

AUTOMATED CUSTOMER
SUPPORT SYSTEM

Rikhard Nousiainen

Master’s Thesis
June 2012
Information Technology

ABSTRACT

Author(s) Rikhard Nousiainen

Master’s thesis Automated customer support system

Number of pages 64

Graduation time June 2012

Thesis supervisor Tony Torp

Commissioning company EDI-Soft Finland Oy, Petri Karjalainen

When software or program is distributed to the world, support is needed for customers.

Customers require help for many different tasks from basic installation to very detailed

error messages. As capacity for support is usually limited in software companies, auto-

mation can help customers to find solutions into their problems without contacting sup-

port technicians. This requires a system where customers can find solutions into their

problems through search engine by entering few keywords about their problem. As

more customers are going to use software, program or web service, the more same ques-

tions keeps on rising and that causes frustration and extra work for people whom are

working as supporting roles.

System behind this automated support system is done via web service. This service is

providing easy to access communication to interface where solutions to all customers

questions exists. This system is also defined as customers’ self-service portal.

Keywords: automation, customer support, supporting system, self-service portal

TIIVISTELMÄ

Tekijä Rikhard Nousiainen

Työn nimi Asiakastuen automatisointi järjestelmä

Sivumäärä 64

Valmistumis aika June 2012

Työn valvoja Tony Torp

Työn tilaaja EDI-Soft Finland Oy, Petri Karjalainen

Kun ohjelmisto laitetaan jakoon koko maailmalle, asiakastukea tarvitaan käyttäjille.

Asiakkaat tarvitsevat apua moniin eri ongelmiin aina asennuksista hyvinkin

yksityiskohtaisiin virheilmoituksiin. Asiakastuki on yleensä kuormitettu niin täyteen,

että asiakas joutuu jonottamaan ja odottamaan omaa vuoroaan ongelman korjauksessa.

Automaatiolla voidaan vähentää tätä odottamisaikaa, sillä asiakas voi löytää

ongelmaansa ratkaisun ennen yhteydenottoa tukihenkilöön. Tämä tosin edellyttää

järjestelmää, jossa asiakkaat voivat löytää ratkaisuja ongelmiinsa hakukoneen avulla

antamalla ongelmansa avainsanoja hakusanoiksi. Usein asiakastuessa ratkaistaan samaa

ongelmaa useita kertoja ja tämä kuormittaa ja työllistää asiakastukea turhaan. Kun

automaattinen järjestelmä on olemassa, asiakas löytää ongelmaansa ratkaisun suoraan.

Järjestelmä pohjana toimii verkkopalvelu, joka tarjoaa käyttäjille helpon pääsyn

tietokantaan josta vastaukset heidän esittämiin kysymyksiinsä palautetaan.

Käyttöliittymä toimii itsepalvelu portaalina asiakkaille, joten asiakastuen ei tarvitse kuin

ylläpitää palvelua ja ohjata käyttäjät käyttämään järjestelmää.

Avainsanat: automatisointi, asiakastuki , tukijärjestelmä, itsepalvelu

4

FOREWORD

My interest into this topic comes from my work as a technical consultant at EDI-Soft

Finland Oy. I have experience in customer support in the area of IT and many of the

questions from customers are very technical and can sometimes be really hard to answer

without knowing own system throughout. Many times I have faced same issues coming

from different customers and noticed that same solutions work with them also. This

gave me an idea to move customer support towards web service and automate parts of

the support work.

I also want to give special thanks to my wife Ulla who has been supporting me during

this project and Tony Torp whom has given excellent directions to this work.

Tampere June 2012

Rikhard Nousiainen

5

TABLE OF CONTENTS

1 INTRODUCTION ... 8

2 AUTOMATION .. 10

2.1 Advantages for support .. 10

2.2 Disadvantages for support ... 11

2.3 Limitations for support .. 11

3 CUSTOMER SUPPORT ... 13

3.1 Technical customer support ... 13

3.2 Automated self-service support ... 14

3.3 Automated customer support ... 14

4 BASIC COMPONENTS OF AUTOMATED CUSTOMER SUPPORT
SYSTEM ... 16

4.1 Web service .. 17

4.2 Database ... 17

4.3 Solution interface and HTML template ... 18

5 USE-CASES .. 20

5.1 Succesful search ... 20

5.2 New error report ... 21

5.3 New solution page ... 22

5.4 Benefits from automated system .. 23

6 USABILITY AND USER EXPERIENCE .. 25

6.1 User experience design principles for implementation 26

6.2 Web service usability ... 27

6.3 User experience of system ... 30

6.4 Using support service as a mashup service .. 31

7 BUSINESS VALUES AND MARKETING SEGMENTS 33

7.1 Business values .. 33

7.2 Marketing segments ... 34

8 DESIGNING FUNCTIONING DRAFT OF AUTOMATED CUSTOMER
SUPPORT SYSTEM ... 35

8.1 Design of web service .. 35

8.2 Design of database ... 39

8.3 Design of solution interface and HTML template ... 41

8.4 File system architecture ... 43

9 CONCLUSIONS ... 46

REFERENCES .. 48

ATTACHMENTS ... 50

6

PICTURES

Automated customer support system overview ………………………………………. 16

Self-service truth table ……………………………………………………………..…. 19

Successful search ……………………………………………………………………... 21

New error report ……………………………………………………………………… 22

Technician creates a new solution to a problem ……………………………………… 23

Why, What and How to consider when designing technology-mediated experiences... 25

User finds topics with few keywords at web service …………………………………. 27

Solution interface where guides to issues exists ……………………………………… 28

New problems are registered through report page ……………………………………. 29

Solution interface provides HTML template to create or modify solutions ………….. 30

File relation map ……………………………………………………………………… 45

7

LIST OF ABBREVIATIONS

Script Simple and small program which helps in automation

AJAX Asynchronous JavaScript and XML

JavaScript Scripting language that is dynamic

XML Markup language that defines a set of rules for encoding

documents into readable for human and machine.

HTML Main markup language for web pages

PHP Server-side scripting language to produce dynamic web pag-

es

WS Web service

DB Database

SI Solution interface

CAPTCHA computer asking a user to complete a simple test which the

computer is able to grade to make sure that input is given by

a person

WYSIWYG ”What You See Is What You Get” HTML editor to help see

HTML page during editing how it will be shown to end-

users

APACHE HTTP Server software to host static file share through HTTP

protocol

MD5 Message-Digest Algorithm is a widely used cryptographic

hash function that produces a 128-bit (16-byte) hash value

API Application programming interface is a specification intend-

ed to be used as an interface by software components to

communicate with each other

8

1 INTRODUCTION

Automated customer support system is generally used as a web service providing users

self-service system to find out solutions into different kind of problems. Automated

customer support system can be used in all kind of industry from computer technologies

to car manufacturers as the basic idea behind the system stays the same all the time.

Only the content of the support system is the only thing that varies between different

industries.

This thesis will specify plans how to implement working automated customer support

system that is functioning as an independent web service. As it works by itself, it can

easily to be merged at any web service what could require automated customer support

system. Techniques that are used to establish this automated customer support system

are HTML, PHP, JavaScript, Apache, MySQL and AJAX. Commonly known acronym

for having these techniques in a bundle is WAMP or LAMP, depending if it’s meant for

Windows or Linux operating systems. Automated customer support system will contain

web service (WS), database (DB) and solution interface (SI). With these mentioned

modules and components, knowledge base can be set up running to support customers’

most effective way at their issues.

When knowledge base is built and it is containing all relevant supporting material, it is

also working as information database to resolve issues before they turn into actual prob-

lems. With this system it's also possible to rate and comment material so that both sup-

port technicians and customers can benefit from the system. Technicians get valuable

information about existing material and up to date information and customers’ receive

better view about relevance into their problems.

It is easy to establish such automated customer support system at any web service to

support customers. Whenever customers are facing issues of any kind related to the

product or service they are using, they can head straight away to use automated self-

9

support service and find solutions from a system that is running on either semi- or full

automation. Only requirement for installing automated customer support system at the

web service is that it must contain packages to support AJAX, PHP, JavaScript, HTML

and MySQL.

10

2 AUTOMATION

Automation means that system is controlled by computers, most usually some scripts to

do the desired work. Automation robots at industry are handling many complex simul-

taneous tasks at rapid speed and very accurately. Most scripts of automated systems are

doing one simple task very well and these scripts can be put to parallel or serial to work

together. Main idea by using automated scripts is to reduce the need of human work

during production and provide automated service for users.

During 20th and 21st centuries automation has been increasing in world economy but

still technology is not able to automate all the desired tasks. Most commonly automa-

tion is used to increase quality of manufacturing process and do simple repeatable ac-

tions. Any system that is using automation is decreasing operational time and handling

time. Operational time is period during which a system is working in a manner accepta-

ble to its operator or user and handling time is a period needed to transport parts or ma-

terials to or from a work area. Also automation allows employees to concentrate more

on other tasks such as development and maintenance of automation processes. (The

Boston Globe. 2008-03-24)

2.1 Advantages for support

While automation is decreasing human work, it is also decreasing errors in simple mo-

notonous tasks. In support, automation is used to control machinery such as telephone

switchboards and answering machines. Advantages of automation started first in 20th

century from reducing production costs. It developed fast to bring more quality, accura-

cy and reliability into production and also into support. As automation at mid of 20th

century was precise and repeatable it also gave benefits for support technicians to de-

velop common knowledge base to share information for any system users. This leads to

11

a point where one problem needs to be solved only once when everyone can follow up

all solved cases at the common knowledge base.

2.2 Disadvantages for support

When any system is automated, it is easily noticed that disadvantages of automated sys-

tems are that automation scripts are mostly very poor at handling error situations and

also that automation requires investment, development, maintenance and full clear un-

derstanding on how system is working. It requires a lot of effort to start up automation it

can easily be dismissed.

When a person is getting support at poorly handled automated customer support system,

it can cause customer to become unsatisfied with solutions when customer cannot un-

derstand the main idea of the solution or cannot follow up the guide. Support should

always be made very human way for customers and usually it is good that at least

someone is observing how automated supporting system is handing and helping out

each customer. This will require constant follow up which can be hard to fulfill as au-

tomation is working constantly 24 hours 7 days a week. Sometimes this problem can be

resolved by using watchmen whom are constantly aware of the current situation and are

capable of fixing problematic situations at any time.

2.3 Limitations for support

As automation is poor at handling error situations, automated tasks should not be set to

areas where errors are occurring most often. Also when automation is doing tasks relat-

ed to user experience, it is not good to let scripts do the decisions how to set layout of

page or how to visualize system. Also systems where human consciousness is required

are not good places to use automation. This can be for example courtrooms where judg-

es and jury are deciding if something should be allowed or not.

12

When automated system is running constantly in the background, it is then very de-

pendent on network and electricity. If a system fails or requires maintenance, new sys-

tem needs to be taken into usage during the maintenance. This kind of system requires

at least technical supports to back up whole system in case of system breakdown or un-

expected results.

13

3 CUSTOMER SUPPORT

Customer support means that there exists a product which might require assistance dur-

ing its usage. Most commonly assistance is regarding trouble shooting and finding out

solutions for customers problem. Different kind of issues might rise during different

phases such as installation, usage and upgrading the product. Idea of customer support

is to give customers more value of the product.

If issue is related to correct usage of the product it is considered to be common custom-

er support, but when customer is facing issues what requires knowledge about how

product is working in technical way or at hardware level, it will require help from tech-

nical customer support.

3.1 Technical customer support

When customer support is called technical support it means that support is given to

solve problems within a product. Most commonly technical support is given through a

technical support service which can be through a phone, e-mail, consultancy, tool or a

web service. Most common ways of giving technical support is giving consultancy for

people working with a product or system which requires knowledge how to use it and

how it works. Web service is another very popular as it can be used at all times and it’s

available everywhere. Only problem is that building up a web service requires invest-

ment and maintenance and it is very dependent on automation.

Technical support is usually divided into multiple tiers. These are levels from one to

four. Tier one is first in line with customers to record and solve their issues. If problem

is too tricky or hard to be solved by the support technician, it will be forwarded to next

tier. At third tier technical support person can be architect of the system whom knows

very detailed how the system is working. Beyond this point issue cannot be solved in-

14

side organization and issue will be forwarded to tier four to for example hardware man-

ufacturer.

3.2 Automated self-service support

When a product is requiring constant support, it can be done through automated self-

service support. This means that customer can do everything by himself without having

to contact support person. Self-service support is proven to be easier, quicker and more

productive for customers or system users. This kind of system requires easy usage at all

times and how-to guides should be easy to access.

To build up fully automated self-service support, it requires knowledge base where ex-

ists pretty much all information regarding whole system. This information is accessed

by simple keywords or questions to find out different kinds of answers. These keywords

can generate further questions regarding the issue and user can select most suitable op-

tions. At the end system generates most suitable answer or solution from information

that user described.

3.3 Automated customer support

Automated customer support means that there is a system what is working on semi or

fully automated for every customers and users. This requires everything from creating

new issues, updating or deleting old ones and getting feedback from users. Support is

handled by knowledge base what contains solutions from all around the system. Search

is done via guidance or search bar. Usually automated customer support can be offered

through a web service but at some rare cases also phone support can be automated at

certain limitations. If automated customer support is unable to solve users problem it

can be either marked as new issue or offered possibility to contact technical support

person via mail or phone.

15

Supporting at fully automated systems also require good backup system as if service

breaks down for any reason, users will require other ways to solve their issues - most

likely phone for support. This can lead easily to overloading customer support center

and increase amount of unsatisfied customers. It would be wise to use for example

cloud type services where systems can run at all times without fear of system crashing.

Of course if support system is poorly designed it can become unstable at constantly

growing knowledge base. This leads to a situation where working system must be main-

tained in case of system breaks at cloud.

16

4 BASIC COMPONENTS OF AUTOMATED CUSTOMER SUPPORT

SYSTEM

The web service which can handle automated support has three main components: Web

service (WS), Database (DB) and Solution interface (SI) and SI also includes sub com-

ponent which is called HTML template. Together these components form the automated

customer support system which is capable of finding solutions to rapidly asked ques-

tions easily and lead support users to desired conclusions. Connections and relationships

between these components have been described in figure 1 what is architectural over-

view of this automated supporting system. At this system user is using the support sys-

tem as a customer and technical support is working as maintaining the solutions through

web service. System at this point is semi-automatic as there is a possibility to contact

technical support also through phone or mail.

Figure 1 - Automated customer support system overview

17

4.1 Web service

Web service is the interface for users to search for answers into their problems. It con-

tains a web page with simple input field where users can type the problem they are fac-

ing. Based on what user has typed the service already suggests suitable topics for the

problem. All topics with keywords are set in database and input field is constantly sort-

ing closest matches also showing rating of each page. The suggestions appear under-

neath the input field in a drop-down menu. The suggested topics are actually links to the

solution pages so when user has done the search or selected one link directly from the

drop down menu the page will be redirected to the referred solution page. The solution

page contains all the needed information that is needed to fix the problem what custom-

ers are facing.

Web service is connected straight to database so all search queries are checked against

keywords set in database. Whenever keywords match with users search query, database

will send matches back to web service. To make this connection work in real time while

typing, AJAX needs to be used for asynchronous connection. This enables rapid search

and saves good amount of users’ time.

Web service is the main tool for users so it must be kept very simple and with as less

unrelated information as possible. If web service is doing what users expect it to do it

can become commonly used tool inside organizations. This can lead it to become popu-

lar and easily approached tool. By keeping web service simple, it can be easily integrat-

ed into other systems as well as a third party plugin.

4.2 Database

The database is MySQL database which contains the links to the solutions. Database

also has some additional information which includes the keywords, topic, date and the

rating of the solution. The database is the place which is searched while the user types

the information in to the input field. When user is making a search query at web service,

18

database is already sorting out possible matches from solutions keywords through

AJAX. To make database most efficient, indexing is needed to sort out solutions faster.

Also rating of the solution page will be returned to search results. This helps users to

select links that have been confirmed to be useful for other users before.

Database is maintained by technical support personnel whom have their own access to it

through a tool to create new solutions for customers. This tool is called HTML tem-

plate. To get access to this tool requires also authentication where database is also very

useful.

4.3 Solution interface and HTML template

The view where the solution page is opened is actually called the solution interface. The

interface is an HTML page that will have text, video and images to guide the user how

to fix the problem at hand. The same solution interface can also be used to list new

problems and also rate existing ones. Rating system is built in so users can easily see if

guide is working as expected and it gives support technicians’ feedback if solution

needs to be updated or fixed. If the users aren't happy with the solution they can rate the

solution example from for one to five at this view and it would also be possible to leave

comments and feedback that will help support technicians to know how solution is

working and what area could use improvement - such as extra images or more detailed

texts. If some topic starts to constantly get low scores the system technician who is re-

sponsible of that solution will know that the solution needs to be tested and improved.

If there wasn’t any solution for the problem users can create a new error through web

service. When creating the error users writes down as much details as possible about the

problem that had occurred. Users can also use checkboxes to narrow down the area

where the problem occurred. If the company is working for example in IT industry

those checkboxes might be something like “System startup”, “Display”, “Hardware”

and so on. Also email address is required to diminish false errors and also so that users

19

will get information as soon as the solution into their problem is available. It would be

also wise to add CAPTCHA to ensure that user’s response is generated by a person and

not a computer bot. This helps out at getting false input from users problems.

System technician will also use the solution interface. When they get new problems that

has not been solved yet they will create a new HTML page. The tool for that is the

HTML template which can be used to add text, video and pictures to the page. When

creating new page the technician also thinks about the possible keywords that will be

attached to the page so that it will be shown in search when user looks for a solution to

that kind of a problem. The technician also checks from checkbox lists that which cate-

gory the solution is most suitable. When the page is ready it will be stored in the file

system with the topic name and unique id. These together will form the link which will

be stored in the database where search query is constantly sorting matches from users

input field at web service.

HTML template is also using WYSIWYG HTML editor to make it possible to create

pages simply by using commonly known layouts and settings. This makes it possible for

everyone to create new pages without knowing any HTML coding conventions. Also

header and footer layout for each page can be set so each company using this kind of

system can have solution pages with their own look and feel experience.

Figure 2 – Self-service truth table (Werner, Fulton 2010)

20

5 USE-CASES

The first use-case is the most common thing that user faces. User searches for a solution

into a problem at web service and finds a suitable answer for it. After this user can rate

or comment about the solution.

5.1 Succesful search

The first thing what user does is that he opens the Web service page as shown in Figure

2. After this he starts typing to the input field a query which is including couple of key-

words from the problem he is facing. As the letters appear in the input field search is

started in real time through AJAX and database is sorting out possible matches accord-

ing to keywords.

After user has completed the search there is a few solution links from the database listed

in the page sorted by matching keywords. User selects the one that seems to be similar

to the problem he is facing and clicks the topic to open the link into solution interface.

The solution page is opened in the solution interface view and user finds a working so-

lution to the problem. After the problem is fixed user rates the solution by giving it rat-

ing 5 as solution was just what he was looking for. This rating leaves a mark into data-

base so technical support can see the solution is working as expected.

21

Figure 3 - Successful search

5.2 New error report

The second use-case is when user is not able to find a solution to the problem at hand. It

starts just the same way as in the first scenario but now when user completes the search

and opens a couple of links, none seems have had the same problem he is facing. The

next step user needs to do is to list a new problem and send the report to the system

technician. This is done through a link at main page to report a new issue.

When user drafts a new problem he has to select the category to a problem from a

checkbox list. If the problem occurred for example in the system start up user check the

“system start up” box. That automatically narrows down the area and sets up keywords

when the support technician tries to find out what is causing the problem. User also in-

cludes his email address when creating the problem so that he will be immediately con-

tacted when the solution for the problem is ready. Email address can also be used to in

cases where the support technician needs more information about the problem from the

22

person who created the issue. Also log files can be left as attachment which helps out

when figuring out where problem is.

Figure 4 - New error report

5.3 New solution page

Third use-case is when technician creates a new solution to a problem that was request-

ed and listed by a user.

The user has now listed a new problem. System technician receives an email with de-

tailed description about the problem. After technician has studied the problem and

found out solution how to fix it he opens the solution interface with support technician

or admin rights and fills in the HTML template that is used to create the solution pages.

With the template technician chooses from the checkboxes the correct area where the

problem occurs and he also lists the keywords which can be used to find the solution.

23

Template allows the technician to add text fields, pictures, links to videos etc. so that

the description of how fix a problem will as easy to understand as possible. This can

also include WYSIWYG HTML editor so it helps out at layout of the solution page.

After the page is ready it will stored in the servers file system and the link that includes

the topic and unique id will be stored in the database with the keywords. When the page

is stored the user who listed the problem will automatically receive an email which con-

tains the direct link to the solution.

Figure 5 - Technician creates a new solution to a problem

5.4 Benefits from automated system

As distributed program evolves, automated support can easily help new customers to

find solutions for many problems what old customers have already faced before. This

saves good amount of support technician’s man hours and is very much worth of invest-

ing money, efforts and capacity to maintaining automated supporting system. In the

beginning it will be tricky to maintain automated support system as issue database

doesn't include much data, but after a while customers find solutions into their problems

24

straight from the system and support technicians can concentrate more into maintaining

the data and upgrading existing solutions.

25

6 USABILITY AND USER EXPERIENCE

Satisfied customer is always the main goal of whole support so automation needs to be

developed as user friendly as possible. This requires good understanding of usability of

how customers use web service. If web service can offer correct choices for customer

the most obvious way, then web service can be stated as successful. Also setting all

texts, links and images in the right position of the page is important for readability and

for customer to understand guidance. Also layout template of the HTML template needs

to be created as simple as possible and all pages needs to be in harmony with each oth-

er’s.

Designing any service starts up by need and need requires experience that is causing the

need. Experience can be described as conceptual model which includes three levels:

why, what and how. What is part what describes the possibilities of an interactive prod-

uct and is very much tied to the product itself. How is operational way like touching

buttons and is more detailed by possibilities of the product. Why is the experience part

clarifying the need of service which is causing people to use the product. These have to

kept in mind when designing technology-mediated experiences. (Hassenzahl, 2011)

Figure 6 – Why, What and How to consider when designing technology-mediated experiences

26

When using why, what and how in automated customer support at very high level, why

part is customers demand for solution at their issues through support service. What is

the customer support service which is interacting with the customers. How is the service

running in the background and analyzing the data customer is giving. This includes for

example database and guiding customers towards correct solutions.

When using why, what and how methodology, implementation at users experience point

of view can be defined quite straight forward as light web service doesn't require deep

insight of each component and modules. For instance at solution interface what de-

scribes possibility of finding correct solution for the problem at hand, how is very much

tied to the usability and search engine and why is the cause and effect that there exists a

problem that needs to solved.

6.1 User experience design principles for implementation

As user experience plays big part at simple web services, it is considered good way to

go through basic principles during whole implementation process. This allows multiple

qualities that are affecting positive way for customers. According to Microsoft’s User

Experience Guide, these user experience design principles follow rules that help at re-

ducing concepts, implementing more small details, adding look and do at UI, reducing

distractions, leaving out unnecessary questions from end users, adding more personali-

zation, giving more value to life cycle and lowering implementation time. (Microsoft,

2010)

For a light web service these principles can be followed easily and it allows creating

very understandable service to provide clear and understandable content and ensuring

that service is accessible and available for everyone whom might have need for it.

27

By following principles it can lead to a point that customers are able to resolve their

problems quickly and effectively and the organization is able to build the customer rela-

tionship while saving significant costs.

6.2 Web service usability

When customer is facing issue with the system, he browses to web service where can be

found a simple input field for search query. When few keywords have been entered,

web service connects to database and returns solutions topics that match to entered

keywords. Connection is done with PHP, AJAX, JavaScript and MySQL so solutions

are seen in real time and sorted out.

Figure 7 - User finds topics with few keywords at web service

After topic has been selected, user is taken into solution interface where solution pages

exist. There are three kind of fields – texts, links and images to guide users how to solve

their issues. All pages also have search bar to find another solution pages or to rate the

current solution. Rating will help both support technicians and customers in the way

that customers know that guide is working as expected and support technicians know if

something needs to be improved at the page. Also comments can be left at the end of

each solution page.

28

Figure 8 - Solution interface where guides to issues exists

If user does not find solution into their problem, at first page of web service there is a

link to register new issues. There user describes their issue as detailed as possible, adds

screen-shots or log files as attached documents for support technicians and enters con-

tact information so that user can be contacted once solution has been solved or if sup-

port technician needs further details about the occurred error.

29

Figure 9 - New problems are registered through report page

When new issue has been registered, support technician receives notification through e-

mail. With the information described in the mail technician starts to create either new

issue, or modify/delete existing ones. This is done through a HTML template which

helps to create new pages easily. Support technician needs to write down topic for solu-

tion, add keywords how customers can find this page and add content with attachments.

New pages are created dynamically by adding attachments, texts and pictures so each

solution page can be differently set.

30

Figure 10 - Solution interface provides HTML template to create or modify solutions

6.3 User experience of system

Main point at the system is that it is as flexible as possible to be added anywhere at any

web site or web service. As main look and feel experience is simple search bar, by re-

moving most commonly used submit button leaves only area where to type needed

keywords. This creates simplicity and is effective way of saving space at any view. Also

by using MySQL database for returning search result immediately through AJAX, it

increases performance at end-user as all the results are seen without first having to sub-

mit result. This makes it possible to find solutions easily, reliable and fast.

As every step at users point of view is consistent and simplified, interacting between

web service and solution interface is fast and easy. Rating system brings more value for

the system as anyone can give rating and it immediately can show how well solutions

31

are working. Also by creating new issues from customers side is made so that customer

doesn't get frustrated at complex problematic situations.

6.4 Using support service as a mashup service

Mashup service is defined as “a combination of preexisting, integrated units of technol-

ogy, glued together to achieve new functionality, as opposed to creating that function-

ality from the scratch.” This means that many services can be used through one service

and this is generating more services where existing functionalities are working together.

(Väänänen-Vainio-Mattila, Wäljas 2011)

As customer support system is just a plain web service, it would be best working as

mashup service by adding support system straight to the system where it is needed. By

doing this there can be future possibilities to lead users of the service straight into the

correct solution pages at error situations. Error situations can be coded into error codes

and that code can be a key for customer support system to start finding correct solution

immediately.

To enable system to become combined by other systems it requires APIs so other pro-

grams can interact and integrate data between the services. Architecturally, there are

two styles of mashups: web-based and server-based. Whereas web-based mashups typi-

cally use the user's web browser to combine and reformat the data and server-based

mashups analyze and reformat the data on a remote server and transmit the data to the

user's browser in its final form. (Bolim, 2005)

At web service side currently used technologies are XMLHTTPRequest, XML-RPC,

JSON-RPC, SOAP and REST. These are technologies are used to send HTTP or

HTTPS requests directly to a web server and load the server response data directly back

into the script. At interface side where mashup service is used the technologies currently

in use are HTML/XHTML, CSS, Javascript, and AJAX. These enable web service to be

32

established just like automated customer support system and by using web service side

technologies it makes it possible to communicate between other web services to provide

mashup services.

33

7 BUSINESS VALUES AND MARKETING SEGMENTS

This kind of system can be seen as great business value as customers can find solutions

into their problems without having to contact support technicians and system can help

program managers to find out areas where customers are facing their issues. This leads

to the situation where program or software flaws at certain areas can be fixed before

distribution. As customers are also rating solutions and leaving comments, this infor-

mation can be used as valuable data for further development for upcoming releases. As

this system is helping customers to solve their issues, marketing value increases as cus-

tomers know there is generic helping system which is equal for all the users.

7.1 Business values

Every even a little bit complex system must have some kind of a support system to back

up all the users using their product. As automated customer support system is working

constantly in the background, it provides value to business and customers at all times.

All stakeholders related to supporting benefit from the automation in long term. At es-

tablish phase there is lack of content but in the long run solutions are providing to be

great asset for people using the system and people whom used to do support case-by-

case manually.

Automated customer support system is also very accurate, reliable and precise so it is

worth of investing at early phase when developing a system. At later times after contin-

uous improvement most of the issues related to problematic situations within the prod-

uct are handled by huge database. This allows customers get their work done much eas-

ier and faster than at contacting customer support service. Also quality of service in-

creases over time when using automated support.

34

7.2 Marketing segments

It's easy to market a system that is light, simple and provides automated support. Also

automated customer support is used widely at all business areas so automated customer

support system can be used at broad and narrow markets. Potential customer can be

anyone since support is used by everyone and everywhere. Support does not compete

with anything as it is basically just a service for customer to use product or system at

error situations. Main idea of course is to improve customer satisfaction and loyalty

towards service.

35

8 DESIGNING FUNCTIONING DRAFT OF AUTOMATED CUSTOMER

SUPPORT SYSTEM

Design contains fully working web service including database, solution interface and

HTML template. Some features such as creating new solution pages, web service

searching, logging and managing user accounts are included as well. There is also op-

tion at HTML template to use WYSIWYG editor to create pages more easily and seeing

results immediately before distributing solution.

8.1 Design of web service

Web service is the part where users are doing their searches for different solutions. It

works as a powerful search engine by returning links from MySQL database that

matches closest to search query. Web service can be defined as simple search box and

fast response to give solutions in a list of topics functioning as links into solutions.

Program listing 1: Search box is done with a simple form by using HTML, JavaScript,

AJAX, PHP and MySQL query.

1 <?php session_start () ;

2 if (isset ($_POST['search']))

3 {

4 $search = htmlentities ($_POST['search']) ;

5 require_once ("connectsql.php") ;

6 $sql = "SELECT * from acskeydata WHERE keywords LIKE '%$se arch%' OR

7 title LIKE '%$search%'" ;

8 $req = mysql_query ($sql) or die () ;

9 echo '' ;

10 while ($data = mysql_fetch_array ($req))

11 {

12 echo '<a href="' . htmlentities ($data ['link']) . '"

13 onclick="selected(this.innerHTML);">' . htmlentities ($data ['title']) ;

14 echo ' ' ;

15 echo $data ['rate'] . '/5' ;

16 }

17 echo '' ;

18 exit ;

36

19 }

20 ?>

21 <form method= "get" id= "searchform" action= "list_solutions.php" >

22 <div><input autocomplete= "off" type= "text" value= "Enter few keywords for

23 search query" name="s" size= " 75" id= "s" onFocus= "this. value= ''"

24 onkeyup= "request(this.value) ; " />

25 </div><div id= "tag_update" ></div>

26 </form>

27 <?

28 function selfURL()

29 {

30 $s = empty ($_SERVER["HTTPS"]) ? ''

31 : ($_SERVER["HTTPS"] == "on") ? "s"

32 : "" ;

33 $protocol = strleft(strtolower ($_SERVER["SERVER_PROTOCOL"]), "/") . $s ;

34 $port = ($_SERVER["SERVER_PORT"] == "80") ? ""

35 : (":" . $_SERVER["SERVER_PORT"]) ;

36 return

37 $protocol . "://" . $_SERVER['SERVER_NAME'] . $port . $_SERVER['REQUEST_URI'] ;

38 }

39 function strleft($s1 , $s2)

40 {

41 return substr ($s1 , 0, strpos ($s1 , $s2)) ;

42 }

43 ?>

The program listing 1 is showing how easy it is to create SQL query to match title or

keywords according to data in the database. At line 24-25 forms input field contains

onkeyup method which does asynchronous AJAX call. When this field contains any

letters, JavaScript will capture content from search field and forward SQL query into

MySQL database. After results are back, listing will appear underneath the search box.

Lines 12 – 14 show how the listing is built. At first there is link, which contains text of

the topic and at the end gives current rating of the solution.

Program listing 2: AJAX is used through separate JavaScript file to capture content

from search box and forwarding it into SQL query.

1 var myAjax = ajax ();

2 function ajax ()

3 {

4 var ajax = null ;

5 if (window .XMLHttpRequest)

6 {

37

7 try

8 {

9 ajax = new XMLHttpRequest ();

10 }

11 catch (e) {}

12 }

13 else if (window . ActiveXObject)

14 {

15 try

16 {

17 ajax = new ActiveXObject ("Msxm12.XMLHTTP");

18 }

19 catch (e)

20 {

21 try

22 {

23 ajax = new

24 ActiveXObject ("Microsoft.XMLHTTP");

25 }

26 catch (e) {}

27 }

28 }

29 return ajax ;

30 }

31
32 function request (str)

33 {

34 myAjax. open ("POST" , "list_solutions.php");

35 myAjax.onreadystatechange = result ;

36 myAjax.setRequestHeader ("Content-type" ,

37 "application/x-www-form-urlencoded");

38 myAjax.send ("search=" +str);

39 }

40 function result ()

41 {

42 if (myAjax. readyState == 4)

43 {

44 var liste = myAjax.responseText ;

45 var cible = document .getElementById ('tag_update') . innerHTML

46 = liste ;

47 }

48 }

49 function selected (choice)

50 {

51 var cible = document .getElementById ('s');

52 cible. value = choice ;

53 document .getElementById ('tag_update') . style .display = "none" ;

54 }

38

As search result is sent to MySQL database, list of closest matches are returned to a list

showing topic and rating of each match and then user can pick the desired solution and

moving to solution interface by clicking the topic.

Program listing 3: CSS Style contains definitions how results are seen at screen as well

as layout is set to each page.

1 body

2 {

3 background-color : #d0e4fe ;

4 }

5 #tag_update

6 {

7 display : block ;

8 border-left : 1px solid #373737 ;

9 border-right : 1px solid #373737 ;

10
 border-bottom : 1px solid
#373737 ;

11 position : absolute ;

12 z-index : 1;

13 }

14 #tag_update ul

15 {

16 margin : 0;

17 padding : 0;

18 list-style : none ;

19 }

20 #tag_update li

21 {

22 display : block ;

23 clear : both ;

24 }

25 #tag_update a

26 {

27 width : 400px ;

28 display : block ;

29 padding : . 2em . 3em;

30 text-decoration : none ;

31 color : #000 ;

32 background-color : #FFFFFF;

33 text-align : left ;

34 }

35 #tag_update a: hover

36 {

37 color : #fff ;

38 background-color : #373737 ;

39 background-image : none ;

39

40 }

41 div#chat

42 {

43 text-align : center ;

44 width : 303 ;

45 border : 2px solid ;

46 border-radius : 25px ;

47 -moz-border-radius : 25px ;

48 }

Most important part here is tag_update which is gathering all data through JavaScript

by using AJAX and setting data into <div> section at main search file. This solution

makes it possible to return solution links at any form. Also as every solution contains

possibility to leave feedback and comments there is chat style to create borders with

radius to each comment. This makes it easy to see name, timestamp and comment at one

simple border view.

8.2 Design of database

Database contains four tables. First table is acskeydata which contains automatic cus-

tomer support data to provide links into solution interface and also stores rating of each

solution.

Program listing 4: MySQL table acskeydata contains record for id, title, keywords, link,

rates, points, rate and datecreated.

1 CREATE TABLE "acskeydata" (

2 "id" int (6) NOT NULL AUTO_INCREMENT,

3 "title" varchar (200) NOT NULL,

4 "keywords" varchar (200) NOT NULL,

5 "link" varchar (200) NOT NULL,

6 "rates" int (10),

7 "points" int (10),

8 "rate" float (10),

9 "datecreated" date NOT NULL DEFAULT '0000-00-00' ,

10 UNIQUE KEY "id" ("id"));

40

At this table, title and link are the same except at link white spaces are replaced by un-

derscores, current URL added to front of the link and adding PHP file extension to the

end. Each page rating is calculated by given points divided by how many rating that

specific solution has gotten and also value of the calculated rate is stored into the table

with one decimal to provide numerical value during search results query.

Second and third tables at the database are intended for administrator privileges to cre-

ate new access rights for technical support and to monitor login attempts. These tables

are acstrack and acsusers.

Program listing 5: SQL table acstrack to track login attempts. It contains record for id,

username, ip, tm, login.

1 CREATE TABLE "acstrack" (

2 "id" int (6) NOT NULL AUTO_INCREMENT,

3 "username" varchar (15) NOT NULL,

4 "ip" varchar (20) NOT NULL,

5 "tm" varchar (20) NOT NULL,

6 "login" tinyint (1) NOT NULL DEFAULT '0' ,

7 UNIQUE KEY "id" ("id"));

This table is simply recording each attempt trying to login into the management view. It

stores used username, IP address of the computer, timestamp and boolean value whether

login was successful or not. This information can help out management to block com-

puters trying to hack into the system through login.

Program listing 6: There can be different kind of access rights set for automated cus-

tomer support system. At least administrative and moderator rights should exist but also

for each user or customer there can be set different access rights.

41

1 CREATE TABLE "acsusers" (

2 "ID" int (11) NOT NULL AUTO_INCREMENT,

3 "role" varchar (50) NOT NULL,

4 "username" varchar (50) NOT NULL,

5 "email" varchar (50) NOT NULL,

6 "password" varchar (50) DEFAULT NULL,

7 "datecreated" date NOT NULL DEFAULT '0000-00-00' ,

8 "datelastlogin" date NOT NULL DEFAULT '0000-00-00' ,

9 PRIMARY KEY ("ID"),

10 UNIQUE KEY "user_name" ("username"));

This table contains records for id, role, username, email, password, datecreated and

datelastlogin. Role can be administrator, technical support etc. and password should be

encrypted by some algorithms in case of intruders managing to see content of database.

Program listing 7: Fourth table contains data for storing feedbacks and comments from

each solution page. Feedback is always implemented at the end of each solution.

1 CREATE TABLE acsfeedback (

2 id int (110) NOT NULL auto_increment,

3 topicid int (110) NOT NULL default '0' ,

4 login varchar (20) NOT NULL default '' ,

5 message varchar (255) NOT NULL default '' ,

6 itstime varchar (30) NOT NULL default '' ,

7 PRIMARY KEY (`id`)

8);

Table has records for id, topicid, login, message and itstime. At this table topicid is used

to refer into correct solution at acskeydata table as a foreign key. This makes it possible

to leave different feedback at each solution page.

8.3 Design of solution interface and HTML template

Solution interface is area where pages have been created by HTML template. There

exists a header and footer file for each solution page where header contains includes for

web services search engine, topic and rating of that specified page and footer contains

rating solutions form and feedback.

42

Program listing 8: HTML template contains form for topic, keywords and content. Top-

ic field will also be the name of the file except that white spaces are replaced by under-

scores and file extension will be .PHP.

25 ...

26 else

27 {

28 if (isset ($_POST['filename']))

29 {

30 $removeslashes = stripslashes ($_POST['html_code']) ;

31 $fh = fopen ($filename , 'w') or die ("can't open file") ;

32
 $headerstr = '<?php session_start(); in-
clude("solutionheader.php");

33 ?>

' ;

34 $footerstr = '

<?php include("solutionfooter.php"); ?>' ;

35 $fileStr = $headerstr . $removeslashes . $footerstr ;

36 fwrite ($fh , $fileStr) ;

37 fclose ($fh) ;

38 }

39 }

40 ...

At line 30 written solution text is first being parsed through by stripping slashes away

from the text to enable link and image functionality. Line 32 and 33 contains what each

solution header and footer will contain. At line 34 solution is merged together and after

that stored as a new solution page.

Program listing 9: HTML template contains fields for, title, keywords, solution text area

and image upload through AJAX. By adding AJAX to this upload functionality it makes

it possible to upload images on the fly while writing the solution. Solution text can be

written with pure HTML code or by using WYSIWYG editor for faster writing. After

solution has been written, there is submit button to create the solution page.

40 ...

41 <html>

42 <head>

43 <title> HTML Template </title>

44 <link rel= "stylesheet" type= "text/css" href= "style.css" />

45 <script type= "text/javascript"

46 src= "scripts/jquery-1. 3. 2. min .js" ></script>

47 <script type= "text/javascript"

48 src= "scripts/jquery-ui-1. 7. 2.custom. min .js" ></script>

49 <link rel= "Stylesheet" type= "text/css"

43

50 href= "style/jqueryui/ui-lightness/jquery-ui-1. 7. 2.custom.css" />

51 <script type= "text/javascript"

52 src= "scripts/jHtmlArea-0. 7. 0.js" ></script>

53 <link rel= "Stylesheet" type= "text/css" href= "style/jHtmlArea.css" />

54 </head>

55 <body>

56 <? include ("fileupload.php") ; ?>

57 Title: (ex. How to solve issue x) use

58 letters A-Z (no åöä etc)

59 <form id= "form1" method= "post" action= " <?php $php_self ?>" >

60 <input name="filename" type= "text" value= "" size= " 30" maxlength= " 60" />

61 <p></p> Keywords: (ex.

62 connect|remote|support) separator |

63

64 <form id= "form2" method= "post" action= " <?php $php_self ?>" >

65 <input name="keywords" type= "text" value= "" size= " 40" maxlength= " 100" />

66 <p>Write solution here: (include HTML

67 tags)
<input type= "button" id= "hideme" value= "Use WYSIWYG"

68 onclick= "$('#html_code').htmlarea('forecolor', 'blue') ;

69 document.getElementById('hideme'). type= 'hidden' ; " />

70 <textarea name="html_code" cols= " 70" rows= " 30" wrap ="physical"

71
value= "html/html" id= "html_code" cols= " 50" rows= " 15" ><p><h3> To solve
this

72 problem do the following: </h3>
 Check settings . </p></textarea>

73

74 </p>

75 <input type= "submit" name="Submit" value= "Create page" />

76 </form>

77 ...

8.4 File system architecture

Automated customer support system contains five groups. Main page (index.php) con-

nects to administrator view (admin.php), issue reporting tool (reportissue.php), solution

finder (list_solutions.php) and issue creator (HTML_template.php). At last group there

are common files for all these groups like layout, SQL connection credentials, login

functionalities etc.

Administrator view contains three files where md5creator.js is used to secure password

encryption by adding MD5 hash encryption into password and action.png to enable

click functionality in user management window. MD5 hash encryption is a good way to

44

store credentials into SQL database as content in the table is then shown as MD5 hash

and it is not in human readable format.

Issue reporting tool is basically a simple form where can be reported new issues. It con-

tains a folder for attachments and e-mail that is sent from submitting the form contains

just a link to this attachment. This reportissue.php file contains e-mail address where

form will be sent to. It also supports sending form into multiple e-mail addresses.

Solution finder is the search engine what contains one input field and AJAX call to re-

turn matching solutions. MySQL connection and linking is done at search.php and at

search.js is done the AJAX call for search keywords.

Issue creator is the place where technical support persons are creating new solution pag-

es. It contains two files for uploading: fileupload.php and ajaxupload.php and these

make it possible to upload attachments on the fly so input fields can contain already

written data while doing uploads. All uploaded files will be put in files-folder. Leaving

feedback and rates for each solution is done at solutionfooter.php. At solutionhead-

er.php there exists actual rate calculation by giving each solution star.png picture per

rate point. At scripts- and style-folders there are needed files for enabling WYSIWYG

editor.

45

Figure 11 - File relation map

46

9 CONCLUSIONS

Automated customer support system is easy to establish at any kind of industry. It pro-

vides easy to access for all users and can serve multiple users simultaneously and accu-

rately. Supporting technicians are responsible at keeping data up to date and creating

new issues if it's required. By automating customer support, it gives advantages for cus-

tomer by easiness and fastness of the system and also technical support persons by low-

ering incoming calls.

Minimum requirements when starting up automated customer support system is to have

a database where to collect data of each solution and a web server to store the content.

Required bundle to establish automated customer support system is called

LAMP/WAMP which contains principal components (PHP, MySQL, JavaScript and

APACHE) to run web server.

Each solution should have its own page to make maintenance easier at technical sup-

porting side. Users of the support will also require interface to easily connect into a so-

lution they need help with and this interface should be very simple and should also give

good user experience. As solutions need to be consistent, technical support persons

maintaining the pages should have common tool to add, modify and delete solutions.

This can be a tool such as HTML template where exists common header and footer for

each page and editor to easily write solutions by using WYSIWYG editor. These header

and footer files can be used to bring look and feel user experience as any company de-

sire.

If automated customer support is established as a web service, it requires stable envi-

ronment and server. In case business is only relying into automated customer support, at

possible error situation such as data corruption, customers will require alternative back-

up route to access support which can halt customers’ production. Also if web service is

using mashup service to exchange data between other web services it requires APIs to

47

provide integration. Advantages of mashup services are that they can be integrated into

other services and by this way providing more information than those services were

originally planned.

48

REFERENCES

Books, articles and web sites

Jacobs, Macfarlane, 1990. The Vital Corporation

http://www.mirainternational.com/books/corporation/CHAP07.htm

Otlacan, 2005. Marketing Strategy: 7 Steps to Market Segmentation

http://ezinearticles.com/?Marketing-Strategy:-7-Steps-to-Market-Segmentation&id=82831

EN Wikipedia Customer service, 2012.

http://en.wikipedia.org/wiki/Customer_service

EN Wikipedia Technical support, 2012.

http://en.wikipedia.org/wiki/Technical_support

Violino, 2005. Research: Automated Customer Service Takes Off

http://www.informationweek.com/news/166403162

Computer support for dummies by experts, 2012.

http://computersupport360.com/talk/

Rubens, 2005. Technical support for the neighbours
http://news.bbc.co.uk/2/hi/uk_news/magazine/4387525.stm

EN Wikipedia Automation, 2012
http://en.wikipedia.org/wiki/Automation

The Boston Globe, 2008. 30 Of The Fastest Declining Occupations
http://www.boston.com/bostonworks/galleries/30fast_declining_occupations?pg=10

Kongthon, Sangkeettrakarn, Kongyoung, Haruechaiyasak, 2009. Implementing an
online help desk system based on conversational agent
http://dl.acm.org/citation.cfm?id=1643823.1643908

49

Hassenzahl, 2011. User Experience and Experience Design

http://www.interaction-

design.org/printerfriendly/encyclopedia/user_experience_and_experience_design.html

Väänänen-Vainio-Mattila, Wäljas, 2011. Moving Towards User-Centered Mashups:

Exploring User Needs for Composite Web Services.

http://www.cs.tut.fi/~kaisavvm/CompositeUX_WIP_final_update_KVVM_060311.pdf

Windows User Experience Interaction Guidelines, 2010.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa511258.aspx

Hess, 2010. Guiding Principles for UX Designers

http://uxmag.com/articles/guiding-principles-for-ux-designers

Werner, Fulton, 2010. User experience best practices for web self-service

http://www.rightnow.com/files/whitepapers/RightNow-Web-Self-Service-Best-

Practices-White-Papers.pdf

Bolim, 2005. End-User Programming for the Web, MIT MS thesis

http://bolinfest.com/Michael_Bolin_Thesis_Chickenfoot.pdf

50

ATTACHMENTS

admin.php (1/3)

<?php session_start () ;
if ($_SESSION['role'] != 'admin')
{
 header ('Location: index.php') ;
 exit () ;
}
?>
<html>
<head>
<link rel= "stylesheet" type= "text/css" href= "style.css" />
<title> administrator </title>
<script src= "md5creator.js" type= "text/javascript" ></script>
<SCRIPT language= "javascript" >
function generatePWD ()
{
 document .getElementById ("pwd") . type ="text" ;
 document .getElementById ("pwd") . value ="" ;
 document .getElementById ("nappi") . type ="button" ;
 document .getElementById ("resetti") . type ="button" ;
}
</SCRIPT>
</head>
<body>
<FORM METHOD="LINK" ACTION="index.php" >
<INPUT TYPE="submit" VALUE="Back to main page" >
</form>
 Manage user accounts for solution interface
<?php
require_once ("connectsql.php") ;
if (isset ($_POST['hdnCmd']))
 if ($_POST["hdnCmd"] == "Add")
 {
 $strSQL = "INSERT INTO acsusers " ;
 $strSQL .= "(role,username,email,password,datecreated) " ;
 $strSQL .= "VALUES " ;
 $strSQL .= "('" . $_POST["txtAddrole"] . "' " ;
 $strSQL .= ",'" . $_POST["txtAddusername"] . "' " ;
 $strSQL .= ",'" . $_POST["txtAddemail"] . "' " ;
 $strSQL .= ",MD5('" . $_POST["txtAddpassword"] . "'), CURDATE()) " ;
 $objQuery = mysql_query ($strSQL) ;
 }
 if (isset ($_POST['hdnCmd']))
 if ($_POST["hdnCmd"] == "Update")
 {
 $strSQL = "UPDATE acsusers SET " ;
 $strSQL .= "ID = '" . $_POST["txtEditID"] . "' " ;
 $strSQL .= ",role = '" . $_POST["txtEditrole"] . "' " ;
 $strSQL .= ",username = '" . $_POST["txtEditusername"] . "' " ;
 $strSQL .= ",email = '" . $_POST["txtEditemail"] . "' " ;
 $strSQL .= ",password = '" . $_POST["txtEditpassword"] . "' " ;
 $strSQL .= "WHERE ID = '" . $_POST["hdnEditID"] . "' " ;
 $objQuery = mysql_query ($strSQL) ;
 }
 if (isset ($_GET['Action']))
 if ($_GET["Action"] == "Del")
 {
 $strSQL = "DELETE FROM acsusers " ;
 $strSQL .= "WHERE ID = '" . $_GET["ID"] . "' " ;
 $objQuery = mysql_query ($strSQL) ;
 }
 $strSQL = "SELECT * FROM acsusers" ;
 $objQuery = mysql_query ($strSQL) or die ("Error Query
 [" . $strSQL . "]") ;
?>

51

admin.php (2/3)

<form name="frmMain" method= "post" action= " <?=$_SERVER["PHP_SELF"] ; ?>" >
<input type= "hidden" name="hdnCmd" value= "" >
<table border= " 1" >
<tr><th></th><th><div align= "center" >
User name </div></th><th><div align= "center" >
E-Mail </div></th><th><div align= "center" >
Role </div></th><th><div align= "center" >
Password </div></th><th><div align= "center" >
Edit </div></th><th><div align= "center" >
Delete </div></th></tr>
<?php
while ($objResult = mysql_fetch_array ($objQuery))
{
 if (isset ($_GET["ID"])) {} else
 $_GET["ID"] = 'temp' ;
 if ($objResult ["ID"] == $_GET["ID"] and $_GET["Action"] == "Edit")
 {
?>
 <tr>
 <td><div align= "center" >
 <input type= "hidden" name="txtEditID" size= " 5"
 value= " <?=$objResult ["ID"] ; ?>" >
 <input type= "hidden" name="hdnEditID" size= " 5"
 value= " <?=$objResult ["ID"] ; ?>" ></div></td>
 <td><input type= "text" name="txtEditusername"
 value= " <?=$objResult ["username"] ; ?>" ></td>
 <td><input type= "text" name="txtEditemail"
 value= " <?=$objResult ["email"] ; ?>" ></td>
 <td><input type= "text" name="txtEditrole"
 value= " <?=$objResult ["role"] ; ?>" ></td><td>
 <INPUT id= "resetti" type= "button" value= "Reset Password"
 onclick= "generatePWD()" >

 <input id= "pwd" type= "hidden" name="txtEditpassword"
 value= " <?=$objResult ["password"] ; ?>" >
 <input type= "hidden" id= "nappi"
 onclick= "document.getElementById('pwd').value =
 hex_md5(document.getElementById('pwd').value)" value= "generate new
 password" ></td>
 <td colspan= " 2" align= "right" ><div align= "center" >
 <input name="btnAdd" type= "submit" id= "btnUpdate" value= "Update"
 OnClick= "frmMain.hdnCmd. value= 'Update' ; frmMain.submit() ; " >
 <input name="btnAdd" type= "submit" id= "btnCancel" value= "Cancel"
 OnClick= "window.location =' <?=$_SERVER["PHP_SELF"] ; ?>' ; " >
 </div></td></tr>
<?php
 }
 else
 {
?>
 <tr><td></td><td>
 <?=$objResult ["username"] ; ?></td><td>
 <?=$objResult ["email"] ; ?></td><td>
 <?=$objResult ["role"] ; ?></td><td><div align= "center" >
 <?=$objResult ["password"] ; ?></div></td><td align= "center" ><a
 href= " <?=$_SERVER["PHP_SELF"] ; ?>?Action= Edit& ID=
 <?=$objResult ["ID"] ; ?>" >
 <td align= "center" ><a
 href= " <?=$_SERVER["PHP_SELF"] ; ?>?Action= Del& ID=
 <?=$objResult ["ID"] ; ?>" ><?
 if ($objResult ["role"] != 'admin')
 echo '' ; ?></tr>
<?php
 }
}
?>

52

admin.php (3/3)

<tr><td><input type= "hidden" name="txtAddID" ></td>
<td style= "background-color:black ; " >
<input type= "text" name="txtAddusername" ></td>
<td style= "background-color:black ; " >
<input type= "text" name="txtAddemail" ></td>
<td style= "background-color:black ; " >
<input type= "text" name="txtAddrole" ></td>
<td style= "background-color:black ; " >
<input type= "text" name="txtAddpassword" size= " 30" ></td>
<td style= "background-color:black ; " colspan= " 2" align= "right" >
<div align= "center" >
<input name="btnAdd" type= "submit" id= "btnAdd" value= "Add"
OnClick= "frmMain.hdnCmd. value= 'Add' ; frmMain.submit() ; " >
</div></td></tr></table></form>

Latest 15 unsuccessful logins
<table>
<?php
echo "<th>User name</th>" ;
echo "<th>IP</th>" ;
echo "<th>Time</th>" ;
$query = "select username,ip,tm from acstrack WHERE login='0 ' ORDER BY
 id desc LIMIT 15" ;
$result = mysql_query ($query) ;
while ($row = mysql_fetch_array ($result))
{
 echo "<tr>" ;
 echo "<td>{$row['username']}</td>" ;
 echo "<td>{$row['ip']}</td>" ;
 echo "<td>{$row['tm']}</td>" ;
 echo "</tr>\n" ;
 $rows ++;
}
?>
</table>

Latest 15 successful logins
<table>
<?php
echo "<th>User name</th>" ;
echo "<th>IP</th>" ;
echo "<th>Time</th>" ;
$query = "select username,ip,tm from acstrack WHERE login='1 ' ORDER BY
 id desc LIMIT 15" ;
$result = mysql_query ($query) ;
while ($row = mysql_fetch_array ($result))
{
 echo "<tr>" ;
 echo "<td>{$row['username']}</td>" ;
 echo "<td>{$row['ip']}</td>" ;
 echo "<td>{$row['tm']}</td>" ;
 echo "</tr>\n" ;
 $rows ++;
}
?>
</table>
<FORM METHOD="LINK" ACTION="index.php" style= "display:inline ; " >
<INPUT TYPE="submit" VALUE="Back to main page" >
</form>
</body>
</html>

53

ajaxupload.php

<?php
$destination_path = getcwd () . DIRECTORY_SEPARATOR;
$result = 0;
$target_path = $destination_path . '/files/' . basename(
$_FILES ['myfile']['name']) ;
if (@move_uploaded_file($_FILES ['myfile']['tmp_name'], $target_path))
{
 $result = 1;
}
sleep (1) ;
$upfile = basename($_FILES ['myfile']['name']) ;
?>
<script language= "javascript" type= "text/javascript" >
window . top . window .stopUpload (<?php echo $result ; ?>);
</script>
<script language= "javascript" type= "text/javascript" >
window . top . window .printName ("<?php echo $upfile; ?>");
</script>

connectsql.php

<?php
$db = mysql_connect ("databaseurl.fi:3306" , "login" , "password") ;
$objDB = mysql_select_db ("database") ;
?>

54

fileupload.php

<html>
<head>
<meta http-equiv= "Content-Type" content= "text/html ; charset= utf-8" />
<script language= "javascript" type= "text/javascript" >
function stopUpload(success)
{
 var result = '' ;
 if (success == 1)
 {
 document.getElementById('filename').innerHTML = "File uploaded to
 http://yoururl.com/files/" ;
 }
 document.getElementById('upform').innerHTML = result + ' <label> File:
 <input name="myfile" type= "file" size= " 30" /> <\/label> <label>
 <input type= "submit" name="submitBtn" class= "sbtn" value= "Upload"
 /> <\/label>' ;
 return true ;
}
function printName(upfile)
{
 document.getElementById('filename').innerHTML =
 document.getElementById('filename').innerHTML + upfile ;
 return true ;
}
</script></head><body>
<div id= "filename" ></div>
<div id= "container" >
<div id= "content" >
<form action= "ajaxupload.php" method= "post" enctype= "multipart/form-data"
target= "upload_target" >
<p id= "upform" >

<label> Upload file:

<input name="myfile" type= "file" size= " 20" /></label>
<label>
<input type= "submit" name="submitBtn" class= "sbtn" value= "Upload" />
</label></p>
<iframe id= "upload_target" name="upload_target" src= "#"
style= "width: 0; height: 0; border: 0px solid #fff ; " ></iframe>
</form>
</div>
</div>
</body>
</html>

55

HTML_template.php (1/2)

<?php session_start () ;
if ($_SESSION["login"] != "1")
{
 header ("Location: index.php") ;
}
echo '<div align=right><form action="logout.php" method= "get">
<input type ="submit" value ="Log out" />
</ form> ';
if ($_SESSION["role"] == "admin")
{
 echo '<form action="admin.php" method="get">
 <input type ="submit" value ="User management" />
 </ form> ';
}
echo '</div>' ;
if (isset ($_POST['filename']))
{
 $savelink = str_replace (" " , "_" , $_POST['filename']) ;
 $filename = "" . $savelink . ".php" ;
}
if (file_exists ($filename))
{
 echo "The file $filename exists go back and rename it." ;
 exit ;
}
else
{
 if (isset ($_POST['filename']))
 {
 $removeslashes = stripslashes ($_POST['html_code']) ;
 $fh = fopen ($filename , 'w') or die ("can't open file") ;
 $headerstr = '<?php session_start(); include("solutionheader.php ");
 ?>

' ;
 $footerstr = '

<?php include("solutionfooter.php"); ?>' ;
 $fileStr = $headerstr . $removeslashes . $footerstr ;
 fwrite ($fh , $fileStr) ;
 fclose ($fh) ;
 }
}
$php_self = $_SERVER['PHP_SELF'] ;
?>
<html>
<head>
<title> HTML Template </title>
<link rel= "stylesheet" type= "text/css" href= "style.css" />
<script type= "text/javascript"
src= "scripts/jquery-1. 3. 2. min .js" ></script>
<script type= "text/javascript"
src= "scripts/jquery-ui-1. 7. 2.custom. min .js" ></script>
<link rel= "Stylesheet" type= "text/css"
href= "style/jqueryui/ui-lightness/jquery-ui-1. 7. 2.custom.css" />
<script type= "text/javascript"
src= "scripts/jHtmlArea-0. 7. 0.js" ></script>
<link rel= "Stylesheet" type= "text/css" href= "style/jHtmlArea.css" />
</head>

56

HTML_template.php (2/2)

<body>
<? include ("fileupload.php") ; ?>

Title: (ex. How to solve issue x) use
letters A-Z (no åöä etc)

<form id= "form1" method= "post" action= " <?php $php_self ?>" >
<input name="filename" type= "text" value= "" size= " 30" maxlength= " 60" />
<p></p> Keywords: (ex.
connect|remote|support) separator |

<form id= "form2" method= "post" action= " <?php $php_self ?>" >
<input name="keywords" type= "text" value= "" size= " 40" maxlength= " 100" />
<p>Write solution here: (include HTML
tags)
<input type= "button" id= "hideme" value= "Use WYSIWYG"
onclick= "$('#html_code').htmlarea('forecolor', 'blue') ;
document.getElementById('hideme'). type= 'hidden' ; " />

<textarea name="html_code" cols= " 70" rows= " 30" wrap ="physical"
value= "html/html" id= "html_code" cols= " 50" rows= " 15" ><p><h3> To solve this
problem do the following: </h3>
 Check settings . </p></textarea>

</p>
<input type= "submit" name="Submit" value= "Create page" />
</form>

<form id= "form1" method= "post" action= "index.php" >
<input type= "submit" value= "Back to main page" />
</form>
<?
if (file_exists ($filename))
{
 require_once ("connectsql.php") ;
 $topic = $_POST['filename'] ;
 $start = strpos (selfurl(), 'HTML_template.php') ;
 $r = substr (selfurl(), 0, $start) ;
 $r = $r . $filename ;
 $s = $_POST['keywords'] ;
 $sql = "INSERT INTO acskeydata (title, keywords, link, rat es, points,
 rate, datecreated) VALUES ('$topic', '$s', '$r', 1, 3, 3, CURDATE())" ;
 $req = mysql_query ($sql) or die () ;
 echo "Solution page $filename was created" ;
}
function selfURL()
{
 $s = empty ($_SERVER["HTTPS"]) ? ''
 : ($_SERVER["HTTPS"] == "on") ? "s"
 : "" ;
 $protocol = strleft(strtolower ($_SERVER["SERVER_PROTOCOL"]), "/") . $s ;
 $port = ($_SERVER["SERVER_PORT"] == "80") ? ""
 : (":" . $_SERVER["SERVER_PORT"]) ;
 return
 $protocol . "://" . $_SERVER['SERVER_NAME'] . $port . $_SERVER['REQUEST_URI'] ;
}
function strleft($s1 , $s2)
{
 return substr ($s1 , 0, strpos ($s1 , $s2)) ;
}
?>
</body>
</html>

57

index.php

<?php session_start () ; ?>
<html>
<head>
<link rel= "stylesheet" type= "text/css" href= "style.css" />
</head>
<body>
Automated customer support system

<?php
include ("list_solutions.php") ;
if ($_SESSION['login'] != 1)
{
 require ('login.php') ;
}
if ($_SESSION["login"] == "1")
{
 echo '<div align=right><form action="logout.php" method= "get">
 <input type ="submit" value ="Log out" />
 </ form><form action ="HTML_template.php" method ="get" >
 <input type ="submit" value ="HTML template" />
 </ form> ';
 if ($_SESSION["role"] == "admin")
 {
 echo '<form action="admin.php" method="get">
 <input type ="submit" value ="User management" />
 </ form> ';
 }
 echo '</div>' ;
}
?>

<form id= "form1" method= "post" action= "reportissue.php" >
 Didn't find what you were looking for?

<input type= "submit" value= "Report new issue here" />
</form>
</body>
</html>

list_solutions.php

<?php session_start () ; ?>
<html>
<head>
<link rel= "stylesheet" type= "text/css" href= "style.css" />
</head>
<body>
<script type= "text/JavaScript" src= "search.js" ></script>
<?php include ("search.php") ; ?>
</body>
</html>

58

login.php

<?php session_start () ;
$username = $_POST['name'] ;
$password = $_POST['pass'] ;
$tm=date ("Y-m-d-H:i:s") ;
$ip =$_SERVER['REMOTE_ADDR'] ;
if (isset ($username) || isset ($password))
{
 if (empty ($username))
 {
 die ("ERROR: Please enter username! Press back
 to try again.") ;
 }
 if (empty ($password))
 {
 die ("ERROR: Please enter password! Press back
 to try again.") ;
 }
 require_once ("connectsql.php") ;
 $sql = "SELECT * FROM acsusers WHERE username='$username' AND
 password=MD5('$password')" ;
 $query = mysql_query ($sql) ;
 if (mysql_num_rows ($query))
 {
 $result = mysql_query ("SELECT role FROM acsusers WHERE
 username='$username'") ;
 $row = mysql_fetch_array ($result) ;
 $_SESSION ['role'] = $row ['role'] ;
 $_SESSION ['login'] = '1' ;
 mysql_query ("UPDATE acsusers SET datelastlogin=CURDATE() WHERE
 username='$username' ") ;
 mysql_query ("INSERT INTO acstrack(username, ip, tm, login) VALU ES
 ('$username','$ip','$tm', '1')") ;
 }
 else
 {
 echo '<DIV ALIGN="right">ERROR: Incorrect username or pa ssword!
 Press back to try again.</div>' ;
 mysql_query ("INSERT INTO acstrack(username, ip, tm, login) VALU ES
 ('$username','$ip','$tm', '0')") ;
 }
}
else
{
?>
 <html>
 <head></head>
 <body>
 <DIV ALIGN="right" >
 <form method= "post" action= " <?php echo $_SERVER['PHP_SELF'] ; ?>" >
 User: <input type= "text" name="name" size= " 1"
 value= " <?php echo $_COOKIE['username'] ; ?>" >
 Pass: <input type= "password" name="pass" size= " 1" >
 <input type= "submit" name="submit" value= "Login" ></form>

 </div>
 </body>
 </html>
 <?php
}
?>

logout.php

<?php session_start () ;
unset ($_SESSION['login']) ;
unset ($_SESSION['role']) ;
$role = '0' ;
header ('Location: index.php') ;
?>

59

msg.php

<html>
<head>
<link href= "style.css" rel= "stylesheet" type= "text/css" />
</head>
<body>
<?php
if (isset ($_POST['send']))
{
 $login = $_POST['login'] ;
}
else
{
 $login = "" ;
 $message = "" ;
}
?>
<form method= "POST" >
Name:
<input type= "text" name="login" size= " 20" maxlength= " 20"
value= " <?php echo $login ; ?>" >

Message:
<textarea name="message" size= " 30"
maxlength= " 255 " ></textarea>
<input type= "submit" name="send"
value= "Send" >

</form>
<?php
require_once ("connectsql.php") ;
$title = selfURL() ;
$sql = "SELECT id from acskeydata WHERE link='$title'" ;
$req = mysql_query ($sql) or die () ;
while ($data = mysql_fetch_array ($req))
{
 $titleid = $data ['id'] ;
}
function addMessage($login , $message , $titleid)
{
 $login = mysql_real_escape_string (strip_tags ($login)) ;
 $message = mysql_real_escape_string (strip_tags ($message ,
 "<a><i><u>")) ;
 $itstime = date ("F j, Y, g:i a") ;
 mysql_query ("INSERT INTO acsfeedback (topicid, login, message,
 itstime) VALUES ('$titleid','$login','$message',
 '$itstime')") ;
}
if (isset ($_POST['send']))
{
 addMessage($_POST['login'], $_POST['message'], $titleid) ;
}
if (isset ($_POST['send']))
{
 $login = $_POST['login'] ;
}
else
{
 $login = "" ;
 $message = "" ;
}
include ("connectsql.php") ;
function printMessages($titleid)
{
 $rs = mysql_query ("SELECT * FROM acsfeedback WHERE topicid=$titleid
 ORDER BY id DESC LIMIT 0,80") ;
 while ($msg = mysql_fetch_array ($rs))
 {
 echo "<div id=\"chat\">" ;
 $msg ['message'] =wordwrap ($msg['message'], 75, "\n" , 1) ;
 echo "" ;
 echo "" . $msg['login'] . " (" .
 $msg ['itstime'] . ")
<span
 style=\"color:navy\"> " . $msg['message'] . "</div>
" ;
 }
}
printMessages($titleid) ; ?>
</body>
</html>

60

rating.php

<?php
require_once ("connectsql.php") ;
$rate = $_GET["rate"] ;
$id = $_GET["id"] ;
$rating = $_GET["rating"] ;
mysql_query ("UPDATE acskeydata SET points = points+$rate, rates =
 rates+1, rate = $rating WHERE id = $i d") ;
header ("Location: index.php") ;
?>

reportissue.php

<?php session_start () ; ?>
<html><head>
<link rel= "stylesheet" type= "text/css" href= "style.css" />
</head>
<body>
<tr><td>
 Report new issue </td></tr>

<table width= " 400" border= " 0" align= "left" cellpadding= " 0" cellspac-
ing= " 1" >
<tr><td>
<form id= "form1" method= "post" enctype= "multipart/form-data"
action= " <?php $php_self ?>" >
<table width= " 100%" border= " 0" cellspacing= " 1" cellpadding= " 3" >
<tr><td width= " 16%">
Subject </td>
<td width= " 2%">: </td>
<td width= " 82%"><input name="subject" type= "text" size= " 50" /></td></tr>
<tr><td>
Detail </td><td> : </td><td>
<textarea name="detail" cols= " 50" rows= " 4" ></textarea></td></tr>
<tr><td>
Name</td><td> : </td><td>
<input name="name" type= "text" size= " 50" /></td></tr>
<tr><td>
E-mail </td><td> : </td><td>
<input name="customer_mail" type= "text" size= " 50" /></td></tr>
<tr><td>
Attachment (zip-file) </td><td> : </td><td>
<input name="attachment" type= "file" /></td></tr><tr>
<td> </td><td> </td><td>
<input type= "submit" value= "Report issue" /></td></tr>
</table></form></td></tr></table>
<?php
if (isset ($_POST['subject']))
{
 $uploaddir = 'attachment/' ;
 $uploadfile = $uploaddir . basename($_FILES ['attachment']['name']) ;
 move_uploaded_file ($_FILES ['attachment']['tmp_name'], $uploadfile) ;
 $to ='yoursupport@mail.com'
 $subject =$_POST["subject"] ;
 $detail =$_POST["detail"] ;
 $email =$_POST["customer_mail"] ;
 $name =$_POST["name"] ;
 $message = 'from: ' . $name . ' attachment:
 http://youremail.com/' . $uploadfile . ' reported issue:
 ' . $detail . ' Link: http://youremail/HTML_template.php' ;
 $send_mail =mail ($to , $subject , $message , $email) ;
 if ($send_mail)
 {
 echo "Thank you. You will receive mail once solution exi sts." ;
 }
}
$php_self = $_SERVER['PHP_SELF'] ;
?>
<form id= "form1" method= "post" action= "index.php" >
<input type= "submit" value= "Back to main page" />
</form></body></html>

61

search.js

var myAjax = ajax ();
function ajax ()
{
 var ajax = null ;
 if (window .XMLHttpRequest)
 {
 try
 {
 ajax = new XMLHttpRequest ();
 }
 catch (e) {}
 }
 else if (window . ActiveXObject)
 {
 try
 {
 ajax = new ActiveXObject ("Msxm12.XMLHTTP");
 }
 catch (e)
 {
 try
 {
 ajax = new
 ActiveXObject ("Microsoft.XMLHTTP");
 }
 catch (e) {}
 }
 }
 return ajax ;
}

function request (str)
{
 myAjax. open ("POST" , "list_solutions.php");
 myAjax.onreadystatechange = result ;
 myAjax.setRequestHeader ("Content-type" ,
 "application/x-www-form-urlencoded");
 myAjax.send ("search=" +str);
}
function result ()
{
 if (myAjax. readyState == 4)
 {
 var liste = myAjax.responseText ;
 var cible = document .getElementById ('tag_update') . innerHTML
 = liste ;
 }
}
function selected (choice)
{
 var cible = document .getElementById ('s');
 cible. value = choice ;
 document .getElementById ('tag_update') . style .display = "none" ;
}

62

search.php

<?php session_start () ;
if (isset ($_POST['search']))
{
 $search = htmlentities ($_POST['search']) ;
 require_once ("connectsql.php") ;
 $sql = "SELECT * from acskeydata WHERE keywords LIKE '%$se arch%' OR
 title LIKE '%$search%'" ;
 $req = mysql_query ($sql) or die () ;
 echo '' ;
 while ($data = mysql_fetch_array ($req))
 {
 echo '<a href="' . htmlentities ($data ['link']) . '"
 onclick="selected(this.innerHTML);">' . htmlentities ($data ['title']) ;
 echo ' ' ;
 echo $data ['rate'] . '/5' ;
 }
 echo '' ;
 exit ;
}
?>
<form method= "get" id= "searchform" action= "list_solutions.php" >
<div><input autocomplete= "off" type= "text" value= "Enter few keywords for
search query" name="s" size= " 75" id= "s" onFocus= "this. value= ''"
onkeyup= "request(this.value) ; " />
</div><div id= "tag_update" ></div>
</form>
<?
function selfURL()
{
 $s = empty ($_SERVER["HTTPS"]) ? ''
 : ($_SERVER["HTTPS"] == "on") ? "s"
 : "" ;
 $protocol = strleft(strtolower ($_SERVER["SERVER_PROTOCOL"]), "/") . $s ;
 $port = ($_SERVER["SERVER_PORT"] == "80") ? ""
 : (":" . $_SERVER["SERVER_PORT"]) ;
 return
 $protocol . "://" . $_SERVER['SERVER_NAME'] . $port . $_SERVER['REQUEST_URI'] ;
}
function strleft($s1 , $s2)
{
 return substr ($s1 , 0, strpos ($s1 , $s2)) ;
}
?>

solutionfooter.php

<form method= "GET" action= "rating.php" >
0<input type= "radio" name="rate" value= " 0" />
<input type= "radio" name="rate" value= " 1" />
<input type= "radio" name="rate" value= " 2" />
<input type= "radio" name="rate" value= " 3" />
<input type= "radio" name="rate" value= " 4" />
<input type= "radio" name="rate" value= " 5" /> 5
<input type= "submit" value= "Rate This solution" >
<input type= "hidden" name="id" value= " <? echo $id ?>" >
<input type= "hidden" name="rating" value= " <? echo $setrating ?>" >
</form>

 Leave feedback or comment

<?php include ("msg.php") ; ?>
<form id= "form1" method= "post" action= "index.php" >
<input type= "submit" value= "Back to main page" />
</form>
</body>
</html>

63

solutionheader.php

<html>
<head>
<link rel= "stylesheet" type= "text/css" href= "style.css" />
</head>
<body>
<script type= "text/JavaScript" src= "search.js" ></script>
<?php include ("search.php") ;
require_once ("connectsql.php") ;
$title = selfURL() ;
$sql = "SELECT id, title, rates, points from acskeydata WH ERE
link='$title'" ;
$req = mysql_query ($sql) or die () ;
while ($data = mysql_fetch_array ($req))
{
 echo '' ;
 echo $data ['title'] ;
 echo '' ;
 $id = $data ['id'] ;
 $rates = $data ['rates'] ;
 $points = $data ['points'] ;
}
$current = $points / $rates ;
$stars = round ($current , 0) ;
$setrating = round ($current , 1) ;
echo " (" ;
while ($stars >= 1)
{
 echo '' ;
 $stars -- ;
}
echo ")" ;
?>

64

style.css

body
{
 background-color : #d0e4fe ;
}
#tag_update
{
 display : block ;
 border-left : 1px solid #373737 ;
 border-right : 1px solid #373737 ;
 border-bottom : 1px solid #373737 ;
 position : absolute ;
 z-index : 1;
}
#tag_update ul
{
 margin : 0;
 padding : 0;
 list-style : none ;
}
#tag_update li
{
 display : block ;
 clear : both ;
}
#tag_update a
{
 width : 400px ;
 display : block ;
 padding : . 2em . 3em;
 text-decoration : none ;
 color : #000 ;
 background-color : #FFFFFF;
 text-align : left ;
}
#tag_update a: hover
{
 color : #fff ;
 background-color : #373737 ;
 background-image : none ;
}
div#chat
{
 text-align : center ;
 width : 303 ;
 border : 2px solid ;
 border-radius : 25px ;
 -moz-border-radius : 25px ;
}

