

___. ___. ______ ________________________________

Valitse kohde.

Data Transfer in a Motorbike Test Bed

Olusegun E. Okedara

Bachelor’s Thesis

SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS Abstract

Field of Study

Information Technology

 Degree Programme

Bachelor of Engineering

Author(s)
Olusegun E. Okedara
 Title of Thesis
Data Transfer in a Motorbike Test Bed

Date 20 May 2012 Pages/Appendices 50+4

Supervisor(s)
Topi Kallinen, PhD
 Client Organisation/Partners
Lekasteel Oy
 Abstract

This thesis was part of a project carried out by Savonia University of Applied Sciences for a

company named Lekasteel. The project was in two parts, namely: Software part and Hardware part.

The software part comprises of a game simulation unit which was designed as another final year

project and the data analysis unit which was the focus of this thesis. The hardware side on the

other hand houses the embedded unit which was taken care of by two other students.

In this project, there was a motorbike being built and its engine needed to be checked so as to

assess its power among other necessary things. This gave birth to the goal of the project which was

to design, develop, build and test a dynamometer prototype.

To conduct this test, the motorbike was mounted on the dynamometer with its rear wheel sitting

directly on the dynamometer’s wheel part. An Arduino Mega microprocessor was connected to the

dynamometer in order to pull the data about the angular speed, time etc. Some calculations were

done to derive some required data like the torque, power, angular acceleration etc.

The prototype was developed and tested in the premises of Savonia University of Applied Sciences

and Lekasteel. The system was also presented in Helsinki Motorcycle show in February 2012.

Keywords
 Virtual environment, 2-D, 3-D, Arduino, Interactive, WPF

SAVONIA UNIVERSITY OF APPLIED SCIENCES LOPPUTYÖN TIIVISTELMÄ

Koulutusala

Information Technology

Koulutusohjelma
Bachelor of Engineering

Tekijä
Olusegun E. Okedara

Työn nimi
Moottoripyörän testipenkin datansiirto

Päiväys 20 May 2012 Sivumäärä/liitteet 50+4

Työn valvoja
Topi Kallinen,Fil.tri

Yritys
Lekasteel Oy

Tiivistelmä

Tämä tutkielma oli osa projektia, jonka Savonia amk:n tekniikka Kuopion yksikkö toteutti yhdessä

Lekasteel nimisen yhtiön kanssa. Projekti sisälsi ohjelmisto- ja laitteisto-osat. Ohjelmisto-osa

muodostui pelisimulointiyksiköstä, joka suunniteltiin toisen opinnäytetyön yhteydessä ja datan

analyysiyksiköstä, joka oli tämän opinnäytetyön aiheena. Laitteisto-osa sisälsi sulautetun

järjestelmäyksikön, jonka suunnittelusta ja toteutuksesta vastasi kaksi muuta opiskelijaa.

Tässä projektissa keskeisessä osassa oli moottoripyörä, jonka moottorin tehon mittaus oli yksi

mittaussuure muiden tutkittavien suureiden joukossa. Tältä pohjalta määräytyivät tämän projektin

tavoitteet eli suunnitella, toteuttaa ja testata dynamometriprototyyppi.

Testauksen aikana moottoripyörän takapyörä asetettiin dynamometrin pyöräyksikköön. Arduino

Megan mikroprosessori oli yhdistetty dynamometriin, josta saatiin mittausdataa kulmanopeudesta,

ajasta, jne. Mittausdatasta laskettiin vääntömomentti, teho, kulmakiihtyvyys, jne.

Dynamometriprototyyppiä kehitettiin ja testattiin sekä Savonia amk:n tekniikka Kuopion yksikössä

että Lekasteel:ssä. Järjestelmä esiteltiin myös Helsinki Motorcycle -messuilla helmikuussa 2012.

Avainsanat

 Virtual environment, 2-D, 3-D, Arduino, Interactive, WPF

LIST OF ABBREVIATIONS

2-D - Two Dimensional

3-D - Three Dimensional

API - Application Programming Interface

CLI - Common Language Infrastructure

CSV - Comma Separated Value

IC - Integrated Circuit

IDE - Integrated Development Environment

OPIC - Optical Integrated Circuit

PC - Personal Computer

RPM - Revolution per Minute

UART - Universal Asynchronous Receiver/Transmitter

USB - Universal Serial Bus

VE - Virtual Environment

DDK - Driver Development Kit

SDK - Software Development Kit

Acknowledgements

Aside my own efforts, the success of this project also depended largely on the

encouragement and guidance of many others. I would like to use this opportunity to

express my sincere gratitude to the people who have been instrumental in the

successful completion of this project.

I would like to show my appreciation to my supervisor, Dr. Topi Kallinen. I cannot thank

him enough for his tremendous support and help. Without his encouragement and

guidance, this project would not have materialized.

My appreciation goes to the head of my department, Mr Arto Toppinen, who made it

possible for me to participate in this work.

Finally, I would like to express my gratitude to my parents who brought me up in the way

of the Lord and my younger ones for their support. I really appreciate my family and

friends back at home and here in Finland for their support and also my very best friend,

Treasure.

Kuopio, 20 May, 2012

TABLE OF CONTENTS

1 INTRODUCTION ... 8

2 PRELIMINARY ANALYSIS ... 10

2.1 Project Description .. 10

2.1.1 Purpose of the Test ... 10

2.1.2 Project Structure ... 10

2.2 Preparation Ahead .. 11

2.2.1 Getting the Needed Software ... 11

2.2.2 About Programming Language ... 15

3 CHALLENGES ENCOUNTERED .. 16

3.1 About Data Transfer ... 16

3.1.1 Choice of Micro-Controller .. 16

3.1.2 Serial Communication .. 16

3.2 About Data Analysis and Graph Plotting Tools ... 17

4 EQUIPMENT ... 19

4.1 Hardware Unit .. 19

4.1.1 Inertial Dynamometer .. 19

4.1.2 Arduino Mega 2560 ... 20

4.1.3 Interface Card .. 21

4.1.4 Arduino IDE .. 22

4.2 Software Unit ... 23

4.2.1 C# Language .. 23

4.2.2 Windows Presentation Foundation .. 24

4.2.3 Unity Game Engine .. 24

5 HARDWARE & SOFTWARE LINK ... 26

5.1 Data Transfer ... 26

5.1.1 Electronics Section .. 29

5.1.2 Software Section ... 29

5.1.3 Sensors’ Data Flow .. 29

5.2 Dynamometer Physics ... 39

6 TESTS .. 40

6.1 Intra-Unit Tests .. 40

6.1.1 Arduino Test with Random Numbers ... 40

6.1.2 Graphical Analysis Test with Random Numbers 43

6.2 Inter-Unit Test ... 44

6.3 Noise and Signal Errors ... 46

7 CONCLUSION ... 48

REFERENCES .. 49

APPENDIX 1: Arduino Code for Random Numbers .. 51

APPENDIX 2: Code for Reading from Arduino and Writing into File 52

APPENDIX 3: Code for plotting the Graph with WPF ... 53

 8

1 INTRODUCTION

The need to carry out a proper test on a vehicle without taking it onto the road has

made dynamometer become a household name in automobile industries. The Inertia

dynamometer is fast becoming the preferred choice for obtaining the most accurate

results in dyno testing in automobile industries. Inertia dynos simulate the conditions

created when accelerating an engine, therefore giving more reliable results.

During the period at which the engine is being accelerated, the dynamometer

absorbs some needed data. This data is then passed onto the embedded side where

necessary analysis is carried out in order to generate the needed data to be analyzed

on the software part. Parts of these data are: revolution per minute (rpm), torque and

power. The generated data is then analysed and presented in a graphical format.

This thesis focuses on the unit that handles the data analysis and gets it displayed in

a graphical format on the computer screen. The unit is part of the software section

where there was also the game simulation unit. These units have different software

applications running on a dedicated computer. The computer that houses these two

applications will have to communicate with the microprocessor and read the needed

data through its usb port, possibly as a serial communication.

After succeeding in getting the computer and the microprocessor to communicate

with each other, then it is time for the data to be analyzed and presented in a

graphical format like in Figure1. This gives the necessary information which is useful

in fine-tuning the engine and safer since it is totally an off-road test.

 9

FIGURE 1. Sample dyno plot (Bimmer Forums 2008)

 10

2 PRELIMINARY ANALYSIS

2.1 Project Description

2.1.1 Purpose of the Test

A dynamometer or a dyno as it might be called is mainly about performance in the

world of automobiles. A dynamometer is mechanical tool used in getting some

information about the torque produced by an engine (King, P, J. Burnham, K. J. 1991,

1). This test is for the purpose of tuning up and adding more to the power and torque

of an already built motorcycle. The purpose was to design and build a dyno system

that collects motorcycle run-time information. The measurement targets are power,

torque, engine speed, and the oxygen to air mixture ratio. The device is also suitable

for adjusting and test-running. The device is a prototype, the first of its kind in the

driving simulator for motorcycles in Finland. The system can be tested in a variety of

wheel types, as the customer's bike is easily mounted on the adjustable platform.

2.1.2 Project Structure

This project is divided into four major units:

- The first unit deals with the building of the motorcycle.

- The second unit deals with the analysis in the microprocessor side, which is

directly connected to the motorcycle.

- The third unit deals with the building of the virtual road-platform for the

motorcycle.

- The fourth unit deals with the analysis of the data and its graphical

presentation.

 11

Dyno

MotorBicycle

Microprocesor

Lambda

Laptop

USB

USB
Game View

Interface beetween HW and SW

FIGURE 2. Project Structure

The first two units are under the hardware section while the last two units are under

the software section as shown in Figure 2.

2.2 Preparation Ahead

2.2.1 Getting the Needed Software

Some drivers like “Jusb” were downloaded from the internet, and necessary

compilation was done to make it work. The compilation involved that the software

development kit (SDK) and the driver development kit (DDK) from Microsoft were

installed and the needed environment variables were well organised (Stahl, M. 2003,

53). After obtaining the Windows driver development kit (WinDDK) from the Microsoft

website, then the necessary tools and libraries were downloaded and installed. The

analysis of the data can then be done and presented graphically using the software

that would be compiled.

 12

About Jusb

The core Java USB API comes up with a host that takes good care of all USB buses.

That host also has the responsibility of monitoring the USB devices on the Java side

and sending notification whenever a device is attached or detached. This is similar to

the work of the USB hub driver (USBHUB.sys) and the USB driver (USBD.sys) as

displayed in the USB driver stack (see Figure 3). (Stahl, M. 2003)

FIGURE 3. Windows USB driver stack (Stahl, M. 2003)

 13

Figure 4 shows the USB API for Windows with all the detailed information about the

User Mode and the Kernel Mode.

FIGURE 4. Java USB API layer for windows (Stahl, M. 2003)

 14

Figure 5 shows the comprehensive view of the USB class with all the interactions. It

gives detailed information about the working principle of a USB.

FIGURE 5. USB class overview with its interaction (Stahl, M. 2003)

 15

Windows DDK & SDK

The Microsoft Windows SDK is a class of needed tools that developers use when

creating applications that are to be installed on operating systems for Windows. The

Windows Driver Kit (WDK) on the other hand includes the tools and documentation

needed to develop drivers. (Microsoft page 2011)

2.2.2 About Programming Language

Programming is the core of this thesis as the graphical analysis requires writing some

codes to do the presentation as expected. In deciding which programming language

to choose, one major issue considered was getting a suitable language that works

fine with serial data transfer between two systems. As shown in Figure 2, this part of

the project is under the software section which mainly depends on programming.

Software refers to the set of computer programs well arranged with the procedures

that explain how they are to be used. It can be referred to as the collection of

programs, which add to the capabilities of the hardware. The process of software

development is referred to as programming. The type of job needed to be done

determines the particular programming language in which instructions will be written.

For this project, some programming languages were considered, namely: Java

language, C# language, Processing and Python.

 16

3 CHALLENGES ENCOUNTERED

3.1 About Data Transfer

3.1.1 Choice of Micro-Controller

The choice of the Micro-Controller to be used was the first hurdle in this project.

Object oriented programmable integrated circuit (Oopic), the first programmable

microcontroller to make use of object oriented language (Robot Builder’s Bonanza

2001) was first considered. Later came the other option of using the Arduino Micro-

Controller which has an IDE that is compatible with applications on different platform

(Kioumars, A. H. Tang, L. 2011, 2).

With its simplicity but yet powerful environment making it possible for user programs

to be easily sketched, Arduino looked like the best option. After much consideration,

Arduino was chosen as the preferred Micro-Controller for the project.

3.1.2 Serial Communication

After the Arduino choice was confirmed, the work on the driver package had to be

suspended. That was done since the Arduino Micro-Controller has the ability of

transmitting data onto the serial port (Kioumars, A. H. Tang, L. 2011, 2) through the

usb cable attached to the Arduino board and the computer port.

Then, the next challenge was to write some codes to read data from the Arduino

through the serial port. A package called Processing which communicates well with

Arduino was first selected. Processing is a programming language and also a

development environment that has promoted software literacy (Mediawiki 2010).

Processing is an open source package that can run on different operating systems

and that makes it more interesting.

As interesting as it was, some other means in terms of programming language were

considered before taking the final decision to settle for C-Sharp. C-Language and

Java were the languages that were considered at the initial stage but after some trials

on those languages, they were dropped. Quitting those languages did not just

happen but was born out of information that was derived about Windows and those

programming languages as regards serial port applications.

 17

That brought about C-Sharp language which is more compatible with serial port

applications. Applications can be developed using c-sharp language in visual c-sharp

or visual studio environment. For this reason, some tutorials were followed on C-

Sharp, and it has been just a bit stressful but interesting and remarkable learning

experience.

3.2 About Data Analysis and Graph Plotting Tools

Generating a graph from a set of data is a task that is frequent in software

development. From experience, the most usual method is by importing data into an

Excel sheet, after which one can then produce the graph using the Excel built-in

graph analysis features. It is suitable in most cases, but when it requires a real-time

plot i.e. the data changes frequently, it can be so frustrating.

This brought about the next challenge in line, which is about getting the graphical

analysis of the data displayed on the computer screen. Some studies were done

concerning the real time graph libraries. Some real time graph libraries were

considered, which are: LiveGraph, NPlot and ZedGraph.

During the process of learning and applying those graph libraries to do some

analysis, ZedGraph was chosen as the best option. Then after some consultations,

there came some information about Windows Presentation Foundation (WPF). At this

point the processing package had been placed aside since it could only offer less

compared to any of those plotting tools.

LiveGraph

LiveGraph is a framework which is Java-based and can run on any computer system

and this framework is for real-time data visualisation. Data is stored in csv file-format

for onward processing by the LiveGraph. (SourceForge 2011)

NPlot

NPlot is an open source charting library for the .NET framework with an interface that

is simple to use. One good point to note about NPlot is its ability to quickly create

 18

charts for the purpose of data analysis and the library's flexibility makes it a great

choice for creating charts even just as you want it to be. (Nplot page 2011)

ZedGraph

“ZedGraph is a class library, Windows Forms UserControl, and ASP web-accessible

control for creating 2D line, bar, and pie graphs of arbitrary datasets” (Code Project

2007). The classes are very flexible in that nearly everything about the graph can be

modified by the user. There are already set value for every graph attributes and that

talk about its simplicity. The classes consists of code for making suitable scale

ranges and step sizes depending on the data range being analysed. ZedGraph can

be used with .NET 2.0, and VS .NET 2005. (Code Project 2007)

 19

4 EQUIPMENT

4.1 Hardware Unit

4.1.1 Inertial Dynamometer

A dynamometer is a device which is used for measuring the power output of an

engine. In the world of automobiles, a dynamometer is used to test engines and bikes

mainly for the purpose of tuning and for needed diagnostics to be carried out. There

are two types of dynamometer namely:

 Engine dyno: the engine has to be all by itself connected to the dynamometer,

which means that it has to be removed from the motorbike.

 Chasis dyno: measures power at the wheels, usually by having the vehicle drive

on a single roller or between a set of rollers.

Going deeper on the chasis dyno, it is also divided into two categories namely:

 Inertial dyno: The motorbike turns the roller and accelerates from a known

revolution per minute (rpm), and the electronics part gets the speed data from

the roller and uses it with the known roller inertia. After which the computer is

able to know the torque that has been supplied by the wheel during the process

of accelerating the roller. The roller diameter and the engine rpm are used in

getting the reduction ratio after which the horsepower (HP) and the torque of the

engine are calculated. The drum is accelerated by the bike’s power which is

dissipated when the drum’s speed is reduced.

 Brake dyno: The roller is lighter compared to that of inertial dyno. A certain rpm

is set after which the motorbike accelerates to that already set rpm and then the

brake holds the engine at that rpm. The torque that the wheel exerts on the

drum is derived by applying a regulated counter-torque. Transducers are used

to measure the braking force, which must be calibrated. (TripleZee Cycles)

 20

4.1.2 Arduino Mega 2560

Arduino is a popular Micro-Controller board designed for the purpose of making the

process of using electronics in different projects of different fields more accessible.

An Arduino board consists of an 8-bit Atmel AVR Micro-Controller with additional

components to facilitate programming and embed with other circuits. (Arduino page)

One good aspect of the Arduino is that it allows the CPU board to be attached to a

variety of interchangeable add-on modules regarded as shields. There are different

types of Arduino (see Figure 6a, b and c), some of which are: Arduino Uno, Arduino

Mega 2560, Arduino Ethernet, Arduino BT, Arduino Pro and Arduino Nano. (Arduino

page)

FIGURE 6a. Arduino Uno (Arduino page)

FIGURE 6b. Arduino Mega 2560 (Arduino page)

FIGURE 6c. Arduino Ethernet (Arduino page)

 21

Arduino Mega 2560 comes with fifty-four digital input/output pins. Fourteen of those

can be used as PWM outputs. Connecting the board to the computer through the usb

cable is enough to power it but can also use AC-DC adapter. Arduino Mega2560 has

the capabilities for exchanging information with a computer, another Arduino, or other

microcontrollers. (Arduino page)

4.1.3 Interface Card

The interface card is a printed circuit board (see Figure 7a and b), which gives the

provision for an interface between the sensors and the Micro-Controller. The sensors

will be linked to the Micro-Controller through the interface card.

FIGURE 7a. Top & side view of the interface card (Polat 2012)

FIGURE 7b. Aerial view of the interface card (Polat 2012)

 22

4.1.4 Arduino IDE

FIGURE 8. Arduino development environment (University of California, Berkeley

2012)

Figure 8 shows those seven commands that can be used with the Arduino IDE.

I. Serial Monitor is for opening the debugging tool on the Arduino and for

displaying information sent from the Arduino Mega 2560 to the computer.

II. Upload is for compiling the program named “sketch” with their file extension

as .ino, and also for sending it to the board if free of compile-time errors.

III. Save is for saving the sketch.

IV. Open is for opening an existing sketch.

V. New is for creating a new sketch.

VI. Stop is for interrupting the compilation of the code.

VII. Compile is for compiling the sketch in order to check for compile-time errors.

(University of California, Berkeley 2012)

 23

4.2 Software Unit

4.2.1 C# Language

The reason behind the evolvement of programming is due to the fact that computers

only have the ability to carry out instructions that are written in digits 0 and 1 to be

precise. This form of instruction is known as machine language while humans

communicate using words. During the early days of computers, programmers had to

input machine codes into computers which used to be a tedious process indeed.

Thereafter comes a piece of software referred to as assembler, which merge some

commands that are readable by human with the machine code which goes along with

it. This process then brought about what is referred to today as assembly Language.

(Techotopia 2009)

Next in line are some high level languages developed to make it easier for humans

when writing programs. One of such languages is called C which was developed at

AT&T Bell Labs between late 1960s and early 1970s. C++ came to be as a result of

some programmers’ effort in the late 1970s and early 1980s to have an object

oriented approach to C programming language. These languages never exist without

their respective short-comings. One major problem with those compiled languages is

about the source code which needs to be re-compiled for each different processor

type. (Techotopia 2009)

Due to the above stated problem, Sun Microsystems commenced the development of

a new language and development environment in 1990 which gave birth to the

language named Java. Java is a programming language in which many of the

problems of C++ are addressed. Java gained rapid acceptance and even Microsoft

embraced it. When Microsoft embraced Java, Sun was happy but had to quit that

relationship when they realized that Microsoft was planning to bring up their own

version of that language. Not long after, Microsoft started something called .Net, after

which the language named C# came to be. (Techotopia 2009)

C# is regarded as a multi-purpose programming language which is object oriented. It

behaves like Java except that its variable types are derived from a common ancestor

class. (Bolton, D. 2011)

 24

4.2.2 Windows Presentation Foundation

Windows Presentation Foundation (WPF) is a computer-software developed by

Microsoft for rendering user interfaces in windows-based applications. WPF can be

used to create different applications, ranging from standalone to browser-hosted

applications. WPF is designed to utilize the advantage of modern graphics hardware.

It has different features, some of which include Extensible Application Markup

Language (XAML), data binding, layout, 2-D and 3-D graphics, animation, templates,

media and typography. WPF is among the Microsoft .NET Framework, which makes

it possible to build applications that incorporate other elements of the .NET

Framework class library. (Microsoft page 2012)

4.2.3 Unity Game Engine

There are more than one means of terrain generation, but one which is popularly

used in game industries is the procedural technique. It involves the use of computer

programs in terrain generation, and it is easier to use. One example of such is

referred to as Unity game engine. (Ashaolu, P. 2012, 16)

Unity helps users to create the best interactive entertainment or multimedia

experience as much as they can. It is designed by Unity Technologies and

incorporates a physics engine known as the nVidia PhysX (Craighead, J. Burke, J.

and Murphy R. 2007, 2). Unity consists of both an editor for developing content and a

game engine for executing the final product.

 25

FIGURE 9. Unity3d terrain generation (Source: Education Scotland, UK)

 26

5 HARDWARE & SOFTWARE LINK

5.1 Data Transfer

Figure 10a and b show the whole system which was carefully set-up for data transfer

in the motorbike test bed. Sensors were also attached to read the needed data that

was analysed and sent to the personal computer. The PC houses the software that

does the graphical presentation of the information derived from the test. The PC is

connected to a digital projector to get the display on a bigger screen with a VGA

output resolution of 1280x1024.

FIGURE 10a. Overview picture of the System (Paul Ashaolu 2012)

 27

Fig.10b Overview picture of the system showing the motorbike mounted on a

mechanical bench (Paul Ashaolu 2012)

In Figure 10b, the motorbike was clamped to the mechanical platform which allows

some inertia effects. Provision was made for the adequate braking systems needed

to support the motorbike with the wheels which were part of the mechanical bench

located directly under the motorbike's rear wheel. The motorbike is carefully tied to

the bench by using the front clamp to fasten the front wheel of the bike to the bench.

 28

GIANT SCREEN

DYNO WITH

SENSORS

INTERFACE

CARD

ARDUINO

MICROCONTROLLER
PC

RPM TORQUE POWER BRAKE
LEAN

ANGLE

Opto Sensor data

(0-5v)

Inductive Pick-Up

Sensor data

Brake Presure Sensor

data (1-5v)

Lean Angle Sensor

data (0-5v)

Lambda Sensor data

(0-5v)

LAMBDA

FIGURE 11. System showing the detailed data transfer

The data flow in the system was revealed in detail as shown in Figure 11 above, with

all the sensors sending their respective data to the Micro-Controller board. The

necessary analysis was done in the Micro-Controller section, and the result was sent

to the PC.

 29

5.1.1 Electronics Section

Electronics section is where the sensors carried out their respective readings and

output the data as shown in Figure 11 for onward processing in the Micro-Controller

unit. It is the section that serves as centre of attraction, because the overall outcome

of the test depends on the careful analysis in-there. Much work was done to minimize

all possible delays, as well as error checking to ensure that the right data format is

sent to the PC.

5.1.2 Software Section

Software section is where the data collected as stream from the electronics section is

analyzed and presented in a graphical format which is also visible in a projected

bigger screen. The presentation is done during program execution, and necessary

feedbacks are done simultaneously.

As the data is being graphically analyzed, the road track in the virtual environment

also makes use of needed data to present the visual analysis of the test. The terrain

in the virtual environment was developed to be as real as possible, with simulated

images of a selected motorway (Ashaolu, P. 2012).

5.1.3 Sensors’ Data Flow

Speed Sensor

With the help of an optical sensor, the speed of the motorbike was measured by

counting the number of turns the rear wheel covers within a minute. The optical

sensor was designed from a GP1A50HR Optical integrated circuit (OPIC) photo-

interrupter as shown in Figure 12. A photo-interrupter is a transmission type sensor

incorporating an infrared LED and a photo-sensor in the same package, both in

upright position, separated from each other in a "U" shape.

The package is arranged in such a way as to give chance for infrared light to shine

through the "U" ends, onto the detector so as to detect object whenever it passes in

between the emitter and the detector. The GP1A50HR Optical IC photo-interrupter

has a slit width of 0.5mm, and it is useful in getting information about the turning of

slotted discs as was the case in this project. The sensor generates an interrupt

whenever it finds its way by shining through to the photo-transistor.

 30

An interrupt is generated when the disc which is put in between the “U” shape of the

photo-interrupter rotates to the slit point. This method is simple and also minimizes

cost when generating information about the rotation of the motorbike wheel. (See

Figure 13a and b)

FIGURE 12. Speed measurement by using the GP1A50HR OPIC photo-interrupter

(Polat 2012)

 31

FIGURE 13a. The OPIC opto sensor point of attachment to the mechanical platform

(Polat 2012)

FIGURE 13b. Magnified image of the slotted disc and the OPIC opto sensor (Polat

2012)

 32

Lean Angle Sensor

The lean angle sensor comprises of a potentiometer. A potentiometer is that simple

knob shown in Figure 14 used in getting variable resistance values. It is also referred

to as an electro-mechanical transducer that changes linear and rotary motion from

the operator into different resistance values. It is a good option as a tilt sensor by

connecting its outputs to the Arduino analog pins, since those variable resistance

values can be read into the Arduino board as analog values. The resistance varies by

turning that potentiometer shaft.

FIGURE 14. Calibration of the lean angle measurement (Polat 2012)

According to Figure 14, the turning effects of the motorbike which falls between 0º to

±90º affects the degree of closeness of the pin to the 5V supply voltage and 0V

ground voltage, to give different outputs ranging from 0 to 1023. (Ashaolu, P. 2012)

 33

FIGURE 15. Set-up showing the attached potentiometer circled in red (Paul Ashaolu

2012)

In Figure 15, the spot circled in red shows the potentiometer already attached to the

tip of the bench. The potentiometer was carefully installed so that the motorbike’s

turning effect leads to a change in the rotating shaft of the potentiometer and

therefore measures the lean angle of the motorbike in the x-y coordinates. (Ashaolu,

P. 2012)

Break Pressure Sensor

This sensor allows the motorcycle brake to be controlled by Dyno brake system. A

suitable sensor was found, but the availability of it in Finland during the project period

was difficult. Another sensor which was readily available was then chosen. The

sensor was put on the motorcycle brake system of the air screw in place of the

pressure sensor. The sensor is MSP 300 series pressure transducer. The MSP 300-

2k5-P-4-N-1 pressure sensor has 5-30V supply voltage and the output of 1-5V. The

pressure sensor values are 0-170 bar. The motorcycle brake pressure is

approximately 0-60 bar. Figure 16 below shows the connection to the interface card.

 34

FIGURE 16. System showing the break pressure sensor (Polat 2012)

Eddy Brake Current

Eddy brake current which is an electromagnetic brake is the dynamometer brake

used in this project, and it controls the speed during simulation so as to withstand the

400kg mass of the fly wheel. The brake is controlled by the pressure sensor through

its measurement of the brake fluid line pressure. The angle variations and air

resistance factor which ensure better accurate measurement are not really

considered since this project is still a prototype. The brake power is 400kW and

controlled by DC voltage of 192V. Figure 17 shows the block diagram of the setup.

 35

FIGURE 17. Dynamometer break system set-up (Polat 2012)

Lambda Sensor

The lambda sensor measures the oxygen to air mixture ratio. The module can be

connected directly to the computer and it provides 5V analog output. The sensor can

be easily installed in the exhaust pipes as pictured in Figure 18.

 36

FIGURE 18. Set-up showing Lambda sensor (Polat 2012)

Inductive Pickup Sensor

The inductive pickup sensor measures the engine speed and torque. It measures the

engine speed by clamping the inductive Pickup Sensor around a Secondary Ignition

cable. The connection of the sensor is displayed in Figure 19.

 37

FIGURE 19. System showing the set-up of inductive pickup sensor (Polat 2012)

 38

FIGURE 20. Table showing details about the data transfer

Figure 20 shows some information about the data transfer from the sensors, through

the Arduino Micro-Controller into the PC.

 39

5.2 Dynamometer Physics

The torque on the dynamometer was calculated using the following equations

Angular velocity: (1)

Where is the Revolution Per Second.

 Angular acceleration:

 (2)

 Rear-wheel torque: (3)

The engine torque was calculated from the engine’s power and the angular velocity:

Power: (4)

Engine’s torque: m =

 (5)

The Velocity (km/h) is calculated from the circumference of the rear wheel, 2.04m2
and its revolutions per second.

Velocity: (6)

(Polat 2012)

 40

6 TESTS

6.1 Intra-Unit Tests

Tests were carried out at different intervals within each unit in order to simplify the

whole process in the project work. After various forms of intra-unit tests, then comes

an overall test. During those periods of carrying out the overall test, maximum

attention was paid so as to note the corrections that needed to be made. For the tests

within the data analysis unit which is the scope of this thesis, randomly generated

numbers were utilized to see how the graphical analysis would look like. An Arduino

Mega 2560 was used to generate some random numbers each time there was need

for test. The purpose of doing that was to simulate the kind of data that would have

been received from the embedded unit to do the expected graphical analysis of the

system. The work has to be done that way in order to save time and to make sure

that no unit would be delaying another.

6.1.1 Arduino Test with Random Numbers

Arduino has a function named random(). This function generates by default what

appear to be random numbers. Though in the real sense of it, those numbers came

as a result of some calculations that were done while applying a formular. Anytime

that formular is reset, it starts at a point and continues a long sequence of random-

like numbers. Meanwhile, Arduino do take off at the same point in that sequence at

every reset. But when there is need for a set of values derived by random() to be

different, one needs to make use randomSeed() to initialize the generator with an

input that is fairly random. (Google Project 2010)

 41

FIGURE 21. Arduino mega 2560 connected to my PC

Figure 21 shows the connection of the Arduino board to my PC during the test with

random numbers.

 42

TABLE 1. Randomly generated numbers.

RPM TORQUE POWER

 5570 29 16

5580 13 5

5590 28 3

5600 21 9

5610 22 18

5620 16 19

5630 16 23

5640 34 23

5650 29 13

5660 13 14

5670 25 13

5680 20 7

5690 34 17

5700 19 3

5710 29 15

5720 27 16

5730 11 12

5740 36 6

5750 21 22

5760 30 8

5770 18 12

5780 5 20

5790 5 19

5800 22 15

5810 21 6

5820 14 14

5830 35 17

5840 18 18

5850 12 5

5860 32 4

5870 38 13

5880 14 21

5890 12 20

5900 37 23

5910 14 17

5920 11 4

5930 5 11

5940 6 15

5950 28 10

5960 1 23

5970 34 24

5980 18 12

5990 8 3

6000 39 24

 43

6.1.2 Graphical Analysis Test with Random Numbers

FIGURE 22. Graphical analysis of randomly generated numbers

The randomly generated data are displayed in Table 1, and its graphical analysis

using the WPF is shown in Figure 22. The code (see appendix 1) suggested that

column 1 is for the randomly generated numbers for the RPM with an increment of

10, while columns 2 and 3 are for the torque and power respectively. The code

suggested that the torque could have the highest possible value of 40 and a minimum

of 1, while the power could have the lowest possible value of 2 and the highest of 25.

 44

6.2 Inter-Unit Test

After the tests carried out within each unit, the overall test was conducted so as to

know the real situation of the whole project. Part of the data from the test with the real

system is displayed in Table 2.

TABLE 2. Real test data

EngineRPM RulRPM Torque Power Lambda Speed

2028.95 329.45 2.21 0.47 13.00 35.58

2127.66 330.89 4.00 0.89 13.00 35.74

2052.26 330.89 0.00 0.00 13.00 35.74

2178.97 332.26 3.72 0.85 13.00 35.88

2174.23 332.26 0.00 0.00 13.00 35.88

2084.78 333.36 3.11 0.68 13.00 36.00

2248.88 333.36 0.00 0.00 13.00 36.00

2159.52 334.46 3.03 0.69 14.00 36.12

2102.31 335.32 2.44 0.54 13.00 36.21

2185.00 335.32 0.00 0.00 14.00 36.21

2144.39 335.60 0.79 0.18 14.00 36.24

2184.04 335.60 0.00 0.00 14.00 36.24

2162.32 336.01 1.14 0.26 13.00 36.29

2254.62 336.49 1.26 0.30 14.00 36.34

2179.60 336.49 0.00 0.00 14.00 36.34

2289.38 337.03 1.43 0.34 15.00 36.40

2204.26 337.03 0.00 0.00 14.00 36.40

3507.13 337.53 0.86 0.31 14.00 36.45

2260.06 344.29 18.31 4.33 14.00 37.18

2363.69 344.29 0.00 0.00 14.00 37.18

2396.55 359.27 39.97 10.03 14.00 38.80

2626.51 372.13 32.40 8.91 14.00 40.19

2582.64 372.13 0.00 0.00 15.00 40.19

2583.98 385.48 35.44 9.58 15.00 41.63

 45

FIGURE 23. Real test graphical analysis

Figure 23 shows the graphical analysis of the system’s overall test using the data

from the inter-unit test.

 46

The data visualization user interface was later developed in Visual Studio.NET,

coding language done in C#. Figure 24 shows the user interface with controls for the

parameter display and plot areas for the torque and power against the engine RPM,

and also the air/fuel ratio chart area included.

FIGURE 24. User interface for the system analysis

6.3 Noise and Signal Errors

Testing stages of this project was time-consuming, especially with some issues that

arise with the noise and signal errors. Testing was carried out under laboratory

conditions at Lekasteel oy. The project had problems with the inductive, optical and

angular sensors. The signal noise problem took a lot of time for my colleague in the

embedded unit to get a way around it. He was having some problems with electronics

and programmatic method. And more importantly, he was having problems with a

median program security algorithm. The median code protection algorithm that was

later added is displayed as follows:

 47

 int mode(int *x,int n){

 int i = 0;
 int count = 0;
 int maxCount = 0;
 int mode = 0;
 int bimodal;
 int prevCount = 0;
 while(i<(n-1)){
 prevCount=count;
 count=0;
 while(x[i]==x[i+1]){
 count++;
 i++;
 }
 if(count>prevCount&count>maxCount){
 mode=x[i];
 maxCount=count;
 bimodal=0;
 }
 if(count==0){
 i++;
 }
 if(count==maxCount){//If the dataset has 2 or more modes.
 bimodal=1;
 }
 if(mode==0||bimodal==1){//Return the median if there is no mode.
 mode=x[(n/2)];
 }
 return mode;
 }

}

 (Polat, B. 2012)

 48

7 CONCLUSION

This project was presented at the Helsinki Motorbike show from 2 of February to 5 of

February, 2012. Many of the participants in attendance were from other parts of

Finland and neighbouring countries. Ideas were later raised on how to improve and

develop the whole system further for better performance.

Some stages in the project came with the opportunity to learn new things, especially

about Arduino and WPF. Fortunately, the Internet has a lot of good forums where

small projects are analysed and following these discussion was helpful. In general, it

was a bit stressful but interesting and remarkable learning experience.

 49

REFERENCES

Arduino page. Arduino [web document]. [reference made 12 August 2011].

Available at: www.arduino.cc

Arduino page. Arduino Mega 2560 [web document]. [reference made 12.08.2011]

Available at: http://arduino.cc/en/Main/ArduinoBoardMega2560

Ashaolu, P. 2012. Development of an Interactive 3-D Virtual Environment Test

Bed for Motorbikes. Kuopio: Savonia University of Applied Sciences, Information

Technology. Thesis.

Barber, T. 2003. Horsepower and Torque [web document]. [reference made 13

March 2012] Available at: http://wotid.com/dyno/content/view/18/37

Bimmer Forums. 2008. BMW of Bloomfield [web document]. [reference made 17
February 2012]. Available at:
http://forums.bimmerforums.com/forum/showthread.php?t=934780

Bolton, D. 2011. C# For Beginners - Learn about C# [web document]. [reference

made 10 November 2011]. Available at:

http://cplus.about.com/od/introductiontoprogramming/a/cshbeginners.htm

Code Project. 2007. A flexible charting library for .NET [web document].

[reference made 24 June 2011]. Available at:

http://www.codeproject.com/Articles/5431/A-flexible-charting-library-for-NET

Craighead, J. Burke, J. and Murphy, R. 2007. Using the Unity Game Engine to

Develop SARGE: A Case Study [electronic book]. USA: University of South

Florida [reference made 10 March 2012]. Available at:

http://www.robot.uji.es/research/events/iros08/contributions/craighead.pdf

Google Project, 2010. TrueRandom library for Arduino [web document].

[reference made 15 November 2011]. Available at:

http://code.google.com/p/tinkerit/wiki/TrueRandom

King, P, J. Burnham, K. J. 1991. Implementation of a self-tuning controller to the
dynamometer torque loop of an engine test cell. [electronic book]. Vol.1 pg 110-
114. IET Confrence [reference made 10 January 2012].

Kioumars, A. H. Tang, L. 2011. Wireless Network for Health Monitoring: Heart

Rate and Temperature Sensor [electronic book]. IEEE 2011 Fifth International

Conference on Sensing Technology. [reference made 12 September 2011].

Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6137000

Mediawiki. 2010. About Processing [web document]. [reference made 12 October

2011] Available at: http://wiki.processing.org/w/Processing:About

Microsoft page. Introduction to WPF [web document]. [reference made 16

January 2012]. Available at: http://msdn.microsoft.com/en-

us/library/aa970268.aspx

 50

Microsoft page. Windows Driver Kit (WDK) [web document]. [reference made 11

May 2011] Available at: http://msdn.microsoft.com/en-

us/windows/hardware/gg487428.aspx

Nplot page. Introduction to Nplot [electronic book]. [reference made 27 June

2011] Available at: http://netcontrols.org/nplot/downloads/nplot_introduction.pdf

Polat, B. 2012. Moottoripyörän Dynamometrin Mittauselektroniikan Suunnitte-lu ja

Testaus. Kuopio: Savonia University of Applied Sciences, Electronics. Thesis.

Robot Builder’s Bonanza, 2001. Using the OOPIC Microcontroller [web

document]. [reference made 9 December 2011] Available at:

http://www.robotoid.com/bonus-chapters/rbb2-ch33-

Using_the_OOPic_Microcontroller.pdf

SourceForge, 2011. LiveGraph [web document]. [reference made 20 June 2011]

Available at: http://www.live-graph.org

Stahl, M. 2003. Java USB API for Windows. Zurich: Institute for Information

Systems, ETH Zurich. Thesis. [reference made 11 January 2012]. Available at:

http://www.steelbrothers.ch/jusb/api/usb/windows/related-

docs/JavaUSBforWindowsWeb.pdf

Stahl, M. 2003. Java USB API for Windows. Zurich: Institute for Information

Systems, ETH Zurich. Thesis. [reference made 1 February 2012]. Available at:

http://www.steelbrothers.ch/jusb/api/usb/windows/package-summary.html

TDK Motorsports, 2004. Why an Inertia Dyno [web document]. [reference made 7
March 2012] Available at: http://www.tdkmotorsports.com/whydyno.html

Techotopia, 2009. C# Essentials [electronic book]. [reference made 11 November

2011] Available at:

http://www.techotopia.com/index.php/The_C_Sharp_Language_and_Environmen

t

TripleZee Cycles. What is a dyno. [web document]. [reference made 11

November 2011] Available at:

http://www.triplezeecycles.co.nz/Articles/Dynos%20what%20are%20they.html

University of California, Berkeley. ME102 Lab 1: Getting Started [web document].

[reference made 17 May 2012] Available at:

http://www.me.berkeley.edu/ME102/lab1.html

 51

APPENDIX 1: Arduino Code for Random Numbers

The following code was written and compiled to generate some random numbers with

the arduino mega 2560:

long torque;

long power;

long rpm;

String mydata;

void setup(){

Serial.begin(9600);

randomSeed(analogRead(0));

}

void loop() {

Serial.flush(); //Empty the memory after each loop

// generate random numbers

for (rpm=10; rpm<10000; rpm=rpm+10){

torque = random(1, 40);

power = random(2, 25);

mydata =String(rpm)+","+String(torque)+","+String(power);

Serial.print(mydata);

Serial.println();

delay(1);

}

}

 52

APPENDIX 2: Code for Reading from Arduino and Writing into File

The numbers generated with the code in appendix 1, were retrieved from the arduino

mega 2560 using the code below and saved into a csv file.

// Reads input from Arduino card

public class WriteToText: MonoBehaviour

{

 SerialPort stream = new SerialPort("COM4", 9600);

 void Start ()

 {

 stream.Open(); //Open the Serial Stream

 }

 void Update ()

 {

 string value = stream.ReadLine();

 var values = value.Split(' , '); //Split incoming stream values on comma into arrays

 string path = @"c:\data\lekas.csv";

 if(!File.Exists(path))

 {

 using (StreamWriter sw = new StreamWriter(path))

 {

 sw.WriteLine(value);

 }

 }

 using (StreamWriter sw = File.AppendText(path))

 {

 sw.WriteLine(value);

 }

 }

 }

 53

APPENDIX 3: Code for plotting the Graph with WPF

namespace Lekasteel

{

 public partial class Window1 : Window

 {

 ObservableDataSource<Point> source1 = null;

 ObservableDataSource<Point> source2 = null;

 ObservableDataSource<Point> source3 = null;

 public Window1()

 {

 InitializeComponent();

 }

 private void Lekasteel()

 {

 CultureInfo culture = CultureInfo.InvariantCulture;

 Assembly executingAssembly = Assembly.GetExecutingAssembly();

 const string spimDataName = "c:\\data\\lekas.csv";

 using (Stream spimStream = File.OpenRead(spimDataName))

 {

 using (StreamReader r = new StreamReader(spimStream))

 {

 string line = r.ReadLine();

 while (!r.EndOfStream)

 {

 line = r.ReadLine();

 string[] values = line.Split(' ');

 double x = Double.Parse(values[1], culture);

 double y2 = Double.Parse(values[2], culture);

 double y3 = Double.Parse(values[3], culture);

 double y4 = Double.Parse(values[4], culture);

 Point p2 = new Point(x, y2);

 Point p3 = new Point(x, y3);

 Point p4 = new Point(x, y4);

 54

 source2.AppendAsync(Dispatcher, p2);

 source3.AppendAsync(Dispatcher, p3);

 source4.AppendAsync(Dispatcher, p4);

 Thread.Sleep(1); // time for computations...

 }

 }

 }

 }

 private void Window_Loaded(object sender, RoutedEventArgs e)

 {

 // Create first source

 Source1 = new ObservableDataSource<Point>();

 // Set identity mapping of point in collection to point on plot

 Source1.SetXYMapping(p => p);

 // Create second source

 Source2 = new ObservableDataSource<Point>();

 // Set identity mapping of point in collection to point on plot

 Source2.SetXYMapping(p => p);

 // Create third source

 Source3 = new ObservableDataSource<Point>();

 // Set identity mapping of point in collection to point on plot

 Source3.SetXYMapping(p => p);

 // Add all three graphs. Colors are not specified and chosen random

 plotter.AddLineGraph(source2, 2, "Torque");

 plotter.AddLineGraph(source3, 2, "Power");

 plotter.AddLineGraph(source4, 2, "Lambda");

 // Start computation process in second thread

 Thread simThread = new Thread(new ThreadStart(Lekasteel));

 simThread.IsBackground = true;

 simThread.Start();

 }

 }

}

