

ECOMMERCE MOBILE APPLICATION
WITH IBM WEBSPHERE

Maciej Kopeć

Bachelor’s Thesis

April 2012

Degree Programme in Software Engineering

School of Technology

Author(s)
Kopeć, Maciej

Type of publication
Bachelor´s Thesis

Date
13-04-2012

Pages
52

Language
English

Confidential
() Until

Permission for web
publication
(X)

Title
ECOMMERCE MOBILE APPLICATION WITH IBM WEBSPHERE

Degree Programme
Software Engineering

Tutor(s)
Peltomäki, Juha

Assigned by
Descom Oy

Abstract
IBM WebSphere Commerce is an enterprise application that provides high levels of scalability,
performance, security, reliability and manageability. It provides a modern tool for business
information exchange and eCommerce.

WebSphere Commerce products include reliable, scalable and secure runtime environment
with modern JEE programming model. WebSphere Commerce programming model consists of a
mix of technologies including JavaServer Pages, Enterprise JavaBeans, JavaServer Faces, SOAP
and Struts. WebSphere Commerce supports mobile versions of web store including native and
hybrid applications.

This thesis adds a new detail to the development process of a hybrid mobile application for
Android Operating System with a new feature for handling and scanning barcodes. In the first
part of the thesis, theoretical basics are introduced. The architecture of WebSphere Commerce
application is briefly introduced with a programming model, mobile platform, barcode
specification and libraries used in the thesis. In the following chapters, the development
process is explained. Finally, there is the implementation chapter with the development of an
Android hybrid application, implementation of the barcode generator and testing the
application.

The last chapter presents the author’s personal experiences and conclusions concerning this
thesis. It also presents possibilities for future development. The thesis shows how to implement
a fully-featured mobile hybrid application working on Android Operating System.

Keywords
IBM WebSphere, WebSphere Commerce, Mobile application, Android, JEE, JSP, Barcodes

Miscellaneous

3

CONTENTS

1 INTRODUCTION ... 8

2 IBM WEBSPHERE AS AN ECOMMERCE

PLATFORM ... 9

2.1 Application architecture ... 11

2.2 Multiple-Tier Architecture ... 13

2.3 Programming model ... 15

2.3.1 Programming technologies .. 15

2.3.2 Model-View-Controller .. 17

2.3.3 Struts framework ... 18

2.4 Rational Application Developer ... 20

2.5 Mobile platform .. 21

2.6 Barcode specification ... 22

2.7 Auxiliary libraries .. 23

2.7.1 ZXing .. 23

2.7.2 Apache POI .. 23

2.7.3 Simple JSON .. 23

3 DEVELOPING ECOMMERCE APPLICATION 24

3.1 Deploy starter mobile store ... 24

3.2 Setting test environment .. 27

3.3 Android hybrid mobile application .. 29

3.3.1 Implementation of barcode activity .. 29

4

3.3.2 Processing data from barcode .. 32

3.4 Web application .. 35

3.4.1 Struts configuration .. 35

3.4.2 Customizing JSP search page .. 37

3.4.3 Customizing JSP order page .. 39

3.4.4 Customizing JSP shopping cart page ... 41

3.5 Barcode Generator .. 43

3.6 Testing working application .. 46

4 CONCLUSIONS .. 48

REFERENCES .. 52

5

LIST OF FIGURES

FIGURE 1. WebSphere Commerce application architecture .. 11

FIGURE 2. Multitier architecture, the middle tier provides business and system

services to clients ... 14

FIGURE 3. Supported JEE technologies in WebSphere Application Server 7.0 15

FIGURE 4. WebSphere Commerce implementation of the MVC design pattern 17

FIGURE 5. Struts as a part of MVC architecture ... 18

FIGURE 6. Technologies supported by Rational Application Developer 20

FIGURE 7. Barcode examples ... 22

FIGURE 8. Dependency of enhancements ... 24

FIGURE 9. WebSphere Administration Console - Store Archives................................. 25

FIGURE 10. Catalogue structure ... 26

FIGURE 11. Workflow of a barcode scanning .. 29

FIGURE 12. Executing BarcodeGenerator in console ... 43

FIGURE 13. Generating barcodes from XLS file .. 46

FIGURE 14. Main window of mobile application ... 47

FIGURE 15. Shopping cart after scanning QR Code with promotion code 47

FIGURE 16. Product page after scanning barcode ... 47

FIGURE 17. Product list after scanning barcode .. 47

file:///C:/Users/MicNeo/Desktop/Dropbox/inzynierka/praca/11_inzynierka_final.docx%23_Toc322266995

6

LIST OF TABLES

TABLE 1. Comparison of editions WebSphere Commerce .. 10

TABLE 2. Comparison of search methods .. 37

TABLE 3. Sample data source file for barcode generator .. 45

ACRONYMS AND TERMINOLOGY

Ant - is a tool for automates process of software building. Mainly used with

applications crated in Java language. Building process in describe in XML file.

B2B - Business-to-business, also called as “classic e-business”. It describes

relations between companies and their partners.

B2C - Business-to-consumer is defined as using e-resources to making

transactions between companies and customers

Business on demand - it is one of the e-business models where organisation

connects its core business systems to key areas using intranets, extranets, and

the web.

EJB - Enterprise JavaBeans is technology working on the server side. EJB is a part

of Java EE. There are few types of EJBs designed to solve different kind of

problems (implementing application logic, persistent data or asynchronous

processing)

JEE - Java Platform, Enterprise Edition is extended from Java Platform, Standard

Edition by providing APIs for multitier architectures, ORM, fault-tolerance and

Web services.

JPA - Java Persistence API is a Java framework for Object-Relational Mapping in

Java Platform, Standard Edition and Java Platform, Enterprise Edition

applications.

JSF - JavaServer Faces is a Java framework for designing user interfaces for JavaEE

applications. At the present, default views technology for JSF pages is Facelets

technology. However, it is possible to use different technology, for example JSP

7

JSON – JavaScript Object Notation is lightweight data format. JSON is text format.

Regardless of the name, JSON is independent of particular programming

language.

JSP - JavaServer Pages is technology designed for creating dynamic WWW pages

in formats: HTML, XHTML, DHTML and XML. JSP uses Java language inside HTML

code. This solution is similar to PHP.

JSTL - JavaServer Pages Standard Tag Library is a component of the JEE. It is

extending JSP specification by adding library of JSP tags.

RAD - Rational Application Developer is Eclipse-based integrated developing

environment built by IBM. It is designed for developing JEE applications. Specially

with IBM WebSphere.

REST/RESTful - Representational State Transfer is architectonical pattern. REST

introduce uniform interface, stateless communication, cacheable resources and

layered system. A RESTful is a web service implemented using HTTP protocol and

the principles of REST.

SEO - Search Engine Optimization is process of optimization site for search

engines.

Struts – it is open-source framework for application developed with Java

language. It take care of view and controller from MVC design pattern.

8

1 INTRODUCTION

Java language serves multiple purposes. One of the most popular purposes is

creating enterprise web applications. At the beginning, simple technologies like

servlet were enough to meet requirements of developers. However, it became

obvious that servlet technology is not enough to build enterprise applications.

The response to the increasing requirement for Java language was the introduction

of Java Platform Enterprise Edition. JEE defines a standard of application

development in Java language based on multi-component architecture. This platform

defines a set of programming interfaces, which an application server must provide.

Those components are usually embedded in an application server that supports Java

Platform Enterprise Edition.

There are many application servers capable of running enterprise applications. One

of them is IBM WebSphere Application Server. It is a multiplatform application server

following specifications of Java Platform Enterprise Edition. WebSphere Application

Server is based on open technologies such as XML and Web services. WebSphere

Application Server provides a wide variety of services. For example, database

connections, thread handling, load distribution, security model. All those services can

be used to improve applications by developers.

IBM WebSphere Commerce provides many ready-to-use tools with which developers

are exempted from the effort to develop applications from scratch. Delivery of the

starter store allows developers to focus on adjusting the product to customers'

needs. IBM supplies developers with starter store called Madison, which can be used

as a starter application for developing custom store. Madison is ready to use web

application with basic functionality. It also comes with a mobile version of store

which was used in this thesis. The main objective of this thesis was to develop a

mobile store for Android Operating System with search engine based barcodes.

9

2 IBM WEBSPHERE AS AN ECOMMERCE

PLATFORM

Commerce business is changing very rapidly. Customers require from vendors easy

access to their products and services. The Internet network is becoming a modern

tool for business information exchange and eCommerce. If a company wants to

remain competitive, it is crucial to move most of their services to accessible systems.

Enterprise applications depend on confidential data. Therefore, it is necessary to

provide high levels of scalability, performance, security, reliability and manageability.

IBM WebSphere Commerce meets these requirements.

IBM WebSphere Commerce products include reliable, scalable and secure runtime

environment with modern JEE programming model. The products come with sample

Madison store that was used in this thesis. It is also ensures an extensive customer

interaction platform for cross-channel commerce. WebSphere Commerce can be

used in medium-sized companies as well as those big ones. Depending on the needs

of the company, IBM provides three editions of their product. It is a standardized

platform, which offers ability to do business-to-business (B2B) and business-to-

customer (B2C).

There are three editions of WebSphere Commerce:

 WebSphere Commerce-Express

 WebSphere Commerce Professional

 WebSphere Commerce Enterprise.

WebSphere Commerce-Express is dedicated to companies that employ less than

1,000 employees. It is designed as a comprehensive solution for medium-sized

companies to support business-to-customer requirements.

10

WebSphere Commerce Professional edition is designed for companies that want to

do business on demand. It supports a benefit system, auctions and multiple

workspaces.

WebSphere Commerce Enterprise is a comprehensive platform for high volume

business-to-customer and business-to-business models. It provides extended sites,

organisations system, advanced roles and requisition lists (IBM - WebSphere

Commerce, 2011).

The table below compares the key differences between the three editions of

WebSphere Commerce.

TABLE 1. Comparison of editions WebSphere Commerce (IBM - WebSphere
Commerce, 2012)

Features Express Professional Enterprise

Search engine optimization ✓ ✓ ✓

Marketing tools ✓ ✓ ✓

Mobile commerce ✓ ✓ ✓

Auctions ✓ ✓

B2B starter stores ✓

Gift center ✓ ✓

Organizations ✓

Promotions ✓ ✓ ✓

Workspaces ✓ ✓

Extended sites ✓

11

This thesis is based on WebSphere Commerce version 7 Enterprise Edition that

provides an extensive platform for both, B2C and B2B business models and multiple

stores. Despite the fact that WebSphere Commerce includes a wide variety of

features there are many issues to solve and develop. The intention of the author of

this thesis is to show how to customize a Madison mobile store with new capabilities

such a barcode scanner.

2.1 Application architecture

WebSphere Commerce application architecture is made up of seven layers, which are

specifically designed for particular roles (see FIGURE 1). The roles are described more

in Figure 1.

FIGURE 1. WebSphere Commerce application architecture

Store
Models e-Commerce Business Models

Business
Processes SiteFlows/Workflows

Control
and Views Servlets/JSPs

Service
layer OAGIS messages

Business
logic Command Beans and Rule Templates

Business
Objects Entity Beans, Access Beans, DataBeans

Database Tables

12

Database

The WebSphere Commerce contains over 600 tables, which are used to store data of

the WebSphere site and store (IBM Info Center, 2011).

Business objects

Business objects are representation of the entities. They encapsulate data logic and

work as an interface between business logic and persistent data in database (IBM

Info Center, 2011). Those objects are represented by entity beans, access beans and

data beans (e.g. User or Order).

Business components

Business components are entities of business logic. They are responsible for

performing procedural business logic (IBM Info Center, 2011). Controllers and task

commands represent those components (e.g. OrderProcessCmd).

Controls and view

Controls are responsible for determining which command controller implementation

is the most appropriate to be used with a certain view. That implementation can

depend on the store settings. The main purpose of views is to display the results of

commands and user interactions. (IBM Info Center, 2011). They are implemented as

JSP pages (e.g. ProductDisplayView).

Service layer

This layer provides an independent mechanism that allows access to the business

logic of WebSphere Commerce. The service layer supports two transport types: local

Java binding and Web services (IBM Info Center, 2011).

Business logic

Business processes are sets of business components and views combined together.

They create workflow and site flow processes (IBM Info Center, 2011). Order process

is an example of business processes.

13

Store models

All lower layers of the application architecture create business models. Every

business model includes the sample store model (IBM Info Center, 2011).

WebSphere Commerce provides five business models: B2B direct, Consumer direct,

Demand chain, Hosting and Supply chain.

2.2 Multiple-Tier Architecture

Multiple-tier architecture is a client-server architecture in which the presentation,

the functional process logic and the data management are developed and

maintained as independent modules. (Three-tier, 1998)

The most important part in multiple-tier architecture is the middle-tier server. This

tier is responsible for handling requests from clients and hides the complexity

involved with backend systems and databases. The middle-tier is able to support

many types of clients, for example Web browsers, mobile devices or Java

applications. Those clients can handle the user interface; however, they do not

connect to a database or execute business logic. These tasks are handled by the

middle-tier.

IBM WebSphere Application Server supports IBM WebSphere Commerce. It is an

application server that can be run on following operating systems: IBM AIX, HP-UX,

IBM i, Linux, Solaris, Windows, z/OS (Ticknor, et al., 2011).

14

Middle-tier servers provide many business services such as catalogue lookup, order

entry and payment system. They also provide system services such as remote access,

session and transaction management (see FIGURE 2)

FIGURE 2. Multitier architecture, the middle tier provides business and system
services to clients

With HTML5, many programmers try to implement business logic using this markup

language with JavaScript. HTML and JavaScript are implemented in Client Tier.

Therefore, it is not recommended to implement business logic with HTML and

JavaScript. It is possible to send a request from Client Tier to Middle Tier, which will

execute business logic.

15

2.3 Programming model

2.3.1 Programming technologies

WebSphere Commerce programming model consists of a mix of technologies

including JavaServer Pages, Enterprise JavaBeans, JavaServer Faces and Struts (see

FIGURE 3).

One of the most important technologies used in building enterprise applications are

Enterprise JavaBeans, which are used to provide business logic and access to data. It

is also possible to integrate messaging systems and Web services clients with

application through Enterprise JavaBeans. There are three types of EJBs.

Session EJBs

Session EJBs are task-oriented objects. An EJB client invokes these objects. Session

EJBs are divided into two types: Stateless and stateful. These objects cannot be

persistent.

Java EE
v 5

JSP
v 2.1

Java
Servlet

v 2.5

EJB
v 3.0

JMS
v 1.1

JTA

v 1.1
Java
Mail

v 1.4

SOAP

v 1.2

JSF
v 1.2

Struts
v 1.1

 FIGURE 3. Supported JEE technologies in WebSphere Application Server 7.0

16

Stateless session EJBs

The most desired session EJBs are stateless EJBs, since they are in general scales

better than stateful session EJBs. Stateless beans are designed to handle many

requests from many different clients. To achieve this goal, stateless beans cannot

contain any information about the state of a concrete client. Thus, all instances of

stateless beans can be assigned to any client.

Stateful session EJBs

Stateful session EJBs are opposite to stateless beans. Stateful beans contain

information about the state in the session bean between calls. Each instance of

stateful bean must be associated only to one client. These kinds of beans are useful

when there is a need to call several methods that depend on state information.

Entity EJBs

Entity EJBs are used to provide an object-oriented view of data. However, data itself

is stored by an external persistence mechanism, for example database. There are

two types of entity EJBs: Container-managed persistence and bean-managed

persistence.

Container-managed persistence

In container-managed persistence the EJB container handles all database access.

There is no access to the database in the code; therefore, the code is not tied to a

concrete database. As a result, a project can be redeployed using different servers.

On the other hand, the container must provide the mapping tool for the developers

to allow them to describe how the attributes of an entity bean map onto the

columns in tables of a database.

Bean-managed persistence

If there is a need to use non-relational data storage, developers can use bean-

managed persistence. Developers handle all storage access required by the entity

bean.

17

2.3.2 Model-View-Controller

Of the many requirements for enterprise applications, the ability to handle requests

coming from different kinds of devices is the most important. The Model-View-

Controller design pattern provides JEE applications with the possibility to work

independently of the user interface. MVC keeps the business and presentation logic

separate.

Model-View-Controller pattern breaks the problem of user interfaces into three

units, namely: model, view and controller (see FIGURE 4). The model contains the

application state. A view is responsible for interpreting the data received from the

model and it sends the response to the user. The controller has to process user input,

and depending on that, the input decides to update the model or display new view

(Crawford & Kaplan, 2003, pp. 36-62).

FIGURE 4. WebSphere Commerce implementation of the MVC design pattern

18

2.3.3 Struts framework

The Apache Struts is an open-source web framework for creating Java web

applications. The Struts is designed to provide developers with a framework to create

web applications that use MVC architecture (see FIGURE 5). Struts is able to collect

data from HTTP requests. The main purpose is to pass data between the view and

controller. Furthermore, Struts includes custom JSP tag libraries to help developers in

creating forms. ActionServlet is provided by Struts framework. This controller servlet

populates action forms from JSP inputs. After populating a form it delegates work to

an action class where the developer implements the logic. Struts does not provide

model classes. The developers have to provide those classes by themselves using EJB

or JavaBeans (Struts 1, 2008).

FIGURE 5. Struts as a part of MVC architecture

Struts configuration is placed into at least two files: struts-config.xml and web.xml.

The web.xml is application descriptor, which represents the core of the Java web

application. Struts web.xml defines servlet filters. It also defines the rest of

configuration files. It is possible to define multiply struts-config.xml files. To add

another configuration file, simply point to it in config field.

19

The struts-config.xml configuration file is a connection between the View and Model

components of MVC. It is one of the most important components of Struts

framework.

Struts configuration file contains three main elements:

 <form-bean>

 <global-forward>

 <action-mapping>.

Form-bean element contains form bean definitions. The information of each form

bean is in <form-bean> element. Detail information is provided in <form-property>

elements. Those elements contain the property names and types of form bean.

Global-forward element contains global forward definitions. Forward name is name

used to map a specific JSP page. The <forward> element contains also path value,

which represent relative path of resource.

Action-mapping element contains action definitions. Each action mapping is defined

in an <action> element.

Besides the implementation of MVC pattern Struts also speeds up the development

of the web application by providing comprehensive JSP tag library. It also supports

internationalization validation of user input and error handling (Siggelkow, 2005, pp.

217, 257, 377).

Instead of using Struts, JSP tag library developers can use JSTL library, which provides

mostly the same functionality as a library provided by Struts. The choice of the library

depends on developer's habits.

20

2.4 Rational Application Developer

IBM Rational Application Developer for WebSphere Software V7 is an integrated

development environment and platform for building Java Platform Standard Edition

(Java SE) and Java Platform Enterprise Edition (Java EE) (Wahli, et al., 2007). Rational

Application Developer is based on Eclipse IDE.

Rational Application Developer contains many tools and features, for example full

support of Java EE, UML editors, static and runtime analysis and extended debugging

and profiling. It also supports modern Java EE technologies (see FIGURE 6).

FIGURE 6. Technologies supported by Rational Application Developer

Rational Application Developer helps Java developers quickly develop and test Java

applications. It is integrated with WebSphere Application Server.

Business
Logic

Java Beans

EJB

4GL/EGL

SDO

User
Inteface
Services

HTML

JSP

WML

JSF

Portlets

Control
Logic

Servlets

Struts

JSF

Enterprise
Information
Connection

JDBC

JCA

JMS

21

2.5 Mobile platform

IBM WebSphere Commerce starter stores supports storefronts for many mobile

devices. Those stores are fully featured eCommerce applications, which can be used

with smart phones, tablets and web browsers. Mobile stores are designed to be user

friendly for the end users of portable devices. Access to the business logic is handled

by RESTful services.

Mobile store can be developed in three different ways:

 Mobile Web applications

 Native mobile applications

 Hybrid mobile applications.

Mobile web applications

Storefronts are available by web browser installed on the portable device (smart

phone or tablet). Store pages are particularly designed as simple and tap-friendly for

limited screen space.

Native mobile applications

Storefronts are available by application installed on smart phones or tablets. This

application provides improved functionality greater than the mobile web storefront

by using device-particular features such as a smart phone's contact list. In a native

application, all elements are coded by using the mobile operating system's Software

Development Kit (SDK). Native starter store is available for Android Operating System

only (2.2 and newer versions with Google APIs).

Hybrid mobile applications

The hybrid application delivers a native experience by wrapping the mobile web

storefront with a native application. The native elements are coded using the mobile

operating system's SDK, while the storefront is accessed using the mobile web

interface. Hybrid starter store is available for Android Operating System (2.2 and

newer versions with Google APIs) and iOS (version 4 and 5).

22

2.6 Barcode specification

Barcode is an optical representation of data that can be read by optical scanners (e.g.

laser scanners or camera-based readers). Those codes contain data that describes

objects to which they are attached. There are two main types of barcodes: one-

dimensional and two-dimensional (see FIGURE 7).

FIGURE 7. Barcode examples

One-dimensional barcodes are a combination of light and dark elements that are

specified by symbolic of quantified code. Most of one-dimensional barcodes can

contain only numerical data.

QR barcodes are built from squares that can be light or dark. Those codes can

contain alphanumerical data.

The objective of this thesis is to implement a barcode scanner feature to the mobile

store. To archive that goal the application uses a camera- based code scanner. First,

the device takes a picture of a barcode, and then performs image-processing to

decode the data that the barcode contains. The application can handle both types of

barcodes. Depending on which code is used, the application performs a different

kind of operation. The task of this thesis was not to implement an application to scan

23

barcodes but to customize store presentation and business logic to use the

information obtained from these barcodes.

2.7 Auxiliary libraries

2.7.1 ZXing

ZXing is an open source library for barcode image processing written in Java. This

library is included in hybrid mobile store application. ZXing supports many barcode

formats, both one-dimensional and two-dimensional. It offers a wide functionality,

from scanning barcodes to generating them. To start using this library in Java

application, it must be built first with ant command line tool (ZXing, 2011).

ZXing originally was implemented in Java, however, there are ports to other

languages such as C++, Objective C, Ruby and partial C# and ActionScript.

2.7.2 Apache POI

Apache POI is a library, which provides API for many Microsoft documents. POI is

able to open and handle Excel, Word, PowerPoint, OpenXML4J, OLE2, Outlook, Visio

and Publisher documents. This library offers developers simple API to read and write

Microsoft documents in Java (The Apache POI Project, 2011).

2.7.3 Simple JSON

Simple JSON is lightweight library, which s implements JSON format for Java. It

provides a wide spectrum of functions such as encoding, decoding and escaping JSON

text. Simple JSON is independent of any external libraries. It is fully compatible with

JSON specification (JSON Simple, 2011).

24

3 DEVELOPING ECOMMERCE APPLICATION

The main objective of this thesis was to develop a hybrid mobile application for

Android Operating System with search engine based on barcodes and QR codes.

Despite of providing by IBM extensive sample store, there are still many efforts to be

taken by developer to create high-end, customized product for customer.

QR codes are easy-to-use two-dimensional barcodes. Those codes can be scanned

from a photo taken with a camera built in a smart phone or tablet.

3.1 Deploy starter mobile store

WebSphere Commerce with Feature Pack 4 provides support for mobile applications.

To use mobile starter store provided by IBM WebSphere Commerce it is obligatory to

publish working store first and share its data assets by publishing a mobile starter

store. Both native and hybrid types of mobile applications require installed

Madison’s Enhancements and Mobile Madison’s Enhancements to work correctly.

The Figure 8 shows the proper installation order of enhancements.

FIGURE 8. Dependency of enhancements

It is highly recommended to check dependency of enhancements before publishing

them. To determine dependencies between packages it is necessary to check IBM

Info Center page and enhancements documentation files.

WebSphere
Commerce v7.0

Madisons
Madisons

Enhancements

Mobile
Madisons

Enhancements

25

IBM provides for store administrators WebSphere Administration Console, which

allows administrators to control and configure store.

WebSphere Administration Console has a special wizard tool for installing

enhancements. The publish wizard tool is used to install various store enhancements

(including organization structures, user roles, access control policies, store assets).

Enhancements are made as packages. Those packages are compressed to Servlet

ARchive file.

To install new enhancements simply publish SAR file with WebSphere wizard tool

(see FIGURE 9). After successful publishing archiving, it is necessary to restart

WebSphere Application Server.

FIGURE 9. WebSphere Administration Console - Store Archives

26

The mobile store shares database and business logic with an already working store.

The publish process installs the dedicated JSP files into /mobile20 directory (see

FIGURE 10). The catalogue structure is the same as a catalogue structure of a web

store. The mobile store should not use any presentation files of web store.

FIGURE 10. Catalogue structure

It is highly recommended to optimize JSP pages for mobile devices (e.g. reduce size

of images, compress files). One of the methods to optimize the size of JSP pages is

enabling the useCDataTrim JSP compiler flag. This compiler flag is used to reduce

whitespaces in JSP files. It is also possible to compress files with mod_deflate module

of Apache HTTP Server.

The mobile store files include a mobile prefix to separate them from the starter store

files of the same name. Configuration ids contain m20 prefix. This naming convention

should be used in the whole process of developing a store application.

27

Installation updates also struts-config-ext.xml configuration file and accesses control

policies. Below is shown a code snippet from Struts configuration file.

<forward className="com.ibm.commerce.struts.ECActionForward"
name="m20StoreView/10701" path="/mobile20/mobileHome.jsp">forward>

<forward className="com.ibm.commerce.struts.ECActionForward" name="m20Index/10701"
path="/mobile20/mobileHome.jsp"></forward>

<forward className="com.ibm.commerce.struts.ECActionForward"
name="m20LocationCheckIn/10701"
path="/mobile20/UserArea/AccountSection/ServiceSection/LocationCheckInSubsection/C
heckInLocation.jsp"></forward>

<action path="/m20StoreView" type="com.ibm.commerce.struts.BaseAction">
 <set-property property="credentialsAccepted" value="0:P,0:P"/>
</action>

<action path="/m20Index" type="com.ibm.commerce.struts.BaseAction">
 <set-property property="credentialsAccepted" value="0:P,0:P"/>
</action>

<action path="/m20LocationCheckIn" type="com.ibm.commerce.struts.BaseAction">
 <set-property property="https" value="0:1,0:1,0:1"/>
 <set-property property="credentialsAccepted" value="0:P,0:P,0:P"/>
</action>

WebSphere provides starter native and hybrid mobile store applications for Android

platform. Those applications are provide as Android projects packed to zip files. To

start developing a mobile application simply imports a project to the integrated

development environment, which supports Android SDK. The author of this thesis

used Eclipse SDK version 3.7.2.

3.2 Setting test environment

Native and Hybrid applications use features that are built in Android Operating

System. Android SDK provides an emulator platform for testing purposes; however,

this emulator has many limitations.

28

The emulator does not support:

 Phone calls

 USB connections

 Camera/video capture

 Handling headphones

 Controlling battery charge level

 Handling SD card

 Bluetooth

Those limitations can be resolved by using a dedicated mobile device with Android

operating system. However, to access localhost server through mobile device it is

necessary to connect with server through VPN. This thesis assumes that the reader

has a working VPN server and can connect to it with a smart phone or tablet.

QR codes scanner requires access to the device’s camera. The emulator does not

support capturing images; therefore, it is obligatory to use a real device.

Madison mobile starter store contains its preferences in systems_settings.xml file. To

run a store on device it is necessary to set up those preferences. Below is a code

snippet of system_settings.xml file with defined preferences.

 <string name="storeName">Madisons</string>
 <string name="hostName">192.168.32.50</string>
 <string name="storeId">10051</string>
 <string name="storeIdentifier"></string>
 <string name="catalogId">10051</string>
 <string name="map_api_key"></string>
 <string name="languageId">-1</string>

29

3.3 Android hybrid mobile application

3.3.1 Implementation of barcode activity

IBM mobile starter store implements a basic implementation of a barcode scanner.

Code scanning is handled by a third-part application installed on a mobile device by

the end-user. First, the user chooses the barcode scanner from the menu. After

scanning is finished the intent is sent to the barcode activity. The intent contains data

from a scanned barcode. Based on this data the application performs certain actions

and generates a specified request for the web application. The business logic handles

this request and prepares a JSP page. When the page is ready, it is sent back to the

mobile device. The Figure 11 illustrates the whole process.

FIGURE 11. Workflow of a barcode scanning

The main purpose of the barcode activity is to show results as a JSP page. Hybrid

application provides a special view called StoreWebViewFlipper. The snippet below

shows a code of Android StoreWebViewFlipper view.

30

 <com.ibm.commerce.android.hybrid.mobile.web.StoreWebViewFlipper
 android:id="@+id/barcodeSearchWebViewFlipper"
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:layout_weight="1.0" />

StoreWebViewFlipper is basically an extended Android’s ViewFlipper, which is

designed for displaying web pages. To take advantage of using StoreWebViewFlipper

view the activity class has to inherit the following classes and implement one

interface:

 Abstract class AbstractStoreWebViewActivity

 Interface IStoreWebViewActivity

 Abstract class AbstractHybridMobileActivity.

Because Java does not support multi-inheriting, developers have to inherit only from

AbstractStoreWebViewActivity. This abstract class implements

IStoreWebViewActivity interface and inherent from AbstractHybridMobileActivity.

IStoreWebViewActivity interface contains following abstract methods:

 public StoreWebViewController getStoreWebViewController();

 public String getDefaultUrl();

 public int getContentViewId();

 public int getStoreWebViewFlipperId();

Method getStoreWebViewController() is implemented in

AbstractStoreWebViewActivity and there is no need to override this implementation

in BarcodeActivity. The remaining methods are implemented in BarcodeActivity.

31

The snippet below shows the implementation of those methods.

 @Override
 public String getDefaultUrl() {
 return
((AndroidHybridMobileApplication)getApplication()).getHomePageUrl().toString();
 }

 @Override
 public int getContentViewId() {
 return R.layout.barcode;
 }

 @Override
 public int getStoreWebViewFlipperId() {
 return R.id.barcodeSearchWebViewFlipper;
 }

 @Override
 public StoreWebViewController getStoreWebViewController() {
 return iWebViewController;
 }

AbstractHybridMobileActivity has one very important abstract method called

initialize(). The implementation of this method is in AbstractStoreWebViewActivity.

The main purpose of this method is to load web content to StoreWebViewFlipper by

executing loadWebContent() method.

BarcodeActivity also implements initialize() method expanding its function by

preparing the layout views, setting action listeners and handling gestures. It is also

executing initialize() method from superior class.

To complete the process of adding a new activity it is necessary to add an annotation

about a new activity in AndroidManifest.xml file.

32

3.3.2 Processing data from barcode

When a barcode is scanned, the intent with data returns to the activity (see FIGURE

11). AbstractHybridMobileActivity contains onActivityResult() method. This method

handles all intents coming back to the activities. The method checks if the intent

action name is equal to SCAN_INTENT constant. Then it checks the result code of the

intent. If the action name indicates that the returned intent is SCAN_INTENT and the

result code is equal -1 (RESULT_OK constant), the method processes the data and

sends it the BarcodeActivity.

Depending on the scanned barcode format, different actions are taken. Basic one-

dimensional barcodes contain only a product number. Based on this number a web

address is built and passed to the BarcodeActivity. Map with URL's parameters is

populated with store, catalogue and language identifiers. At the end content is put to

the map. When all data is placed, the map is passed to the static method

StoreWebUtils.buildUrl(). This method based on passed parameters returns the URL

to the search JSP page. Finally, a new activity with additional data is launched. The

main purpose of this activity is to show user search results. The snippet below shows

the process of handling one-dimensional barcode.

Intent outGoingIntent = new Intent();

Map<String, String> queryParameters = new HashMap<String, String>();
queryParameters.put(StoreWebConstants.STORE_ID, getString(R.string.storeId));
queryParameters.put(StoreWebConstants.CATALOG_ID, getString(R.string.catalogId));
queryParameters.put(StoreWebConstants.LANGUAGE_ID,
 getString(R.string.languageId));
queryParameters.put("sku", contents);

String path = getString(R.string.search_barcode_url_path);
Uri httpUrl = StoreWebUtils.buildUrl(lastHostName, path, queryParameters, true);

outGoingIntent.setClass(this, BarcodeActivity.class);
outGoingIntent.setData(httpUrl);
startActivity(outGoingIntent)

33

QR codes contain simple JSON object. The object represented by JSON has at least

two fields: action and content. The action field contains the identifier of the action

type.

An action field may take following values:

 URL,

 SEARCH,

 PROMOBUY.

The content field contains main data retrieved from barcode (e.g. web address for

URL action type). It is possible that an object has more fields. It depends on the

action type field (e.g. for PROMOBUY action type, object will contain an additional

field called productId).

When a two-dimensional barcode is scanned, the content is converted to JSON

object. Following actions are dependent on the content of action field. The snippet

below shows an implementation of this process.

if (format.equals("QR_CODE")) {
 try {
 JSONObject jObject = new JSONObject(contents);

 String action = jObject.getString("action");
 String content = jObject.getString("content");

 // Handling data code was omitted

 } catch (JSONException e) {
 Toast.makeText(this, R.string.ERROR_READ_QR_CODE,
Toast.LENGTH_LONG).show();
 e.printStackTrace();
 }

}

34

URL action redirects the mobile device user to the web address contained in the

content field. If the address is in the same domain as a mobile store, a web page

opens in the store application. However, if web address points to a web outside the

shop domain, the page is opened in Android web browser. The snippet below shows

the implementation of handling URL action.

if("url".equalsIgnoreCase(action)){
 if (content != null && StoreWebUtils.isHttpUrl(content)) {
 Intent outGoingIntent = new Intent();
 Uri httpUrl = Uri.parse(content);

 if (StoreWebUtils.isUnderDomain(content)) {
 outGoingIntent.setClass(this, SearchResultActivity.class);
 outGoingIntent.setData(httpUrl);
 } else {
 outGoingIntent.setAction(Intent.ACTION_VIEW);
 outGoingIntent.setData(httpUrl);
 }

 startActivity(outGoingIntent);
 }
}

SEARCH action performs searching for provided search term in the content field of

JSON object. The snippet below shows the implementation of handling SEARCH

action.

else if("search".equalsIgnoreCase(action)){

 Intent outGoingIntent = new Intent();

 Map<String, String> queryParameters = new HashMap<String, String>();
 queryParameters.put("searchTerm", content);

 String path= getString(R.string.search_category_url_path);
 Uri httpUrl = StoreWebUtils.buildUrl(lastHostName, path, queryParameters,
true);

 outGoingIntent.setClass(this, BarcodeActivity.class);
 outGoingIntent.setData(httpUrl);
 startActivity(outGoingIntent);

}

35

PROMOBUY action is responsible for preparing a special web address for ordering a

product with special promotion. A product is unique identified with the productId,

which is contained in the content field of JSON object. An additional field is passed

through JSON object - customPromotionId. This identifier represents the promotion

code added with the Management Center. A snippet code is responsible for handling

PROMOBUY action is shown below as follows:

else if("promoBuy".equalsIgnoreCase(action)){

 String promoId = jObject.getString("promo_id");

 Intent outGoingIntent = new Intent();

 Map<String, String> queryParameters = new HashMap<String, String>();
 queryParameters.put("productId", content);
 queryParameters.put("customPromotionId", promoId);
 queryParameters.put("scan2buy", "true");

 String path= getString(R.string.product_url_path);
 Uri httpUrl = StoreWebUtils.buildUrl(lastHostName, path, queryParameters,
true);

 outGoingIntent.setClass(this, BarcodeActivity.class);
 outGoingIntent.setData(httpUrl);
 startActivity(outGoingIntent);

}

3.4 Web application

3.4.1 Struts configuration

IBM WebSphere Commerce uses Struts framework to help developers with creating

web applications. Struts configuration file is located in Stores/WebContent/WEB-

INF/struts-config-ext.xml file.

To add a new JSP page it is necessary to configure actions and forwards for it in the

Struts configuration file. The snippet code below shows the configuration for the

BarcodeSearchResultDisplay JSP page.

36

<forward className="com.ibm.commerce.struts.ECActionForward"
 name="m20BarcodeSearchResultView/10051"
 path="/mobile20/ShoppingArea/BarcodeSearchResultDisplay.jsp">
</forward>

<action path="/m20BarcodeSearchResultView"
 type="com.ibm.commerce.struts.BaseAction">
 <set-property property="credentialsAccepted" value="0:P,0:P"/>
</action>

After adding new records to the Struts configuration file, it is essential to refresh the

configuration registry through the Administration Console. A default WebSphere

Commerce configuration allows only administrators to view a new JSP pages. In

order to change this, a new access policy should be added. IBM provides a special

tool for changing access policies called acpload. This is a console batch script, which

takes XML file as a parameter. The XML code below represents new policies added to

the configuration.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?>
<!DOCTYPE Policies SYSTEM "../dtd/accesscontrolpolicies.dtd">
<Policies>
 <Action Name="m20BarcodeSearchResultView"
 CommandName="m20BarcodeSearchResultView">
 </Action>
 <ActionGroup Name="AllSiteUsersViews" OwnerID="RootOrganization">
 <ActionGroupAction Name="m20BarcodeSearchResultView"/>
 </ActionGroup>
</Policies>

Before executing this command, it is highly recommended to stop the server. If

acpload does not return any exceptions, the server can be started. If any error

occurs, utility will generate a log file in logs/acpload.log.

37

3.4.2 Customizing JSP search page

A one-dimensional barcode contains only a product number. Based on this number

the search engine tries to find a product. First, it seeks only for an equal number. If

there are no results, it searches one more time, this time less strictly. During the

second search, the searching is performed with LIKE operator instead of EQUAL.

At default settings, the searching data bean looks for products, items, packages and

bundles. Setting the corresponding values in the URL address can customize those

options.

To search a database for matching products CatEntrySearchListDataBean is used.

This bean is provided by IBM WebSphere and is used to retrieve information about a

product from a database based on provided searching parameters.

WebSphere Commerce provides two searching options for different usage cases.

Those searching formats are based on the catalogue search data bean. Catalogue

search offers basic and advanced search functionality. A comparison of those two

methods is shown in the Table 2.

TABLE 2. Comparison of search methods

Simple search Advanced search

A lightweight search feature General searching feature

Can be used on any JSP page Can be used on any JSP page

Search based on single term Search based on multiple terms

Searching executed on base tables Searching executed on base tables

Support Boolean values Support Boolean values

 Advanced sorting criteria available

38

CatEntrySearchListDataBean is a data bean, which is a Java bean the main role of

which is to provide access to data from JSP pages. This data bean is an

implementation of abstract class SearchBaseDataBean. The code below shows a part

of JSP page implementation for one-dimensional barcode search with

CatEntrySearchListDataBean data bean.

<wcbase:useBean id="catEntSearchListBean" scope="page"

classname="com.ibm.commerce.search.beans.CatEntrySearchListDataBean">
 <%-- Some less important code was omitted --%>

 <%-- Set the SKU number as a search term --%>
 <c:set property="sku" value="${WCParam.sku}"

 target="${catEntSearchListBean}" />
 <c:set property="skuCaseSensitive" value="no"

 target="${catEntSearchListBean}" />
 <c:set property="skuOperator" value="EQUAL"

 target="${catEntSearchListBean}" />
</wcbase:useBean>

<c:if test="${catEntSearchListBean.resultCount == 0}">

 <%-- remove old result bean. Need new one --%>
 <c:remove var="catEntSearchListBean" />

 <wcbase:useBean id="catEntSearchListBean" scope="page"

classname="com.ibm.commerce.search.beans.CatEntrySearchListDataBean">
 <%-- Some less important code was omitted --%>

 <%-- Set the SKU number as a search term --%>
 <c:set property="sku" value="${WCParam.sku}"

 target="${catEntSearchListBean}" />
 <c:set property="skuCaseSensitive" value="no"

 target="${catEntSearchListBean}" />
 <%-- We don't have any results, make query less strict --%>
 <c:set property="skuOperator" value="LIKE"

 target="${catEntSearchListBean}" />
 </wcbase:useBean>
</c:if>

39

Data bean performs searching for matching rows in database. It can return zero, one

or many rows. If it returns zero rows, it tries once again with a wider spectrum by

searching for matching rows with LIKE operator instead of EQUAL.

When only one row is returned to the JSP page, automatic redirection to the product

page is performed. First, catalogue entry is retrieved from the result list. Then it is

checked what type it is (product, item, bundle or package). Finally, the URL address

is generated and passed to JavaScript redirection script.

If the searching data bean returns many products, the JSP page lists all of them as a

list of products.

3.4.3 Customizing JSP order page

A two-dimensional barcode contains an identifier of action to perform and content.

QR codes contain object converted to JSON format. This object contains the

necessary information to execute custom tasks. One of those tasks can be ordering

an item with promotion codes.

IBM WebSphere supports extend system of campaigns and promotions. The

administrator can decide on what conditions customers get an order discount,

shipping discount or a free gift. Promotions can concern every client or only clients

specified by some criteria. It is possible to set public promotions for every customer

or narrow it only for regular clients. Those promotions can be managed through IBM

Management Center.

A mobile store user who had scanned QR code that contains order action receives

additionally access to promotion code. This promotion code is only for customers

who order product with mobile store application. The promotion applies

automatically without user knowledge. Clients can remove this promotion if they

want to.

40

The ProductDisplay JSP page contains a form with the action

OrderChangeServiceItemAdd that is responsible for adding a product to the shopping

cart. The Android application generates a special URL address, which contains

scan2buy parameter.

This parameter indicates that an item should be added to the shopping cart. Based

on this parameter JSP page adds to the form an extra input and after the page is

loaded JavaScript script submits a form. The code below shows a customized form

and JavaScript script.

<form id="AddToCartForm" method="post" action="OrderChangeServiceItemAdd">
 <input type="hidden" name="catEntryId" value="${product.productID}" />

 <input type="hidden" name="catalogId" value="${WCParam.catalogId}" />
 <input type="hidden" name="storeId" value="${WCParam.storeId}" />

 <input type="hidden" name="URL" value="${OrderItemDisplayURL}" />
 <input type="hidden" name="langId" value="${langId}" />
 <input type="hidden" name="quantity_1" value="1" />
 <input type="hidden" name="productId" value="${product.productID}" />
 <input type="hidden" name="errorViewName"

 value="m20ProductDisplayView" />

 <c:if test="${!empty(WCParam.scan2buy)}">
 <input type="hidden" name="customPromoCode"

 value="${WCParam.customPromoCode}" />
 </c:if>

</form>

<script type="text/javascript">
//<![CDATA[

 <c:if test="${!empty(WCParam.customPromoCode)}">
 submitAddToCart();
 </c:if>
//]]>
</script>

The OrderItemDisplay JSP page handles the order process. If the user wants to order

a product, it has to be added to the shopping cart first. Users can add products to the

shopping cart from the product page - the ProductDisplay JSP page.

The action OrderChangeServiceItemAdd is a service defined in the Struts

configuration file. This service is one of many order services available through Struts

41

and can be executed like calling URL commands. Every Struts action name is mapped

to a corresponding façade client method. Those methods are implemented in

OrderFacadeClient.

After submitting the form, users are redirected to their shopping cart, where the

promotion is applied to the order. The whole process is automatic and users only see

the shopping cart page.

3.4.4 Customizing JSP shopping cart page

After submitting a form from the ProductDisplay JSP page users are automatically

redirected to the OrderItemDisplay page. The promotion code is retrieved from the

WCParam. It is a map that contains pair of the name of the request parameter and a

corresponding single string value.

If a promotion code is mapped in the WCParam map, a checking process is

performed. All active promotion codes are retrieved through

PromoCodeListDataBean. That data bean retrieves a list of all codes associated to the

current order. If in the promotion codes list there is already a code that was

retrieved from WCParam, nothing happens. However, if it is a unique code, an extra

input field is generated. This input contains the promotion code as a value. After the

page is successful generated with the extra input, the shopping cart is updated.

42

PromoCodeListDataBean is a data bean that can populate itself. It is not necessary to

provide another data bean for it. This bean returns a list of all promotion codes

connected with the order passed as a parameter. It is obligatory to set the order

identifier before populating the list. The figure below shows the essential code

responsible for applying the promotion code to the order.

<wcbase:useBean id="promoCodeListBean"

classname="com.ibm.commerce.marketing.databeans.PromoCodeListDataBean"

scope="page">
 <c:set property="orderId"

 value="${order.orderIdentifier.uniqueID}"

 target="${promoCodeListBean}" />
</wcbase:useBean>

<c:forEach items="${promoCodeListBean.codes}"

 var="currentCode" varStatus="status">

 <c:if test="${currentCode.code == WCParam.customPromoCode}">
 <c:set var="duplicateCustomPromoCode" value="true" />
 </c:if>

</c:forEach>

<c:choose>
 <c:when test="${!empty(WCParam.customPromoCode)

 && duplicateCustomPromoCode != true }">
 <input value="<c:out value="${WCParam.customPromoCode}" />"

type="hidden" name="promotion_code" />
 </c:when>
 <c:otherwise>
 <input type="text" name="promotion_code" />
 </c:otherwise>
</c:choose>

<c:if test="${!empty(WCParam.customPromoCode)

 && duplicateCustomPromoCode != true}">
 <script type="text/javascript">
 //<![CDATA[

 updateShoppingCart(document.ShopCartForm);

 //]]>
 </script>
</c:if>

43

3.5 Barcode Generator

The application itself for reading barcodes is insufficient to provide a customer with a

full-featured product. To make the barcode scanner feature useful it is important to

deliver a barcode generator as well. This generator must be simple to use for a

customer.

The client provides data for barcode generator as an Excel sheet. This sheet can be

used in many others scripts, that is why it does not contain only data for the barcode

generator. Therefore, the barcode generator must be flexible.

The generator is created using Java language and can be executed on any machine

with installed Java Virtual Machine. The generator works as a console application. To

generate barcodes simple execute BarcodeGenerator (see

root$ java -jar BarcodeGenerator.jar

Generate barcodes from XLS file

usage: BarcodeGenerator [options] file.xls

 --format=format: Barcode format. Code39 or QRCode. Default: QRcode.

 --column=number: Column of xls file, where content is. Start counting

from 0. Default: 3

 --actionColumnRows=number: Column of xls file, where action type is.

Start counting from 0. Default: --column + 1

 --width=pixels: Image width. Default: 400

 --height=pixels: Image height. Default: 300

FIGURE 12) in console command.

root$ java -jar BarcodeGenerator.jar

Generate barcodes from XLS file

usage: BarcodeGenerator [options] file.xls

 --format=format: Barcode format. Code39 or QRCode. Default: QRcode.

 --column=number: Column of xls file, where content is. Start counting

from 0. Default: 3

 --actionColumnRows=number: Column of xls file, where action type is.

Start counting from 0. Default: --column + 1

 --width=pixels: Image width. Default: 400

 --height=pixels: Image height. Default: 300

FIGURE 12. Executing BarcodeGenerator in console

44

Barcode generator is packed with necessary libraries as a JAR file. This archive

includes the following libraries:

 ZXing 2.0 library,

 Apache POI 3.7 library,

 Simple JSON 1.1.1 library.

Barcode generator contains two classes: BarcodeGenerator and DataHandler.

DataHandler implements IDataHandler interface.

BarcodeGenerator class contains the main method. In this method, parameters are

set. The snippet below shows the process of setting parameters in BarcodeGenerator

script.

for (String arg : args) {
 if (arg.startsWith("--format")) {
 if (arg.split("=")[1] == "code39") {
 dataType = BarcodeFormat.CODE_39;
 } else {
 dataType = BarcodeFormat.QR_CODE;
 }
 } else if (arg.startsWith("--column")) {
 rowNumber = Integer.parseInt(arg.split("=")[1]);
 } else if (arg.startsWith("--width")) {
 width = Integer.parseInt(arg.split("=")[1]);
 } else if (arg.startsWith("--height")) {
 height = Integer.parseInt(arg.split("=")[1]);
 } else if (arg.startsWith("--actionColumnNumber")) {
 actionRowNumber = Integer.parseInt(arg.split("=")[1]);
 }
}

When all parameters are set and no exception occurs, the application starts reading

the Excel sheet. It is possible that this file contains a great deal of information

irrelevant to the barcode generating task. However, when the application is executed

it is possible to point columns that should be retrieved from sheet. The Table 3

represents sample source data file.

45

TABLE 3. Sample data source file for barcode generator

Electrolux ASM450-kulhovatkain 242158 SC1203E 10,5

Nikon D5100 -digitaalinen 142958 SC1202E 11,0

Peak Performance Takki 282957 SC1201E 27,00

Hugo Boss Black Solmio 341953 SC1203D 1,6

Every retrieved data row is passed to DataHandler, where it is handled. Depending

on what type of barcode is generated, data is converted to String or JSON String. The

snippet below shows sending data to DataHandler and converting implementation.

if (dataType == BarcodeFormat.QR_CODE) {
 Cell actionCell = row.getCell(actionRowNumber,
 Row.CREATE_NULL_AS_BLANK);
 dataHandler.setData(cell.toString(), actionCell.toString());
} else {
 dataHandler.setData(cell.toString());
}

data = dataHandler.getData();

@Override
public String getData() {
 return data;
}

@Override
public void setData(String data, String action) {
 params.put(DataHandler.CONTENT_FIELD, data);
 params.put(DataHandler.ACTION_FIELD, action);

 JSONObject jObject = new JSONObject(params);
 setData(jObject.toJSONString());
}

When data is parsed and ready to be converted to barcode, image processing is

executed. This process is handled by ZXing library. The application creates

MultiFormatWriter object and BitMatrix object.

MultiFormatWriter has encode() method which is responsible for converting data

from parameter to the barcode of passed type. It also sets the dimensions of the

barcode. This method returns object of BitMatrix type.

46

To save barcode as a file, simply pass returned BitMatrix object to the

MatrixToImageWriter.writeToFile() static method. Code below shows described

process.

data = dataHandler.getData();

matrix = barcodeWriter.encode(data, dataType, width, height);

MatrixToImageWriter.writeToFile(matrix, "png", new

File(cell.toString() + ".png"));

Barcodes are generated in a folder where barcode generator was executed.

Filenames are determined according to the corresponding cell text.

3.6 Testing working application

The main objective of this thesis was to develop a hybrid mobile application for

Android Operating System with search engine based on barcodes. However, the

application itself for reading barcodes is insufficient to provide a client with a full-

featured product. Before presenting ready product to a customer, it is necessary to

test it.

Figure 13 shows generating QR codes based on data in XLS file.

FIGURE 13. Generating barcodes from XLS file

47

The figures 14, 15, 16 and 17 show screenshots from a working mobile application.

FIGURE 14. Main window of mobile
application

FIGURE 15. Shopping cart after scanning QR
Code with promotion code

FIGURE 16. Product page after scanning
barcode

FIGURE 17. Product list after scanning
barcode

48

4 CONCLUSIONS

The main objective of this thesis was to develop a hybrid mobile store application for

Android Operating System with search engine based on barcodes and QR codes. IBM

provides an extensive starter store called Madison, which contains basic

implementation of barcode scanner. I planned to extend this feature with a full-

featured and useful tool for both clients and store users to be an attractive

marketing tool for improved sales and to store attractiveness for clients. For store

users it would be a practical and easy to use application that would be helpful in

every day shopping.

During the process of writing this thesis, I have managed to accomplish both goals. I

extended the barcode scanner provided by IBM with new functionalities such as

searching products based on barcode information, redirecting users to the page,

performing custom search and ordering products with dedicated promotions.

Users can search for a product in online store by simple barcode scanning. It is

possible for them to check for a product available in a web store, compare prices and

take part in marketing campaigns.

Clients are able to perform interesting and modern marketing campaigns with the

use of different kinds of barcodes. With multiple options to choose, they can plan

and launch campaigns of a new type.

To start developing a mobile application it was necessary to deploy Feature Pack 4

for WebSphere Commerce, which provides support for mobile applications and

installs the Madison mobile starter store. At the beginning, installing both Madison's

Enhancements and Mobile Madison's Enhancements was straightforward and did not

make any problems. However, the final step of installation those enhancements

caused a lot of trouble. Unfortunately, in my humble option, IBM documentation

about publishing enhancements does not contain a lot of information. It only

provides basic knowledge about the whole process. The main problem was to

49

determine the dependency between different packages. Not all dependencies are

documented. Server console of Rational Application Developer became very useful in

the search for solution of incompatible enhancements.

IBM provides an extensive mobile starter store, which does not require a great deal

of configuration to run it. Improving this starter store is really straightforward and

after getting basic knowledge about class structure, developing new features is

relatively simple. On the other hand, I had to get that knowledge by reading code

provided by IBM. There was no many useful information on the IBM Info Center

website (e.g. tutorials about basic development). However, Madison's source code is

written very well and it is also well documented. Therefore, it was not very

complicated to create new activities on my own. What is very interesting, while I was

developing my code under Android, I found a bug in an IBM class. It was not a critical

error. Because of this error, I spent a few hours trying to get my activity to work.

Even such a mature and advanced product as WebSphere Commerce has bugs.

WebSphere Commerce API contains over 10000 interfaces and classes. The list of all

classes with documentation can be found on IBM Info Center website. Despite the

fact that IBM introduces name convention in they own documentation I found many

confusing discrepancies. In my opinion, documentation of such a huge product

should be very carefully created and checked for errors and misleading information.

IBM has implemented new views based on Android's views. They are specifically

designed for displaying and handling eCommerce data. There are also many classes

and interfaces ready to use in developing a mobile application. Those elements

simplify the creation of an application.

IBM also provides a mobile version of Madison starter store. This web application

uses the same business logic as a full version. Therefore, the only difference between

the mobile application and its full edition is the presentation layer. By developing the

mobile store, I familiarized myself with techniques of creating a useful mobile

application and its limitations. I had an opportunity to test my application on a real

50

devices. It was a very valuable experience that helps me to improve my application

to be more user-friendly.

Customizing JSP pages responsible for searching products and making orders was

straightforward. WebSphere Commerce has a good documentation of business logic.

It is also very complex, and it was not necessary for me to expand its functionality.

IBM already implemented everything I needed. Thanks to that, developing new

applications is incredibly fast and simple.

When I was working on my thesis, I noticed that keeping the same name convention

is really important. The naming convention that is suggested by IBM is clear and

helpful. It increases the readability of the code. Another advantage is visible when

we work in a team and we want to merge our work with others' work. If we keep our

naming convention, merging of files is simple and in most cases proceeds without

any conflicts.

I have now a much better understanding of WebSphere Commerce than before. I

have learnt how to take advantage of provided beans, database and code. I have

better knowledge about life cycle of a product. An extensive library of classes is very

important in enterprise development. Enterprise applications have to be stable and

fast. One of the ways to archive that goal is to use expanded and mature code. I think

that, IBM WebSphere Commerce has very good, ready to use code. It also has a full-

featured starter store, which can be used as a template to build a custom shop. It is

not necessary to build everything from scratch.

Using WebSphere Commerce to built eCommerce applications reduces development

time significantly. Creating new pages using JSP technology is straightforward.

However, it is difficult to debug those pages. The debug tool provided by Rational

Application Developer does not support debugging of JSP pages. It is strongly

recommended to implement only presentation layer, not business layer in JSP pages.

Therefore, debugging of those pages should not be necessary, because all

implementation code should be in Java files.

51

Using open source libraries like ZXing, Simple JSON or Apache POI was also very

helpful. Instead of developing a barcode scanner from scratch, I just used a ready and

well-tested library. It not only reduces time spent on developing but also provides

better security and performance. Many developers use those libraries, so probability

of existing bugs in those codes is much less than in code written by one programmer.

I could not afford to spend so much time on one task, which would be creating,

testing and optimization of barcode scanner library.

The application is fully-featured and ready to use. However, it could be still improved

with new features. The application could be connected with social media like

Facebook or Twitter to add a possibility for sharing barcodes with friends.

WebSphere Commerce provides a possibility for cooperative shopping. With the

sharing barcodes feature, it would provide great functionality for clients of a web

store. Another feature to implement could be a management system for scanned

barcodes. Users would have a possibility to use scanned barcodes in future, because

not always is it possible to make order an when the barcode is scanned. WebSphere

Commerce provides also wish lists. A very useful feature would be adding a product

to wish lists by scanning barcodes.

52

REFERENCES

Crawford, W., & Kaplan, J. (2003). J2EE Design Patterns. O'Reilly.

Fang, Y. (2011). JSON Simple. Referenced 2012-03-18 from JSON Simple:

http://code.google.com/json-simple/

IBM - WebSphere Commerce. (2011). Referenced 2012-03-25 from IBM - WebSphere

Commerce: http://www.ibm.com/software/genservers/commerceproductline

IBM - WebSphere Commerce. (2012). Referenced 2012-04-07 from IBM - WebSphere

Commerce: http://www-

01.ibm.com/software/genservers/commerceproductline/compare.html

IBM Info Center. (2011). Referenced 2012-04-08 from IBM Info Center - WebSphere

Commerce Version 7.0.0.5

http://publib.boulder.ibm.com/infocenter/wchelp/v7r0m0/topic/com.ibm.commerc

e.developer.doc/concepts/csdapplication.htm

Siggelkow, B. (2005). Jakarta Struts Cookbook. O'Reilly.

Struts 1. (2008). Referenced 2012-02-19 from The Apache Software Foundation:

http://struts.apache.org/

The Apache POI Project. (2011). Referenced 2011-03-17 from The Apache POI

Project: http://poi.apache.org

Three-tier. (1998). Referenced 2012-02-19 from Three-tier definition from FOLDOC:

http://foldoc.org/three-tier/

Ticknor, M., Corcoran, A., Csepregi-Horvath, B., Goering, A., Hernandez, J. P.,

Limodin, J., et al. (2011). IBM WebSphere Application Server V8 Concepts, Planning,

and Design Guide.

Wahli, U., Cui, H., Fleming, C., Mehta, M., Rohr, M., Ugurlu, P., et al. (2007). Rational

Application Developer V7 Programming Guide. IBM.

ZXing. (2011). Referenced 2011-03-18 from ZXing: http://code.google.com/zxing/

