and the results showed that the modified analcime could 

remove the ions well. Under investigation, the preference towards to the heavy 

metal ions depends on the amount of Ti and V used. When the amount of Ti and V 

increases, the size of analcime crystal was decreased. (Hegazy, Maksod & Enin 

2010.) 

 



21 

4.4 Modification of ZSM-5 zeolite 

 

The Si/Al atomic ratio of ZSM-5 can be decreased significant by using 0.8M sodium 

carbonate and 0.01M sodium hydroxide aqueous solution. The sodium orthosilicate 

and its dimer, sodium pyrosilicate are removed from the ZSM-5 zeolite framework 

selectively. The diameter of micropores is 0.49 nm, which are much smaller than 

the original micropores after desilication process. The ion-exchange activity of 

ZSM-5 zeolite is much higher than the parent one, because of its increasing density 

of Al tetrahedral sites. (Van Mao, Le, Ohayon, Caillibot, Gelebart & Denes 1997.) 
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5 APPLICATIONS OF NATURAL ZEOLITES FOR WATER TREATMENT 

 

 

As the development of industrialization and urbanization increasing, the water 

pollution is increasing. Environment is damaged greatly by the sewage. And water 

pollution includes heavy metals, inorganic and ammonia contaminants. In recent 

years, many scientists have tried to find out the low-cost and metalloid mineral 

adsorbents. Zeolite is a good choice because of the unique structure. Zeolite has 

good ion exchange and adsorption properties and can save much money.  

 

In the past few decades, zeolite has been used widely in controlling urban and 

industrial sewage as ion exchange agents, adsorbents, molecular sieves, 

agriculture and horticulture because it has special physical and chemical properties. 

Based on these applications, however, the most common way to use zeolite is the 

wastewater treatment, and the zeolite plays a role on adsorption and ion exchange.  

 

 

5.1 Adsorption capacity of natural zeolites for heavy metal ions 

 

The ions Na+, K+ and Ca2+ are the most suitable cations to remove the heavy metal 

cations in the industrial wastewater because the exchangeable ions cannot 

damage the environment. One usage of natural zeolite adsorption is to remove the 

radioactive strontium (90Sr) and cesium (137Cs) in the sewage. It is easy for zeolite 

to remove the ions Ba2+, Cd2+, Ni2+, Zn2+ and Pb2+, even though the methods of 

experiment and industry are different. (Ouki & Kavanagh 1999.) 

 

Panayotoval (2001, 267-272) modified the Bulgarian natural zeolites to remove the 
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heavy metals and used in several experiments as well. To remove Ni2+ ions, the 

natural zeolites were modified by the acid method or base method with the solution 

of NaOH, NaCl, HCl or CH3COONa in a batch process. The natural zeolites worked 

in the first order irreversible reactions in the uptake process following the Langmuir 

adsorption isotherm, which could describe the uptake equilibrium well. The 

adsorption capacity could be increased 25% - 30% by CH3COONa and NaCl when 

adsorb Ni2+ cation. 

 

The natural zeolites, modified by NaCl, CH3COONa and NaOH, have a 

characteristic that they can raise the adsorption capacity in the adsorption of Cu2+. 

Natural zeolites are modified by salt and base to adsorb Cu2+ and precipitate 

copper have almost the same effect. There is not much impact when the ions Ca2+ 

and Mg2+ both exist in the solution during the adsorption. (Panayotoval 2001.) 

 

In the second order of irreversible reactions, the kinetic equation can describe the 

adsorption of Cu2+ ion well in the uptake process using natural zeolite. In the 

adsorption of Cd2+, the equation shows the kinetics and thermodynamics both in 

the uptake process by using both natural and modified zeolites. The best way to 

describe is the Freundlich adsorption isotherm from data. The amount of Mg2+ and 

Ca2+ are reduced in the process of adsorption of Cd2+ - and NaCl - and CH3COONa 

-modified zeolites have higher ability of uptake. (Panayotoval 2000.) 

 

Zheng, Wang and Zhang (1998, 24-25) tested the adsorption of nickel from 

wastewater by using natural zeolites. They tested the amount of zeolites and nickel 

ratio, the wastewater pH and the efficiency of the reaction. The experiment showed 

that, under the condition of pH ≥ 4 and Ni2+ ≤ 100mg/L and mass ratio of 

nickel/zeolite is 1: 800, the efficiency of Ni2+ removing is more than 99%. (Ping 

2010.) 

 

The natural zeolite with the formula Na15.04[Al15.04Si32.96O96]·16H2O in the crystal 
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form called analcime can be used to remove Ag+ ions in the aqueous solution. 

Seryotkin (2000, 265-269) reported the studies of Ag exchange by analcime. The 

items studied were the analcime crystal size, the duration of first order treatment, 

second order treatment, temperature for both orders and the methods used to 

measure results. In the experiment, the size of analcime crystal was 0.20-0.25mm, 

the ratio of Ag+: Na+ was 100: 1 in the 4N-AgNO3 solution used in the first order 

treatment. The duration time and temperature were two weeks and 145℃, then the 

samples after the first order were washed by hot distillated water in autoclave with 

24 hours at 140℃. The ways to measure the results were both thermogravimetry 

(TG-50, TA 3000, Mettler.) up to 850℃ and the weight loss during 1 hour burning at 

900℃, in order to form 16H2O in each unit. Therefore, the formula of Ag-analcime 

can be presented as Ag15.04[Al15.04Si32.96O96] ·16H2O. The data showed that the 

discrepancy in Al populations was Δ ≤ 0.04 and for Ag-analcime was 0.04-0.06 due 

to the refinement uncertainties.  

 

Tangkawanit (2005, 171-175) worked on the selectivity series for Pb, Cu, Ni and Zn 

with analcime. He studied the ion exchange of Cu2+, Ni2+, Pb2+ and Zn2+ with 

analcime (ANA). The analcime was produced from an economically available Thai 

perlite. The ions Pb2+, Cu2+, Zn2+and Ni2+ were added into the Na-analcime. The 

results showed that the selectivity of Na-analcime to the ions was Pb2+ > Cu2+ > 

Zn2+ > Ni2+, the enthalpy of cation hydration determined the selectivity of zeolites.  

 

Al lvarez-Ayuso, Garclla-Slanchez & Querol (2003, 4855-4862) studied the 

adsorption capacity ability of natural clinoptilolite and synthetic (NaPl) zeolite on the 

ions of Cr (III), Ni (II), Zn (II), Cu (II) and Cd (II) in order to consider the clinoptilolite 

purification ability on the removal heavy metal ions in the sewage. The 

concentrations and the solid/liquid ratios of the metal ions in solution ranged from 

10 to 200 mg/l and 2.5 to 10 g/l respectively. The Langmuir model was a good way 

to describe all sorption processes and measured metal sorption sequences. The 

studies showed that the sorption capacity of synthetic zeolite (bCr = 0.838 mmol/g, 
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bNi = 0.342 mmol/g, bZn = 0,499 mmol/g, bCu = 0.795 mmol/g, bCd = 0.452 mmol/g) 

was 10 times better than the natural clinoptilolite (bCr = 0.079 mmol/g, bNi = 0.034 

mmol/g, bZn = 0,053 mmol/g, bCu = 0.093 mmol/g, bCd = 0.041 mmol/g).  

 

 

5.2 Adsorption capacity of natural zeolites for inorganic anions 

 

Cheng prepared modified natural zeolites, which modified by the cationic surfactant 

Bromohexadecyl pyridine (CPB) and hexadecyltrimethyl ammonium bromide 

(HDTMA) to treat Cr (VI) sewage. The results showed that the efficiency of treating 

Cr (VI) wastewater by using CPB is 4-5 times faster than using HDTMA. Under the 

ideal condition of the CPB method to modify the natural zeolites, the concentration 

of CPB was 1.5%, the temperature was 25 ℃ and time was 36 hours. The best 

condition of using CPB method with modified natural zeolites to treat the Cr (VI) 

wastewater was 30 minutes and the temperature was 25℃ during the adsorption; 

the mass of modified natural zeolite was 2g, the component of sewage contained 

Cr (VI) was 50 mg/l in 25 ml. The result was that the rate of removal Cr (VI) can 

reach 90% or more. (Cheng 2005; Ping 2010.) 

 

Zhang, Cui and Xiao (1999, 116-120) reported that the adsorbents of activated 

natural zeolites had a good performance on the removing of phosphorus with the 

capacity of 15 mg/g or more in the wastewater. Li, Xiao and Yu (1994, 173-176) 

investigated that the fluoride ions can be absorbed by modified natural zeolite less 

than 1 mg/l and water hardness and alkalinity can also be reduced.  
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5.3 Adsorption capacity of natural zeolites for ammonium 

 

Ammonia-nitrogen can exist in water in two forms: One is free ammonia (NH3) and 

the other one is ammonium ion (NH4
+). The substance of ammonia-nitrogen comes 

in two sources; one is from industrial sewage such as monosodium glutamate 

wastewater and coal carbonization wastewater, and the other one is from the urban 

wastewater. Mostly ammonia-nitrogen comes is from the decomposition of proteins 

in water, but sometimes is from the nitrite nitrogen and nitrate nitrogen conversion. 

When the concentration of ammonium in water is high, the oxygen dissolving ability 

of water is decreased and the condition leads to be toxic for the aquatic organism. 

Ammonia can be adsorbed by zeolites easily, because ammonia is a polar 

molecule, and its size is less than the pore and cavity of zeolites. (Tang, Wu, Shu 

and Liu 2006.) 

 

Zhao and Sun (2001, 385-388) reported that the experiment of low concentration of 

NH4
+ removed by natural zeolites in water. The items they studied were natural 

zeolite particle size, initial concentration of NH4
+ and pH, the concentration of 

renewable liquid Na+ and the flow velocity. There was only a small amount of NH4
+ 

removed, but the natural zeolites can regenerate and used for recycling for 18 

times repeatedly, the exchange capacity of NH4
+ ion was only 4% less than before. 

Based on the characteristics, the natural zeolites were used in the deamination 

industry to remove the microscale NH4
+. (Ping 2010.) Zhang, Wen and Wu (1999, 

14-17) reported that there was a good effect on the treatment of removing 

ammonia-nitrogen with NaCl-natural zeolite regeneration in the sewage. 

 

The regeneration methods used to adsorb NH4
+ are: chemical, calcinations 

regeneration and bio-renewable. The zeolites, which have been used to remove 

NH4
+, can be treated again with NaOH and NaCl solutions to replace NH4

+ ions. 

The bio-renewable method is to use bacteria to nitrify NH4
+ ions to take them out of 
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zeolites and form to nitrate. The calcinations regeneration method is that roasted 

the zeolites by a range of temperature between 300-600℃ to change the NH4
+ to 

NH3. (Abd El-Hady, Grunwald, Vickova & Zeithammerova 2001; Ping 2010.) 

 

 

5.4 BET measurement theory 

 

BET theory was first presented by Stephen Brunauer, Paul Hugh Emmett and 

Edward Teller in 1938. “BET” comes from the first letter of their family names. They 

used this theory to explain the molecule adsorption in a solid surface, and now this 

measurement is one of the basic methods to analyze the substance adsorption. 

(Brunauer, Emmett & Teller 1938.) Using the BET measurement, the samples can 

be analyzed in the surface and porosity field. In the vacuum chamber situation, the 

adsorbate particles can be adsorbed both onto the surface and into the internal 

porous. The gas absorbate particles’ pressure is measured to determine the 

adsorption isothermal in the chamber. Then the adsorption isothermal can be used 

to determine the volume of the gas in the chamber and the gas adsorbents can 

form a monolayer on the particle surface. (Malvern 2011.) 

 

 

5.5 AAS measurement theory 

 

The AAS measurement is a more and more popular and important way to measure 

the substance particle size in the past few years. Laser diffraction can be used to 

measure the particle size through the light scattering and refraction when the laser 

beam comes onto the particles, but it does not mean laser diffraction can measure 

the particle size distribution. The higher refractive index the particles have, the 
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more light can be scattered. (Wedd 2003.) 
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6 EXPERIMENT TO DETERMINE ADSORPTION CAPACITY OF ANALCIME 

AND ZSM-5 

 

 

The experiment is to measure the adsorption capacity of analcime and commercial 

zeolite in the experimental work by using aqueous solutions with Cu2+ and Ni2+, 

and compares the adsorption capacity of analcime and ZSM-5 zeolites in order to 

find out which one is better under the same condition.  

 

Firstly, the analcime was washed in a 500 ml beaker by distilled water and filtered 

in vacuum. Secondly, the analcime was dried in the oven at 110 ℃ and left it in the 

oven for one day to make it as dry as possible.  

 

The standard Cu2+ and Ni2+ aqueous solutions were prepared with a concentration 

of 15 ppm for each aqueous solution in the volumetric flasks. The tested aqueous 

solutions of Cu2+ and Ni2+ were prepared as well in the concentration series of 5, 10, 

15 ppm in 100 ml volumetric flasks.  

 

The 300 ml aqueous solution of Cu2+ with concentration of 15 ppm was put into the 

500 ml Erlenmeyer flask, and stirred with a magnetic stirrer with a speed of 250 rpm. 

Then the analcime with a mass of 3 g was put into the Erlenmeyer flask and 

recorded the time. The samples of 5 ml were taken at 0, 2, 5, 10, 30, 60 and 180 

minutes by using 5 ml volumetric pipettes. The samples was vacuum filtered and 

put into test tubes.  
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6.1 Results of adsorption ability of analcime and ZSM-5 

 

Cations of Ni2+ and Cu2+ were already adsorbed by analcime and ZSM-5 separately 

at 0, 2, 5, 10, 30, 60, 180 minutes. The concentrations of the solutions after 

adsorbing were measured by AAS. The goal was to determine the amount of 

cations which the cations were absorbed by analcime and ZSM-5 at different time. 

TABLE 5 shows the analysis of Ni2+ and Cu2+ cations concentration by analcime. 

 

TABLE 5. Ni2+ and Cu2+ concentration analyzed by analcime 

The cation of Ni2+ 

Time [min] Test [ppm] Absorbed part [ppm] Absorbed percent [%] 

0 4.88 15 – 4.88 = 10.12 10.12/15 * 100% = 67.47 

2 4.11 15 – 4.11 = 10.89 10.89/15 * 100% = 72.60 

5 3.64 15 – 3.64 = 11.36 11.36/15 * 100% = 75.73 

10 3.20 15 – 3.20 = 11.80 11.80/15 * 100% = 78.67 

30 2.95 15 – 2.95 = 12.05 12.05/15 * 100% = 80.33 

60 2.87 15 – 2.87 = 12.13 12.13/15 * 100% = 80.87 

180 2.07 15 – 2.07 = 12.93 12.93/15 * 100% = 86.20 

The cation of Cu2+ 

Time [min] Test [ppm] Absorbed part [ppm] Absorbed percent [%] 

0 3.79 15 – 3.79 = 11.21 11.21/15 * 100% = 74.73 

2 3.10 15 – 3.10 = 11.90 11.90/15 * 100% = 79.33 

5 2.39 15 – 2.39 = 12.61 12.61/15 * 100% = 84.07 

10 1.74 15 – 1.74 = 13.26 13.26/15 * 100% = 88.40 

30 0.60 15 – 0.60 = 14.40 14.40/15 * 100% = 96.00 

60 0.27 15 – 0.27 = 14.73 14.73/15 * 100% = 98.20 

180 0.26 15 – 0.26 = 14.74 14.74/15 * 100% = 98.27 

 

And TABLE 6 shows the analyzing of Ni2+ and Cu2+ cations concentration by 
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ZSM-5. 

 

TABLE 6. Ni2+ and Cu2+ concentration analyzed by ZSM-5 

The cation of Ni2+ 

Time [min] Test [ppm] Absorbed part [ppm] Absorbed percent [%] 

0 4.76 15 – 4.76 = 10.24 10.24/15 * 100% = 68.27 

2 4.04 15 – 4.04 = 10.96 10.96/15 * 100% = 73.07 

5 2.92 15 – 2.92 = 12.04 12.04/15 * 100% = 80.27 

10 1.79 15 – 1.79 = 13.21 13.21/15 * 100% = 88.07 

30 1.47 15 – 1.47 = 13.53 13.53/15 * 100% = 90.20 

60 1.06 15 – 1.06 = 13.94 13.94/15 * 100% = 92.93 

180 1.06 15 – 1.06 = 13.94 13.94/15 * 100% = 92.93 

The cation of Cu2+ 

Time [min] Test [ppm] Absorbed part [ppm] Absorbed percent [%] 

0 1.90 15 – 1.90 = 13.10 13.10/15 * 100% = 87.33 

2 0.46 15 – 0.46 = 14.54 14.54/15 * 100% = 96.93 

5 0.38 15 – 0.38 = 14.62 14.62/15 * 100% = 97.47 

10 0.20 15 – 0.20 = 14.80 14.80/15 * 100% = 98.67 

30 0.11 15 – 0.11 = 14.89 14.89/15 * 100% = 99.27 

60 0.10 15 – 0.10 = 14.90 14.90/15 * 100% = 99.33 

180 0.10 15 – 0.10 = 14.90 14.90/15 * 100% = 99.33 

 

As the analysis shows, the maximum adsorption percent of nickel and copper from 

analcime are 86.20% and 98.27%, and the maximum adsorption percent of nickel 

and copper from ZSM-5 are 92.93% and 99.33%. The data shows that the ability of 

adsorption of ZSM-5 is much greater than that of analcime, both on copper and 

nickel cation, and after 60 minutes, the concentration of cations change a little. In 

ZSM-5, the concentrations of nickel and copper cations are the same. 
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The adsorption ability of Cu2+ and Ni2+ by analcime and ZSM-5 is shown by the 

following GRAPH 4 and GRAPH 5.  

 

GRAPH 4. Concentration of Cu2+ and Ni2+ after adsorption by analcime 

 

 

GRAPH 5. Concentration of Cu2+ and Ni2+ after adsorption by ZSM-5 

 

 

From GRAPHs 4 and 5, it can be seen that the both adsorption abilities of analcime 

and ZSM-5 of copper ion are better than that of nickel ion. The following GRAPH 6 

and GRAPH 7 below show that the adsorption ability between analcime and ZSM-5 
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on the same ion cation Cu2+ and Ni2+ separately. 

 

GRAPH 6. Concentrations of Cu2+ in analcime and ZSM-5 

 

 

GRAPH 7. Concentrations of Ni2+ in analcime and ZSM-5 

 

 

From GRAPH 6 and GRAPH 7, it can be seen that the adsorption ability of Cu2+ 

and Ni2+ of ZSM-5 is much better than that of analcime. Cu2+ and Ni2+ of ZSM-5 are 
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more rapidly adsorbed than that of analcime, especially copper in 2 minutes, the 

concentration from 15ppm drop to 0.46ppm. But after 10 minutes, the adsorption 

level of copper is very small. Even though the adsorption level of copper from 

analcime is changed more slowly, finally the adsorption ability is closed to that from 

ZSM-5. The Ni2+ cation adsorbed by ZSM-5 is also greater than that by analcime. 

The nickel cation is absorbed by ZSM-5 rapidly between 0 to 10min, but the 

adsorption level change to be smaller after 50 minutes adsorption. But the nickel 

cation adsorbed by analcime changes quickly in the first 10 minutes, and then 

keeps changing till to the end of the process. The adsorption ability of ZSM-5 and 

analcime on Ni2+ cation are different. At the end of point of the concentration of 

nickel cation from ZSM-5 and from analcime, it can be seen clearly that the ZSM-5 

has much greater adsorption ability than analcime.  

 

Ion-exchange can affect the adsorption of analcime and ZSM-5 as well. The ion 

exchange selectivity series shows that the selectivity ability of Cu2+ is better than 

Ni2+ both in analcime and ZSM-5. Thus the copper cation in the aqueous can be 

exchanged more easily and quickly than nickel cation.  
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7 DISCUSSION AND CONCLUSIONS 

 

 

The purposes of studies are the properties of natural zeolite, analcime and ZSM-5, 

the adsorption ability of analcime and ZSM-5. The experimental part of the work is 

to measure the adsorption capacity of analcime and ZSM-5 on Cu2+ and Ni2+ 

cations. The purpose of the experiment was to compare the ability of analcime and 

ZSM-5 on the same cation and the adsorption capacity difference between Cu2+ 

and Ni2+ cations, in order to find out which cation is easier to be absorbed. 

 

The experiment shows that the adsorption ability of ZSM-5 is greater than analcime 

of the same cation. The adsorption efficiency of Cu2+ is better than Ni2+ both in 

ZSM-5 and analcime. When the adsorption happens, there is another reaction 

which is ion-exchange. The cations can exchange Na+ in analcime and Si4+ in 

ZSM-5. The main process is adsorption and the by-reaction is ion-exchange. Cu2+ 

and Ni2+ can exchange Na+ and Si4+ in the ion-exchange process. The caves in 

ZSM-5 also have positive effects on the adsorption of cations. Another reason why 

the adsorption ability of Cu2+ is better than Ni2+ is that the radius of copper cation is 

smaller than nickel cation.(Barrer & Hinds 1953.) 

 

Because zeolite cannot adsorb all the cations, modification is used to form 

activated zeolite to complete this situation. (Xing, Ding & Feng 2000.) The 

modification can also improve the adsorption ability and capacity of zeolite. After 

adsorption, zeolite can be recycled. In this way, it saves materials and protects 

environment and it is called renewable resource. Natural zeolite also has a high 

efficiency, and it is an inexpensive material for wastewater treatment. Because of 

the characteristics of zeolite, it is used for sewage treatment in many countries and 

also has a promising application prospect. (Shaobin & Yuelian 2009.) 
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Even though zeolite has many advantages on sewage treatment, there are also 

some disadvantages. Zeolite has a high adsorption level on polarity water; hence 

the adsorption capacity of NH4
+ and Pb2+ is smaller. Therefore, to increase the 

capacity of NH4
+ and Pb2+, the H2O adsorption level should be reduced. (Gunter & 

Zanetti 2000.) There is another disadvantage of zeolite, which is the toxic content in 

zeolite. The toxic content, such as Pb, Hg, of zeolite should be measured first and 

removed, even though it is very low, or it will be a new polluted source when using. 

(Ping 2010.) 

 

Nowadays, zeolite has a considerable application prospect on the adsorption of the 

sewage treatment. In many countries, it is used in factories and studied in 

laboratories. Modifications of zeolite are being developed including reducing the 

amount of raw materials and improving the modification efficiency by many 

countries. Zeolites will play a more and more important role as the time goes.  
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Calculations of preparing 15 ppm standard solutions 

 

 

Prepared 15 ppm for each Ni2+ and Cu2+ solutions by using NiSO4·6H2O and 

CuSO4·5H2O in 1L. 

 

Prepared 15 ppm solution contains Ni2+ in 1L. 

15 ppm = 15 mg/L 

mNi = 15 mg/L * 1L = 15 mg 

MNi = 58.6934 g/mol 

MS = 32.065 g/mol 

MO = 15.9994 g/mol 

MH = 1.00794 g/mol 

MNiSO4·6H2O = 262.86 g/mol 

58.6934 g/mol / 262.86 g/mol = 15 mg / msNiSO4·6H2O 

msNiSO4·6H2O = 67.1779 mg 

 

Prepared 10 ppm standard solution contains Ni2+ in 90 ml from 15 ppm standard 

solution. 

15 ppm / 10 ppm = 90 ml / V15 ppm 

V15 ppm = 60 ml 

 

Prepared 5 ppm standard solution contains Ni2+ in 90 ml from 15 ppm standard 

solution. 

15 ppm / 5 ppm = 90 ml / V15 ppm 

V15 ppm = 30 ml 
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Prepared 15 ppm solution contains Cu2+ in 1L. 

15 ppm = 15 mg/L 

mCu = 15 mg/L * 1L = 15 mg 

MCu = 63.546 g/mol 

MS = 32.065 g/mol 

MO = 15.9994 g/mol 

MH = 1.00794 g/mol 

MCuSO4·5H2O = 249.685 g/mol 

63.546 g/mol / 249.685 g/mol = 15 mg / msCuSO4·5H2O 

msCuSO4·5H2O = 58.938 mg 

 

Prepared 10 ppm standard solution contains Cu2+ in 90 ml from 15 ppm standard 

solution. 

15 ppm / 10 ppm = 90 ml / V15 ppm 

V15 ppm = 60 ml 

 

Prepared 5 ppm standard solution contains Cu2+ in 90 ml from 15 ppm standard 

solution. 

15 ppm / 5 ppm = 90 ml / V15 ppm 

V15 ppm = 30 ml 

 

 

 

 


