
Bachelor's thesis

Degree programme: Information Technology

2012

Elena Oat

REPORTING AND FUNCTIONALITY
ADDITION FOR TIME-TRACKING
SYSTEM

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme | Information Technology

23/05/2012| 50 pages

Instructors: Jaakko Väliviita , Patric Granholm

Elena Oat

REPORTING AND FUNCTIONALITY ADDITION
FOR TIME-TRACKING SYSTEM

The purpose of this study was to implement additional features to a configured

time-tracking system used in a company. The desired functionality included

automatic clock-out of the employees and reporting features. The main goal of

the thesis consisted of creating an “interface” between end user application and

database. Therefore, execution of SQL queries from application object-oriented

code was avoided. Transact-SQL stored procedures written for Microsoft SQL

Server 2008 R2 constitute components of the “interface”. Procedures were

written using the set-based approach which ensures conciseness of code and

fast processing time.

KEYWORDS:

Transact SQL, stored procedure

CONTENT

1 INTRODUCTION 1

1.1 Problem definition 1

1.2 Project goals 2

1.3 Concepts and definitions 3

 1.3.1 Definitions 4

 1.3.2 Concepts 5

2 OVERVIEW AND DETAILS OF THE CURRENT CLOCK-IN SYSTEM 10

3 REQUIREMENTS AND DESIRED FEATURES OF THE IMPROVED SYSTEM 13

4 SOLUTIONS FOR SET GOALS AND IMPLEMENTATION 16

5 CONCLUSION AND FUTURE WORK 23

SOURCE MATERIAL

APPENDICES

Appendix 1. Automatical clock-out of employees SQL stored procedure

Appendix 2. Ruby script that runs stored procedure of automatic clock-out

Appendix 3. Correction of automatic timestamps SQL stored procedure

Appendix 4. Report on automatically inserted timestamps that were not corrected

Appendix 5. Report on hours worked by an employee in a day SQL stored procedure

Appendix 6. Report on hours worked by all employees in a day SQL stored procedure

Appendix 7. Report on hours worked by an employee during a month

Appendix 8. Report on hours worked by all employees during a month

Appendix 9. Report on hours worked by an employee during a free range period

Appendix 10. Report on hours worked by all employees during a free range period

Appendix 11. SQL stored procedure written using procedural approach. Procedure calculates

the amount of hours

TABLES

Table 1. Original database structure of clock-in system

Table 2. Database schema of improved clock-in system

4.1 Implementation challenges and their solutions 16

4.2 Implementation 19

 4.2.1 Automatic clock-out feature 19

 4.2.2 Reporting feature 21

1 INTRODUCTION

1.1 Problem definition

The profit and success of a company depends directly on how efficiently it

operates. One of the premises of efficient work lies in task automation, so that

machines execute work they are able to deal with correctly, while humans

configure and observe machines. Naturally not in every task people can be

replaced by machines, but in those cases when applicable, the efficiency of

work grows significantly, while the amount of errors and costs goes down.

Most of the companies nowadays have implemented some method of tracking

the working hours of their employees. Paychecks are issued according to the

acquired data, which ensures that employees are paid in accordance with their

completed work. Some employers still use pen and paper to take notes on

when employees come to work and when they leave. As a result, managers

have piles of paper on their table by the end of the month. The consequences of

this type of approach include considerable amount of hours spent on manual

calculations as well as human errors.

RFID technology helps alleviating this problem. Employees would have to wave

their own RFID tag in front of the reader when they come to work and wave it

again when leaving. As each tag has a unique number assigned by its

manufacturer, this ensures that each employee receives individual tag that is

tied to their name. An administrator configures the system so that data is

inserted into the right location. After this, the system is automated.

A large number of companies use this type of system to keep track of working

hours, as this removes the overhead of manual tasks.

2

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

1.2 Project goals

The purpose of the project described in this thesis is to improve an existing

clock-in system and provide additional functionality to it. The company where

the system is used is a small one, where the number of employees does not

exceed 15. Nevertheless, the owner took the decision to implement a time-

tracking system. This proves that implementation costs are justified even for the

case of a small organization.

The goals set in this study include design and implementation of additional

features that would make the system more practical and automate larger

amount of tasks. One of the problems posed is clocking out employees who

have forgotten to do so. Later they should be able to correct the timestamp

entered automatically by the system. The administrator of the system should

know later whether a stamp was inserted manually by employee or

automatically by a script, therefore, the stamps need to have a mark that makes

them distinguishable from the manually entered stamps.

To keep the database entries intact, data entered by the script in an automatic

manner should remain in the database, while timestamps with accurate time of

leave will be inserted into an auxiliary table and will be tied with a foreign key to

data in the main timestamp table.

Another problem that requires a solution is the ability of monitoring corrections

on automatic timestamps. The manager of the company should be able to see

whether all employees have corrected automatically inserted timestamps. This

will ensure accurate paychecks.

Reporting on worked hours represents another set goal for the thesis.

Managers, as well as regular employees, need to see summaries of the amount

of worked hours. Employers’ reports should include information on all

employees, while others should see data related only to them.

The implementation of desired functionality for clock-in system is done using

Transact-SQL. Stored procedures written in Transact-SQL solve most of the

3

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

required features. Simple script in Ruby language, that makes use of a Ruby

library 'Tiny_tds' for database connection, executes corresponding stored

procedure designed for automatic clock-out. To schedule Ruby script, a

scheduled task in Task Scheduler, that is included in Windows OS, is

configured to run the script at desired time of specified days.

Stored procedures are chosen as a solution to keep GUI code separate from

SQL. This allows modifying and improving Transact-SQL code if needed, while

not making radical changes to the GUI code. Additionally, focus on SQL as an

individual part of the project, results usually in a better written and more efficient

code.

The scope of the thesis does not include developing an application that would

use T-SQL code. Application development and GUI coding represents another

half of the project of clock-in/out system improvement. A software developer,

who works for the company, will work on application development after the SQL

procedures are written, and solutions for set requirements are approved.

Briefly summarizing, the goals of the thesis are:

 Developing a mechanism of automatic clock-out

 Developing a solution for correcting automatically inserted timestamps

with accurate ones and keeping data integrity at the same time

 Delivering a reporting system on the amount of worked hours.

1.3 Concepts and definitions

The following section lists all definitions and concepts that relate to the thesis.

The purpose of this section is to clarify and define terms used throughout the

work so that the reader could refer to those if needed.

Only selected definitions are provided to keep this work concise.

4

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

1.3.1 Definitions

SQL stored procedure is a subroutine that accesses a relational database. Its

purpose is to provide execution result of some logical operations, included in

the procedure, to applications. Stored procedure or sproc, as it is called

sometimes for brevity, is stored in a database itself. [1]

RFID (Radio Frequency Identification) is a technology of non-contact transfer of

data. A typical case of use would be transfer of unique identification number

from an RFID tag to a reader. Radio-frequency electromagnetic fields are used

to transfer data. RFID technology is mostly used for automatic tracking and

identification.

Transact-SQL or T-SQL is Microsoft’s extension to SQL. T-SQL is an

expansion on SQL to allow use of local variables, procedural programming,

changes to DELETE and UPDATE statements, etc. T-SQL provides richer

possibilities for writing code. [2]

SQL join is an operation applied on tables or queries that combines records

from these tables or queries that follow a rule specified in the join definition.

SQL inner join is a type of join when tables are joined on the basis of a

comparison operator. [3]

While inner join returns only records from joined tables when the comparison

condition is met for both of the tables, left outer join or left join returns all

records (all that satisfy conditions specified in WHERE and HAVING) from the

first participant table (the one that is being immediately followed by FROM

clause) in the join operation. [4]

SQL self join is a type of SQL join where a table is joined to itself. [5]

Self, inner and left outer joins are implemented in almost all stored procedures

that apply to this project.

Ruby is an open source object oriented programming language that promotes

writing simple and productive code. [6]

5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

1.3.2 Concepts

This section presents the main concepts that were applied in this thesis work.

A) RFID technology: applications and characteristics

Radio frequency identification is a technology that has become significantly

more common in the recent years due to the significant cost drop and benefits

that come with its implementation. Most people in developed countries apply it

in their daily life in transportation, libraries, work, etc.

RFID has several advantages over other technologies of identification: it can

identify objects from a distance, it does not require the object to be uncovered,

the object can, in fact, be in a box. These two features are not specific to

barcodes, however. RFID tags support a larger amount of unique identifiers,

which means that a larger amount of objects can be identified by it. They can

also store additional information in their memory: their manufacturer, product

type, etc. Hundreds of RFIDs can be identified by a reader at the same time,

while barcodes can be read only one by one. [7]

RFID is being used in a variety of ways. Thanks to its miniature size, it can be

inserted under the skin of animals to track their movements. They are even

being implanted into human bodies in rare cases, when, for example, police

should keep track of police officers that participate in risky operations. At the

same time, they are widely used in retail chains to track products and prevent

their theft. One of the common uses of RFID are card-shaped tags that are

used for access to buildings, time and attendance tracking of employees. [8] [9]

Characteristics

RFID tags can be of passive or active type. The differentiating feature between

them is their source of power: passive tags do not have internal power supply,

they are being “charged” by the reader in their proximity, whereas active tags

are equipped with a battery, which allows their identification from larger

distances. Both types of tags have their advantages and disadvantages and

should be chosen in accordance with their purpose. Absence of power supply in

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

passive tags defines their small sizes, while active tags are known for their

accuracy, reliability and capability of being read from many meters away.

Card-shaped and black leather key-fobs tags are being used for time-tracking

purposes in the company for which this thesis is written. Passive tags were

chosen because of their relatively low cost and provided functionality. It is

unnecessary to identify people from long distances in this particular case.

Privacy and security concerns

While being an extremely beneficial and promising technology, RFID poses

security problems too. Illegal tracking of people or objects represents one of the

possible threats. Their location can be identified by readers from considerable

distances, which makes them exposed to a variety of threats. Concurrently,

private information stored in the memory of RFID tags can be read by an

intruder. [9]

Another security concern is the possibility of cloning RFID tags, which means

that anyone could access private property. An intruder could use a fake access

card, that simulates a genuine one, and get hold of private information or goods.

All possible risks should be taken into consideration and prevention rules should

be set when technology is being implemented in an organization.

B) SQL programming challenges

At first sight, SQL appears as a simple and trivial language. That’s why not

many people take time to master it and consider knowledge of SELECT and a

couple of other statements as being enough to achieve most of the desired

functionality. It is worth mentioning that almost any organization nowadays uses

databases for daily tasks. Therefore, the efficiency and reliability of database

systems is closely connected with their operation. A multitude of concepts and

best practices are known that help administrators and programmers develop

well-operating environments. Yet even experienced DB programmers learn and

discover new methods all the time, that replace previously considered best

practices. This process is continuously ongoing.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Below are presented some of the concepts that were implemented while

working on this thesis.

Set-based versus procedural approach

Most SQL programmers are aware of the fact that SQL Server does not work

best with row by row operations, while it performs in a most efficient manner

with sets. Thus, two types of coding approaches are distinguished when

speaking about subroutines in Transact-SQL.

The procedural approach represents a programmatic approach, where a

programmer tells the system what should be calculated and in which way

results should be calculated. In other words, the programmer makes decisions

on methods and procedures of result calculation.

While the procedural approach promotes decision making by the programmer,

the main idea of the set-based approach is to let the system decide on the

methods of how to compute results. The programmer’s task in the set-based

approach consists in telling the system what should be calculated, and not how

it should be calculated.

The SQL server execution engine was designed so that it operates on sets of

data and this ensures its best performance and fast execution results. When

programmers tell the engine how to execute operations it has to take suggested

path instead of using the best and optimized solution that it can decide on its

own. This way programmers are not doing any favor to SQL operating

efficiency, on the contrary, they are depriving it of its right of using the most

efficient and fastest method of calculating results.

A perfect example of the set-oriented approach advantage over the procedural

one are joining techniques. Three types of them can be distinguished: merge

join, nested loop join, hash join. Resourcewise, their cost can be characterized

as the least for merge join and the highest for hash join. These joins are each

applicable for different situations, depending on the number of records and

indexes. When a join operation is implemented in the SQL code, the

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

programmer does not specify which type of join will be used. SQL Server

determines which of them three is applicable and would supply the best results.

[10]

Time-based data

Most databases store and manage time-based data or, in different terms,

temporal data. The domain of values for this data includes working periods, time

when an employee comes to work or leaves and the total amount of worked

hours. All mentioned values are characteristic and essential for this thesis.

In spite of requirements set by life, databases can store only discrete time

values, i.e., only instants in time. This poses challenges when dealing with time-

related values. Because time is continuous and time values can be represented

with different approximation, strict rules should be considered when developing

and managing databases. Any later additions or modifications related to records

or database structure have to follow defined rules. This ensures consistency

and accuracy, as well as simplifies work performed by administrators and

programmers.

The main concepts related to time, that are also addressed when creating set of

rules for database management, are presented below:

- Granularity

The granularity concept represents the smallest unit of time that is used in a

database. Granularity can be, for example, up to a minute or a second,

depending on the data that is stored and set rules. Granularity should be

defined clearly when performing any database operations. In other words,

granularity represents the smallest time unit that the organization cares about.

- Precision

Precision, on the other hand, is defined by the datatype of data. For example

DATETIME datatype has a precision of 3.3 milliseconds in SQL Server. As a

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

result, any DATETIME value, that is entered into database, has milliseconds

specified too, even if they are not provided when the data is inserted.

- Duration

Duration, in terms of SQL, means an interval in time and is, usually, an integer.

Instance, in SQL, is a moment in time.

The ISO 8601 standard is chosen in this work as a way of representing dates

and times, hence their format of representation. It specifies that all input and

output date and time values in SQL code are of format "YYYY-MM-DD

HH:MM:SS.MMM". [12]

The implementation section of this work presents challenging situations

encountered in the project related to time concepts in databases.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

2 OVERVIEW AND DETAILS OF THE CURRENT

CLOCK-IN SYSTEM

The researched system represents a working-time recording model for

company employees. The system includes several elements that offer required

functionality:

- RFID tags and readers, which provide data to database about employee clock-

in and clock-out time;

- Ruby daemon running on the DB server that inputs data to database about

events of clock-in and clock-out;

- Database that holds information about employees, tags associated with

employees and clock-in and clock-out stamps.

Further are described technical specifications of the above mentioned system

components. Additionally, the purpose and the description for each element are

provided to clarify the concepts further.

Tags

RFID tags used in the company are passive Mifare tags, which can hold

information of 1 kilobyte. Each RFID tag has its own unique number of 4 bytes.

Thus to each employee corresponds a unique number which is stored in the tag

memory. This number is also stored in the database in the table which holds

information about employees.

Readers

Access 7CE readers manufactured by Idesco are implemented in the company

system for collecting data supplied by RFID readers. These readers are able to

read unique ID number of Philips Mifare tags. There are two readers in total,

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

one by the entrance door and another one next to dining room, so employees

could comfortably clock their time.

Each reader has its own IP address and is connected directly through Ethernet

cable to company network. Power to readers is supplied by the Ethernet

network.

Reader has a small LED as well that lights up when an event occurs. When a

tag is in reader’s proximity, LED flashes briefly red and then either continues

flashing red or turns green for couple of seconds, which means that the user

has been clocked out or clocked in, correspondingly. The buzz is also switched

on when any of mentioned above events occur. It emits a short sound which

indicates that the user is either clocked in or out. The type of event is evident

from the color of the flashing LED.

Ruby daemon

Daemon, running on the database machine, serves as a middleware between

the readers and database. Its main purpose is to catch events which are

recorded by the reader and insert a tag’s unique id, as well as toggle the status

of the employee from present to absent or vice versa in the corresponding table.

Database is updated in the following way with latest events concerning

employees that have been either clocked in or clocked out.

Ruby daemon is just a small program that runs two threads in this case, as

there are two readers. Each of the threads has an observable and observers.

The observable’s purpose is to recognize when a change occurs, i.e., when

data is read by the reader, and notify this change to the observers that in turn

take relevant actions. In our case, an observer is used that checks whether the

data read by the reader is valid, i.e., whether the tag exists and is related to an

employee in the company. In case the tag is valid, the observer updates the

data in the database, toggling the status of the employee whose tag was read

by the reader. Otherwise, an error message is displayed by daemon and

changes are not implemented.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Ruby daemon has another important role, too. It notifies employees whether

they have been clocked in or clocked out. The event type can be recognized by

the LED color: if it is red, the user has been clocked out, and if green, the user

has been clocked in.

Database

The researched system’s database server runs on the Windows 2008 R2

Standard edition. The type of DMBS used for managing data is relational –

RDBMS. Microsoft SQL Server was chosen as the database server software.

The database engine product version is Microsoft SQL Server 2008 Service

Pack 1 and it is a Standard 64-bit Edition.

The database server supports mixed authentication mode, thus it allows to log

in to SQL server using SQL Server authentication and Windows authentication.

SQL Server authentication is used by the ruby daemon to get access to

database and modify its records.

Only one database is used for managing all the data supplied by the readers.

Table 1 illustrates the database schema.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

3 REQUIREMENTS AND DESIRED FEATURES OF THE

IMPROVED CLOCK-IN SYSTEM

This section of thesis describes the desired functionality of the system, as well

as tasks and requirements that are implemented in order to achieve this

functionality. The described tasks represent, at the same time, the goals of the

thesis.

Below are presented the missing features of the system that need to be

implemented in the current system implementation:

A. Automatically clock-out employees who have not been clocked out from the

system by the end of the day.

B. Allow employees to correct later the time of automatic clock-out.

C. Create a reporting system that would show the worked hours of employees.

By solving the above presented problems, the DBA (database administrator)

would not have to worry about deleting records from the tables that have

incorrect clock-out time, as well as inserting by hand correct replacements.

At the same time, employees will not have to worry all the time that they forget

to clock-out, because they will have to go through the process of asking the

administrator to delete their incorrect stamps and insert new ones.

If the number of employees is fewer than ten, manual management of the

system is possible, but what if the company employs hundreds of workers? In

this case, the DBA would have to spend half of his day by fixing consequences

of careless attitude towards the system. Automatic clock-out will also allow to

avoid human error when inserting and deleting data to database.

Another problem set for this work, which represents a significant part of the

thesis, is reporting. The goal is to allow employees to see hours worked during

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

a period of time. At the moment, employees are not able to verify how many

hours they have done so far. Besides, the manager of the company should be

able to check hours worked by all employees for a specified period. This way,

the employer could pay employees according to worked hours and write

accurate paychecks.

It is worth mentioning that reports should include correct clock-out time for all

employees. Thus, before counting the paycheck, all automatically clocked out

employees should have corrected their time accordingly. For this purpose

another report should be created that lists all employees and dates when they

have been clocked out automatically and whose timestamps have not been

corrected.

Additionally, reports should include data on the hours worked till moment when

the query is run. In other words, if employees would like to know how many

hours they worked during the current month, the report should include worked

hours for that current day, too. In case the employee has not been clocked out,

a temporary clock-out is set in the procedure that does not affect the table data,

which equals to current time. In this way the employee receives the most

accurate report on worked hours.

Below follows the breakdown of the steps necessary to satisfy the requested

features:

A., B. Automatic clock-out

I. Modifying the existing database structure to fit desired functionality and

features (refer to Table 2 to view the updated DB design).

II. Designing an automatic system that would insert automatically records for

employees and update their status:

- Creating a stored procedure that would search for employees that have not

been clocked out by the end of the day and update status, insert clock-out

timestamp and a record for future timestamp correction for them

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

- Creating a ruby script that would run the above mentioned procedure

- Creating a scheduled task for the script.

III. Creating a stored procedure that would allow employees to correct

automatically inserted values for clock-out time.

IV. Creating a stored procedure that would show the employees that have been

clocked out automatically and have not corrected the automatically inserted

timestamp.

V. Revising ruby daemon to avoid insertion of incorrect data.

C. Reporting

I. Writing T-SQL code for each report type.

Reports should provide information to an employee/manager on the following:

- Hours worked on specific day for one/all employee(s)

- Hours worked in a specific week for one/all employee(s)

- Hours worked during a month for one/all employee(s)

- Hours worked for a free range of days for one/all employee(s).

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

4 SOLUTIONS FOR SET GOALS AND

IMPLEMENTATION

4.1 Implementation challenges and their solutions

This subsection lists challenging situations during the implementation phase.

The problem description, as well as the solution to it, is presented here.

Set-oriented thinking against procedural thinking

It is essential to realize the power of set-based approach in Transact-SQL, i.e.,

thinking of work with a set of records at once, instead of thinking of work with

one record at a time. Execution times of stored procedures and queries written

in set-oriented style are considerably faster than once written in a procedural

way. Another great advantage is the conciseness of code written in set-oriented

style. Usually queries are much shorter and easier to grasp, than the ones

written in procedural style, where code is long. This presented one of the

significant challenges the author had to deal with during implementation.

One example is provided for comparison in Appendix 11.

Procedures in Appendices 6 and 11 implement the same functionality – they

calculate the amount of hours worked by employees during one day. The same

task is being approached from set-based (Appendix 6) and procedural

(Appendix 11) points of view. As it can be noticed, the procedure is 4 pages

long and contains a large amount of local variables, which represents a typical

feature of procedural SQL programming. The execution time of this procedure is

several times slower than of its alternative written using the set-oriented

approach.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Concept of DATETIME datatype

When users say they want to find out how many hours have they worked during

a specified day, they mean a duration - from morning till evening of that day.

When a user queries a database for a day "2011-11-11", SQL server casts the

given value to a DATETIME and it becomes an instant that equals to "2011-11-

11 12:00:00.000". In other words, it is the same if the user would ask how long

he has worked on 11th of November 2011 at midnight. Any DATETIME value, in

fact, represents a millisecond in time.

It is also important to note that strings given in a form 'YYYY-MM-DD' are being

implicitly casted by the server into DATETIME values in Transact-SQL.

Additional code needs to be written to calculate correctly required values and

this concept needs to be fully understood to evaluate correctly what is being

asked. [11]

Calculation of duration and its human-readable representation

The work in the thesis is closely tied with time and duration. Most of the data

stored in the researched database are of type DATETIME.

Calculating the duration of an event presents a challenge, as duration is not of

type DATETIME, though it is calculated based on the values of type

DATETIME.

Granularity presents a great importance in calculation of durations. In this work,

granularity is set to seconds. So all durations are presented as an INTEGER,

which implies the duration in seconds of a happening. Because thousands of

seconds is not the most readable way of presenting duration, the integer

number is converted when needed into a varchar variable in the form

"hh:mm:ss".

The DATEDIFF function is largely used in procedures written for the thesis. It

allows calculating the difference between two instants given as timestamps in

seconds. [12]

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

NULL results

Sometimes when running a query null results are returned. For example

calculating the SUM of values in a field on an empty table will return null. At the

same time, the GROUP BY clause applied on an empty table will return empty

result set. As a convention for this project, an empty result set will be returned

instead of NULL to keep consistency among all procedures.

Local temporary tables and their scope

Local temporary tables are used in almost all of the stored procedures written

for this project. Their main purpose is to store temporarily the result set of a

complex query.

Although local temporary tables are explicitly created with CREATE TABLE

#TName statement, they do not have to be dropped explicitly, too. The table is

dropped implicitly when the stored procedure ends. That is why the statement

DROP TABLE #TName is not found in the procedures.

Calculating hours for employees currently at work

Employees that have not been clocked out, because they are currently at work,

cannot see the accurate amount of worked hours in case they query a period

that includes the current day. To overcome this limitation, a temporary stamp

needs to be inserted that simulates a clock-out. This allows calculating correctly

hours worked by an employee including the current day. The concept of a dual

table is used to accomplish this task in most RDBMS. In T-SQL, the dual table

does not exist. Neither is needed, as "FROM" is not a required component of

the SELECT statement in T-SQL.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

4.2 Implementation

4.2.1 Automatic clock-out feature

I. Database schema modification

Two changes are required for existing database to fit in desired functionality:

1. Creating table “corrections” that is meant to hold information about manually

corrected employees’ clock-out time. A foreign key is defined on the table which

references the id of a stamp from the “stamps” table. Thus each row in

“corrections” table relates to a row in “stamps” table by its “id_stamps” field

value.

2. Adding a new field of type bit to table “stamps” which will indicate whether the

entered stamp was inserted automatically by scheduled task, whose purpose is

to automatically clock-out all employees. The default value of the field is 0,

which indicates that the stamp was not inserted automatically by scheduled job.

II. Automatic update of database records

a. In order to insert and update records from the database with the automatic

clock-out information, a new stored procedure should be created that would

execute this task.

The procedure performs the following tasks:

- Checks all employees that have a status 1 in the people table

(those who are not clocked out)

- Inserts into the stamps table a record that contains a current

timestamp for corresponding employees

- Inserts into the corrections table a record that references just

inserted into the stamps record, that will be used later for

inserting the accurate time of clock-out by the employee

- Updates the people table and sets the status to 0 for the

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

corresponding employees.

The code of the procedure can be seen in Appendix 1.

b. To clock out employees automatically, a scheduled job should be created

using Task Scheduler. This scheduled job will run ruby script that runs with the

above mentioned stored procedure.

Ruby script uses Tiny_tds library to connect to the database. It checks whether

the connection is active and if it is, it executes the procedure. Its code can be

found in Appendix 2.

c. The at command is used to schedule a periodic run of the ruby script.

The following command creates a scheduled task that runs ruby script every

workday at 23:30

at 23:30 /every: M, T, W, Th, F ruby “C:\Documents and

Settings\administrator\Jobs\cron.rb”

In our case the ruby executable path is added to the Windows environment

variables.

The Task Scheduler service is running on the server system that allows to

schedule tasks.

The job is run under the System account, which has a few advantages over

running the task under some other account. For example, in case the password

expires for a usual account, the script will cease to run until the password is

updated. Using a system account overcomes this limitation.

III. Correct automatically inserted timestamp

Created for correcting automatically inserted timestamps, the SQL stored

procedure takes two parameters: employee id and correct timestamp, i.e., the

date and time when an employee left the work place on a corresponding day.

Procedure searches for all automatically inserted timestamps on the respective

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

day for a specified employee, and then updates the table with an accurate

timestamp.

The source code for procedure can be found in Appendix 3.

IV. Report on employees who have not corrected automatically inserted

timestamps

Report represents a stored procedure that shows a complete list of employees

and dates, when they have not corrected yet their automatically inserted clock

out time.

The manager, who is responsible for paychecks, will have to run this report

before creating payrolls for employees.

Source code for procedure is provided in Appendix 4.

V. Implementation of required changes to daemon

As the ruby daemon does not directly store any information about employees or

their timestamps, but pools this info from the database, it can be presumed

independent from the changes that happen in the database (tables are updated

with new data from other sources). In other words, by inserting new data to

database, daemon’s functionality will not be modified anyhow. Although a new

table will be created and a field will be added to an existing table, this will not

affect the operation of the ruby program, as no data will be pulled or inserted

from the new table. Regarding the new field, when data is inserted by the

daemon to the corresponding table, the value for the new column is inserted by

the database itself, as there is a default value defined.

4.2.2 Reporting feature

The purpose of this feature consists of creating two types of reports: employee

reports, that would show the worked hours for a day, month or free range period

for specified employee, and employer reports that provide summary of worked

hours by all company employees during one day, month or free range period.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Six different procedures were written to satisfy the desired requirements. All of

them use the set-based approach, which allows executing them faster and in an

efficient manner, with least resource expenses.

The source code and comments for procedures can be found in Appendices 5-
10.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

5. CONCLUSION AND FUTURE WORK

The purpose of the thesis was to enhance the existing time-tracking system with

additional features to make it more practical for use. All desired functionalities

were implemented although some limitations still exist. As an example, local

temporary tables creation in stored procedures should be, preferably, avoided in

the future. It is worth mentioning that even though local temporary tables appear

in the procedures’ code, their use is optimized – only relevant rows and

columns are inserted into temporary table from the original one, instead of the

whole original table.

Stored procedures’ usage can be all together skipped in some cases.

The latest SQL Server release, SQL Server 2012, brings with it new features

and additions, including two analytic functions: LEAD and LAG. [14] Using

these functions would simplify code for most stored procedures written for this

project. Specifically, the usage of one self join could be avoided, which would

result in a shorter and clearer code.

All listed improvements require additional time for development, testing,

comparison and enhancement.

The set-oriented approach was used for developing Transact-SQL code for an

“interface” between database and application. It presents the most efficient and

concise style of SQL programming. This allows easier reading of the code by

other developers and fast processing times of the code.

The development of graphical user interface for the application that will use

Transact-SQL stored procedures follows after this project is finished. This will

ensure full report functionality of the time-tracking system.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

SOURCE MATERIAL

[1] Stored procedure basics. MSDN library. Consulted 15.12.2011

http://msdn.microsoft.com/en-us/library/ms190782%28v=sql.105%29

[2] Transact-SQL. Consulted 03.03.2012

http://en.wikipedia.org/wiki/Transact-SQL

[3] Using inner joins. MSDN library. Consulted 05.04.2012

http://msdn.microsoft.com/en-us/library/ms190014%28v=sql.105%29

[4] Using outer joins. MSDN library. Consulted 10.04.2012

 http://msdn.microsoft.com/en-us/library/ms187518%28v=sql.105%29

[5] Using joins. MSDN library. Consulted 11.03.2012

http://msdn.microsoft.com/en-us/library/ms177490%28v=sql.105%29.aspx

[6] Ruby language. Consulted 12.12.2011

http://www.ruby-lang.org/en/

[7] Want, R. 2006. An introduction to RFID technology. PERVASIVE computing, 22-

33. Consulted 10.05.2012

 http://w.thispervasiveday.com/documents/articles-perspectives/an-introduction-to-rfid-

technology.pdf

[8] What can RFID be used for? Consulted 11.05.2012

http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=4

[9] RFID tags - Radio Frequency Identification tags. Consulted 11.05.2012

http://www.rfident.org/

http://msdn.microsoft.com/en-us/library/ms190782%28v=sql.105%29
http://en.wikipedia.org/wiki/Transact-SQL
http://msdn.microsoft.com/en-us/library/ms190014%28v=sql.105%29
http://msdn.microsoft.com/en-us/library/ms187518%28v=sql.105%29
http://msdn.microsoft.com/en-us/library/ms177490%28v=sql.105%29.aspx
http://www.ruby-lang.org/en/
http://w.thispervasiveday.com/documents/articles-perspectives/an-introduction-to-rfid-technology.pdf
http://w.thispervasiveday.com/documents/articles-perspectives/an-introduction-to-rfid-technology.pdf
http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=4
http://www.rfident.org/

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

[10] Shubho, A. 2009. Understanding “Set-based” and “Procedural” approaches in

SQL. Consulted 03.03.2012

http://www.codeproject.com/Articles/34142/Understanding-Set-based-and-Procedural-

approaches

[11] Špetič, A.; Gennick J., 2002. Transact-SQL Cookbook. Sebastopol, CA: O’Reilly.

[12] Celko, J. 2011. SQL for smarties. Advanced SQL Programming. Fourth Edition.

Elsevier.

[13] Sorrells, P. 1998. Passive RFID Basics. Microchip Technology Inc., 1-4. Consulted

10.12.2011http://ecee.colorado.edu/~ecen4021/notes/Modulation.pdf

[14] Analytic functions. MSDN library. Consulted 05.05.2012

http://msdn.microsoft.com/en-us/library/hh213234

http://www.codeproject.com/Articles/34142/Understanding-Set-based-and-Procedural-approaches
http://www.codeproject.com/Articles/34142/Understanding-Set-based-and-Procedural-approaches
http://ecee.colorado.edu/~ecen4021/notes/Modulation.pdf
http://msdn.microsoft.com/en-us/library/hh213234

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 1

Automatical clock-out of employees SQL stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[ClockOutDS2] Script Date:

04/30/2012 13:35:24 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: Clock-out employees who forgot

-- to clock-out

-- ===

ALTER PROCEDURE [dbo].[ClockOutDS2]

AS

BEGIN

 SET NOCOUNT ON;

 -- table variable

 DECLARE @correction_id table

 (id int)

 INSERT INTO stamps(stype, person_id, automatic)

 OUTPUT inserted.id INTO @correction_id

 SELECT 0, id, 1

 FROM people

 WHERE status = 1

 INSERT INTO corrections(id_stamps)

 SELECT id FROM @correction_id

 UPDATE people

 SET status = 0

 WHERE status = 1

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 2

Ruby script that runs stored procedure of automatic clock-out

===

require "rubygems"

require "tiny_tds"

client = TinyTds::Client.new(:dataserver=>'DBSERVER',

:database =>'TikuDB', :username=>'tikuadmin',

:password=>'p@ssw0rd')

if client.active?

begin

 result = client.execute("exec ClockOut")

 result.each

end

end

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 3

Correction of automatic timestamps SQL stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[CorrectedTime] Script Date:

04/30/2012 13:34:31 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure will insert correct time for

employee who has

-- been clocked out automatically

-- User enters the person_id and correct date and time

-- by entering date the date when correction should be entered is

known

-- by entering time the correct time is know

-- ===

ALTER PROCEDURE [dbo].[CorrectedTime]

 @person_id int,

 @date datetime

AS

BEGIN

 SET NOCOUNT ON;

 UPDATE corrections

 SET time = @date

 WHERE id_stamps =

 (SELECT c.id_stamps from corrections c

 JOIN

 stamps s

 ON c.id_stamps = s.id

 WHERE s.person_id = @person_id

 and convert(varchar(10), s.time, 121) = convert(varchar(10),

@date, 121))

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 4

Report on automatically inserted timestamps that were not corrected SQL

stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[NoCorrectedTime] Script

Date: 04/30/2012 13:33:12 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure displays

-- list of employees who have not corrected

-- automatically inserted timestamp with real

-- time of their clock-out time FROM work

-- ===

ALTER PROCEDURE [dbo].[NoCorrectedTime]

AS

BEGIN

 SET NOCOUNT ON;

 -- first join matches all employee ids with names

 SELECT name AS [Employee name], t.time AS [Automatic stamp] FROM

people

 INNER JOIN

 (SELECT stamps.person_id, stamps.time FROM stamps

 -- second join matches all employee ids that have corrected time

null

 INNER JOIN corrections

 on stamps.id = corrections.id_stamps

 WHERE corrections.time is NULL) t

 on t.person_id = people.id

 ORDER BY [Automatic stamp]

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 5

Report on hours worked by an employee in a day SQL stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[HoursInDay] Script Date:

05/10/2012 17:32:59 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates

-- amount of hours worked by an employee

-- ===

ALTER PROCEDURE [dbo].[HoursInDay]

 @work_day datetime,

 @person_id int

AS

BEGIN

-- SET NOCOUNT ON;

 -- temp table

 CREATE TABLE #stamps

 (time_stamp datetime, stype int)

 INSERT INTO #stamps(time_stamp, stype)

 SELECT

 ISNULL(c.time, s.time),

 stype FROM stamps AS s

 LEFT JOIN

 (

 SELECT

 time,

 id_stamps

 FROM corrections

 WHERE corrections.time is NOT NULL

) AS c

 ON s.id = c.id_stamps

 WHERE s.person_id = @person_id

 AND CONVERT(varchar(10), s.time, 121) = CONVERT(varchar(10),

@work_day, 121)

 INSERT INTO #stamps

 SELECT GETDATE(), 0

 WHERE CONVERT(VARCHAR(10), @work_day, 121) = CONVERT(VARCHAR(10),

GETDATE(), 121)

 AND @person_id IN (SELECT id FROM people WHERE status = 1)

 SELECT

 CONVERT(VARCHAR(10), s1.time_stamp, 121) AS [Work Day],

 SUM(DATEDIFF(second, s1.time_stamp, s2.time_stamp)) AS [Seconds],

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 RIGHT(ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))/3600)), 3) + ':' +

 RIGHT('0' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))%3600/60)), 2) + ':' +

 RIGHT('0' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))%3600%60)), 2) AS [Hours/HumanReadable]

 FROM

 (

 SELECT

 time_stamp, stype,

 RANK() OVER(ORDER BY time_stamp) AS

 RankNr

 FROM #stamps

) AS s1

 JOIN

 (

 SELECT

 time_stamp, stype,

 RANK() OVER(ORDER BY time_stamp) AS

 RankNr

 FROM #stamps

) AS s2

 ON

 s1.RankNr = s2.RankNr - 1

 AND s1.stype = 1

 AND s2.stype = 0

 GROUP BY CONVERT(VARCHAR(10), s1.time_stamp, 121)

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 6

Report on hours worked by all employees in a day SQL stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[HoursDayAll] Script Date:

05/10/2012 17:34:23 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates the

-- hours worked for all employees during one day

-- day is entered as a parameter

-- ===

ALTER PROCEDURE [dbo].[HoursDayAll]

 @work_day AS DATETIME

AS

BEGIN

 SET NOCOUNT ON;

 --temp TABLE

 CREATE TABLE #stamps

 (person_id int, time_stamp DATETIME, stype int)

 INSERT INTO #stamps(person_id, time_stamp, stype)

 SELECT

 s.person_id,

 ISNULL(c.time, s.time) as [time stamp],

 s.stype

 FROM stamps AS s

 LEFT JOIN

 (SELECT * FROM corrections

 WHERE corrections.time is not null) as c

 ON s.id = c.id_stamps

 WHERE CONVERT(varchar(10), s.time, 121) = CONVERT(VARCHAR(10),

@work_day, 121)

 INSERT INTO #stamps(person_id, time_stamp, stype)

 SELECT id, GETDATE(), 0

 FROM PEOPLE

 WHERE status = 1

 AND CONVERT(varchar(10), @work_day, 121) = CONVERT(VARCHAR(10),

GETDATE(), 121)

 SELECT

 p.name AS [Employee Name],

 q.[Employee ID] AS [Employee ID],

 q.[Seconds] AS [Seconds],

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 q.[Hours/HumanReadable] as [Hours/HumanReadable]

 FROM people as p

 JOIN

 (

 SELECT

 s1.person_id AS [Employee ID],

 ISNULL(SUM(DATEDIFF(ss, s1.time_stamp, s2.time_stamp)), 0) AS

[Seconds],

 RIGHT ('00' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))/3600)), 2) + ':' +

 RIGHT ('00' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))%3600/60)), 2)+ ':' +

 RIGHT ('00' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))%3600%60)), 2) AS [Hours/HumanReadable]

 FROM

 (

 SELECT

 person_id,

 time_stamp,

 stype,

 RANK() OVER(PARTITION BY person_id ORDER BY time_stamp) AS RankNr

 FROM #stamps

) AS s1

 JOIN

 (

 SELECT

 person_id,

 time_stamp,

 stype,

 RANK() OVER (PARTITION BY person_id ORDER BY time_stamp) AS RankNr

 FROM #stamps

) AS s2

 ON s2.RankNr = s1.RankNr + 1

 WHERE s1.person_id = s2.person_id

 AND s1.stype = 1

 AND s2.stype = 0

 GROUP BY s1.person_id

) AS q

 ON q.[Employee ID] = p.id

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 7

Report on hours worked by an employee during a month SQL stored

procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[HoursInMonth] Script Date:

05/10/2012 17:35:08 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates

-- amount of hours worked by an employee

-- during a month

-- ===

ALTER PROCEDURE [dbo].[HoursInMonth]

 @person_id int,

 @month_nr int,

 @year_nr int

AS

BEGIN

 SET NOCOUNT ON;

 CREATE TABLE #stamps

 (time_stamp datetime, stype int)

 INSERT INTO #stamps(time_stamp, stype)

 SELECT

 ISNULL(c.time, s.time) AS [stamp],

 s.stype AS [stype]

 FROM stamps s

 LEFT JOIN

 corrections AS c

 ON

 s.id = c.id_stamps

 WHERE s.person_id = @person_id

 AND DATEPART(month, s.time) = @month_nr

 AND DATEPART(year, s.time) = @year_nr

 INSERT INTO #stamps(time_stamp, stype)

 SELECT GETDATE(), 0

 WHERE DATEPART(MONTH, GETDATE()) = @month_nr

 AND DATEPART(YEAR, GETDATE()) = @year_nr

 AND @person_id IN

 (SELECT id FROM people WHERE status = 1)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 SELECT

 SUM(DATEDIFF(second, s1.time_stamp, s2.time_stamp))AS [Seconds],

 RIGHT(ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))/3600)), 3) + ':' +

 RIGHT ('0' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))%3600/60)), 2)+ ':' +

 RIGHT ('0' + ltrim(str(SUM(DATEDIFF(second, s1.time_stamp,

s2.time_stamp))%3600%60)), 2) AS [Hours/HumanReadable]

 FROM

 (SELECT

 time_stamp,

 stype,

 RANK() OVER(ORDER BY time_stamp) AS RankNr

 FROM #stamps

)AS s1

 JOIN

 (

 SELECT

 time_stamp,

 stype,

 RANK() OVER(ORDER BY time_stamp) AS RankNr

 FROM #stamps

)AS s2

 ON s1.RankNr = s2.RankNr - 1

 WHERE s1.stype = 1

 AND s2.stype = 0

 AND DATEPART(DAY, s1.time_stamp) = DATEPART(DAY, s2.time_stamp)

 GROUP BY DATEPART(MONTH, s1.time_stamp)

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 8

Report on hours worked by all employees during a month SQL stored

procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[HoursMonthAll] Script Date:

05/10/2012 17:36:20 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates hours

-- for all employees during a month

-- ===

ALTER PROCEDURE [dbo].[HoursMonthAll]

 @month_nr int,

 @year_nr int

AS

BEGIN

 SET NOCOUNT ON;

 CREATE TABLE #stamps

 (time_stamp datetime, person_id int, stype int)

 INSERT INTO #stamps(time_stamp, person_id, stype)

 SELECT ISNULL(c.time, s.time) AS [stamp], s.person_id AS [personID],

s.stype AS [stype] FROM stamps s

 LEFT JOIN

 corrections AS c

 ON

 s.id = c.id_stamps

 WHERE DATEPART(month, s.time) = @month_nr

 AND DATEPART(year, s.time) = @year_nr

 INSERT INTO #stamps(time_stamp, person_id, stype)

 SELECT GETDATE(), p1.id, 0

 FROM people AS p1

 JOIN

 (SELECT id FROM people

 WHERE status = 1)AS p2

 ON p1.id = p2.id

 AND DATEPART(MONTH, GETDATE()) = @month_nr

 SELECT

 p.name AS [Employee Name],

 p.id AS [Employee ID],

 k.[Seconds] AS [Seconds],

 k.[Hours Worked] AS [Hours/HumanReadable]

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 FROM people AS p

 JOIN

 (SELECT

 s1.person_id AS [Employee ID],

 SUM(DATEDIFF(SECOND, s1.time_stamp, s2.time_stamp)) AS [Seconds],

 RIGHT(ltrim(str(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))/3600)), 3) + ':' +

 RIGHT('0' + ltrim(str(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))%3600/60)), 2) + ':' +

 RIGHT('0' + ltrim(str(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))%3600%60)), 2) AS [Hours worked]

 FROM

 (SELECT

 time_stamp,

 person_id,

 stype,

 RANK() OVER(PARTITION BY person_id ORDER BY time_stamp) AS RankNr

 FROM #stamps) AS s1

 JOIN

 (

 SELECT

 time_stamp,

 person_id,

 stype,

 RANK() OVER(PARTITION BY person_id ORDER BY time_stamp) AS RankNr

 FROM #stamps

)AS s2

 ON

 s1.RankNr = s2.RankNr - 1

 WHERE s1.person_id = s2.person_id

 AND s1.stype = 1

 AND s2.stype = 0

 AND DATEPART(DAY, s1.time_stamp) = DATEPART(DAY, s2.time_stamp)

 GROUP BY s1.person_id

) AS k

 ON

 k.[Employee ID] = p.id

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 9

Report on hours worked by an employee during a free range period SQL

stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[HoursInPeriod] Script Date:

05/10/2012 17:37:00 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates the

-- amount of hours worked during a given period

-- of time for a specific employee

-- ===

ALTER PROCEDURE [dbo].[HoursInPeriod]

@start datetime,

@end datetime,

@person_id int

AS

BEGIN

 SET NOCOUNT ON;

 -- temp table

 CREATE TABLE #stamps

 (time_stamp DATETIME, stype int)

 INSERT INTO #stamps

 SELECT

 ISNULL(c.time, s.time),

 s.stype

 FROM stamps AS s

 LEFT JOIN

 corrections AS c

 ON s.id = c.id_stamps

 WHERE person_id = @person_id

 AND CONVERT(VARCHAR(10), s.time, 121) >= CONVERT(VARCHAR(10), @start,

121)

 AND CONVERT(VARCHAR(10), s.time, 121) <= CONVERT(VARCHAR(10), @end,

121)

 INSERT INTO #stamps

 SELECT GETDATE(), 0

 WHERE CONVERT(VARCHAR(10), GETDATE(), 121)

 BETWEEN CONVERT(VARCHAR(10), @start, 121)

 AND CONVERT(VARCHAR(10), @end, 121)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 AND @person_id IN (SELECT id FROM people WHERE status = 1)

 --select * from #stamps

 SELECT

 SUM(DATEDIFF(SECOND, s1.time_stamp, s2.time_stamp)) AS [Seconds],

 RIGHT(LTRIM(STR(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))/3600)), 3) + ':' +

 RIGHT ('0' + LTRIM(STR(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))%3600/60)), 2)+ ':' +

 RIGHT ('0' + LTRIM(STR(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))%3600%60)), 2) AS [Hours worked]

 FROM

 ((SELECT

 time_stamp,

 stype,

 RANK() OVER (ORDER BY time_stamp) AS RankNr

 FROM #stamps) AS s1

 JOIN

 (SELECT

 time_stamp,

 stype,

 RANK() OVER (ORDER BY time_stamp) AS RankNr

 FROM #stamps) AS s2

 ON

 s1.RankNr = s2.RankNr - 1

 AND s1.stype = 1

 AND s2.stype = 0

 AND DATEPART(DAY, s1.time_stamp) = DATEPART(DAY, s2.time_stamp))

 HAVING COUNT(*) > 0

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 10

Report on hours worked by all employees during a free range period SQL

stored procedure

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[HoursPeriodAll] Script

Date: 05/10/2012 17:37:46 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates the

-- amount of hours worked during a given period

-- of time for all employees

-- ===

ALTER PROCEDURE [dbo].[HoursPeriodAll]

@start DATETIME,

@end DATETIME

AS

BEGIN

 SET NOCOUNT ON;

 -- temp table

 CREATE TABLE #stamps

 (person_id int, time_stamp DATETIME, stype int)

 INSERT INTO #stamps

 SELECT

 s.person_id,

 ISNULL(c.time, s.time),

 s.stype

 FROM stamps AS s

 LEFT JOIN

 corrections AS c

 ON s.id = c.id_stamps

 WHERE CONVERT(varchar(10), s.time, 121) >= CONVERT(varchar(10),

@start, 121)

 AND CONVERT(varchar(10), s.time, 121) <= CONVERT(varchar(10), @end,

121)

 INSERT INTO #stamps

 SELECT

 id, GETDATE(), 0

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 FROM people AS p

 WHERE status = 1

 AND CONVERT(VARCHAR(10), GETDATE(), 121) BETWEEN CONVERT(varchar(10),

@start, 121)

 AND CONVERT(varchar(10), @end, 121)

SELECT

 p.name AS [Employee Name],

 q.[Employee ID] AS [Employee ID],

 q.[Seconds] AS [Seconds],

 q.[Hours/HumanReadable] as [Hours/HumanReadable]

 FROM people as p

 JOIN

 (SELECT

 s1.person_id AS [Employee ID],

 SUM(DATEDIFF(SECOND, s1.time_stamp, s2.time_stamp)) AS [Seconds],

 RIGHT(LTRIM(STR(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))/3600)), 3) + ':' +

 RIGHT ('0' + LTRIM(STR(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))%3600/60)), 2)+ ':' +

 RIGHT ('0' + LTRIM(STR(SUM(DATEDIFF(SECOND, s1.time_stamp,

s2.time_stamp))%3600%60)), 2) AS [Hours/HumanReadable]

 FROM

 (SELECT

 person_id,

 time_stamp,

 stype,

 RANK() OVER(PARTITION BY person_id ORDER BY time_stamp) AS RankNr

 FROM #stamps) AS s1

 JOIN

 (SELECT

 person_id,

 time_stamp,

 stype,

 RANK() OVER(PARTITION BY person_id ORDER BY time_stamp) AS RankNr

 FROM #stamps) AS s2

 ON

 s1.RankNr = s2.RankNr - 1

 AND s1.person_id = s2.person_id

 AND s1.stype = 1

 AND s2.stype = 0

 AND CONVERT(VARCHAR(10), s1.time_stamp, 121) = CONVERT(VARCHAR(10),

s2.time_stamp, 121)

 GROUP BY s1.person_id) AS q

 ON p.id = q.[Employee ID]

END

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Appendix 11

SQL stored procedure written using procedural approach. Procedure

calculates the amount of hours worked by all employees

USE [tikuTesti]

GO

/****** Object: StoredProcedure [dbo].[StampsToday] Script Date:

04/30/2012 16:04:17 ******/

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

-- ===

-- Description: This procedure calculates

-- amount of hours worked during

-- that day by each employee

-- ===

ALTER PROCEDURE [dbo].[StampsToday]

 -- Add the parameters for the stored procedure here

 @today datetime,

 @result bit

AS

BEGIN

 SET NOCOUNT ON;

 select GETDATE()

 declare @time as datetime

 declare @name as varchar(50)

 declare @stype as int

 declare @automatic as bit

 declare @stamp_out as datetime

 declare @min as datetime

 declare @id as int

 -- vars for comparing nr of in and out stamps

 declare @stamps_in_nr as int

 declare @stamps_out_nr as int

 declare @h as int

 declare @m as int

 declare @s as int

 select @today = dbo.dateonly(@today)

 create table #stamps (id int, name varchar(50), time datetime,

stype int, automatic bit)

 insert into #stamps

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 select id, dbo.employeename(person_id), time, stype, automatic

from stamps

 where dbo.dateonly(time) = @today

 declare unstamped cursor

 for select distinct name from #stamps

 open unstamped

 fetch next from unstamped into @name

 while @@fetch_status = 0

 begin

 select @stamps_in_nr = (select count(id) from #stamps where

stype = 1 and name = @name)

 select @stamps_out_nr = (select count(id) from #stamps where

stype = 0 and name = @name)

 if @stamps_in_nr > @stamps_out_nr

 begin

 -- if today = today's date, employees are temp clocked

out

 if @today = dbo.dateonly(getdate())

 begin

 insert #stamps(name, time, stype, automatic)

 (select @name, getdate(), 0, 0)

 end

 else

 begin

 print 'Clock-out stamps for employee ' + @name

 + ' are missing.' + char(13) +

 'Run Clock-out procedure for ' +

convert(varchar(10), @today, 121) + ' to clock-out everyone.' +

 char(13) + 'Exiting the code.'

 close unstamped

 deallocate unstamped

 return 1

 end

 end

 fetch next from unstamped into @name

 end

 close unstamped

 deallocate unstamped

 create table #stampstoday(name varchar(50), date varchar(10),

time_in varchar(15),

 time_out varchar(15), hours_worked varchar(15))

 declare stamps_in cursor

 for select name, time from #stamps

 where stype = 1

 open stamps_in

 fetch next from stamps_in

 into @name, @time

 while @@fetch_status = 0

 begin

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 declare stamps_out cursor

 for select id, time, automatic from #stamps

 where stype = 0 and name = @name

 open stamps_out

 fetch next from stamps_out into @id, @stamp_out, @automatic

 -- min initial value = next day

 select @min = @today + 1

 while @@fetch_status = 0

 begin

 if @automatic = 1

 begin

 if (select time from corrections where id_stamps =

@id) > 0

 begin

 select @stamp_out = (select time from

corrections where id_stamps=@id)

 end

 end

 if (datediff(millisecond, @time, @stamp_out) > 0) and

 (datediff(millisecond, @stamp_out, @min) > 0)

 begin

 select @min = @stamp_out

 end

 fetch next from stamps_out into @id, @stamp_out,

@automatic

 end

 close stamps_out

 deallocate stamps_out

 insert into #stampstoday

 select @name, convert(varchar(10), @today, 121),

convert(varchar(15), @time, 114), convert(varchar(15), @min, 114),

convert(varchar(15), (@min - @time), 114)

 fetch next from stamps_in into @name, @time

 end

 close stamps_in

 deallocate stamps_in

 -- having data for all stamps for a day, calculate total time

worked for this day for each user

 create table #totalhours(name varchar(50), date varchar(10),

total varchar(15))

 declare @hours as varchar(15)

 declare @sum as varchar(15)

 declare total cursor

 for select distinct name

 from #stampstoday

 open total

 fetch next from total into @name

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

 while @@fetch_status = 0

 begin

 declare sumhours cursor

 for select hours_worked from #stampstoday

 where name = @name

 select @sum = '00:00:00'

 open sumhours

 fetch next from sumhours into @hours

 while @@fetch_status = 0

 begin

 select @h=h, @m=m, @s=s from

dbo.calculatesumtime(@hours, @sum)

 select @sum = dbo.convertedtime_str(@h, @m, @s)

 fetch next from sumhours into @hours

 end

 close sumhours

 deallocate sumhours

 insert into #totalhours

 values(@name, convert(varchar(10), @today, 121), @sum)

 fetch next from total into @name

 end

 close total

 deallocate total

 -- return result set if @result param equals 1

 if @result = 1

 select * from #totalhours

 create table #timecount(workday varchar(10), employee

varchar(50), workedhours varchar(15))

 if (select count(*) from timecount) != 0

 begin

 insert #timecount(workday, employee, workedhours)

 select workday, employee, workedhours from timecount

 where workday = convert(varchar(10), @today, 121)

 if (select count(*) from #timecount) != 0

 begin

 print 'There is already some data for this day in timecount

table'

 end

 end

 select getdate()

END

Table 1

Original database structure of clock-in system

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Elena Oat

Table 2

Database schema of improved clock-in system

