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TERMINOLOGY 
 

 

ICT Information and communications technology 

 

Management Server A server machine that manages the 

configuration of client nodes remotely. 

 

Client node A machine that is to be configured via a 

configuration management tool. 

 

Multithreading Efficiently executing multiple computational 

threads at the same time. 

 

Virtualization The creation of a virtual, rather than actual, 

version of something, such as a hardware 

platform. (Wikipedia 2012) 

 

Virtual machine A software implementation of a machine that 

executes programs like a physical machine. 

(Wikipedia 2012) 

 

Bottleneck A part of a computer system that significantly 

hinders the overall performance or capacity. 

 

Latency A measure of time delay experienced in a 

system. 
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IP Address Internet protocol address. A numerical label 

assigned to each device that uses the Internet 

Protocol for communication. (Wikipedia 2012) 

 

DSL Domain-specific language. A programming 

language or specification language dedicated to 

a particular problem domain. (Wikipedia 2012) 

 

GUI Graphical user interface. A user interface that is 

represented and handled visually. 

 

DevOps An emerging set of principles, methods and 

practices for communication, collaboration and 

integration between software development and 

IT operations professionals. (Wikipedia 2012) 

 

Amazon EC2 Amazon Elastic Compute Cloud. A web service 

that provides resizable compute capacity in the 

cloud. (Amazon Web Services LLC 2012) 

 

Ubuntu Advantage Paid support for Ubuntu Server and Desktop 

that provides services such as a knowledge base 

and Landscape. 

 

Sudo A program for Unix-like computer operating 

systems that allows users to run programs with 

the security privileges of another user (normally 

the superuser, or root). (Wikipedia 2012) 
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CM Configuration management. A process for 

establishing and maintaining consistency of a 

product’s performance, functional and physical 

attributes with its requirements, design and 

operational information throughout its life. 

(Wikipedia 2012) 

 

SCM Software configuration management. The task of 

tracking and controlling changes in the software. 

 

Open source Computer software that is available in source 

code form: the source code and certain other 

rights normally reserved for copyright holders 

are provided under an open-source license that 

permits users to study and modify the software. 

(Wikipedia 2012) 

 

CPU Central processing unit. The portion of a 

computer system that carries out the 

instructions of a computer program, to perform 

the basic arithmetical, logical, and input/output 

operations of the system. (Wikipedia 2012) 

 

x86 A family of instruction set architectures based 

on the Intel 8086 CPU. 

 

QEMU QEMU stands for “Quick Emulator” and is a 

processor emulator. (Wikipedia 2012) 

 

SSH Secure Shell. A network protocol for remote 

administration of Unix computers. 
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1 BACKGROUND 

 

1.1 History of Service Management 

 

Before the advent of configuration management solutions, deploying and configuring 

servers used to be a time-consuming task. Most tasks had to be done manually, 

taking up an unnecessary amount of time and resources. Each server had to be 

installed and configured independently from each other. Not to mention the 

continuous maintenance to ensure that everything is running smoothly. 

The history of software configuration management (SCM) in computing can be traced 

back as early as 1950s, when CM (Configuration Management), originally for 

hardware development and production control, was being applied to software 

development. Eventually, tools were written to manage software changes. Until the 

1980s, SCM could only be understood as CM applied to software development. Some 

basic concepts such as identification and baseline (well-defined point in the evolution 

of a project) were already clear; what was at stake, however, was a set of techniques 

oriented towards the control of the activity, and using formal processes, documents, 

request forms, control boards etc. It is only after this date that the use of software 

tools applying directly to software artifacts representing the actual resources, has 

allowed SCM to grow to an autonomous entity from traditional CM. In early 2000s, 

distributed revision control systems like BitKeeper and GNU became viable. 

(Wikipedia 2012) 

As cloud computing and virtual machines become increasingly prevalent, a demand 

has been formed for a more flexible approach to administrative systems tasks, such 

as configuration and deployment of servers. As a result, solutions have emerged to 

meet this demand. These tools are usually labeled “configuration management 

tools”, “automated deployment tools” or “orchestration tools”. Although there are 

differences between the solutions, their basic principle is to allow their users to 

dynamically manage a multitude of servers from a single remote machine. The 
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workload of managing multiple computers is shifted into a single instance, greatly 

simplifying the configuring and maintaining of an IT infrastructure. 

 

1.2 What is IT Service Management? 

 

A service is a means of delivering value to customers by facilitating outcomes cus-

tomers want to achieve without the ownership of specific costs and risks. A simple 

example of a customer outcome that could be facilitated by an IT service might be: 

“Sales people spending more time interacting with customers” facilitated by “a re-

mote access service that enables reliable access to corporate sales systems from 

sales people’s laptops”. (itSMF Ltd. 2007) 

 

Service Management is a set of specialized organizational capabilities for providing 

value to customers in the form of services. Service management is concerned with 

more than just delivering services. Each service, process or infrastructure component 

has a lifecycle, and service management considers the entire lifecycle from strategy 

through design and transition to operation and continual improvement. Effective 

service management is itself a strategic asset, providing the ability to carry out the 

core business of providing services by facilitating the outcomes customers want to 

achieve. (itSMF Ltd. 2007) 

 

1.3 Service in a cloud 

 

As cloud computing grows in momentum, services are continually being transformed 

to be cloud compatible. Moreover, many products are turned into services by moving 

them into the cloud. The end user no longer buys a concrete product; they just buy a 

slice of the cloud. Although the features of the products may remain the same, they 

are accessed remotely. Cloud services offer flexibility and mobility as the services are 

accessible from any location with an Internet connection, and the user does not need 

to worry about the server load or maintenance; this all comes as a part of the 

service. 
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1.4 FreeNEST as a cloud service 

 

The FreeNEST project platform is a portable open source based project platform that 

provides a working environment for a software development team as well as 

provides new processes for using the environment efficiently inside a small 

organization. FreeNEST is developed by the SkyNEST project team at JAMK University 

of Applied Sciences. All major tool areas for software development are open source 

and pre-installed on one virtual server image. (SkyNEST 2011) 

 

In short, FreeNEST aims to provide a project environment containing all the 

necessary components for managing the entire lifecycle of a project. Among other 

things, FreeNEST aims to create an agile environment for projects, change the focus 

from ICT to development, share the best practices to make them easier to use in new 

projects, and reduce communication problems. (SkyNEST 2011) 

 

1.5 Objectives of this thesis 

 

Being a cloud service, FreeNEST is installed on and accessed from server(s). 

Currently, each of these servers is configured manually. This leads us to the main 

objective of this thesis: to search and evaluate solutions that enable managing all the 

FreeNEST instances remotely from a single management server. 

 

FreeNEST requires a scalable configuration management tool, i.e. one that works 

well with a large number of servers. Although a GUI is not completely out of the 

question, command-line based administration is preferred. The tool should operate 

well with OpenStack, which FreeNEST makes use of. The solution should be free, 

without any costs involved. Additionally, as FreeNEST aims to be as open source as 

possible, open source management tools should be preferred. 

 

Within the timeframe, as many solutions as possible will be evaluated. Since SkyNEST 

uses Ubuntu, the tests will be conducted in that environment. After an overview of 

each solution, the list is narrowed down to the three most suitable candidates, along 
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with an explanation as to why they were chosen. The capabilities of these three 

solutions will be evaluated in three FreeNEST use case scenarios. Any advantages or 

disadvantages will be noted and presented in a comparison table. Finally, one of the 

solutions shall be chosen to represent the most viable choice for FreeNEST 

configuration management. 

 

2 TECHNOLOGIES AND DEFINITIONS 

 

2.1 Cloud Computing 

 

2.1.1 Overview 

 

In the past, companies had to periodically purchase new hardware and software to 

meet their growing resource requirements. Computers, servers and databases used 

to be locally operated. Balancing server capacity was left to the customer, requiring 

over-purchasing of hardware to support peak demand, which in turn resulted in 

overall underutilization. Services were purchased in-person, requiring manual 

business processes and fixed price contracts. Individuals would buy a concrete 

product to take home with them. 

 

Cloud computing is the order of the day. There is no simple way to explain this 

somewhat vague term. Gartner defines it as “a style of computing in which massively 

scalable IT-related capabilities are provided “as a service” using Internet technologies 

to multiple external customers (Brodkin 2009). This means that the customer 

purchases services that are accessed over the Internet, instead of running them 

locally. Products are turned into services. This enables users to shift the workload of 

local computers into a network of computers that make up the so-called cloud, as 

depicted in figure 1. The local machine only needs an interface with which it can 

access the cloud, and the cloud’s network takes care of the rest. (Strickland 2008) 
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FIGURE 1. Cloud computing shifts the workload into the cloud 

 

 

In its simplest form, cloud computing could mean a Web-based e-mail service. 

Instead of running an e-mail program on a local computer, one simply connects to a 

Web service (Strickland 2008). Both the program and the e-mail messages are stored 

remotely on the cloud, and are accessible from anywhere. 

 

Both public and private clouds exist. Public clouds are cloud services that are publicly 

available to everyone for a fee. Private clouds are similar cloud services, but are 

limited to operating within an enterprise and not offered for external customers. 

Although private clouds may not offer all the benefits of public clouds, largest 

enterprises may not justify transferring all of their IT resources to public clouds due 

to their possible lack of reliability. 
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Public cloud services can be divided into three categories: software, infrastructure 

and platform. Software-as-a-service (SaaS) means delivering software applications 

over the web. Infrastructure-as-a-service (IaaS) refers to remotely accessible server 

and storage capacity. Platform-as-a-service (PaaS) denotes a platform that lets 

developers build and deploy Web applications on a hosted infrastructure. (Brodkin 

2009) 

 

2.1.2 Software as a service (SaaS) 

 

In this model, cloud providers install and operate application software in the cloud, 

while users access the software from cloud clients. This eliminates the need to install 

and run the application on the user’s own computer, simplifying maintenance and 

support. (Wikipedia 2012) 

 

An example of the SaaS model is Google’s Gmail, a web-based e-mail service. It offers 

a simple piece of software – a tool to read and send email – as a remote service. The 

tool is never installed on the user’s computer; it is operated via a web browser. 

 

2.1.3 Platform as a service (PaaS) 

 

In the PaaS model, cloud providers deliver a computing platform and/or solution 

stack typically including an operating system, a programming language execution 

environment, a database, and a web server. Application developers can develop and 

run their software solutions on a cloud platform without the cost and complexity of 

buying and managing the underlying hardware and software layers. (Wikipedia 2012) 

 

Google App Engine is an example of a platform as a service. It allows running web 

applications on Google’s infrastructure. With App Engine, there are no servers to 

maintain: the application is uploaded, and it is ready to serve the users. Google App 

Engine makes it easy to build an application that runs reliably even under heavy load, 

with features such as automatic scaling and load balancing. (Google, Inc. 2012) 
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FreeNEST offers a portable project platform for developers, so it is generally 

considered a PaaS type cloud service. 

 

2.1.4 Infrastructure as a service (IaaS) 

 

In this most basic cloud service model, cloud providers offer computers – as physical 

or more often as virtual machines, raw storage, firewalls, load balancers and 

networks. IaaS providers supply these resources on demand from their large pools 

installed in data centers. To deploy their applications, cloud users install operating 

systems and application software on the cloud. In this model, it is the cloud user who 

is responsible for patching and maintaining the software. (Wikipedia 2012) 

 

OpenStack is an Infrastructure as a Service cloud computing project by Rackspace 

Cloud and NASA. OpenStack delivers a massively scalable cloud operating system for 

building private and public clouds. It provides an operating platform for orchestrating 

clouds. OpenStack is a community as well as a project, with the goal to help 

organizations run clouds for virtual computing or storage. OpenStack is a collection 

of open source projects: OpenStack Compute (provision and manage large networks 

of virtual machines), OpenStack Object Storage (redundant, scalable storage) and 

OpenStack Image Service (discovery, registration and delivery for virtual disk images). 

(OpenStack Wiki 2012) 

 

2.1.5 Strengths and weaknesses 

 

With the help of cloud computing, the end user no longer has to worry about the 

increasing hardware and software demands, as the cloud takes care of them. This 

removes a lot of responsibilities from the user, letting them focus on their key areas. 

The need for new hardware installations is greatly lowered, while software 

maintenance becomes much easier, as local application installations are no longer 

required. Among the biggest advantages of the cloud is its scalability: service delivery 

can be quickly scaled up or down according to the user’s needs. Removing the need 

of maintaining an in-house IT infrastructure, cloud computing is a common way to 
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save on IT costs. Cloud services typically have a pay-per-usage model, which usually 

ends up being beneficial to the customer, compared to a fixed price model. 

 

Although there are undisputed advantages to cloud computing, there are some 

negative aspects as well. Storing data in a cloud does not mean that it is guaranteed 

to be safe. Some online storage vendors have lost data, and were unable to recover 

it for customers (Brodkin 2009). As infrastructures move towards the public 

networks, it naturally brings into mind the question of security. How can the end 

users be sure that their information will not fall into the wrong hands? On the other 

hand, one could consider the security better than normal due to the centralization of 

data. Being dependent on a cloud also means being dependent on a network 

connection, as downtime could mean an almost complete halt in operations. In 

addition, using software over a network means that a certain amount of network 

latency will always occur. Thus, software applications that require minimal latency 

may still need to be installed locally. 

 

According to Gartner Inc., cloud is a disruptive force that has the potential for broad 

long-term impact in most industries. While the market remains in its early stages in 

2011 and 2012, it will see the full range of large enterprise providers fully engaged in 

delivering a range of offerings to build cloud environments and deliver cloud 

services. Oracle, IBM and SAP all have major initiatives to deliver a broader range or 

cloud services over the next two years. As Microsoft continues to expand its cloud 

offering, and these traditional enterprise players expand offerings, users will see 

competition heat up and enterprise-level cloud services increase. (Gartner, Inc. 2011) 

 

2.2 Virtualization 

 

2.2.1 Overview 

 

Virtualization was first introduced in the 1960s by IBM to boost utilization of large, 

expensive mainframe systems by partitioning them into logical, separate virtual 
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machines that could run multiple applications and processes at the same time. 

(McCabe 2009) 

 

While virtualization faded from the limelight for a while, it is now one of the hottest 

trends in the industry again, as organizations aim to increase the utilization, flexibility 

and cost-effectiveness in a distributed computer environment. (McCabe 2009) 

 

Virtualization allows us to create virtual machine instances inside a single physical 

machine. These virtual machines behave like physical machines, supporting the 

installation of most operating systems and software as if they were installed on a 

physical computer. The virtual machine exists on software level only, but the 

software installed on it “thinks” that it is running on physical machine.  

 

Virtualization offers many benefits. A server no longer has to serve just one purpose: 

it can run multiple virtual machines, distributing the load more efficiently (see figure 

2). Virtual machines can easily be cloned. For example, if there is a need for multiple 

development platforms with identical software configurations, this can be easily 

accomplished with virtualization. Another benefit of virtualization is that it makes it 

easier to install multiple operating systems on a single computer. Since each virtual 

machine is an independent entity, there needs to be no concern of different 

operating systems causing compatibility problems. Virtualization is thus useful for 

testing software compatibility with various platforms and operating systems. 
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FIGURE 2. Virtualization can increase server efficiency 

 

 

In addition to partitioning one machine into several virtual machines, it is also 

possible to use virtualization to combine multiple physical resources into a single 

virtual resource. A good example of this is storage virtualization, where multiple 

network storage devices are pooled into what appears as a single storage device. 

(McCabe 2009) 

 

2.2.2 VMWare 

 

With over 100,000 customers worldwide, VMWare, Inc. is the world’s leading 

provider of virtualization solutions. As with most virtual machines, it aims to separate 

the operating system and hardware and encapsulate operating systems and 

applications into virtual machines, lowering hardware dependencies and improving 

flexibility. (Gilmartin, J. 2008) 
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VMWare software provides a completely virtualized set of hardware to the guest 

operating system. This makes VMWare virtual machines highly portable between 

computers, because every host looks nearly identical to the guest. If needed, a virtual 

machine can be paused on one host machine and resumed exactly at the point of 

suspension on another host.  VMWare does not simulate each CPU instruction one-

by-one, significantly increasing its performance while hampering compatibility 

between hosts using different instruction sets. (Wikipedia 2012) 

 

VMWare Player is a free virtual machine for non-commercial use, while the 

commercial VMWare Workstation is a more feature-rich alternative. VMWare 

Workstation runs on Windows and Linux operating systems, while VMWare Fusion is 

targeted for Macs. 

 

2.2.3 Oracle VM VirtualBox 

 

VirtualBox is a powerful x86 and AMD64/Intel64 virtualization product for enterprise 

as well as home use. VirtualBox is the only professional solution that is freely 

available as open source software. VirtualBox is a community effort backed by a 

dedicated company: everyone is encouraged to participate while Oracle ensures the 

professional quality of the product. (Oracle Corporation 2012) 

 

VirtualBox is relatively simple to use and suitable for beginners. Although its 

performance or maturity may not yet be on par with the VMWare VMs, it has most 

of the expected features of a virtual machine. It also supports a wide range of 

operating systems – including Windows, Linux and Mac OS X. 

 

 

2.2.4 KVM 

 

KVM (for Kernel-based Virtual Machine) is a full virtualization solution for Linux on 

x86 hardware containing virtualization extensions (Intel VT or AMD-V). It consists of a 

loadable kernel module, kvm.ko, that provides the core virtualization infrastructure 
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and a processor specific module, kvm-intel.ko or kvm-amd.ko. KVM also requires a 

modified QEMU although work is underway to get the required changes upstream. 

KVM is really a kernel infrastructure instead of a product. (KVM 2012) 

Using KVM, one can run multiple virtual machines running unmodified Linux or Win-

dows images. Each virtual machine has private virtualized hardware. KVM is included 

in the mainline Linux kernel and is stable and fast for most workloads. It is also avail-

able as a patch for recent Linux kernel versions. (KVM 2012) 

KVM’s biggest advantages are its simplicity and performance. As it takes full advan-

tage of hardware-level support in new CPUs, KVM can achieve superior performance 

despite its relative simplicity. 

 

2.3 The information technology infrastructure library 

 

The information technology infrastructure library (ITIL) is a public framework that 

describes Best Practice in IT service management. It provides a framework for the 

governance of IT, the ‘service wrap’, and focuses on the continual measurement and 

improvement of the quality of IT services delivered, from both a business and a cus-

tomer perspective. This focus is a major factor in ITIL’s worldwide success and has 

contributed to its prolific usage and to the key benefits obtained by those organiza-

tions deploying the techniques. (itSMF Ltd. 2007) 

Figure 3 visualizes the enhancements that ITIL brings to the service lifecycle. Accord-

ing to an Introductory Overview of ITIL v3 (itSMF Ltd. 2007), some of the benefits of 

ITIL include: 

• Increased user and customer satisfaction with IT services 

• Improved service availability 

• Financial savings from reduced rework, lost time, improved resource man-

agement and usage 

• Improved time to market new products and services 

• Improved decision making and optimized risk 
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FIGURE 3. The service lifecycle enhanced with ITIL (Source: itSMF Ltd.) 

 

 

Many organizations still see IT service management as being predominantly a 

technology issue. ITIL promotes a much more “joined up”, “end-to-end” 

approach to IT service management. This will only happen if practices and architec-

tures that are focused on business needs and business processes are adopted. The 

ITIL framework gives a sound basis for achieving all of this once management tools 

and interfaces evolve to fully support them. (itSMF Ltd. 2007) 

 

3 CONFIGURATION MANAGEMENT IN A CLOUD 

 

3.1 Orchestration tools 

 

The usage of orchestration is often discussed in the context of service oriented 

architecture, virtualization, provisioning, Converged Infrastructure and dynamic 

datacenter topics. Orchestration in this sense is about aligning the business request 

with the applications, data and infrastructure. It defines the policies and service 
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levels through automated workflows, provisioning and change management. This 

creates an application-aligned infrastructure that can be scaled up or down based on 

the needs of each application. (Wikipedia 2012) 

 

With the popularity of cloud computing, it is now necessary to understand Service 

Orchestration in the context of this paradigm. At the most basic level an orchestrator 

is a human. The main difference between a workflow automation and orchestration 

is that workflows are processed within a single domain. Cloud Service orchestration 

therefore is the 

• Composing of Architecture, Tools and Processes by humans to deliver a de-

fined service 

• Stitching of software and hardware components together to deliver a defined 

Service 

• Connecting and automating of work flows when applicable to deliver a de-

fined service 

(Wikipedia 2012) 

 

Orchestration tools focus on the deployment and managing of applications instead of 

generic system-level configuration management. It is important to note that there is 

significant overlap between service orchestration and configuration management. 

Many tools support both. This study focuses on configuration management instead 

of orchestration. An example of an orchestration tool is Ubuntu’s juju. Figure 4 

shows the layers of orchestration and configuration management tools in relation to 

a computer system. 
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FIGURE 4. Layers of orchestration and configuration management (Source: Canonical ltd.) 

 

 

3.2 Configuration management tools 

 

Configuration management tools work on a more primitive level than orchestration 

tools, geared towards configuring software and servers instead of services and 

applications. If used properly, configuration management tools allow us to remotely 

make changes to multiple target machines (often called “nodes”) from a single 

management server. 

 

Configuration management tools can be divided into two groups: some use the so-

called “push” method, while others use the “pull” method. The goal of these is 

generally the same – to automate and simplify the configuration of multiple remote 

machines. However, the way these tools take to accomplish these changes is quite 

different. 
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3.2.1 “Push” tools 

 

The simpler method is to push the changes from the management server into the 

target nodes. In this case, setting up the nodes is usually easy; almost everything is 

done on the management server. Examples of “push” tools are Fabric and 

Capistrano, about them more detailed later in this document. 

 

The main advantages of a “push” system are simplicity and control. These 

configuration management systems are usually relatively easy to set up and get 

running. When changes are made to the nodes, they all take place at the same time – 

when the changes are pushed. This makes it easier to detect and correct if something 

went wrong. (Gheorghiu 2010) 

 

Disadvantages of “push” systems are that they are usually not capable of full 

automation – they generally do not support a client/server protocol, and the lack of 

scalability for larger projects. Since all of the workload falls on the management 

server, a push system can start showing its limits unless it makes heavy use of 

multithreading. (Gheorghiu 2010) 

 

3.2.2 “Pull” tools 

 

With a “pull” system, the server acts as configuration storage, with the clients 

themselves pulling the needed configuration information from the server. Examples 

of “pull” tools are Puppet and Chef. 

 

With a “pull” solution, it is possible to fully automate the configuration of a newly 

booted server (Gheorghiu 2010). Each client can be set to periodically check the 

server for changes and process them if necessary. As part of the workload is shifted 

to the clients, “pull” systems offer greater scalability for larger projects. However, 

the server will still become a bottleneck if too many clients try to connect at the 

same time. 
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“Pull” type systems are usually slightly more complex to get running, since both the 

client and server side will have to be set up properly. If used properly, “pull” systems 

offer increased automation for larger projects, operating independently and leaving 

little manual work for the user. They operate at a higher level than “push” systems: 

instead of saying “Install this package”, one would say “ensure that this package is 

installed on these machine(s)”. When the client runs its next check, it notices that 

and checks if the package is installed, and installs it if necessary. 

 

An example of package management is shown in figure 5. Normally, every server 

would have to be maintained manually to make sure it has the right package version 

installed, and possibly install packages by hand. When using a configuration 

management tool, the configuration needs to be set only once, on the management 

server. The rest will be taken care of automatically, and the system will ensure that 

the correct package versions are installed on all nodes. Most tools support some kind 

of reporting so that the user has up-to-date information on the current state of each 

node. 

 

 

 

 
FIGURE 5. Using configuration management to manage packages 
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3.3 Solutions 

 

3.3.1 Capistrano 

 

Capistrano is a utility and framework for executing commands in parallel on multiple 

remote machines, via SSH. It uses a simple DSL that allows defining tasks, which may 

be applied to machines in certain roles. Capistrano was originally designed to simplify 

and automate deployment of web applications to distributed environments. 

(Capistrano overview 2012) 

 

Although commonly used to deploy Rails applications, Capistrano also supports 

remote configuring of systems, using the Ruby language as its base. It can easily 

accomplish basic tasks, such as running commands remotely. Knowledge on Ruby will 

greatly help in solving more complex tasks. 

 

Capistrano uses the “push” method to apply changes, thus it only needs to be 

installed on the management server. The client side requires SSH connectivity and a 

POSIX-compatible shell installed. Capistrano has no GUI; it is entirely command-line 

driven. It is used by creating scripts that use a custom DSL on top of Ruby. The scripts 

are run with the cap command. In addition to describing the tasks to be done, the 

scripts define the server addresses to connect to, and group tasks for specific servers. 

 

Capistrano shares many similarities with Fabric (detailed in the next chapter). 

Although Capistrano is more deployment-focused, both tools work at the same level, 

using SSH to connect to target nodes and push forward the wanted changes. 

Capistrano has a slightly larger feature list, but Fabric wins in ease of use. Mostly it is 

a choice of language preference between the two: does one prefer Ruby (Capistrano) 

or Python (Fabric). In relation to the other solutions, Capistrano has mostly the same 

strengths and weaknesses as Fabric. 
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3.3.2 Fabric 

 

 

Fabric is a Python (2.5 or higher) library and command-line tool for streamlining the 

use of SSH for application deployment or systems administration tasks. It provides a 

basic suite of operations for executing local or remote shell commands (normally or 

via sudo) and uploading/downloading files, as well as auxiliary functionality such as 

prompting the running user for input, or aborting execution. Typical use involves 

creating a Python module containing one or more functions, then executing them via 

the fab command-line tool. The Fabric development team is headed by Jeff Forcier. 

However, dozens of other developers pitch in by submitting patches and ideas via 

GitHub, IRC or the mailing list. (Hansen, C. & Forcier, J. 2012) 

 

Fabric is a “push” type management tool similar to Capistrano, but uses the Python 

scripting language instead. Python scripts are infused with Fabric commands to make 

parts of them run remotely on the target machine(s). An important issue to note is 

that although Fabric makes heavy use of Python, it does not provide direct support 

for running scripts remotely. With Fabric, one is never “on the remote server”; the 

scripts are still run locally. Therefore, Fabric relies heavily on the execution of shell 

commands for solving tasks. Fabric and its configuration scripts are stored on the 

management server. Most of the workload with Fabric comes from writing the actual 

Python scripts. 

 

As an example, if a file on a node were to be modified, a script could be created that 

makes use of Fabric’s file transfer commands: one could download the file to the 

management server, make the required changes, and finally upload it back to the 

node.  The addresses of the nodes, as well as their required user names and 

passwords are specified in the scripts. Finally, the script is run with the fab 

command. Fabric then automatically connects to the specified node(s), performs the 

changes and outputs the results in the terminal (see figure 6). 
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FIGURE 6. Output from Fabric running the shell command “uname –s” 

 

 

Fabric is extremely easy to set up, relatively easy to use and makes use of the Python 

language, which is already familiar to the SkyNEST team. It is very programmer 

oriented, requiring little time to learn the tool itself. As the scripts mostly consist of 

ordinary Python code, a developer who has never even used Fabric will still have an 

idea of how they work. 

 

3.3.3 Puppet 

 

 

Puppet is an automated administrative engine for *nix systems developed by Puppet 

Labs. It performs administrative tasks (such as adding users, installing packages, and 

updating server configurations) based on a centralized specification. Puppet lets 

users focus more on how tasks should be accomplished and less on doing them. It 

aims to let computers do what they are good at; precisely perform patterns, so users 

can focus on creating solutions. (Puppet overview 2011) 

 

Puppet has been developed to help the system administrator community move to 

building and sharing mature tools that avoid the duplication of everyone solving the 

same problem. It provides a powerful framework to simplify the majority of technical 

tasks that system administrators need to perform. Puppet can handle most of the 

details, and code can be downloaded from other system administrators to help get 
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the tasks done even faster. There are already hundreds of modules developed and 

shared by the community. (PuppetLabs 2012) 

 

Puppet uses the “pull” type implementation of configuring nodes. Therefore, the 

Puppet software has to be installed and configured on both the management server 

and the nodes. Puppet is typically used in a client/server formation, with all the 

clients talking to one of more central servers. After the systems are configured 

correctly, the nodes periodically (or manually if so desired) connect to the 

management server to check for configuration changes, and synchronize with the 

latest updates. The nodes report back to the server to tell it what was changed. The 

management server acts as a storage for all the configuration manifests. All the 

configuration modifications will be done on or transferred to the management 

server. Figure 7 visualizes the data flow in a typical Puppet implementation. 

 

 

 

 

FIGURE 7. Data flow in a typical Puppet implementation (Source: PuppetLabs 2012) 

 

 

In Puppet, the user specifies the states for the nodes, instead of directly making 

changes. One example would be setting the state of a package to “installed”. 

Therefore, Puppet can be seen as a higher level tool than for example Fabric. To 

describe these states, Puppet uses its own proprietary DSL that is derived from Ruby. 

It allows the user to specify the required state of each node and/or node group. 



30 

 

 

Puppet is more of a professional solution for configuration management than a 

simple tool to make quick system changes. Since it has been around longer than most 

alternatives, it is well documented and supported. It also includes a large amount of 

built-in features, but the complexity comes at a cost: it is slightly laborious to get 

running and to learn its more advanced features. The user not only needs to learn a 

proprietary language, but also the usage of Puppet itself. 

 

3.3.4 Juju 

 

Juju is an open-source solution for service orchestration developed by Canonical Ltd. 

Juju was formerly known as Ensemble. Juju concentrates on the notion of service, 

abstracting the notion of machine or server, and defines relations between services 

that are linked with each other. These relations are automatically updated when two 

linked services observe a notable modification. This allows for easy scaling of 

services. (Wikipedia 2012) 

 

Juju is designed to solve the needs of both developers and system administrators. It 

is a solution for orchestrating cloud services, i.e. deploying, connecting, and 

controlling service applications across all systems. Juju focuses on managing the 

service units needed to deliver a single solution, above simply configuring the 

machines or cloud instances needed to run them. (Ubuntu Wiki 2012) 

 

Developers can benefit from juju’s rapid deployment of dependencies and by 

reproducing deployments for test and staging purposes. System administrators can 

see what is deployed and track usage in the cloud, as well as monitor, scale, shrink 

and adjust deployment parameters in real time. Juju also allows these two groups to 

better collaborate on the exact deployment and upgrade processes. (Ubuntu Wiki 

2012) 
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Juju uses so-called charms to deploy services. These charms are open and worked on 

by the community, and thus represent a best set of practices for deploying these 

services. Through the use of charms, juju provides shareable, re-usable and 

repeatable expressions of DevOps best practices. (Ubuntu Wiki 2012) 

 

Juju can be described as a higher level solution than tools such as Puppet or Fabric, 

orchestrating services instead of managing configurations. In fact, some use juju in 

combination with a lower-level tool to accomplish system level tasks. Juju is generally 

cross-platform, but made with Ubuntu in mind. The public availability of charms is an 

advantage, as solutions for many tasks have already been done and can be re-used. 

Juju charms can be written in any language; all juju needs is a set of executable files 

that it can trigger appropriately (Ubuntu Wiki 2012). 

 

As stated in the juju FAQ (Ubuntu Wiki 2012), juju is not yet ready to be used in 

production; the rough estimate is to have juju ready for Ubuntu 12.04. The FAQ also 

reveals that juju currently only deploys to the Amazon EC2 cloud, and that each 

service unit is currently deployed to a separate EC2 instance. Juju will support 

multiple services per machine in the future, but these issues together decrease its 

appeal. While tools such as Puppet are good at low level operations, juju has a high 

level scope and has good support for building relationships between services. 

 

A juju environment needs its own dedicated bootstrap node, a utility node that is 

used to manage the environment. Next, requires charm(s). These can be written in 

any language or downloaded from charm libraries. A charm can be deployed using 

the deploy command. For scaling up a service, juju has the simple add-unit 

command. Finally, relations between services can be added with the add-relation 

command. 
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3.3.5 Landscape 

 

 

Landscape is an easy-to-use systems management and monitoring service by 

Canonical Ltd. to manage multiple Ubuntu systems as easily as one and lower 

management and administration costs. With Landscape, essential information can be 

viewed and uniformity across installations delivered from a single console, problems 

can be identified with a clear view of live resource usage statistics from Landscape’s 

dashboard, and clouds can be managed as easily as physical machines. (Canonical 

Ltd. 2012) 

 

Landscape comes in two forms: Hosted Edition and Landscape Dedicated Server. The 

hosted edition is run on Canonical’s servers. The dedicated server version allows 

customers to run the Landscape systems management server onsite. 

Landscape provides an intuitive web interface for managing nodes. Most basic 

features are provided, such as making sure a specific package is installed, editing 

users and running scripts. All the activities done by Landscape can be monitored 

from an activity log (shown in figure 8). 

 

 

 

 

 
FIGURE 8. Activity log of Landscape (Source: Canonical Ltd.) 
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Landscape’s main disadvantages are that it is not free, does not work on the 

command line and only works on Ubuntu systems, making it less flexible that the 

alternatives. It does also have some advantages. It includes comprehensive 

monitoring features that allow monitoring everything from CPU temperature to 

system load. Landscape can also be set to alert the user if there are important 

packages or security updates available. Landscape is very easy to use after getting 

used to it. All in all, it is a good solution for basic managing of multiple Ubuntu server 

installations, but is not as comprehensive or flexible as the alternatives. 

 

3.3.6 Sprinkle 

 

Sprinkle is a software provisioning tool developed by Marcus Crafter that can be used 

to build remote servers after the base operating system has been installed. 

Properties of packages such as their name, type, dependencies, etc., and what 

packages apply to what machines is described via a DSL that Sprinkle executes. One 

of the aims of Sprinkle is to define as concisely as possible a language for installing 

software. (Crafter, M. 2012) 

 

Most configuration management solutions are either “push” or “pull” based. Sprinkle 

tries to merge these concepts together, combining the intelligent, state-based 

configuration of the “pull” method with the ease of installation and lack of need for 

specialized software of “push” solutions. Sprinkle uses Capistrano internally for 

communicating with remote systems, thus Capistrano is a pre-requisite for Sprinkle. 

However, this is pluggable; Sprinkle also supports custom delivery mechanisms. 

 

To use Sprinkle, a deployment script and package definitions are created. In the 

deployment script, Sprinkle is told what packages are available, which packages are 

to be delivered on which servers, and what delivery mechanism to use. The package 

definitions contain the actual “meat” of the scripts. The title “package definition” can 

be misleading, since the script itself does not have to have anything to do with a 
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package. In addition to package-related commands such as installing a package, 

Sprinkle can run commands remotely and transfer files. 

 

Sprinkle offers a nice blend of features and simplicity. The Ruby-based scripting DSL 

can take some time to learn, but with the exception of some ActiveSupport 

compatibility problems, Sprinkle was found to be quite to set up and get running. Its 

usage is somewhat similar to Fabric, but uses Ruby and is state-based instead of task-

based. A heavy disadvantage of Sprinkle is that it has not been very actively updated. 

As of March 2012, the latest changes are dated 5 months ago. Moreover, 

documentation on the official site (https://github.com/crafterm/sprinkle) is pretty 

concise and other sources of documentation are hard to come by. 

 

3.3.7 Chef 

 

Chef is an open-source systems integration framework by Opscode inc., built specifi-

cally for automating the cloud. No matter how complex the realities of the business, 

Chef makes it easy to deploy servers and scale applications throughout the entire 

infrastructure. Because it combines the fundamental elements of configuration man-

agement and service oriented architectures with the full power of Ruby, Chef makes 

it easy to create an elegant, fully automated infrastructure. (Opscode 2012) 

There is a multitude of Chef products available, thus it is important to distinguish the 

different options from each other. Firstly, there are three main versions of the prod-

uct:  

• Hosted Chef 

• Private Chef 

• Chef 

Hosted Chef is a paid service that offers access to a fully supported automation envi-

ronment hosted by Opscode. Private Chef is basically the same, but runs inside a pri-
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vate network. This document focuses on the edition simply called “Chef”, the open 

source version of Chef. This open source edition is split into multiple versions: 

• Chef Solo 

• Chef Server 

• Chef Client 

Chef Solo is a standalone, locally running version of Chef that is not attached to a 

server. All the required information, including the configuration manifests, is stored 

locally on the node. They can be retrieved via a remote URL with shell commands. 

Chef Server and Chef Client work together to make a client-server system similar to 

Puppet. The configuration files are stored on the server and the client nodes connect 

to the server to retrieve them. Compared to Chef Solo, this offers more dynamic con-

figuration management, supporting features such as roles for nodes. 

This document concentrates on the Server/Client version of Chef, as it seems best 

suited for the use cases of FreeNEST. Of all the compared solutions, Chef Server is 

probably the closest alternative to Puppet. It operates with configuration states, de-

scribing the state at which each resource should be. The premise of Chef is to make 

sure each resource is configured properly, and to make sure the servers are always 

running exactly as wanted. Due to the server-client method, Chef needs to be in-

stalled on both the server and client machines. Although the Chef Server stores the 

configuration information, Chef includes a handy tool called Knife with which 

changes to the configuration can be done via an external workstation, without the 

need to log onto the management server itself. Knife can also be used to communi-

cate directly with the nodes using SSH. Figure 9 visualizes the architecture behind 

Chef Server and Chef Client. 
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FIGURE 9. The architecture of Chef (Source: Opscode Wiki) 

 

Chef arranges configuration files into cookbooks, recipes, nodes, roles and run-lists. 

This fairly logical arrangement makes it easy to modify existing configurations as well 

as add new ones. Cookbooks are the fundamental units of distribution in Chef. They 

store recipes, specifying what resources should be managed and how. Nodes are the 

systems managed by Chef, while roles group features of similar nodes together to 

provide specific sets of functionality. Both roles and nodes have run-lists that specify 

the recipes they use. 

Chef is no doubt a well-rounded, feature-rich tool for configuration management. 

When it comes to FreeNEST, its perhaps biggest disadvantage is unnecessary com-

plexity, as simpler tools like Fabric can be set up in a fraction of the time it takes to 

get Chef fully up and running. 

 

3.3.8 Poni 

 

Poni is a simple system configuration management tool implemented in Python for 

defining, deploying and verifying complex multi-node computer systems. Systems, 

nodes, installed software and settings are stored in a central Poni repository, so 
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there is a single location where the system is defined and documented. (Eloranta 

2012)  

Poni uses a command-line tool to control almost every aspect of the configuration, 

including editing the configuration manifests, adding relations and describing servic-

es. With Poni, the infrastructure is defined as a hierarchy of keys and values instead 

of just simple configuration files. As an example, there could be the following hie-

rarchy: 

• System webshop/backend 

o Node webshop/backend/postgres1 

� Config webshop/backend/postgres1/config1 

By separating these three types of items hierarchically, changes to a specific part of 

the configuration can be made easily, as well as new nodes and configurations added 

to the system. 

Configuration files and installation scripts are bundled into so-called Poni configs, 

each typically representing one software component, such as a HTTP server. Each 

node type is configured to include one of more of these configs. The actual 

processing of changes is done by creating template-based files or running custom 

functions remotely using a remote execution framework. Poni requires the use of 

SSH keys for authentication. 

Although Poni does have potential, it has some serious drawbacks. Most importantly, 

it is early in its development – the initial version was released in November of 2010. 

Due to its young age and lack of popularity, Poni documentation is extremely hard to 

come by. Poni’s official documentation at http://melor.github.com/poni/ does help 

getting started, but there is a lack of practical usage examples. Excluding the official 

documentation, Poni documentation is practically inexistent. This combined with the 

usage of a distinctive command-line tool can make it daunting to learn. 
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4 EVALUATION SETUP AND CHOSEN SOLUTIONS 

 

4.1 Use cases 

 

This subchapter describes each of the given use cases of FreeNEST. These use cases 

represent possible ways in which the SkyNEST project could make use of 

configuration management solutions. Later in this document, each of these use cases 

is evaluated using the chosen solutions to see how well each solution manages. 

 

4.1.1 Use case 1 – modifying a configuration file 

 

In this use case, there is a specific file on the remote machine(s) that is to be 

modified. More specifically, the HOSTS file on the target machine(s) is modified, 

changing the domain name for a given IP address. A visualization of this use case is 

shown in figure 10. 

 

 

 

 

FIGURE 10. Visualization of use case 1. 

 

 

4.1.2 Use case 2 – installing a specific version of a package 

 

This use case consists of managing packages on a node running Ubuntu. The solution 

needs to remotely install a specific version of a given package. A visualization of this 

use case is shown in figure 11. 
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FIGURE 11. Visualization of use case 2. 

 

 

4.1.3 Use case 3 – multiple target nodes 

 

In this use case, multiple targets nodes need to be configured, each with their own 

specific configuration settings. A visualization of this use case is shown in figure 12. 

 

 

 

 

 
FIGURE 12. Visualization of use case 3. 
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4.2 Evaluation setup 

 

Virtual machines were used in the evaluation of the given use cases. Here are the 

specifications of the evaluation setup: 

 

• Virtual Machine: Oracle VM VirtualBox 4.1.8 

• Host OS: Windows XP 32-bit SP3 

• Client OS (both server and client): Ubuntu 10.04 LTS 

• Fabric 1.4 

• Puppet 2.7.10 

• Chef 0.10.8 

 

 

4.3 Chosen solutions 

 

4.3.1 Fabric 

 

4.3.1.1 Why Fabric? 

 

 

Fabric was chosen for closer inspection due to its short learning curve, fast results 

and relatively good documentation. Fabric works well for quick and dirty changes to 

configurations. It is a suitable choice for developers due to its programmer-oriented 

base. 

 

4.3.1.2 Features 

 

Fabric uses SSH to connect the server to the node(s). Fabric’s biggest advantage – its 

simplicity – also leads to its biggest drawback: the lack of comprehensive built-in 

features. Although it is easy to get started with Fabric, it can become complicated as 

the complexity of the environment increases. With Fabric, most of the tasks are 

solved by making heavy use of the run command, which executes shell commands. 
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One could say that instead of directly managing nodes, Fabric gives the user a basic 

framework on which to script a management system of their own. If multiple 

administrators run fabric commands simultaneously, unexpected results can occur 

due to the configuration changes being pushed into the node at the same time. 

Fabric is a “push” type tool, which makes it is easy to detect possible problems right 

after a push has been done. 

 

4.3.1.3 Ease of use 

 

 

Fabric itself is extremely simple to set up and use. The installation process of Fabric is 

described in Appendix 1. Other than SSH connectivity, the node machines themselves 

do not need to have anything particular installed. It is possible to get the first 

commands working in less than 10 minutes. More complex configuration 

management will require knowledge of Python coding. Due to the similarity with 

Python, Fabric scripting skills will not go to waste even if the tool itself is later 

abandoned. Python language is already being used by the SkyNEST team, so the 

learning curve should be nonexistent. 

 

4.3.1.4 Performance 

 

Fabric was not designed with parallel processing in mind, meaning that the 

management server has to push the changes to the target nodes one by one. As all of 

the workload falls on the management server, it can quickly become a bottleneck. 

With smaller projects, this is a non-issue, but if there are hundreds of nodes to 

configure, it can be a drawback. There is preliminary support for parallel processing, 

but it is not natively supported. 
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4.3.1.5 Maturity & documentation 

 

Fabric has been around since 2009 (Hansen, C. & Forcier, J. 2012). It can be 

considered more mature than some alternatives, but not quite as mature as the 

veterans of this field, such as Puppet. Fabric is still somewhat young and developed 

by a relatively small group, so the future support for the project can be seen as 

uncertain. As of February 2012, Fabric is continually developed and actively updated. 

There have already been two major releases during the year. Fabric is documented 

quite well on the Fabric website at http://docs.fabfile.org/. Other sources of 

documentation can be hard to come by. 

 

4.3.2 Puppet 

 

4.3.2.1 Why Puppet? 

 

Having its roots back in 2005, Puppet is mature compared to most other open source 

tools. Puppet is also a very popular and well-received solution, powering thousands 

of companies including Google, Oracle and Twitter (PuppetLabs 2012). It is relatively 

well documented over the Internet. Puppet also has a large community around it, as 

well as heaps of free, community-made modules to expand its functionality. In 

addition, Puppet Labs has announced support for OpenStack: 

Coinciding with this week’s OpenStack Summit in San Francisco, today 

we’re pleased to highlight the great community efforts around the 

Puppet modules for OpenStack. Working together, Puppet Labs and 

OpenStack community members Cisco, Red Hat, Rackspace, Morphlabs, 

and eNovance have designed and developed a collection of modules 

that allow sysadmins to automatically provision, configure, and manage 

OpenStack clouds with Puppet open source or Puppet Enterprise. The 

first of these modules, OpenStack cloud provisioning, is available today 

for free download from Puppet Forge. (Puppet Labs 2012) 
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According to the Puppet Blog (Puppet Labs 2012), Puppet was chosen as the 2011 

Best Open Source Configuration Management Tool by Linux Journal readers. 

 

4.3.2.2 Features 

 

Puppet provides built-in commands for most basic tasks, such as: 

 

• Installing packages 

• Checking and copying file contents 

• Ensuring a given service is running 

 

Puppet can retrieve operating system facts such as IP addresses and SSH keys via 

Facter, an independent, cross-platform Ruby library. The proprietary DSL supports 

the use of variables and conditional statements, as well as parameterized classes. 

Templates can be used for the configuration manifests to make the system more 

flexible. There is also quite thorough support for customizing the sequence at which 

the configuration changes will be processed. Everything can be logged in a special 

reports directory so no change will go unnoticed. 

 

4.3.2.3 Ease of use 

 

 

Installing and configuring Puppet can be somewhat time-consuming. The installation 

process of Puppet is described in Appendix 2.  Both the server and client side need 

the Puppet software installed. Since Puppet uses its own proprietary language, it can 

be considered to have a steeper learning curve than Fabric. Puppet can be a 

powerful tool, but only after it has been mastered. 

 

 



44 

 

4.3.2.4 Performance 

 

 

Being a pull type management tool, Puppet shifts part of the load from the 

management server to the nodes themselves. Performance-wise, this is an 

advantage. As long as the system is not being bottlenecked by the server, the tasks 

can be processed simultaneously without individual nodes having to wait for their 

turn. 

 

4.3.2.5 Maturity & documentation 

 

The first version of Puppet was released in 2005 (Wikipedia 2012), so it can be 

considered one of the veterans in the field of configuration management. Due to its 

maturity, Puppet should in theory be less likely to cause problems or contain bugs. 

Puppet is documented quite extensively on the Puppet Labs website, including 

feature lists, tutorials and exercises among other facts. Due to its maturity and large 

user base, it is reasonably safe to assume that Puppet will continue to be supported 

and updated in the future. 

 

4.3.3 Chef 

 

4.3.3.1 Why Chef? 

 

 

Chef was chosen mainly due to its impressive feature list, customizability and 

developer-oriented approach to tasks. It might seem slightly daunting at first, but can 

become a powerful tool in the right hands. The included Knife tool makes it possible 

to manually make quick changes to all the specified machines. For developers, the 

Ruby language that Chef uses may be more comfortable than the custom DSL that 

Puppet uses. There are Chef repositories available for deploying OpenStack, such as 

https://github.com/openstack/openstack-chef. 



45 

 

 

4.3.3.2 Features 

 

Chef includes built-in features to modify many basic resources such as files, services 

and packages. Most of these features are comparable to Puppet’s alternatives. In 

addition, there are free cookbooks available for download to increase the versatility 

of Chef. However, the real power of Chef comes from mastering the Ruby language 

to create custom cookbooks tailored for specific needs. As far as built-in features are 

concerned, Chef is comparable to Puppet. 

 

4.3.3.3 Ease of use 

 

 

Of all the studied solutions, Chef is probably the most laborious to install and get 

running – especially the client/server version. Appendix 3 provides step-by-step 

installation instructions. There are some tutorials available over the Internet, but it 

seems difficult to find simple, concise instructions for this task. The structure of the 

tool itself is quite logical, making it reasonably easy to use after a bit of learning. The 

inclusion of the Knife tool is a plus for usability, as it allows one to make 

configuration changes from outside the management server itself. 

 

Compared to Puppet, one could say Chef is more programmer than administrator 

oriented. Using the Ruby language, it offers complex possibilities for those who know 

their way around scripting. Chef is overall more dynamic than Puppet; it gives more 

room for the user to decide how to accomplish tasks. On the other hand, there is also 

less help from the tool itself, leaving many tasks for the user to figure out. This favors 

developers, giving them an open playground for making their own solutions to tasks. 
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4.3.3.4 Performance 

 

 

As with Puppet, Chef uses the “Pull” method to configure systems. This helps to 

prevent overloading the management server. Applying the configuration changes 

with Chef also seems to take less time than with Puppet. In a simple test consisting of 

installing a package, Chef took only about half the time that Puppet did. 

 

4.3.3.5 Maturity & documentation 

 

According to Wikipedia (Wikipedia 2012), the first release of Chef took place in 

January 2009. This makes its age about equal with Fabric. Although younger than 

Puppet, Chef also has a community around it. This makes finding documentation as 

well as third-party modifications easier. There is a multitude of configuration 

modules (known as cookbooks) freely available for download. Although Chef is 

essentially well documented in the Opscode Wiki 

(http://wiki.opscode.com/display/chef/Home), the documentation is somewhat 

unorganized and thus hard to follow. Chef has been received quite well, so it will 

likely keep evolving and continue to be supported. 

 

5 Evaluation of chosen solutions 
 

5.1 Overview 

 

Here are presented a quick overview and observations of how the chosen solutions 

coped with the given use cases. Detailed, step-by-step instructions for performing 

the tasks are provided in Appendix 4 (Fabric), Appendix 5 (Puppet) and Appendix 6 

(Chef). 
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5.2 Use case 1 – modifying a configuration file 

 

This use case requires making line-specific edits to a file, which is usually not a built-

in feature of configuration management tools. Thus, this use case requires one to 

either rely on third party modules or to code a custom solution. 

 

5.2.1 Fabric 

 

File modifying is easy to achieve with Fabric by making use of Python. One simply 

needs to make a script that edits the file to produce the expected results. However, 

since Fabric does not directly run scripts on the target node, the file needs to be 

either temporarily transferred to the management server for editing, or be directly 

edited using shell commands on the node. One way to achieve this task is to 

temporarily transfer the file to the management server, read through the file line by 

line, searching for a specific match and modifying the line whenever a match is 

found, and finally upload it back to the node. After the script is ready, the fab 

command is used to call the script. Target nodes and user information can be either 

included in the script(s) or as parameters for the fab command. 

 

5.2.2 Puppet 

 

While Puppet does not have a built-in feature for precise file content editing, there 

are user definitions available that can accomplish this task. For this use case, Simple 

Text Patterns can be used: 

 

http://projects.puppetlabs.com/projects/1/wiki/Simple_Text_Patterns 

 

By making use of these additional definitions, one can use Puppet to edit file 

contents with relative ease. The ensure_key_value definition is very well suited for 

the purposes of this use case; it finds a given string at the beginning of a line and 

modifies the rest of the file as specified. First, a new module for Puppet is created. 

The definition is added to the Puppet class, then called with the specified 
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parameters: file (the file to modify), key (the string to search for), and value (the 

contents to add to the line). Target nodes are specified in the Puppet file nodes.pp. 

The checkout itself is done from the nodes, connecting to the server and 

automatically finding out their required modules from the management server’s 

nodes.pp file. 

 

5.2.3 Chef 

 

In Chef, Ruby can be used to add functionality to cookbooks. Unlike Fabric, Chef 

allows running Ruby script(s) directly on the target machine, so there is no need for 

file transferring - the file can be edited directly on the node. First, a new Chef 

cookbook is created. It includes a Ruby script that reads the lines of a given file one 

by one, modifying the lines that match a given substring. 

 

After the cookbook is ready, it is uploaded to the Chef Server using the Knife tool, 

and added to the run list of the wanted node(s). The nodes periodically connect to 

the server, read their assigned run list and process the cookbooks and recipes 

specified there. 

 

5.3 Use case 2 – installing a specific version of a package 

 

This use case consists of making sure a specific version of a given package is installed. 

Installing packages is likely one of the most common uses of configuration 

management tools, thus most tools have this feature built-in. Specific versioning can 

be a bit more complex, but overall still relatively easy to achieve. 

 

5.3.1 Fabric 

 

Like most solutions, Fabric allows running shell commands on the target node. 

Installing packages requires administrator permissions, so the Fabric function sudo 

should be used for this purpose. It simply runs a shell command as sudo. As a 
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parameter, the function is given the shell command required for installing the 

wanted package. 

 

Specific versioning with Fabric is slightly more complex. One option is to use a shell 

command such as dpkg-query to check which version of the package is currently 

installed. The script is run on the management server, while the shell commands are 

run on the target node. Therefore, one needs to parse the Fabric output to get the 

version information (the output of the dpkg-query command) into the script itself. 

After the version information is known by the script, simple Python functions and 

statements can be used to determine whether or not a new version should be 

installed. 

 

5.3.2 Puppet 

 

Once a basic directory structure has been created for Puppet, making a Puppet 

module for installing a package is a trivial task. There is a built-in command to ensure 

that a given package is installed. All that is needed is to tell Puppet the name of the 

package that needs to be installed. Puppet also supports ensuring a specific version 

of a package is installed. As long as the exact version number of the package is 

known, installing that specific version is just as easy as installing a package in general. 

After the module is created, it can be used by the node(s), and it will be processed on 

the next update. 

 

5.3.3 Chef 

 

Like Puppet, Chef has built-in support for package management. Knife makes it easy 

to create new cookbooks, as it automatically creates the default directory structure 

for them. Installing a specific version is no more laborious than installing a package, 

as Chef has built-in support for package versioning. Chef Server only needs to know 

the name and version of the package to be installed. After the cookbook is ready, it is 

added to the node’s run list, informing Chef Server that the node needs to process 

these changes on its next update cycle. 
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5.4 Use case 3 – multiple target nodes 

 

This use case consists of configuring multiple target nodes, with each node having its 

own, specified configuration. 

 

5.4.1 Fabric 

 

Fabric contains certain environment variables that can be modified. These include 

env.hosts and env.roledefs. The hosts variable is an array that stores the addresses of 

all the target nodes for the script. All that is needed is to add all the target node 

addresses into this variable in a script, and Fabric will run that script on all the given 

nodes, without the need for additional command-line parameters. The roledefs array 

can be used for grouping similar nodes into “roles”. After nodes have been grouped 

into a single role, only the role needs to be specified to Fabric, and the script will 

affect all the clients included in that role. 

 

5.4.2 Puppet 

 

Puppet has a specific file, nodes.pp, for storing the node information. The address 

and all the required modules for each node are specified there. Whenever a Puppet 

client connects to a Puppet server, it gets its tasks from this file. If more flexibility is 

required, one way is to use node inheritance. Using inheritance, one can create a 

base node with all the general configuring needed for every server, and then inherit 

individual nodes from the base node, adding more modules if needed. As the 

modules themselves are separate from the nodes, no changes are needed to them. 

Configuring multiple nodes works the same way as configuring a single node; the 

only differences are in the nodes.pp file. 

 

5.4.3 Chef 

 

Chef uses a logical structure with nodes, with cookbooks, recipes, nodes, roles and 

run lists. The cookbooks are the fundamental units of distribution in Chef, containing 
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the actual scripts for the configuration, known as recipes. They are separate from the 

nodes and roles, and can be added to the run lists of either a node or a role using 

Knife. When a Chef Client connects to the Chef Server, it looks at its assigned run list 

for tasks to achieve, and makes configuration changes accordingly. Therefore, to 

make changes to multiple nodes, each node or its role simply needs to have assigned 

recipes on its run list. More clients and roles can easily be added as necessary with 

Knife. 

 

6 RESULTS AND CONCLUSION 

 

6.1 Results 

 

The conducted evaluation comprised only short-term usage tests. While results were 

gathered and a conclusion was drawn, one should keep in mind that long-term usage 

evaluation might produce drastically different results, quite possibly revealing more 

strengths and weaknesses of these products. The determined positive and negative 

aspects of each solution is described in table 1. 
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TABLE 1. Comparison of the top three solutions 

 

Solution Positive aspects Negative aspects 

Fabric • Easy to set up and 

get started 

• Easy to expand 

with Python 

• Short learning 

curve due to 

Python language 

 

• Relative lack of 

documentation 

• Uncertain future 

• Not made for 

parallel operations 

 

Puppet • Comprehensive 

feature list 

• Abundant 

documentation 

available 

• Maturity 

• Community + 

modules 

• Future proof 

 

• Steeper learning 

curve due to 

proprietary DSL 

• Not as easy to 

tailor for specific 

needs as Fabric or 

Chef 

 

Chef • Comprehensive 

feature list 

• Developer-

oriented nature, 

easy to expand 

with Ruby 

• Community + 

cookbooks 

• Knife tool makes 

performing 

changes easy 

 

• Laborious 

installation 

• Incoherent 

documentation 
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6.2 Conclusion 

 

Any of the compared solutions would probably suit the needs of SkyNEST. Fabric  

convinces with its simplicity; however, its lack of built-in features, concise 

documentation and uncertain future support eliminates it from being the top choice. 

Puppet and Chef are in many ways similar, both being “pull” tools that offer 

extensive features along with comprehensive documentation. Puppet has been 

around for a little longer than Chef, and does have a larger community around it. 

Chef combines Fabric’s customizability with a more extensive feature list, 

comprehensive documentation and future assurance. Comparing Puppet and Chef, 

both have their advantages and disadvantages. In the end one could say that it 

comes down to preference. When evaluating the suitability for FreeNEST, Chef gets a 

narrow win mainly due to its more developer-oriented approach. Although the task 

of installing and configuring Chef can be a bit daunting, the tool itself works logically 

and is pretty simple to use. The Ruby language can be used to make custom scripts 

and expand functionality, while Knife allows for easy changes to configuration from 

any machine that has it installed.  

 

6.3 Future 

 

Like cloud computing, configuration management and service orchestration are 

currently very active fields, constantly changing form. What will the future have in 

store for configuration management? 

 

As development progresses, solutions will strive to lessen the human workload even 

further. Tools will be made easier to use, as well as more adaptable, stable and 

scalable. One probable change that will be seen in the near future is the fusion of 

lower-level and higher-level tools. In some ways, this has already begun taking place. 

Previously deployment-focused tools such as Capistrano are entering the systems 

administration territory, and vice versa. Why have one solution to handle system 

configuration, and another one for application deployment? A single solution to 

solve all orchestration tasks is much easier to manage and work with, not to mention 
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less expensive. There will be less focus on specific areas, and more focus on the 

overall picture. High level aspects will need to be combined with low level 

operations. Similar issues should be grouped together and handled by the same tools 

to allow for reliable bindings and predictable service agreements. Higher level 

functionality will increase, requiring less input from the user to accomplish tasks. Juju 

is an example of a higher level configuration tool, managing service units instead of 

systems or files. It is built from the ground-up for the cloud. Another higher level 

solution that might gain more ground in the future is Microsoft’s System Center 

Opalis, an automation platform that can automate tasks across various systems 

without the need for scripting. This is achieved through workflow processes that 

orchestrate System Center and other management tools in an integrated manner. 

Some tools integrate other tools to provide a broader spectrum of management. As 

an example, Dell’s Crowbar, an open source bare-metal provisioning tool is an 

extension of Chef Server. As cloud computing and virtualization become increasingly 

common, orchestration tools will follow these trends and be specifically built with 

those aspects in mind. Solutions will take more advantage of virtualization for 

increased scalability and reduced complexity, and will be built for the elasticity of the 

cloud. The current solutions will have to either adapt or be prepared to face some 

stiff competition.
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APPENDIX 1. Tutorial on installing and configuring Fabric 

 

Overview 

 

 

This is a tutorial on how to install Fabric on the client and server side running fresh 

installs of Ubuntu 10.04. Server in this case means the management server, while the 

client(s) is/are the nodes to be configured via Fabric. Unless otherwise stated, the 

following steps are required for both the server and the client. 

 

Server side installation 

 

 

First, we install all the packages that Fabric requires: 

 

sudo apt-get install python-dev python-setuptools ssh 

 

Next, we install Fabric itself. Note that this should be done via easy_install as the apt 

version tends to be outdated: 

 

sudo easy_install fabric 

 

Client side installation 

 

 

As Fabric does most of the work on the server side, only SSH connectivity is needed 

for the client: 

 

sudo apt-get install ssh 
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Testing the connection 

 

 

For testing the connection between the management server and node(s), create a 

file called fabfile.py with the following contents: 

 

 

 

 

 

 

The above Fabric script simply runs the command ‘uname –s’ on the node. NOTE: 

Since it is Python code, the indentation must be correct for it to work. 

 

Now we can test the newly created script with the following command (replace the 

ip address with the ip address of the target node): 

 

fab –H ‘192.168.11.12’ host_type 

 

If everything is working, a line similar to the following should be outputted: 

 

[192.168.11.12] out: Linux 
 

from fabric.api import run 
 
def host_type(): 
 run(‘uname -s’) 
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APPENDIX 2. Tutorial on installing and configuring Puppet 

 

 

Overview 

 

This is a tutorial on how to install Puppet on the client and server running fresh 

installs of Ubuntu 10.04. Server in this case means the management server running 

Puppetmaster, while the client is the node to be configured via Puppet. Unless 

otherwise stated, the following steps are required for both the server and the client. 

 

Installing the prerequisites 

 

Install the base packages via apt: 

 

sudo apt-get install ruby rubygems libopenssl-ruby 

 

Installing through apt-get won’t get us the newest version of RubyGems, so we have 

to update it to 1.8.15 manually: 

 

cd /tmp 

sudo wget http://production.cf.rubygems.org/rubygems/rubygems-1.8.15.tgz 

sudo tar –xzf rubygems-1.8.15.tgz 

cd rubygems-1.8.15 

sudo ruby setup.rb 

 

RubyGems should now be version 1.8.15. You can check to make sure it is by typing 

in the following command: 

 

gem –v 

 

Installing Puppet 

 

Now we are ready to install Puppet itself: 

 

sudo gem install puppet --no-ri  --no-rdoc 
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Configuring the hostnames 

 

Now we should configure the hostnames so that our server and client can easily find 

each other. First we should find out the IP address of each machine with the 

following command: 

 

ifconfig 

 

You can find the IP address in the resulting lines. It should look similar to this: 

 

inet addr:192.168.11.10 

 

Next, add the following lines to /etc/hosts: 

 

xxx.xxx.xxx.xxx puppetmaster.example.com puppetmaster puppet 

xxx.xxx.xxx.xxx puppetclient.example.com puppetclient 

 

Notice that you need to replace xxx.xxx.xxx.xxx with the IP address of each machine, 

and example.com with whatever domain name you are using. 

 

[SERVER] Setting up Puppetmaster 

 

First we should create a basic directory structure for Puppet. We can use this handy 

template from Bitfield Consulting: 

 

cd /etc 

sudo wget http://bitfieldconsulting.com/files/powering-up-with-puppet.tar.gz 

sudo tar –xzf powering-up-with-puppet.tar.gz 

 

The directory structure should now exist at /etc/puppet. We are ready to start the 

Puppetmaster service. Since this is the first time we run it, we should also add the 

‘mkusers’ parameter. 

 

sudo puppet master --mkusers --verbose 
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From now on, whenever we need to start the puppetmaster service (say after a 

system restart), we only need to type in the following: 

 

sudo puppet master 

 

[CLIENT] Requesting a certificate 

 

Now that we have Puppet installed on the server and the client, and the 

Puppetmaster service started, we can test that the connection works. To do this, we 

run the following command (replace puppetmaster.example.com with the actual 

hostname of the management server): 

 

sudo puppet agent –test –server=’puppetmaster.example.com’ 

 

Since puppet master hasn’t signed a certificate for the client yet, there will be some 

errors. However, it should also create a new SSL certificate request.  

 

[SERVER] Signing the certificate 

 

On the host running Puppetmaster, type the following: 

 

sudo puppetca --list 

 

This will print out a list of all the cerfiticate requests the host has received. You 

should see the client (in this case “puppetclient.example.com”) on the list. The final 

thing we need to do is to sign the certificate: 

 

sudo puppetca --sign ‘puppetclient.example.com’ 

 

This should produce a message stating that the certificate was signed. 
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[CLIENT] Testing the connection 

 

 

If everything has worked successfully up to this point, we should now have a working 

connection between the Puppet master and Puppet client. We can test it with the 

following command: 

 

sudo puppet agent --test --server=’puppetmaster.example.com’ 

 

Since there are no tasks specified yet, the checkout will not actually do anything 

except output a few lines. If the connection works, you should see something similar 

to the following: 

 

info: Caching catalog for puppetmaster 

info: Applying configuration version ‘1298651839’ 

notice: Finished catalog run in 0.25 seconds 
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APPENDIX 3. Tutorial on installing and configuring Chef Server 

and Chef Client 

 

Overview 

 

This is a tutorial on how to install Chef Server and Chef Client on two separate 

machines running fresh installs of Ubuntu 10.04. Unless otherwise stated, the 

following steps are required for both instances. There are multiple ways to install 

Chef. In this tutorial we use Chef-solo to bootstrap Chef Server and Chef Client on the 

target machines. 

 

Installing the prerequisites 

 

Install the following packages via apt: 

 

sudo apt-get install ruby rubygems ruby-dev libopenssl-ruby rdoc ri irb 

build-essential wget ssl-cert ssh 

 

Install RubyGems 1.3.7 from source: 

 

wget http://production.cf.rubygems.org/rubygems/rubygems-1.3.7.tgz 

tar xvfz rubygems-1.3.7.tgz 

cd rubygems-1.3.7 

sudo ruby setup.rb 

 

Installing Chef Solo 

 

Use the following command to install Chef Solo: 

 

sudo gem install chef 

 

Modifying the HOSTS file 

 

On both machines, modify the file /etc/hosts so that chef.example.com points to the 

Chef Server machine and client.example.com points to the Chef Client machine. 
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[SERVER] Bootstrapping Chef Server 

 

Create the file /etc/chef/solo.rb with the following contents: 

 

 

 

 

 

 

Create the file /etc/chef/chef.json with the following contents: 

 

 

 

 

 

 

 

 

 

 

Next, use Chef Solo and the newly created files to bootstrap the Chef Server install: 

 

 
sudo chef-solo –c /etc/chef/solo.rb –j /etc/chef/chef.json 

 

[SERVER] Configuring the Chef Server 

 

First, create the directory ~/.chef, copy the validation files from /etc/chef there and 

give the current user the permissions to that directory: 

 

 
sudo mkdir –p ~/.chef 

sudo cp /etc/chef/validation.pem /etc/chef/webui.pem ~/.chef 

sudo chown –R $USER ~/.chef 

 

Next, we should create an initial configuration by running the following commands: 

 

 
cd ~ 

sudo knife configure -i 

 

file_cache_path “/tmp/chef-solo” 
cookbook_path “/tmp/chef-solo/cookbooks” 
recipe_url “http://s3.amazonaws.com/chef-solo/bootstrap-latest.tar.gz” 

{ 
“bootstrap”: { 
“chef”: { 
“url_type”: “http”, 
“init_style”: “runit”, 
“path”: “/srv/chef”, 
“serve_path”: “/srv/chef”, 
“server_fqdn”: “chef.example.com”, 
“webui_enabled”: true 
} 
}, 
“run_list”: [ “recipe[chef-server::rubygems-install]” ] 
} 
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The process is interactive, asking the user for a series of settings. You can accept the 

default settings for most of the questions by pressing enter. The only ones you need 

to change are the following: 

 

• chef server URL: http://chef.example.com:4000 

• admin client’s private key: .chef/webui.pem 

• validation key: .chef/validation.pem 

 

[CLIENT] Bootstrapping the Chef Client 

 

Create the file /etc/chef/solo.rb with the following contents: 

 

 

 

 

 

Create the file /etc/chef/chef.json with the following contents: 

 

 

 

 

 

 

 

 

 

 

Next, use Chef Solo and the newly created files to bootstrap the Chef Client install: 

 

sudo chef-solo –c /etc/chef/solo.rb –j /etc/chef/chef.json 

 

file_cache_path “/tmp/chef-solo” 
cookbook_path “/tmp/chef-solo/cookbooks” 
recipe_url “http://s3.amazonaws.com/chef-solo/bootstrap-latest.tar.gz” 

{ 
“bootstrap”: { 
“chef”: { 
“url_type”: “http”, 
“init_style”: “runit”, 
“path”: “/srv/chef”, 
“serve_path”: “/srv/chef”, 
“server_fqdn”: “chef.example.com”, 
“webui_enabled”: true 
} 
}, 
“run_list”: [ 
“recipe[chef-client::service]”, 
“recipe[chef-client::config]” 
] 
} 
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[CLIENT] Configuring the Chef Client 

 

On the client, we should now have a file called /etc/chef/client.rb. Edit the file, 

modifying/adding the following lines: 

 

chef_server_url http://chef.example.com:4000 

validation_key “/etc/chef/validation.pem” 

client_key “/etc/chef/client.pem” 

 

Now we need to copy the validation key /etc/host/validation.pem from the host to 

the client. After you have done this, run the following command on the client to 

generate the file /etc/chef/client.pem: 

 

sudo chef-client 

 

After the client.pem file is created, you can remove the validation.pem from the 

client as it is no longer needed. 

 

[CLIENT] Testing the connection 

 

At this stage, the connection between the Chef Server and Chef Client should be 

working. You can test it by running chef-client again. It should produce a line similar 

to this: 

 

WARN: Node <nodename> has an empty run list. 

 

This means that the connection works. As there are no run lists assigned to the node 

yet, it will not actually do anything. 
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APPENDIX 4. Fabric usage examples 

 

 

USE CASE 1 

 

In this use case, we modify the contents of the HOSTS file on the target node. More 

specifically, we use Fabric to modify the hostname and domain name for a given IP 

address. 

 

Creating a fabfile 

 

 

First, we move to a folder of our choosing and create the file fabfile.py. Using this 

filename allows Fabric to detect the file automatically. Add the following Python 

code into the file: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the first three lines, we import some libraries for specific functions, as well as our 

own custom configuration file, config.py. In the next three lines, we set some Fabric 

environment variables according to the values found in the imported config file. 

from fabric.api import * 
import fileinput 
from config import * 
 
env.user = user 
env.password = password 
env.hosts = target_hosts 
 
def modify_host(): 
 
 file = get(filename, "tmp") 
 
 for line in fileinput.FileInput(file, inplace = 1): 
  if ip in line: 
   line = ip + " " + name 
   print line 
  else: 
   print line, 
 
 put("tmp", filename, use_sudo=True) 
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Finally, there is the file modifying function, modify_host(). This is mostly just ordinary 

Python code. The function opens a file, goes through every line, and if it finds the 

given IP address, it adds the given name into that line. The only Fabric-related 

functions are on the first and last lines, get and put. The get function downloads the 

file from the node to the management server for editing. Next, we process the 

changes, and finally, send the file back to the node with the put function. 

 

Creating a config file 

 

It is convenient to hold the configuration variables in their own file. We will call this 

file config.py. Add the following contents: 

 

 

 

 

 

 

 

 

 

 

 

• target_hosts is a list of nodes to be configured. In this case, we only have 

one. If you need to specify multiple nodes, use comma as a delimiter between 

each IP address. 

• user is the username with which the changes will be done. Replace 

“username” with a real user name. 

• password contains the user’s password. Replace “password” with the actual 

password. 

• Filename specifies the file that is to be modified on the target node. 

• ip in this case is the IP address to search for in the HOSTS file. 

• name is the host/domain name to be added for the given IP address. 

 

target_hosts  = ['192.168.11.12'] 
user = "username" 
password = "password" 
filename = "/etc/hosts" 
ip = "192.168.11.6" 
name = "hostname.example.com" 



71 

 

Testing the fabfile 

 

 

Now that we have our files ready, we can test how they work. Assuming that Fabric is 

installed, this can be done by running the fab command with the name of our 

function as a parameter: 

 
sudo fab modify_host 

 

Since we already have all the needed values (IP address, username, password) in the 

config file, this should do the trick. The output should be similar to the following: 

 

[192.168.11.12] Executing task ‘modify_host’ 

[192.168.11.12] download: /home/user/fabric/tmp <- /etc/hosts 

[192.168.11.12] put: tmp -> /etc/hosts 

Done. 

Disconnecting from 192.168.11.12… done. 

 

If it worked, the HOSTS file on the target node should now be changed accordingly. 

 

USE CASE 2 
 

 

This example demonstrates how to use Fabric to install a specific version of a given 

package on the target node. 

 

Creating a fabfile 

 

Our goal here is to install a given package on the target node IF the currently 

installed version is older than the given version number. For this, we can use 

something similar to the following script: 
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Replace “x.x.x.x” with the target node's ip address, "username" with the user name 

and "password" with the user's password. Package_name indicates the package to 

be installed, while package_version is the given version number. Here is a short de-

scription of each function:  

• isPackageInstalled(pkg): runs a command on the node and parses the results 

to check whether or not the given package is installed. Returns TRUE or 

FALSE.  

• getPackageVersion(pkg): runs a command on the node and parses the results 

to find out the version of the given package. Returns the version as a string.  

• install_package(): The main block, checks the state and version of the pack-

age. If needed, installs the package using apt-get. To make the output clean-

er, the 'with hide()' statement is used here to hide most of the output from 
the user.  

After the script is ready, all we need to do to install the package is run the following 

command: 

 

 
from fabric.api import * 
 
env.hosts = ['x.x.x.x'] 
env.user = "username" 
env.password = "password" 
 
package_name = "curl" 
package_version = "7.19.7" 
 
def isPackageInstalled(pkg): 
 
    output = run("dpkg-query -W -f='${Status} ${Version}'" + " " + pkg) 
 
    if (output.find("install ok") != -1): 
        return True 
 
    return False 
 
def getPackageVersion(pkg): 
 
    output = run("apt-cache showpkg " + pkg) 
    version = output.splitlines(3)[2].split("-")[0] 
    return version 
 
def install_package(): 
 
    with hide('running', 'stdout', 'stderr'): 
 
        install = 1 
        print "\n" 
  
        if (isPackageInstalled(package_name) == True): 
            version = getPackageVersion(package_name) 
            Print "Version: " + version 
            if (version >= package_version): 
                install = 0 
                print "Already up to date, nothing to do" 
            else: 
                print "Older version detected, updating..." 
        else: 
            print "Package not found, installing..." 
  
        if (install == 1): 
            sudo('apt-get install ' + package_name) 
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fab install_package 

 

After this, you can go to the client machine to check if the package was installed 

properly. 

 

USE CASE 3 
 

In this use case, we demonstrate how to use Fabric to configure multiple target 

nodes, each with their own specific configuration settings. 

 

As the earlier examples of Fabric demonstrate, Fabric includes an environment 

variable called env.hosts. This variable is an array of host addresses that can be 

modified in a Fabric script. This means that configuring multiple servers is quite 

simple: just specify all the addresses where the script is to be applied (example 

below). 

 

 

 

We can also group host addresses together using roles. Below is an example of a role 

definition: 

 

 

 

The role can then be used with the following commandline parameter: 

 

 

 

Using the above parameter, Fabric connects to each of the specified webservers 

(www1, www2 and www3). 

 

 

env.roledefs[‘webservers’] = [‘www1’, ‘www2’, ‘www3’] 
 

-R ‘webservers’ 
 

env.hosts = [‘192.168.11.4’, ‘192.168.11.5’] 
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APPENDIX 5. Puppet usage examples 

 

 

USE CASE 1 

 

 

Unfortunately, Puppet does not have a built-in feature for text editing of files. This 

can be remedied by making use of the user added definitions found behind the 

following link: 

 

http://projects.puppetlabs.com/projects/1/wiki/Simple_Text_Patterns. 

 

We will be using the definition “ensure_key_value”. It suits our needs perfectly, as it 

finds a given string at the beginning of a line and changes the rest of that line. Note 

that this definition requires the GNU sed editor (comes with Ubuntu default 

installation) to work. 

 

Creating a Puppet module [SERVER] 

 

For this example, we will create a module for modifying the target machine’s HOSTS 

file. On the management server, navigate to the Puppet directory structure, go to the 

manifests folder and create the following file by the name “nodes.pp”: 

 

 

 

 

 

 

The above lines instruct Puppet that the class “modify_hosts” should be included 

when configuring the node “puppetclient.example.com”. For this to be of any use, 

however, we need to create the actual “modify_hosts” class. We will do this next. 

 

node “puppetclient.example.com” { 
 include modify_hosts 
} 
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Navigate to the modules directory, create a new directory called “modify_hosts” 

with a subdirectory “manifests”. In the subdirectory, create the following file with 

the name “init.pp”: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the class looks a bit bulky, most of it is just part of the definition that we 

grabbed from the web. In the final lines, we run the definition and give it the 

required parameters:  

 

• File: The name of the file to modify 

• Key: The IP address to search for 

• Value: The text to enter after the IP address 

 

Note that sometimes the HOSTS file uses tabs as delimiters. In that case, we need to 

add the parameter “delimiter” and make its value a tab space: 

 
delimiter => “ “ 

 

Testing the Puppet module [CLIENT] 

 

Now we can test our newly created module to check that it works as wanted. Run 

the following command: 

 

class modify_hosts { 
 
define ensure_key_value($file, $key, $value, $delimiter = " ") { 
    # append line if "$key" not in "$file" 
    exec { "append $key$delimiter$value $file": 
        command => "echo '$key$delimiter$value' >> $file", 
        unless => "grep -qe '^[[:space:]]*$key[[:space:]]*$delimiter' -- $file", 
        path => "/bin:/usr/bin:/usr/local/bin", 
        before => Exec["update $key$delimiter$value $file"], 
    } 
 
    # update it if it already exists... 
    exec { "update $key$delimiter$value $file": 
        command => "sed --in-place='' --
expression='s/^[[:space:]]*$key[[:space:]]*$delimiter.*$/$key$delimiter$value/g' 
$file", 
        unless => "grep -xqe '$key$delimiter$value' -- $file", 
        path => "/bin:/usr/bin:/usr/local/bin" 
    } 
} 
 
ensure_key_value { “hosts”: 
    file => “/etc/hosts”, 
    key => “192.168.11.8”, 
    value => “newname” 
} 
 
} 
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sudo puppet agent –test –server=’puppetmaster.example.com’ 

 

If everything works okay, Puppet should output something similar to the following: 

 

info: Caching catalog for puppetclient.example.com 

info: Applying configuration version ‘1332534849’ 

notice: 

/Stage[main]/modify_hosts/modify_hosts::Ensure_key_value[hosts]/Exec[update 

192.168.11.8  newname /etc/hosts]/returns: executed successfully 

notice: Finished catalog run in 0.29 seconds 

 

The HOSTS file on the target node should now be modified accordingly. 

 

 

USE CASE 2 

 

In this use case, we ensure that a specific version of a given package is installed on 

the target node(s). This example assumes that you already have Puppet installed and 

set up on both the server and the client. Server in this case means the management 

server, while the clients are the target machines to be configured. 

 

Creating a Puppet module [SERVER] 

 

For this example, we will create a simple module for installing the package “curl”. 

On the management server, navigate to the Puppet directory structure, go to the 

manifests folder and create the following file by the name “nodes.pp”: 

 

 

 

 

 

The above lines instruct Puppet that the class “curl” should be included when 

configuring the node “puppetclient.example.com”. For this to be of any use, 

however, we need to create the actual “curl” class. We will do this next. 

 

node “puppetclient.example.com” { 
 include curl 
} 
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Navigate to the modules directory, create a new directory called “curl” with a 

subdirectory “manifests”. In the subdirectory, create the following file by the name 

“init.pp”: 

 

 

 

 

 

 

The above lines instruct Puppet that in the class “curl”, we want to ensure that 

version “7.19.7-1ubuntu1.1” of the package named “curl” is installed on the target 

machine. Note that the class name and package name do not need to be the same, 

although they are in this example. 

 

Testing the Puppet module [CLIENT] 

 

Now we can test our newly created module to check that it works as wanted. Make 

sure that curl is not yet installed on the client, and run the following command: 

 

 

sudo puppet agent –test –server=’puppetmaster.example.com’ 

 

If everything works okay, Puppet should output something similar to the following: 

 

info: Caching catalog for puppetclient.example.com 

info: Applying configuration version ‘1332534849’ 

notice: /Stage[main]/curl/Package[curl]/ensure: ensure changed ‘purged’ to 

‘present’ 

notice: Finished catalog run in 4.69 seconds 

 

After that, you can try running the following command to make sure curl is actually 

installed: 

 

curl --version 

class curl { 
 package {‘curl’: 
  ensure => ‘7.19.7-1ubuntu1.1’, 
 } 
} 
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USE CASE 3 

 

 

In this use case, we demonstrate how to use Puppet to configure multiple target 

nodes, each with their own specific configuration settings. 

 

In Puppet, we can use the file “nodes.pp” to describe the required configuration 

modules for each node. Here is an example of a simple nodes.pp file: 

 

 

 

 

 

 

 

 

This tells Puppet that the web class is required by the node ‘puppet1.example.com’, 

while the class curl is required by ‘puppet2.example.com’. This means that in the 

next update run, puppet1.example.com will include the web class, while 

puppet2.example.com will include the class curl. To make things more flexible, we 

can create a base node type and then inherit the classes of that node in another 

node. Here is an example of using inheritance: 

 

 

 

 

 

 

Using inheritance, we can attach similar types of nodes to a similar configuration 

without having to modify the includes of each node individually. 

node ‘puppet1.example.com’ { 
include web 

} 
node ‘puppet2.example.com’ { 

include curl 
} 
 

node webnode { 
 include web 
 include db 
 include apache 
} 
node ‘puppet1.example.com’ inherits webnode { 
} 
node ‘puppet2.example.com’ inherits webnode { 
} 
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APPENDIX 6. Chef usage examples 

 

 

TIP: If at any time you lose connection between the Chef Server  and Chef Client, you 

can try restarting the Chef Server service with the following command: 

 

 
sudo /etc/init.d/chef-server restart 

 

USE CASE 1 

 

In this use case, we modify the contents of the HOSTS file on the target node. More 

specifically, we use Chef to modify the hostname and domain name for a given IP 

address. 

 

Creating a cookbook 

 

We will call our cookbook “hosts”. Use the following command to create the 

directories and files for the cookbook: 

 

sudo knife cookbook create hosts 

 

Knife should now have created the directory structure for the cookbook, located in 

the cookbook directory – by default /var/chef/cookbooks. Navigate to 

cookbooks/hosts/recipes. Edit or create the file default.rb, adding the following lines: 

 

 

 

 

 

 

 

 

require “fileutils” 
 
FileUtils.cp( “/etc/hosts”, “/etc/hosts_tmp” ) 
 
read_file = File.open( “/etc/hosts_tmp”, “r” ) 
write_file = File.open( “/etc/hosts”, “w” ) 
 
ip = “xxx.xxx.xxx.xxx” 
name = “newname.example.com” 
 
read_file.each { |line| 
if line =~ /#{ip}\s(.*)/ 
    write_file.puts(ip + “ “ + name) 
else 
    write_file.puts(line) 
end 
} 
 
read_file.close 
write_file.close 
FileUtils.rm(“/etc/hosts_tmp”) 
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The string “ip” contains the IP address to look for, while the string “name” contains 

the new domain name. As you may notice, the above script is just ordinary Ruby 

code. Chef allows us to run Ruby scripts on the target machine, so we can use the 

above code to modify the HOSTS file. In short, the script makes a copy of the current 

HOSTS file, copies that file line by line into the actual HOSTS file, modifying the 

domain name if the line includes the given IP address. After the processing is done, 

the files are closed and the temporary file is removed. 

 

Adding the cookbook to a runlist 

 

We will assume that the target node’s hostname is client1. This means that Chef will 

automatically create a node called “client1” when that client connects. To add the 

newly created cookbook to the node’s runlist, use the following command: 

 

sudo knife node run_list add client1 hosts::default 

 

With the above command, we add the recipe “default” from the cookbook “hosts” to 

the runlist of client1. 

 

Testing the cookbook 

 

To test the newly created cookbook, simply run the following command on the client 

machine: 

 

sudo chef-client 

 

If working, the domain name of the specified IP address should now be changed in 

the HOSTS file. 

 

 



81 

 

USE CASE 2 

 
This use case demonstrates how to install a specific version of a given package on a 

node using Chef. 

 

Creating a cookbook 

 

We will be installing the package “curl”, so we will also use that as the name of our 

new cookbook. Use the following command to create the directories and files for the 

cookbook: 

 

sudo knife cookbook create curl 

 

Knife should now have created the directory structure for the cookbook, located in 

the cookbook directory – by default /var/chef/cookbooks. Navigate to 

cookbooks/curl/recipes. Edit or create the file default.rb, adding the following lines: 

 

 

 

 

 

This tells Chef Server that we want to install version 7.19.7 of the package curl. 

Before we can use the cookbook, we have to upload it to the Chef Server’s list of 

cookbooks: 

 

sudo knife cookbook upload curl 

 

Adding the cookbook to a runlist 

 

We will assume that the target node’s hostname is client1. This means that Chef will 

automatically create a node called “client1” when that client connects. To add the 

newly created cookbook to the node’s runlist, use the following command: 

package “curl” do  
 version “7.19.7-1ubuntu1.1” 
 action :install 
end 
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sudo knife node run_list add client1 curl::default 

 

With the above command, we add the recipe “default” from the cookbook “curl” to 

the runlist of client1. 

 

 

Testing the cookbook 

 

To test the newly created cookbook, simply run the following command on the client 

machine: 

 

 
sudo chef-client 

 

If working, it should produce output similar to the following: 

 
 

INFO: Processing package[curl] action install 

INFO: package[curl] installed version 7.19.7.1ubuntu1.1 

 

 

USE CASE 3 

 

In this use case, we use Chef to configure multiple nodes, each with their own 

specific configuration. 

 

Creating the cookbooks 

 

First, we create two cookbooks; one for each node. Use  the following commands to 

create the directories and file for the cookbooks. In this example, we will call the 

cookbooks “a” and “b”. 

 

sudo knife cookbook create a 

sudo knife cookbook create b 
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Knife should now have created the directory structure for these cookbooks, located 

in the cookbook directory – by default /var/chef/cookbooks. Navigate to 

cookbooks/a/recipes. Edit or create the file default.rb, adding the following line: 

 

 

package “curl” 

 

Note that only this one simple line is needed for the basic installation of a package. 

Do the same for cookbook b, but add the following line instead: 

 

package “wget” 

 

Before we can use these cookbooks, we need to upload them to Chef Server with the 

following commands: 

 

sudo knife cookbook upload a 

sudo knife cookbook upload b 

 

We now have two very basic cookbooks ready for use. 

 

Adding the cookbooks to runlists 

 

Now we need to instruct Chef which cookbooks are required by which nodes. We can 

do this by editing the run-lists of the nodes. The node entries themselves should be 

automatically created with the client’s hostname when the Chef Clients connect to 

the Chef Server. For this example, we’ll assume the two Chef Client hostnames are 

client1 and client2. Since we already have our cookbooks ready, all we need to do 

now is run the following commands: 

 

sudo knife node run_list add client1 a::default 

 

With the above command, we add the recipe “default” from the cookbook “a” to the 

runlist of client1. Let’s proceed similarly with client2: 
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sudo knife node run_list add client2 b::default 

 

Instead of using the cookbook a, we use the second cookbook called “b” for the node 

client2. 

 

Testing the settings 

 

We can now test our newly made Chef configuration. Run the following command on 

each of the clients: 

 

sudo chef-client 

 

If everything works as planned, client1 should now have the package “curl” installed, 

while client2 will install “wget” instead. 

 

 

 

 

 


