

Web application development with

Vue.js

Tomi Kumpulainen

Bachelor’s Thesis
February 2021
Information and Communication Technology
Bachelor’s Degree Programme in Information and Communications Tech-
nology

Description

Author(s)

Kumpulainen, Tomi
Type of publication

Bachelor’s Thesis

Date

February 2021

Language of publication

English

Number of pages

56
Permission for web publi-

cation: x

Title of publication

Web application development with Vue.js

Degree programme

Bachelor’s Degree Programme in Information and Communications Technology

Supervisor(s)

Manninen, Pasi; Niemi, Kari

Assigned by

Zaibatsu Interactive Oy

Abstract

The goal of the thesis was to engineer a learning tool in the form of a web application,
which could be used to educate the most important features of the Vue.js ecosystem to an
employee or a trainee more efficiently than the official documentation by focusing on the
SFC syntax instead of the regular syntax used in the official documentation. The thesis was
assigned by Zaibatsu Interactive Oy to complement their Self Dev program, which allows
the employees of the company to use 5 % of their monthly worktime for developing their
professional skills in a volitional manner.

This goal was realized by carefully selecting the concepts discussed in the learning tool by
critically evaluating the official documentation and designing the content of the learning
tool based on the findings to build an efficient documentation covering the basics from the
perspective of a SFC syntax user, which eliminates the need to interpret the official docu-
mentation on a case-by-case basis.

The learning tool was created by using the Vue.js ecosystem to build a PWA, which allows
the web application to be used on any device with a standards-compliant browser and re-
gardless of an active internet connection.

Based on the results, tangible efficiency improvements were achieved, while further devel-
opment options were found.

Keywords/tags (subjects)

Vue.js, Vue CLI, Vue Loader, Vue Router, Vuex, Web application development

Miscellaneous (confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

Kuvailulehti

Tekijä(t)

Kumpulainen, Tomi
Julkaisun laji

Opinnäytetyö, AMK

Päivämäärä

Helmikuu 2021

Julkaisun kieli

Englanti

Sivumäärä

56
Verkkojulkaisulupa myön-

netty: x

Työn nimi

Web-sovelluskehitys Vue.js:llä

Tutkinto-ohjelma

Insinööri (AMK), Tieto- ja viestintätekniikka

Työn ohjaaja(t)

Manninen, Pasi; Niemi, Kari

Toimeksiantaja(t)

Zaibatsu Interactive Oy

Tiivistelmä

Opinnäytetyön tarkoituksena oli luoda web-sovellusmuotoinen opetustyökalu, jota voitai-
siin käyttää Vue.js-ekosysteemin tärkeimpien toimintojen perehdyttämiseen työntekijälle
tai harjoittelijalle virallista dokumentaatiota tehokkaammin keskittymällä erityisesti SFC-
syntaksiin virallisessa dokumentaatiossa käytettävän tavallisen syntaksin sijaan. Opinnäyte-
työn toimeksiantajana toimi Zaibatsu Interactive Oy, joka tilasi työn täydentämään yrityk-
sen Self Dev -ohjelmaa, joka mahdollistaa yrityksen työntekijöiden käyttää 5 % kuukausittai-
sesta työajastaan ammattitaitonsa kehittämiseen vapaavalintaisella tavalla.

Asetettua tavoitetta lähdettiin toteuttamaan valitsemalla huolellisesti opetustyökalussa
käsiteltävät aiheet virallista dokumentaatiota kriittisesti arvioimalla ja löydösten perus-
teellä opetustyökalun sisältöä suunnittelemalla, jonka pohjalta voitiin luoda tehokas doku-
mentaatio SFC-syntaksin käyttäjän näkökulmasta, mikä poistaa tarpeen virallisen doku-
mentaation tapauskohtaiseen tulkitsemiseen.

Opetustyökalu luotiin rakentamalla PWA-sovellus Vuen ekosysteemiä hyödyntäen, joka
mahdollistaa web-sovelluksen käytön aktiivisesta internet-yhteydestä riippumatta millä ta-
hansa laitteella, jossa on standardinmukainen web-selain.

Tuloksista voidaan päätellä, että konkreettisia tehokkuus parannuksia saavutettiin ja koh-
teita mahdolliselle jatkokehitykselle löydettiin.

Avainsanat (asiasanat)

Vue.js, Vue CLI, Vue Loader, Vue Router, Vuex, Web-sovelluskehitys

Muut tiedot (Salassa pidettävät liitteet)

http://www.finto.fi/

4

Contents

Terminology ... 7

1 Introduction ... 11

2 Vue.js ... 12

2.1 History ... 12

2.2 Present ... 13

2.3 Comparisons .. 14

2.3.1 Adoption ... 14

2.3.2 Performance ... 15

2.3.3 Popularity ... 15

3 Selected concepts of the learning tool .. 18

3.1 Alpha .. 18

3.1.1 Node.js .. 18

3.1.2 Yarn ... 18

3.1.3 Visual Studio Code .. 19

3.1.4 Vetur ... 20

3.2 Vue CLI ... 20

3.2.1 General ... 20

3.2.2 Installation .. 20

3.2.3 Creating a project ... 21

3.2.4 Building a project .. 22

3.3 Vue Loader... 24

3.3.1 General ... 24

3.3.2 Single-File Components .. 24

3.3.3 Pre-Processors .. 26

3.3.4 Scoped CSS .. 27

5

3.4 Directives ... 28

3.4.1 General ... 28

3.4.2 Conditional rendering ... 28

3.4.3 Attribute binding .. 29

3.4.4 Iterative rendering .. 30

3.4.5 Event handling .. 31

3.5 Vue Router ... 32

3.5.1 General ... 32

3.5.2 Creating a router .. 33

3.5.3 Using a router ... 35

3.6 Vuex ... 36

3.6.1 General ... 36

3.6.2 Creating a store .. 37

3.6.3 Using a store ... 38

3.7 Omega ... 39

3.7.1 TypeScript ... 40

3.7.2 Server-Side Rendering .. 40

4 Creation of the learning tool ... 41

4.1 Design .. 41

4.2 Implementation ... 43

4.3 Testing ... 44

5 Results ... 45

6 Conclusion .. 47

References ... 49

Appendices .. 56

Appendix 1. The package.json-file of the learning tool .. 56

6

Figures

Figure 1. Celebration illustrations for Vue 1, Vue 2 and Vue 3 13

Figure 2. JavaScript frameworks Angular, React and Vue 14

Figure 3. GitHub star history of Angular, React and Vue 17

Figure 4. Microsoft Visual Studio Code .. 19

Figure 5. Creating a new project with the GUI of the Vue CLI 22

Figure 6. Using a conditional value to configure the publicPath 24

Figure 7. Hello World example with a Single-File Component 25

Figure 8. Using pre-processors within a style block of an SFC 26

Figure 9. Sharing variables by directly passing options to a loader 27

Figure 10. Using a deep selector within a scoped style block of an SFC 28

Figure 11. Conditionally rendering elements with the v-if directive 29

Figure 12. Binding attributes to elements with the v-bind directive 30

Figure 13. Iteratively rendering the items of an array with the v-for directive ... 31

Figure 14. Handling events with the v-on directive.. 32

Figure 15. Creating a Vue Router instance ... 33

Figure 16. Injecting a Vue Router instance ... 34

Figure 17. Apache catch-all fallback route configuration 35

Figure 18. Using the Vue Router to navigate to another path 36

Figure 19. Creating a Vuex store instance .. 37

Figure 20. Injecting a Vuex store instance .. 38

Figure 21. Using the Vuex mapState helper function... 39

Figure 22. Chapter 1 of the learning tool viewed in a browser 42

Figure 23. The set of icons designed for the learning tool 43

Figure 24. The route configuration of the learning tool 44

Figure 25. Lighthouse audition results of the learning tool in the mobile test 45

7

Terminology

API

Application Programming Interface is a computing interface that defines interactions

between multiple software intermediaries.

CLI

Command-Line Interface is a text-based user interface used to issue commands to

execute functions of a computer program.

CPU

Central Processing Unit is the electronic circuitry within a computer that executes in-

structions that make up a computer program.

CSS

Cascading Style Sheets is a style sheet language that is used for describing the

presentation of a document written in markup language.

DevOps

Development Operations is a set of practices that combine software development

with information technology operations to optimize the production chain.

DOM

Document Object Model is an interface that treats an HTML document as a tree

structure where each node is an object representing a part of the document.

DX

Developer Experience is the emotions and attitudes of a person about using a partic-

ular product, system, or a service for software development.

8

GUI

Graphical User Interface is a user interface that allows a person to interact with elec-

tronic devices through graphical icons instead of a text-based user interface.

HTML

Hypertext Markup Language is the standard markup language for documents de-

signed to be displayed in a browser.

HTTP

Hypertext Transfer Protocol is an application layer protocol used by browsers and

servers for data transfer in the web.

JSX

JavaScript Extensible Markup Language is an extension to the JavaScript language

syntax typically used in React development.

LTS

Long-term support is a product lifecycle management policy in which a stable release

of computer software is maintained longer than the standard release.

npm

Node Package Manager is a package manager for JavaScript that allows the con-

sumption and distribution of JavaScript modules available in the remote registry.

PWA

Progressive Web Application is an application software delivered through the web

and intended to work on any platform with a standards-compliant browser.

9

QOL

Quality of Life is the degree to which a person is healthy, comfortable, and able to

participate in or enjoy life events.

Sass

Syntactically Awesome Style Sheets is a pre-processor scripting language that is com-

piled into CSS and uses an indent-based syntax.

SCSS

Sassy Cascading Style Sheets is the newer syntax of Sass that uses block formatting

instead of the original indent-based syntax.

SEO

Search Engine Optimization is the process of improving the quality and quantity of

website traffic to a website or webpage from search engines.

SFC

Single-File Component is a file with a .vue-extension that contains information about

the structure, logic, and presentation of a Vue component.

SPA

Single-Page Application is a web application or website that can dynamically change

the content of a webpage without the browser having to reload in between.

SRE

Site Reliability Engineering is a discipline that incorporates aspects of software engi-

neering and applies them to the problems in infrastructure and operations.

10

SSR

Server-Side Rendering is a practice where the rendering of a web application or web-

site is done by a server instead of a browser.

SVG

Scalable Vector Graphics is an XML-based vector image format for two-dimensional

graphics with support for interactivity and animation.

UI

User Interface is an interface that is used for interaction and communication be-

tween a person and a computer software.

URI

Uniform Resource Identifier is an identifier used by web technologies to locate and

retrieve information resources on a network or computer filesystem.

URL

Uniform Resource Locator is a type of URI that is used to reference an information

resource on a network and specify its location as well as the means to retrieve it.

UX

User Experience is the emotions and attitudes of a person about using a particular

product, system, or a service.

XML

Extensible Markup Language is a markup language that defines a set of rules for en-

coding documents in a format that is readable by both human and machine alike.

11

1 Introduction

The goal of the thesis was to engineer an accessible and efficient learning tool in the

form of a web application, which could be used to educate the most important and

select additional features of the Vue.js ecosystem to an employee or a trainee more

efficiently than the official documentation by focusing specifically on SPA develop-

ment with the Vue CLI and the SFC syntax instead of the regular syntax used in the

official documentation to mitigate any possible opportunities for misinterpretation.

The thesis was assigned by Zaibatsu Interactive Oy to complement their Self Dev pro-

gram, which allows the employees and trainees of the company to use 5 % of their

monthly worktime for developing their professional skills in a volitional manner.

Therefore, the learning tool had to be designed in a way that would entice a person

to immerse themselves as well as allow them to grasp the basics of the Vue.js ecosys-

tem within the timeframe outlined in the Self Dev program for maximum benefit.

The goal was realized by carefully selecting the concepts discussed in the learning

tool by critically evaluating the official documentation of each individual API and de-

signing the content and UX of the learning tool based on the findings to build a con-

cise, consistent, and efficient documentation covering the basics from the perspec-

tive of a Vue CLI and SFC syntax user, which eliminates the need to interpret the offi-

cial documentation and the importance of each concept covered by it on a case-by-

case basis.

While comparing the Vue.js ecosystem to other popular JavaScript frameworks is not

the primary focus of the thesis, a critical comparison to its main competitors was pro-

vided to better illustrate the benefits and drawbacks of the framework, which allows

the users of the learning tool to better discern the situations in which using the

Vue.js ecosystem over the competing solutions is likely to yield beneficial results.

12

2 Vue.js

2.1 History

Vue.js (subsequently Vue) is an open-source JavaScript framework created by Evan

You, a former Google employee who at the time worked with Angular in multiple

projects and wished to create a lightweight alternative to it that would retain some

of its features like data binding, while simultaneously avoid the additional concepts

involved when using Angular (Cromwell 2016). Vue is maintained by Evan himself

and the members of the active core team (Meet the Team n.d.).

Vue is said to be a progressive framework for developing user interfaces that is incre-

mentally adoptable, view layer focused, easy to learn and integrate with other librar-

ies or existing projects, while also being able to power complex SPAs on its own

when used together with its SFCs (Introduction n.d.a.). Vue uses a Virtual DOM that

allows the real DOM to be represented as JavaScript objects that can be intelligently

manipulated and updated without having to reload the webpage (Adamakis 2020).

Starting from version 0.9 titled Animatrix, which was the first initial release of Vue

back in February 2014, all the following releases of Vue have been given a title that is

also the name of a popular Japanese anime or manga series. Examples of this include

version 1.0 (subsequently Vue 1) being titled Evangelion, version 2.0 (subsequently

Vue 2) being titled Ghost in the Shell and the latest version 3.0 (subsequently Vue 3)

being titled One Piece. (Cromwell 2016; v0.9.0: Animatrix 2014; v3.0.0 One Piece

2020.) All the major releases and some of the more recent minor releases of Vue

have received celebration illustrations based on these titles (See Figure 1).

13

Figure 1. Celebration illustrations for Vue 1, Vue 2 and Vue 3 (Adapted from Vue 1

n.d.; Vue 2 n.d.; Vue 3 n.d.)

2.2 Present

At the time of writing, the latest major release of Vue is Vue 3, which was released

back in September 2020 and introduced many notable new features, including a

Composition API, teleport (i.e., programmatic relocation of renderable elements),

and fragments (i.e., support for multiple root nodes) (v3.0.0 One Piece 2020).

While the earlier versions of Vue were written in plain JavaScript, Vue 3 is a complete

rewrite of the entire Vue codebase in TypeScript, which means that while using Type-

Script with Vue 3 remains optional, it now has a near perfect integration with the Ja-

vaScript superset and can be supported without any additional tooling needed

(v3.0.0 One Piece 2020).

The learning tool is designed specifically for Vue 3 and the Vue CLI version 4.5.11 has

been used to validate all the related information, which means that while most of

the theoretical concepts discussed remain valid for Vue 2, the provided configura-

tions and code examples cannot be used as a reference when developing with older

14

versions. Since the learning tool itself was created by using all the technologies dis-

cussed in it, the package.json-file of the project can be used to reference the version

of each individual API the disclosed information is valid for (See Appendix 1).

2.3 Comparisons

2.3.1 Adoption

Compared to its biggest competitors in the modern JavaScript framework space, An-

gular and React (See Figure 2), Vue is said to have great overall performance thanks

to its manageable size, great documentation, the lowest initial learning curve and be-

ing the easiest to integrate with existing projects due to its incrementally adoptable

feature set (Borrelli 2019).

Figure 2. JavaScript frameworks Angular, React and Vue (Adapted from JavaScript

frameworks n.d.)

This is by design, as Vue uses simple HTML-based templates alongside declarative

rendering to express its UI, which means that any valid HTML is also a valid Vue tem-

plate. React on the other hand uses JSX, an XML-like syntax extension, within render

functions to achieve the same, which introduces a new syntax to the equation. The

same also holds true when comparing Vue to Angular, as unlike with Angular, using

TypeScript with Vue is still optional despite Vue 3 being written in TypeScript. This

15

gives Vue a slight strategic edge over its direct competitors, as its use does not re-

quire any additional syntax adoption. (Comparison with Other Frameworks n.d.)

2.3.2 Performance

Vue is also advertised as being lightweight in terms of its size, which certainly holds

true with the framework weighting in at approximately 80KB, while React and Angu-

lar both have bigger footprints at roughly 100KB and 500KB respectively (Daityari

2020). The size difference also means that Vue has the shortest average startup time

and lowest memory allocation of the three, followed closely by React, while Angular

can be almost twice as slow at startup and consume roughly half as much memory

(Borrelli 2019).

In terms of overall performance, Vue and React can usually outperform Angular in

applications where constant re-rendering of the view is needed, as they both can uti-

lize their Virtual DOM, whereas Angular needs to modify and update the real DOM

(Shah 2020). However, Angular tends to be the fastest of the three in operations that

require manipulation of the real DOM, thanks to its more efficient data binding (Bor-

relli 2019).

2.3.3 Popularity

Trying to gauge the popularity of JavaScript frameworks can be difficult, as there

does not exist a single definitive metric for determining the actual popularity of a

framework but interpreting the collective results of npm package download trends,

Stack Overflow developer surveys, GitHub stars and open job listings can give us a

reasonably good idea of the popularity of a given framework.

With the help of npm-stat.com, a website that can generate download charts for

npm packages, it can be determined that downloads between December 2018 and

16

December 2020 for all three selected frameworks are rising, with React leading the

pack with more than 664 million downloads, followed by Vue with more than 134

million downloads and Angular placing third with almost 48 million downloads (Vor-

back 2018).

According to the Stack Overflow developer survey 2019, Vue and React are both the

most loved and most wanted web frameworks, while Angular is the fourth least

loved and third least wanted out of the twelve web frameworks listed in the survey

(Stack Overflow Developer Survey Results 2019 2019).

The number of stars given to a project at GitHub can be used as a singular metric

when trying to determine the popularity of a framework. This is also the first com-

parison where Vue can edge out both React and Angular, with Vue having over 177

000 stars, while React and Angular have roughly 161 000 and 69 000 stars, respec-

tively. (GitHub repository for Angular 2020; GitHub repository for React 2020; GitHub

repository for Vue 2 2020.)

Vue is also the newest framework of the three (Daityari 2020), meaning that it has

been gaining traction among developers at a faster pace than React and Angular dur-

ing its lifespan (See Figure 3), even when factoring in the GitHub stars of AngularJS,

the predecessor project of Angular (GitHub repository for AngularJS 2020). However,

it should be noted that the number of stars for Vue are based on Vue 2 and not Vue

3, which is the latest version that has roughly 20 000 stars at the time of writing. This

is since Vue 3 is a complete rewrite of the Vue codebase in TypeScript, meaning a

new repository was required to preserve the old plain JavaScript-based codebase of

Vue 2. (GitHub repository for Vue 3 2020.)

17

Figure 3. GitHub star history of Angular, React and Vue (Information from Star history

n.d.)

When comparing open job offerings between the three, it becomes evident that de-

spite the apparent popularity of Vue among developers, React and Angular have far

more actual job demand than Vue (Neagoie 2018). The reason for this phenomenon

is likely related to Vue still being a relatively new framework compared to React and

Angular, which both have had a few more years to establish their status and us-

erbase in a less competitive environment, or the fact that Vue does not have a big

and well-known supporter funding its ongoing development, like Facebook and

Google in the case of React and Angular, respectively.

18

3 Selected concepts of the learning tool

3.1 Alpha

The Alpha chapter serves as the introductory chapter of the learning tool and its

main goal is to make sure that the development environment of the user meets all

the requirements for Vue development. It also includes recommendations about

ways to help make usage of the learning tool and Vue development in general as

smooth as possible. The following concepts are covered in this chapter.

3.1.1 Node.js

An open-source JavaScript runtime that allows code to be executed outside of a

browser (GitHub repository for Node.js 2020). Node.js comes bundled with the pack-

age manager npm, which can be used to manage local dependencies of a project as

well as global JavaScript tools like the Vue CLI (Ellingwood 2014). Installation of

Node.js version 8.9 or above is required to use the learning tool as it is a dependency

of the Vue CLI, while upgrading to the latest LTS release is recommended for the best

compatibility (Installation 2020).

3.1.2 Yarn

An alternative package manager that can be used instead of npm. Yarn offers several

compelling features and more concise syntax compared to npm. (Kelch 2020.) With

Yarn, packages can be installed via local caching, which enables faster installation

speeds and the ability to install cached packages offline (Muminovic 2019). However,

using both npm and Yarn in the same project should be avoided due to resolution in-

consistencies caused by unsynchronized lock files (Pile 2019). While the installation

19

of Yarn is not required to use the learning tool or the Vue CLI, it is recommended

mainly due to its more concise syntax over npm.

3.1.3 Visual Studio Code

A free source-code editor created by Microsoft for all the major operating systems,

including Windows, Linux and MacOS (See Figure 4). It has support for features such

as syntax highlighting, intelligent code completion, debugging and embedded Git. It

also allows custom keyboard shortcuts, personalizing the UI with themes and adding

functionality with extensions. (Why did we build Visual Studio Code? 2020.)

Figure 4. Microsoft Visual Studio Code

According to the Stack Overflow developer survey 2019, Visual Studio Code is the

most popular development environment tool not only for web development, but also

for SRE and DevOps, while 0.4% of mobile developers still favor Android Studio over

it (Stack Overflow Developer Survey Results 2019 2019). While the installation of Vis-

20

ual Studio Code is not required to use the learning tool or the Vue CLI, it is recom-

mended as its robust features and QOL improvements can drastically improve the

overall DX compared to a more conventional source-code editor.

3.1.4 Vetur

A free Visual Studio Code extension created by Pine Wu that offers support for Vue

SFCs with features such as syntax highlighting, intelligent code completion, debug-

ging and error checking (Wu 2020). While the Installation of Vetur is not required to

use the learning tool or the Vue CLI, it is recommended if Visual Studio Code is used

as the source-code editor since support for Vue SFCs cannot be provided without it,

which has a negative impact on the overall DX.

3.2 Vue CLI

3.2.1 General

Vue CLI is the standard tooling for Vue development, and it comes with out-of-the-

box support for Babel, TypeScript, PWA, Vue Router, Vuex, CSS Pre-Processors and

ESLint, as well as both Unit Testing and End-to-end Testing. Vue CLI also has an op-

tional GUI that can be used for creating and managing projects. (Overview 2019.)

3.2.2 Installation

To use the Vue CLI, an installation of a global package via a package manager is re-

quired, as this will allow the Vue CLI to be invoked via the command line. Vue CLI can

be installed globally with npm by using the command npm install -g @vue/cli or with

Yarn by using the command yarn global add @vue/cli. (Installation 2020.)

21

3.2.3 Creating a project

A new Vue project can be initialized by invoking the CLI from the Node.js command

line or from the built-in terminal in Visual Studio Code with the command vue create

project, where the parameter project is the name of the project that is going to be

created. After entering the command, the user will be prompted to pick a preset. The

default preset includes Babel and ESLint, but the user can also select the additional

features manually by selecting the Manually select features option. The latter is rec-

ommended when developing more sophisticated applications for production, while

the default preset can be used for quick prototyping. The selectable features include

support for Babel, TypeScript, PWA, Vue Router, Vuex, Pre-Processors, ESLint, as well

as Unit and End-To-End Testing. (Creating a Project 2019.)

Manually selecting features also generates a new prompt about saving the selected

features as a preset. The saved presets are stored in a JSON-file called .vuerc, which

can be found from the home directory of the user, located in %userprofile%/.vuerc

on Windows and ~/.vuerc on Linux based systems. Other possible prompts during the

project creation include a prompt about the preferred package manager that needs

to be specified if the user has both npm and Yarn installed on their system, as well as

a prompt to use the Taobao npm registry mirror for faster dependency installation.

All saved presets can be altered by directly modifying the .vuerc-file. (Creating a Pro-

ject 2019.)

Alternatively, a new Vue project can also be created by using the command vue ui,

which will open the GUI at localhost:8000 in the browser and then by selecting the

Create a new project here option from the Create tab (Creating a Project 2019). The

GUI will guide the user through the project initialization process (See Figure 5).

22

Figure 5. Creating a new project with the GUI of the Vue CLI (Adapted from GUI 2018)

3.2.4 Building a project

The CLI Service can be used to preview a development build or to create a produc-

tion build of a project. By default, using the command npm run serve or yarn serve,

when using npm or Yarn respectively, will preview the project at localhost:8080 in

the browser. (CLI Service 2020.) A production build of a project can be created by us-

ing the command npm run build or yarn build, which will create a minified produc-

tion-ready build of the project to the dist folder found at the root of the project (CLI

Service 2020).

23

An optional Modern Mode can be used when creating a production build by adding

the flag --modern at the end of the respective command. Doing so will create two

separate builds of the project, with one targeting modern browsers with support for

the ECMAScript 2015 specification, while the other one is a polyfilled version target-

ing legacy browsers. This allows the serving of a more efficient ECMAScript 2015

based build for modern browsers while still retaining the option to serve a less effi-

cient legacy build for older browsers, instead of having to serve a single unoptimized

build that accommodates for all use cases. (Browser Compatibility 2020.)

The production build created by the CLI Service is meant to be served by an HTTP

server, which means that directly accessing the index.html-file of the project over the

file URI scheme cannot be used to preview the production build. To preview the pro-

duction build locally, a static Node.js based file server such as serve can be used. This

can be achieved by using the command npm install -g serve or yarn global add serve,

which will install serve as a global package and then by using the command serve -s

dist to preview the production build. Using the optional flag -s deals with routing is-

sues prevalent when trying to preview some Vue Router based builds. (Deployment

2020; GitHub repository for serve 2020.)

Depending on the production environment, creating a vue.config.js-file to the root of

the project, and configuring the publicPath option might be required. By default, the

value of publicPath is ‘/’, which means that the project needs to be deployed at the

root of a domain (e.g., https://www.exampledomain.com/) and will not work if de-

ployed at a sub-path (e.g., https://www.exampledomain.com/example-sub-path/). If

the project needs to be deployed at a sub-path, the publicPath needs to be config-

ured to reflect the sub-path. It is also possible to make publicPath a relative value by

setting its value to ‘./’, which allows the project to be deployed under any public

path. (Configuration Reference 2020.) Since the value of publicPath is also respected

24

during development, it is desirable in most cases to use a conditional value to allow

different values for development and production (See Figure 6).

Figure 6. Using a conditional value to configure the publicPath (Information from

Configuration Reference 2020)

3.3 Vue Loader

3.3.1 General

Vue Loader is a webpack loader that makes the use of the SFC format and other load-

ers inside SFCs possible, which allows many additional features such as code trans-

compilation, linting and hot reloading during development (Introduction n.d.b). All

projects created with the Vue CLI come with a basic pre-configuration of Vue Loader

as well as all additional loaders required by the features selected during the project

creation process (Getting Started n.d.a.).

3.3.2 Single-File Components

Vue SFCs are files with a .vue-extension that consist of a template block for describ-

ing the UI with HTML, a script block for adding logic with JavaScript and a style block

for styling the component with CSS (See Figure 7). SFCs also have support for scoped

CSS, syntax highlighting and webpack modules that allow the use of the import and

@import statements within script and style blocks, respectively (Single File Compo-

25

nents 2020). Comments can be used within all three blocks in the respective com-

ment syntax of the used language, while top-level comments follow the conventions

of HTML comments (Vue Single-File Component Spec n.d.).

Figure 7. Hello World example with a Single-File Component (Information from Single

File Components 2020)

The HTML based template block allows the rendered DOM to be declaratively bound

to the underlying data of the script block, which in turn allows Vue to intelligently de-

termine the minimal number of components to re-render and DOM manipulations to

apply to accommodate for a state change. Text interpolation with the “mustache”

syntax, denoted by {{ }}, is the most basic form of said data binding and can be used

to dynamically set a text within the template block to match the corresponding data

property of the script block. (Template Syntax 2021.) An SFC can only contain a single

template block at a time (Vue Single-File Component Spec n.d.).

26

The JavaScript based script block is used to enclose an options object, which holds in-

formation about the data and logic (e.g., data properties and methods) of the com-

ponent. The data property of the options object is a function that returns an object,

which is then called when the state changes and referenced when the view is being

re-rendered. (Data Properties and Methods 2020.) An SFC can only contain a single

script block at a time (Vue Single-File Component Spec n.d.).

The CSS based style block is used to style elements within the template block and can

be encapsulated to the scope of the component with scoped CSS. An SFC can contain

multiple style blocks at the same time with both local and global CSS declarations.

(Vue Single-File Component Spec n.d.)

3.3.3 Pre-Processors

Vue Loader allows the use of CSS pre-processors like Sass within the style block of an

SFC. To use a pre-processor, a corresponding loader needs to be installed via npm or

Yarn and the lang attribute of the style block needs to be set. (See Figure 8.) If the

option to use a pre-processor is selected during the interactive prompts of the pro-

ject creation process, these configurations are processed automatically by the Vue

CLI with no additional configuration needed (Working with CSS 2021).

Figure 8. Using pre-processors within a style block of an SFC (Information from Using

Pre-Processors n.d.)

27

When using a pre-processor, it is possible to share variables and files among all SFCs

via a corresponding loader option instead of having to explicitly import them in every

file. This can be achieved by creating an optional vue.config.js-file to the root of the

project and passing the corresponding option (e.g., prependData with Sass) to the

loader under css.loaderOptions. When using Sass, it should be noted that while the

loader is configured to parse both Sass and SCSS, the passed loader option still needs

to follow the syntax conventions of the respective syntax. (See Figure 9.)

Figure 9. Sharing variables by directly passing options to a loader (Information from

Working with CSS 2021)

3.3.4 Scoped CSS

Vue Loader allows the use of a scoped attribute within a style block of an SFC, which

will limit the scope of the CSS declared within the style block to that component. This

prevents the style declarations of a parent component from leaking into child com-

ponents. (Scoped CSS n.d.) While using separate style blocks for local and global CSS

is possible, the root node of a child component can also be affected from a style

block of a parent component with the scoped attribute by using a deep selector >>>,

/deep/ or ::v-deep, with the latter two being aliases of the former meant to be used

with pre-processors that cannot parse the >>> selector properly (See Figure 10).

28

Figure 10. Using a deep selector within a scoped style block of an SFC (Information

from Scoped CSS n.d.)

3.4 Directives

3.4.1 General

Vue uses directives to declaratively bind logic to the elements of the DOM. These di-

rectives manifest as prefixed HTML attributes, that can be broken down to the form

<element prefix-directiveID[:argument][=’expression’]></element>, where the prefix

parameter is always v, the directiveID parameter determines the type of action the

directive should perform, the argument parameter determines e.g., the type of event

or attribute the element should respond to or be bound with respectively, while the

expression parameter refers to the data or logic (e.g., a data property or a method)

used to resolve the directive during execution. The parameters enclosed in [] are ei-

ther optional or situational depending on the given directive. (Directives n.d.)

3.4.2 Conditional rendering

The directives v-if, v-else and v-else-if can be used to conditionally render elements

that only need to be rendered in certain situations. This can be achieved by passing

an expression to the v-if directive, which causes the element to be rendered or ig-

nored during compilation when the expression is truthful or untruthful, respectively.

29

(Conditional Rendering 2020.) The element with the v-if directive can then be imme-

diately succeeded by an element with either the v-else or v-else-if directive or if ele-

ments with both directives are present, the element with the v-else-if directive must

precede the element with the v-else directive (See Figure 11). The v-else directive

does not expect an expression and can be used to render an alternative element

when the v-if directive of the preceding element resolves as untruthful, whereas the

v-else-if directive does the same but expects an expression of its own to resolve as

truthful to be rendered. (Conditional Rendering 2020.)

Figure 11. Conditionally rendering elements with the v-if directive (Information from

Conditional Rendering 2020)

3.4.3 Attribute binding

The v-bind directive can be used to dynamically bind attributes to elements and

props to child components. The directive expects an argument representing an at-

tribute (e.g., src or key) or a prop and an expression representing the value of said at-

tribute or prop. (See Figure 12.) Alternatively, an object of attributes can be passed

30

to the directive, which allows the argument part of the directive to be omitted (Di-

rectives 2020). HTML classes can also be dynamically bound with the class attribute

by using the argument-based syntax and passing an object containing class and data

property pairs to the directive, with truthiness of the data property determining the

presence of the class (Class and Style Bindings 2021). The v-bind directive also has a

shorthand :, which can be used to omit the v-bind keyword but cannot be used when

binding an object of attributes due to a syntactic incompatibility. (Directives 2020.)

Figure 12. Binding attributes to elements with the v-bind directive (Information from

Directives 2020)

3.4.4 Iterative rendering

The v-for directive can be used to iterate over the items of an array or the properties

of an object and render them. The directive expects an expression in the form of ex-

ample in examples, where the example parameter serves as an alias for the current

iteration, the in parameter serves as a delimiter and the examples parameter is the

31

iterable object. (See Figure 13.) An optional index parameter in the form of (example,

index) in examples can be used to access the index of the iteration, while the in de-

limiter can be substituted with an of delimiter to match the for…of statement of Ja-

vaScript (List Rendering 2021). When using the v-for directive, a unique key attribute

should be bound to each direct child of the element it is used on to help the Virtual

DOM algorithm of Vue minimize element movement during re-rendering (List Ren-

dering 2021; Special Attributes 2020), while using the v-if directive on the same ele-

ment should be avoided due to its higher priority causing it being unable to access

variables from the scope of the v-for directive (List Rendering 2021).

Figure 13. Iteratively rendering the items of an array with the v-for directive (Infor-

mation from List Rendering 2021)

3.4.5 Event handling

The v-on directive can be used to attach an event listener to an element, which al-

lows the execution of JavaScript in response to user action. The directive expects an

argument representing an event type (e.g., click or keydown) and an expression rep-

resenting the logic said event should trigger (e.g., a method or an inline statement).

32

(See Figure 14.) The v-on directive supports optional event modifiers, which allow

event interface methods (e.g., preventDefault and stopPropagation) to be called au-

tomatically when the event is triggered by adding a corresponding postfix (e.g., .pre-

vent and .stop) to the directive. Key modifiers for keyboard events are also sup-

ported, which allow specific keys to be listened by converting the respective key

value (e.g., Enter, Page Down) to the kebab-case format (e.g., .enter, .page-down)

and adding the converted value as a postfix to the directive. The v-on directive also

has a shorthand @, which can be used to omit the v-on keyword and the : preceding

the argument, enabling concise syntax. (Event Handling 2020.)

Figure 14. Handling events with the v-on directive (Information from Event Handling

2020)

3.5 Vue Router

3.5.1 General

The official router implementation specifically designed for Vue that provides dy-

namic component-based routing and different history modes to accommodate for

different use cases (Introduction n.d.c.). Since applications created with the Vue CLI

33

are composed out of components, using the Vue Router to map the components to

specific routes is a logical and powerful way to approach navigation in a Vue SPA

(Getting Started n.d.b.).

3.5.2 Creating a router

To use Vue Router, a router instance needs to be created and injected to the root

component of the project, which allows the router to be accessed from all compo-

nents that are children of said component (Getting Started n.d.b.). A router instance

can be created by using the createRouter function and passing in an options object

containing a history function and a routes array, which are used for specifying the

history mode and the route configurations, respectively (See Figure 15). If the option

to use Vue Router is selected during the interactive prompts of the project creation

process, the router instance is created automatically by the Vue CLI and can be found

from src/router/index.js.

Figure 15. Creating a Vue Router instance (Information from Getting Started n.d.b.)

34

The root component of the project can be specified by using the createApp function

and passing the component (e.g., App.vue) as an option, which can then be immedi-

ately followed by the router injection achieved by using the use function and passing

the created router as an option (See Figure 16). If the option to use Vue Router is se-

lected during the interactive prompts of the project creation process, the router is

injected to the root component of the project automatically by the Vue CLI and the

configuration can be found from src/main.js.

Figure 16. Injecting a Vue Router instance (Information from Getting Started n.d.b.)

Vue Router supports different history modes, namely the Hash Mode and the HTML

Mode, which both have their benefits and drawbacks. The Hash Mode that is created

with the function createWebHashHistory uses a # character preceding the path (e.g.,

https://www.exampledomain.com/#/example-sub-path), which allows the route to

be passed within the web application or website without being sent to the server.

This is a workaround that has a negative impact on SEO but allows the otherwise nec-

essary server-side configurations to be circumvented (Different History modes n.d.).

The HTML Mode that is created with the function createWebHistory allows the use of

a regular SEO friendly URL (e.g., https:/www.exampledomain.com/example-sub-

path), but requires additional configuration on the server-side to prevent 404 errors

when trying to access specific routes of the web application or website directly (Dif-

ferent History modes n.d.). This can be achieved by implementing a catch-all fallback

route to the server, which will serve the index.html-file of the project when a 404 er-

ror occurs (See Figure 17). However, this is not a perfect solution as the server will no

35

longer report 404 errors at all if a certain route does not exist. To solve this issue, a

catch-all route in the form of { path: ‘/:pathMatch(.*)’, component: () => im-

port(‘../views/ExampleComponent’) } should be implemented to serve a dedicated

404 webpage (Different History modes n.d.).

Figure 17. Apache catch-all fallback route configuration (Information from Different

History modes n.d.)

Furthermore, if the project needs to be deployed at a sub-path (e.g.,

https://www.exampledomain.com/example-sub-path/) instead of the root of a do-

main, the base URL of the server configuration (e.g., RewriteBase / when using

Apache) needs to reflect the value of the publicPath option of the vue.config.js-file

(e.g., RewriteBase /example-sub-path/ when using Apache) and must be passed as a

parameter to the function used to create the history mode. (Different History modes

n.d.; API Reference n.d.)

3.5.3 Using a router

The router-link custom component can be used to create links that allow the URL of

the webpage to be changed without reloading the webpage by using the to attribute

to specify the path, while the router-view custom component can be used to display

the component that is mapped to said path (See Figure 18). The router instance can

be accessed via a method with this.$router and then be used in conjunction with the

https://www.exampledomain.com/example-sub-path/

36

JavaScript push method to navigate to another path, while the dynamic properties of

the current path can be accessed by returning a param via a computed property with

this.$route.params (Getting Started n.d.b.).

Figure 18. Using the Vue Router to navigate to another path (Information from Get-

ting Started n.d.b.)

3.6 Vuex

3.6.1 General

The official Flux-like state management pattern specifically designed for Vue that

provides a uniform state for all the components in an application. Vuex promotes

one-way data flow that ensures predictable state mutations and enables easier com-

munication between components, which results in more maintainable code in me-

dium to large sized projects at the cost of more concepts to learn and boilerplate to

write. (What is Vuex? 2021.)

37

3.6.2 Creating a store

To use Vuex, a store instance needs to be created and injected to the root compo-

nent of the project, which allows the store state to be accessed from all components

that are children of said component. (Getting Started 2021.) A store instance can be

created by using the createStore function and passing in an options object containing

a state object, a getters object, a mutations object, and an actions object, which are

used for storing the state, storing the computed state, synchronous mutation of the

state and asynchronous mutation of the state, respectively (See Figure 19). If the op-

tion to use Vuex is selected during the interactive prompts of the project creation

process, the store instance is created automatically by the Vue CLI and can be found

from src/store/index.js.

Figure 19. Creating a Vuex store instance (Information from Getting Started 2021;

Getters 2021; Mutations 2021; Actions 2021)

38

The root component of the project can be specified by using the createApp function

and passing the component (e.g., App.vue) as an option, which can then be immedi-

ately followed by the store injection achieved by using the use function and passing

the created store as an option (See Figure 20). If the option to use Vuex is selected

during the interactive prompts of the project creation process, the store is injected

to the root component of the project automatically by the Vue CLI and the configura-

tion can be found from src/main.js.

Figure 20. Injecting a Vuex store instance (Information from Getting Started 2021)

3.6.3 Using a store

The store instance can be accessed from a component by returning a state or a get-

ter property via a computed property with this.$store.state and this.$store.getters

respectively, while committing a mutation or dispatching an action can be achieved

via a method with this.$store.commit and this.$store.dispatch respectively (State

2021; Getters 2021; Mutations 2021; Actions 2021).

The mapState and mapGetters helper functions can be used to map store state or

getter properties to the local computed properties of the component (State 2021;

Getters 2021), e.g., this.$store.state.exampleProperty can be mapped to this.exam-

pleProperty (See Figure 21), while the mapMutations and mapActions helper func-

tions can be used to map mutations and actions to the local methods of the compo-

39

nent, e.g., this.$store.commit(‘exampleMutation’) can be mapped to this.example-

Mutation(), which significantly reduces boilerplate when multiple store properties

are needed within a single component (Mutations 2021; Actions 2021).

Figure 21. Using the Vuex mapState helper function (Information from State 2021)

3.7 Omega

The Omega chapter serves as the closing chapter of the learning tool and its main

goal is to offer well informed recommendations on how the user can expand their

knowledge of Vue beyond the concepts covered in the learning tool. These are con-

cepts that are not necessary for standard Vue development but could prove useful in

certain situations. The following concepts are covered in this chapter.

40

3.7.1 TypeScript

An open-source extension to the JavaScript language that adds static type definitions

and makes it possible to catch and fix errors even before running the code. Type-

Script is a superset of JavaScript that is transcompiled into JavaScript by either the

TypeScript compiler or Babel. (What is TypeScript? 2020.) This means that all valid Ja-

vaScript is also valid TypeScript, which makes learning the language easier with prior

experience with the former, as neglecting TypeScript syntax conventions does not

prevent the transcompiled JavaScript code from being executed, but instead pro-

duces type-checking errors that can be fixed afterwards to preserve code integrity

(TypeScript for the New Programmer 2020).

According to the Stack Overflow developer survey 2020, TypeScript is the second

most loved and one of the most wanted programming languages of 2020 (Stack

Overflow Developer Survey 2020 2020), which suggests that TypeScript has success-

fully established itself as one of the premiere programming languages for web appli-

cation development. As mentioned in chapter 2.2, Vue 3 is a complete rewrite of the

Vue codebase in TypeScript, which allows Vue to provide an enhanced support for

TypeScript going forward. This means that while using TypeScript with Vue is still op-

tional, doing so is now easier and more justifiable than ever before.

3.7.2 Server-Side Rendering

Vue is typically used to develop client-side web applications and websites made from

components that manipulate the DOM in the browser, but the same can be done on

the server-side by rendering the components into HTML and then sending them to

the browser. When compared to a typical SPA, the benefits of SSR lie in better SEO

due to search engines seeing the fully rendered webpage and faster time-to-content

since a webpage rendered with SSR does not need to wait for JavaScript to be down-

41

loaded and executed. However, SSR does have some drawbacks including develop-

ment constraints with certain external libraries, more complex deployment require-

ments and more server-side load, since rendering a whole web application or web-

site is more CPU-intensive than serving the static files of a SPA. (Vue.js Server-Side

Rendering Guide n.d.)

Furthermore, setting up a properly configured server-rendered web application or

website can be significantly more complex than setting up a regular client-side SPA

due to several deployment requirements. Quasar Framework (subsequently Quasar)

is a higher-level framework based on the Vue ecosystem that aims to streamline the

development of Vue server-rendered web applications and websites. (Server-Side

Rendering n.d.). The other underlying technologies of Quasar include Capacitor, Cor-

dova, Electron, Node.js and webpack, but having experience with these technologies

is not required as they are all integrated and configured by default (Why Quasar?

n.d.). This means that a person with client-side Vue experience obtained from the

learning tool can start learning Quasar immediately without having to learn any

other additional technologies, which makes Quasar an attractive and justifiable op-

tion going forward.

4 Creation of the learning tool

4.1 Design

The created learning tool is a web application with support for the PWA functionality,

which allows the learning tool to be used on any device with a standards-compliant

browser, including desktop computers, laptops, tablets, and smartphones. An active

internet connection is required for the initial installation and for the first two chap-

ters of the learning tool which include additional software and package installations,

42

while the rest can be explored offline since the PWA functionality allows the learning

tool to be cached to the used browser. The UI of the learning tool features transpar-

ent boxes over a starscape in the shades of blue and green found in official logo of

Vue (See Figure 22).

Figure 22. Chapter 1 of the learning tool viewed in a browser

To properly support the PWA functionality on a multitude of devices, a set of icons in

specific sizes and formats was designed. These icons portray the name of the learn-

ing tool, Vue Master, in a formation that creates a layered silhouette of the letters V

and M to form an icon that is reminiscent to the original logo of Vue. The set includes

icons in sizes 512x512, 192x192, 180x180, 150x150, 32x32, 16x16 and an all-black

version of the largest icon in the SVG format. The 512x512 and 192x192 icons are

used by Google Chrome via a manifest.json-file, the 180x180 icon has a background

is used by some iOS-based devices, the 150x150 icon is used by some Windows-

based devices via a browserconfig.xml-file, the 32x32 icon is used by Safari and the

16x16 icon is used by older browsers which cannot use the other higher quality icons,

while the SVG icon is used for the pinned tab functionality of Safari. (See Figure 23.)

43

Figure 23. The set of icons designed for the learning tool

4.2 Implementation

The learning tool was created by using the Vue CLI to initialize a Vue 3 based project

with support for Babel, PWA, Vue Router, Vuex, Pre-processors and ESLint. The

Flexbox-based CSS Framework Bulma was also added to the project to help realize a

responsive UI for the learning tool, while Sass was used as the pre-processor to com-

plement Bulma and its modular capabilities. Yarn was selected as the package man-

ager for the project due to its more concise syntax over npm, while the Airbnb con-

figuration of ESLint was used to ensure code integrity.

The route configuration of the learning tool consists of three main routes, with one

of them having a path with the dynamic property id, which is used to dynamically

render all the individual chapters with just a single route and a single component.

This is achieved by utilizing links that will pass the number of the target chapter as a

parameter (e.g., 1, 2, 3) to a method, which will construct the path of the route by

utilizing the given parameter and then navigate to the route by using this.$router in

conjunction with the JavaScript push() method. (See Figure 24.)

44

Figure 24. The route configuration of the learning tool

The route will render a Chapter component, which will access the value of the id

property of the path by returning it as a param via a computed property with

this.$route.params.id. This allows the component to utilize the id property as an in-

dex to retrieve the resources of the corresponding chapter via a multidimensional ar-

ray containing the resources as objects of key and value pairs, where the key repre-

sents the type of the resource (e.g., text, image) and the value is the actual resource

(e.g., a paragraph of text, an image file). The retrieved resources are then iteratively

rendered by using the v-for directive in conjunction with the v-if family of directives

to distribute the resources to corresponding elements (e.g., p element for a text, img

element for an image).

4.3 Testing

To test the performance, accessibility, utilization of best practices, SEO, and support

for the PWA functionality of the created learning tool, the web application was

served via the Student-server of JAMK and then audited for both mobile and desktop

by using the Lighthouse audition tool (See Figure 25). According to the results of the

audition, the performance of the learning tool scored 81 and 98 points on mobile

45

and desktop respectively, with the most significant improvements being attainable

by adding preload key requests, which allow the optimization of the resource request

chain. The SEO of the learning tool scored 92 points on both mobile and desktop,

which is a great result considering that the learning tool currently relies on the Hash

Mode of the Vue Router, which has a negative impact on SEO. The accessibility, utili-

zation of best practices and support for the PWA functionality of the learning tool

were all excellent, with the former two scoring a perfect 100 on both mobile and

desktop, while the support for the PWA functionality scored three out of three in

fastness and reliability, three out of three in installability and seven out of eight in

PWA optimization.

Figure 25. Lighthouse audition results of the learning tool in the mobile test

5 Results

As mentioned in chapter 1, the goal of the thesis was to engineer an accessible and

efficient learning tool in the form of a web application, which could be used to edu-

cate the most important and select additional features of the Vue ecosystem to an

employee or a trainee more efficiently than the official documentation by focusing

46

specifically on SPA development with the Vue CLI and the SFC syntax instead of the

regular syntax used in the official documentation to mitigate any possible opportuni-

ties for misinterpretation.

This goal was fulfilled by creating a PWA and by carefully selecting the concepts dis-

cussed in the learning tool by critically evaluating the official documentation of each

individual API and designing the content and UX of the learning tool based on the

findings to build a concise, consistent, and efficient documentation covering the ba-

sics from the perspective of a Vue CLI and SFC syntax user, which eliminated the

need to interpret the official documentation and the importance of each concept

covered by it on a case-by-case basis. However, to provide tangible evidence of the

claimed efficiency improvements, direct comparisons between the official documen-

tation of each individual API and the learning tool must be made. The following ob-

servations exhibit the various ways these improvements have been achieved.

The learning tool focuses on web application development with the Vue CLI, which

allows sophisticated SPAs to be built with the help of Vue SFCs. The Vue SFCs use a

syntax that differs from the regular Vue syntax used in the official documentation,

which means that users of the Vue CLI must interpret the official documentation and

adapt their code in a corresponding manner. This leaves room for user error and has

a negative impact on DX if the user is unable to interpret the official documentation

correctly. The learning tool solves this problem by presenting all concepts from the

perspective of a Vue CLI user and by using the SFC syntax for all code examples.

Furthermore, since the official documentation of each individual API in the ecosys-

tem is a collaborative effort by different contributors, the used vocabulary and the

presentation of the code examples suffer from consistency issues. This problem is

solved in the learning tool by using consistent vocabulary across all discussed con-

cepts and by providing meticulously designed and uniform code examples that follow

47

the rulesets outlined in the official Vue style guide and by the Airbnb configuration of

ESLint. When creating the code examples, minimal commenting was applied to allow

the code examples to be purely about logic, while the theoretical basis needed to un-

derstand the code examples is provided in the preceding paragraphs.

Another existing problem in the official documentation is the introduction of con-

cepts that require knowledge of another concept to be executed in the recom-

mended way, e.g., in the directive section of the documentation, the v-for directive is

introduced before the v-bind directive. This is counterproductive, as the proper use

of the v-for directive requires a key attribute to be bound to the direct child elements

of the element with the v-for directive. The learning tool solves this problem by intro-

ducing concepts in a logical order to avoid any confusion caused by such situations.

When configuring the Vue Router and Vuex, it became inherently apparent that the

configurations outlined in official documentations for both APIs and the actual con-

figurations applied by the Vue CLI do not align with one other. This is since the Vue

CLI resorts to a more modular approach and splits the configurations over multiple

files, which results in more concise syntax when both APIs are used due to the over-

lap in the configuration when injecting the respective router or store instance to the

root component of the project. The learning tool provides a consistent configuration

style for both APIs that avoids the unnecessary confusion caused by the inconsistent

documentation and manages to provide a solution that is more efficient than either

of the configurations outlined in their respective documentations.

6 Conclusion

Based on the results outlined in chapter 5, the original goals of the thesis set by the

client Zaibatsu Interactive Oy were achieved by creating an accessible and efficient

48

learning tool in the form of a PWA, which provides all the basics needed for web ap-

plication development with the Vue ecosystem by using the Vue CLI and the SFC syn-

tax as the basis of the learning tool. Additional benefits were also achieved by provid-

ing a critical comparison to the direct competitors of Vue, support for setting up the

development environment, recommendations about useful development tools and

suggestions about learning other worthwhile technologies that complement Vue.

While the engineering of a web application can be thought as a relatively easy task

on its own, attempting to optimize the configuration and use of an entire technologi-

cal ecosystem was an ambitious and daunting undertaking. However, the process

proved to be extremely valuable from the perspective of developing personal profes-

sional skills, since optimizing and documenting the individual aspects of the Vue eco-

system required extensive familiarization of the concepts and mastery of the special

terminology. While keeping the information of the learning tool up to date will re-

quire additional resources in the future, doing so provides an easy way to familiarize

a new employee or trainee with the most important features of the Vue ecosystem.

49

References

Actions. 2021. Official Vuex documentation about actions. Accessed on 31 January
2021. Retrieved from https://next.vuex.vuejs.org/guide/actions.html.

Adamakis, F. 2020. Vue Virtual Dom. An article about the Vue Virtual DOM. Accessed
on 23 Decemeber 2020. Retrieved from https://medium.com/js-dojo/vue-virtual-
dom-13af62d2be41.

API Reference. N.d. Official Vue Router API Reference. Accessed on 6 February 2021.
Retrieved from https://next.router.vuejs.org/api/.

Borrelli, P. 2019. Angular vs. React vs. Vue: A performance comparison. A blogpost
comparing JavaScript frameworks. Accessed on 22 December 2020. Retrieved from
https://blog.logrocket.com/angular-vs-react-vs-vue-a-performance-comparison/.

Browser Compatibility. 2020. Official Vue CLI documentation about browser compati-
bility. Accessed on 14 January 2021. Retrieved from
https://cli.vuejs.org/guide/browser-compatibility.html#modern-mode.

Class and Style Bindings. 2021. Official Vue documentation about class and style
bindings. Accessed on 28 January 2021. Retrieved from
https://v3.vuejs.org/guide/class-and-style.html.

CLI Service. 2020. Official Vue CLI documentation about the CLI Service. Accessed on
9 January 2021. Retrieved from https://cli.vuejs.org/guide/cli-service.html.

Comparison with Other Frameworks. N.d. Official comparison by the Vue community
to competing frameworks. Accessed on 23 December 2020. Retrieved from
https://vuejs.org/v2/guide/comparison.html.

Conditional Rendering. 2020. Official Vue documentation about conditional
rendering. Accessed on 24 January 2021. Retrieved from
https://v3.vuejs.org/guide/conditional.html.

Configuration Reference. 2020. Official Vue CLI documentation about configuration.
Accessed on 15 January 2021. Retrieved from https://cli.vuejs.org/config/.

Creating a Project. 2019. Official Vue CLI documentation about creating a project.
Accessed on 4 January 2021. Retrieved from https://cli.vuejs.org/guide/creating-a-
project.html#vue-create.

https://next.vuex.vuejs.org/guide/actions.html
https://medium.com/js-dojo/vue-virtual-dom-13af62d2be41
https://medium.com/js-dojo/vue-virtual-dom-13af62d2be41
https://next.router.vuejs.org/api/
https://blog.logrocket.com/angular-vs-react-vs-vue-a-performance-comparison/
https://cli.vuejs.org/guide/browser-compatibility.html#modern-mode
https://v3.vuejs.org/guide/class-and-style.html
https://cli.vuejs.org/guide/cli-service.html
https://vuejs.org/v2/guide/comparison.html
https://v3.vuejs.org/guide/conditional.html
https://cli.vuejs.org/config/
https://cli.vuejs.org/guide/creating-a-project.html#vue-create
https://cli.vuejs.org/guide/creating-a-project.html#vue-create

50

Cromwell, V. 2016. Evan You. Interview with Evan You, the creator of Vue.js.
Accessed on 23 December 2020. Retrieved from
https://web.archive.org/web/20170603052649/https://betweenthewires.org/2016/
11/03/evan-you/.

Daityari, S. 2020. Angular vs React vs Vue: Which Framework to Choose in 2021. A
blogpost comparing JavaScript frameworks. Accessed on 22 December 2020.
Retrieved from https://www.codeinwp.com/blog/angular-vs-vue-vs-react/.

Data Properties and Methods. 2020. Official Vue documentation about data
properties and methods. Accessed on 20 January 2021. Retrieved from
https://v3.vuejs.org/guide/data-methods.html#data-properties.

Deployment. 2020. Official Vue CLI documentation about deployment. Accessed on 9
January 2021. Retrieved from https://cli.vuejs.org/guide/deployment.html.

Different History modes. N.d. Official Vue Router documentation about history
modes. Accessed on 4 February 2021. Retrieved from
https://next.router.vuejs.org/guide/essentials/history-mode.html.

Directives. 2020. Official Vue API reference about directives. Accessed on 27 January
2021. Retrieved from https://v3.vuejs.org/api/directives.html.

Directives. N.d. Official Vue documentation about directives. Accessed on 23 January
2021. Retrieved from https://012.vuejs.org/guide/directives.html.

Ellingwood, J. 2014. How To Use npm to Manage Node.js Packages on a Linux Server.
A tutorial on how to manage Node.js packages. Accessed on 28 December 2020.
Retrieved from https://www.digitalocean.com/community/tutorials/how-to-use-
npm-to-manage-node-js-packages-on-a-linux-server.

Event Handling. 2020. Official Vue documentation about event handling. Accessed on
26 January 2021. Retrieved from https://v3.vuejs.org/guide/events.html.

Getters. 2021. Official Vuex documentation about getters. Accessed on 31 January
2021. Retrieved from https://next.vuex.vuejs.org/guide/getters.html.

Getting Started. 2021. Official Vuex documentation about setup. Accessed on 30
January 2021. Retrieved from https://next.vuex.vuejs.org/guide/.

Getting Started. N.d.a. Official Vue Loader documentation about setup. Accessed on
16 January 2021. Retrieved from https://vue-loader.vuejs.org/guide/.

https://web.archive.org/web/20170603052649/https:/betweenthewires.org/2016/11/03/evan-you/
https://web.archive.org/web/20170603052649/https:/betweenthewires.org/2016/11/03/evan-you/
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://v3.vuejs.org/guide/data-methods.html#data-properties
https://cli.vuejs.org/guide/deployment.html
https://next.router.vuejs.org/guide/essentials/history-mode.html
https://v3.vuejs.org/api/directives.html
https://012.vuejs.org/guide/directives.html
https://www.digitalocean.com/community/tutorials/how-to-use-npm-to-manage-node-js-packages-on-a-linux-server
https://www.digitalocean.com/community/tutorials/how-to-use-npm-to-manage-node-js-packages-on-a-linux-server
https://v3.vuejs.org/guide/events.html
https://next.vuex.vuejs.org/guide/getters.html
https://next.vuex.vuejs.org/guide/
https://vue-loader.vuejs.org/guide/

51

Getting Started. N.d.b. Official Vue Router documentation about setup. Accessed on
2 February 2021. Retrieved from https://next.router.vuejs.org/guide/.

GitHub repository for Angular. 2020. GitHub repository for the JavaScript framework
Angular. Accessed on 23 December 2020. Retrieved from
https://github.com/angular/angular.

GitHub repository for AngularJS. 2021. GitHub repository for the JavaScript
framework AngularJS. Accessed on 5 January 2021. Retrieved from
https://github.com/angular/angular.js/.

GitHub repository for Node.js. 2020. GitHub repository for the JavaScript runtime
Node.js. Accessed on 28 December 2020. Retrieved from
https://github.com/nodejs/node.

GitHub repository for React. 2020. GitHub repository for the JavaScript framework
React. Accessed on 23 December 2020. Retrieved from
https://github.com/facebook/react.

GitHub repository for serve. 2021. GitHub repository for the JavaScript module serve.
Accessed on 14 January 2021. Retrieved from https://github.com/vercel/serve.

GitHub repository for Vue 2. 2020. GitHub repository for the JavaScript framework
Vue 2. Accessed on 23 December 2020. Retrieved from
https://github.com/vuejs/vue.

GitHub repository for Vue 3. 2020. GitHub repository for the JavaScript framework
Vue 3. Accessed on 23 December 2020. Retrieved from
https://github.com/vuejs/vue-next.

GUI. 2018. Creating a new project with GUI of the Vue CLI. Accessed on 4 January
2021. Retrieved from https://cli.vuejs.org/ui-new-project.png.

Installation. 2020. Official Vue CLI documentation about installation. Accessed on 29
Decemeber 2020. Retrieved from https://cli.vuejs.org/guide/installation.html.

Introduction. N.d.a. Official Vue documentation. Accessed on 23 December 2020.
https://vuejs.org/v2/guide/index.html.

Introduction. N.d.b. Official Vue Loader documentation. Accessed on 16 January
2021. Retrieved from https://vue-loader.vuejs.org/.

Introduction. N.d.c. Official Vue Router documentation. Accessed on 2 February
2021. Retrieved from https://next.router.vuejs.org/introduction.html.

https://next.router.vuejs.org/guide/
https://github.com/angular/angular
https://github.com/angular/angular.js/
https://github.com/nodejs/node
https://github.com/facebook/react
https://github.com/vercel/serve
https://github.com/vuejs/vue
https://github.com/vuejs/vue-next
https://cli.vuejs.org/ui-new-project.png
https://cli.vuejs.org/guide/installation.html
https://vuejs.org/v2/guide/index.html
https://vue-loader.vuejs.org/
https://next.router.vuejs.org/introduction.html

52

JavaScript frameworks. N.d. JavaScript frameworks Angular, React and Vue. Accessed
on 23 December 2020. Retrieved from
https://miro.medium.com/max/6000/1*4OgqQRDfBtrftDNJrVHbHw.png.

Kelch, D. 2020. Three Reasons to Use Yarn in 2020 (and Beyond). A blogpost about
the benefits of using Yarn. Accessed on 28 December 2020. Retrieved from
https://spin.atomicobject.com/2020/03/15/why-yarn-2020/.

List Rendering. 2021. Official Vue documentation about list rendering. Accessed on
25 January 2021. Retrieved from https://v3.vuejs.org/guide/list.html.

Meet the Team. N.d. Introduction of the active core team members. Accessed on 23
December 2020. Retrieved from https://vuejs.org/v2/guide/team.html.

Muminovic, A. 2019. Alternative Package Managers For Node.js. An article about
alternative package managers for Node.js. Accessed on 19 January 2021. Retrieved
from https://medium.com/maestral-solutions/alternative-package-managers-for-
node-js-f52805b98064.

Mutations. 2021. Official Vuex documentation about mutations. Accessed on 31
January 2021. Retrieved from https://next.vuex.vuejs.org/guide/mutations.html.

Neagoie, A. 2018. Tech Trends Showdown: React vs Angular vs Vue. A blogpost com-
paring JavaScript frameworks. Accessed on 23 December 2020. Retrieved from
https://zerotomastery.io/blog/tech-trends-showdown-react-vs-angular-vs-vue/.

Overview. 2019. Official Vue CLI documentation. Accessed on 29 December 2020.
Retrieved from https://cli.vuejs.org/.

Pile, D. 2019. Is there any harm in using NPM and Yarn in the same project?. An
answer to a Stack Overflow question. Accessed on 3 February 2021. Retrieved from
https://stackoverflow.com/questions/49589493/is-there-any-harm-in-using-npm-
and-yarn-in-the-same-project.

Scoped CSS. N.d. Official Vue Loader documentation about scoped CSS. Accessed on
18 January 2021. Retrieved from https://vue-loader.vuejs.org/guide/scoped-
css.html.

Server-Side Rendering. N.d. Official Vue documentation about server-side rendering.
Accessed on 4 January 2021. Retrieved from https://vuejs.org/v2/guide/ssr.html.

Shah, K. 2020. INFOGRAPHIC: Javascript Framework Faceoff - Angular vs React vs
Vue. A blogpost comparing JavaScript frameworks. Accessed on 22 December 2020.

https://miro.medium.com/max/6000/1*4OgqQRDfBtrftDNJrVHbHw.png
https://spin.atomicobject.com/2020/03/15/why-yarn-2020/
https://v3.vuejs.org/guide/list.html
https://vuejs.org/v2/guide/team.html
https://medium.com/maestral-solutions/alternative-package-managers-for-node-js-f52805b98064
https://medium.com/maestral-solutions/alternative-package-managers-for-node-js-f52805b98064
https://next.vuex.vuejs.org/guide/mutations.html
https://zerotomastery.io/blog/tech-trends-showdown-react-vs-angular-vs-vue/
https://cli.vuejs.org/
https://stackoverflow.com/questions/49589493/is-there-any-harm-in-using-npm-and-yarn-in-the-same-project
https://stackoverflow.com/questions/49589493/is-there-any-harm-in-using-npm-and-yarn-in-the-same-project
https://vue-loader.vuejs.org/guide/scoped-css.html
https://vue-loader.vuejs.org/guide/scoped-css.html
https://vuejs.org/v2/guide/ssr.html

53

Retrieved from https://www.thirdrocktechkno.com/blog/infographic-javascript-
framework-faceoff-angular-vs-react-vs-vue/.

Single File Components. 2020. Official Vue documentation about single-file compo-
nents. Accessed on 19 January 2021. Retrieved from https://v3.vuejs.org/guide/sin-
gle-file-component.html#introduction.

Special Attributes. 2020. Official Vue documentation about special attributes.
Accessed on 25 January 2021. Retrieved from https://v3.vuejs.org/api/special-
attributes.html.

Stack Overflow Developer Survey 2020. 2020. Results of the 2020 Developer Survey
conducted by Stack Overflow. Accessed on 30 December 2020. Retrieved from
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-
and-wanted-languages-loved.

Stack Overflow Developer Survey Results 2019. 2019. Results of the 2019 Developer
Survey conducted by Stack Overflow. Accessed on 23 December 2020. Retrieved
from https://insights.stackoverflow.com/survey/2019.

Star history. N.d. GitHub star history of Angular, React and Vue. Accessed on 22 De-
cember 2020. Retrieved from https://star-history.t9t.io/#angular/angular&face-
book/react&vuejs/vue.

State. 2021. Official Vuex documentation about state. Accessed on 31 January 2021.
Retrieved from https://next.vuex.vuejs.org/guide/state.html.

Template Syntax. 2021. Official Vue documentation about template syntax. Accessed
on 20 January 2021. Retrieved from https://v3.vuejs.org/guide/template-syn-
tax.html.

TypeScript for the New Programmer. 2020. Official TypeScript documentation about
learning the technology. Accessed on 30 December 2020. Retrieved from
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html.

Using Pre-Processors. N.d. Official Vue Loader documentation about pre-processors.
Accessed on 21 January 2021. Retrieved from https://vue-
loader.vuejs.org/guide/pre-processors.html.

v0.9.0: Animatrix. 2014. Release information for Vue v0.9.0 Animatrix. Accessed on
23 December 2020. Retrieved from
https://github.com/vuejs/vue/releases/tag/v0.9.0.

https://www.thirdrocktechkno.com/blog/infographic-javascript-framework-faceoff-angular-vs-react-vs-vue/
https://www.thirdrocktechkno.com/blog/infographic-javascript-framework-faceoff-angular-vs-react-vs-vue/
https://v3.vuejs.org/guide/single-file-component.html#introduction
https://v3.vuejs.org/guide/single-file-component.html#introduction
https://v3.vuejs.org/api/special-attributes.html
https://v3.vuejs.org/api/special-attributes.html
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2019
https://star-history.t9t.io/#angular/angular&facebook/react&vuejs/vue
https://star-history.t9t.io/#angular/angular&facebook/react&vuejs/vue
https://next.vuex.vuejs.org/guide/state.html
https://v3.vuejs.org/guide/template-syntax.html
https://v3.vuejs.org/guide/template-syntax.html
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://vue-loader.vuejs.org/guide/pre-processors.html
https://vue-loader.vuejs.org/guide/pre-processors.html
https://github.com/vuejs/vue/releases/tag/v0.9.0

54

v3.0.0 One Piece. 2020. Release information for Vue v3.0.0 One Piece. Accessed on
23 December 2020. Retrieved from https://github.com/vuejs/vue-
next/releases/tag/v3.0.0.

Vorback, P. 2018. Download statistics for packages. Download statistics for packages
angular, react and vue between December 2018 and December 2020. Accessed on
23 December 2020. Retrieved from https://npm-
stat.com/charts.html?package=angular&package=react&package=vue&from=2018-
12-01&to=2020-12-01.

Vue 1. N.d. Celebration illustration for Vue 1. Accessed on 23 Decemeber 2020.
Retrieved from https://web.archive.org/web/20170603082526im_/https://cdn-
images-1.medium.com/max/800/1*hvV2aJXo9vKsNXjYTzODWQ.png.

Vue 2. N.d. Celebration illustration for Vue 2. Accessed on 23 December 2020.
Retrieved from https://web.archive.org/web/20170603082527im_/https://cdn-
images-1.medium.com/max/800/1*Ea4hEK1X64TSYAu7Xlf-Kw.jpeg.

Vue 3. N.d. Celebration illustration for Vue 3. Accessed on 23 December 2020.
Retrieved from https://user-images.githubusercontent.com/499550/93624428-
53932780-f9ae-11ea-8d16-af949e16a09f.png.

Vue Single-File Component Spec. N.d. Official Vue Loader documentation about the
specification of a single-file component. Accessed on 20 January 2021. Retrieved
from https://vue-loader.vuejs.org/spec.html#intro.

Vue.js Server-Side Rendering Guide. N.d. Official Vue documentation about server-
side rendering. Accessed on 31 December 2020. Retrieved from
https://ssr.vuejs.org/#what-is-server-side-rendering-ssr.

What is TypeScript?. 2020. Official TypeScript documentation. Accessed on 30 De-
cember 2020. Retrieved from https://www.typescriptlang.org/.

What is Vuex?. 2021. Official Vuex documentation. Accessed on 30 January 2021.
Retrieved from https://vuex.vuejs.org/.

Why did we build Visual Studio Code?. 2020. Official Visual Studio Code documenta-
tion. Accessed on 29 December 2020. Retrieved from https://code.visualstu-
dio.com/docs/editor/whyvscode.

Why Quasar?. N.d. Official Quasar Framework documentation. Accessed on 4 Janu-
ary 2021. Retrieved from https://quasar.dev/introduction-to-quasar.

https://github.com/vuejs/vue-next/releases/tag/v3.0.0
https://github.com/vuejs/vue-next/releases/tag/v3.0.0
https://npm-stat.com/charts.html?package=angular&package=react&package=vue&from=2018-12-01&to=2020-12-01
https://npm-stat.com/charts.html?package=angular&package=react&package=vue&from=2018-12-01&to=2020-12-01
https://npm-stat.com/charts.html?package=angular&package=react&package=vue&from=2018-12-01&to=2020-12-01
https://web.archive.org/web/20170603082526im_/https:/cdn-images-1.medium.com/max/800/1*hvV2aJXo9vKsNXjYTzODWQ.png
https://web.archive.org/web/20170603082526im_/https:/cdn-images-1.medium.com/max/800/1*hvV2aJXo9vKsNXjYTzODWQ.png
https://web.archive.org/web/20170603082527im_/https:/cdn-images-1.medium.com/max/800/1*Ea4hEK1X64TSYAu7Xlf-Kw.jpeg
https://web.archive.org/web/20170603082527im_/https:/cdn-images-1.medium.com/max/800/1*Ea4hEK1X64TSYAu7Xlf-Kw.jpeg
https://user-images.githubusercontent.com/499550/93624428-53932780-f9ae-11ea-8d16-af949e16a09f.png
https://user-images.githubusercontent.com/499550/93624428-53932780-f9ae-11ea-8d16-af949e16a09f.png
https://vue-loader.vuejs.org/spec.html#intro
https://ssr.vuejs.org/#what-is-server-side-rendering-ssr
https://www.typescriptlang.org/
https://vuex.vuejs.org/
https://code.visualstudio.com/docs/editor/whyvscode
https://code.visualstudio.com/docs/editor/whyvscode
https://quasar.dev/introduction-to-quasar

55

Working with CSS. 2021. Official Vue CLI documentation about CSS. Accessed on 21
January 2021. Retrieved from https://cli.vuejs.org/guide/css.html.

Wu, P. 2020. Vetur. Visual Studio Code marketplace overview of Vetur. Accessed on
29 December 2020. Retrieved from
https://marketplace.visualstudio.com/items?itemName=octref.vetur.

https://cli.vuejs.org/guide/css.html
https://marketplace.visualstudio.com/items?itemName=octref.vetur

56

Appendices

Appendix 1. The package.json-file of the learning tool

	Terminology 7
	1 Introduction 11
	2 Vue.js 12
	3 Selected concepts of the learning tool 18
	4 Creation of the learning tool 41
	5 Results 45
	6 Conclusion 47
	References 49
	Appendices 56
	Terminology
	1 Introduction
	2 Vue.js
	2.1 History
	2.2 Present
	2.3 Comparisons
	2.3.1 Adoption
	2.3.2 Performance
	2.3.3 Popularity

	3 Selected concepts of the learning tool
	3.1 Alpha
	3.1.1 Node.js
	3.1.2 Yarn
	3.1.3 Visual Studio Code
	3.1.4 Vetur

	3.2 Vue CLI
	3.2.1 General
	3.2.2 Installation
	3.2.3 Creating a project
	3.2.4 Building a project

	3.3 Vue Loader
	3.3.1 General
	3.3.2 Single-File Components
	3.3.3 Pre-Processors
	3.3.4 Scoped CSS

	3.4 Directives
	3.4.1 General
	3.4.2 Conditional rendering
	3.4.3 Attribute binding
	3.4.4 Iterative rendering
	3.4.5 Event handling

	3.5 Vue Router
	3.5.1 General
	3.5.2 Creating a router
	3.5.3 Using a router

	3.6 Vuex
	3.6.1 General
	3.6.2 Creating a store
	3.6.3 Using a store

	3.7 Omega
	3.7.1 TypeScript
	3.7.2 Server-Side Rendering

	4 Creation of the learning tool
	4.1 Design
	4.2 Implementation
	4.3 Testing

	5 Results
	6 Conclusion
	References
	Appendices
	Appendix 1. The package.json-file of the learning tool

