

Thanh Le

Comparison of State Management
Solutions between Context API and
Redux Hook in ReactJS

Metropolia University of Applied Sciences

Bachelor of Engineering

Mobile Solution

Bachelor’s Thesis

31 March 2021

Abstract

Author: Thanh Le

Title: Comparison of State Management Solutions between

Context API and Redux Hook in ReactJS.

Number of Pages: 40 pages + 6 appendices

Date: 31 March 2021

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Mobile Solution

Instructors: Ilkka Kylmäniemi, Principal Lecturer

Comparison between Context API and Redux is to expand knowledge of the state
management methods behind React. The report will highlight the differences
between Context API and Redux. One of the targets is to point out the specific cases
of each compared state management method.

The methodology chosen for this report was to present how Context API or Redux
operate, do the comparison based on criteria, and make conclusions. As a result, the
study obtains a sufficient amount of data to analyse and verify the outcome that a
developer should have when choosing the state management method for the highest
application performance.

The result from the comparison illustrated that Context API seems to be suitable to
store simple data that are operating in a small scope while Redux performs better in
bigger applications. Besides that, Redux supplies a powerful tool to tracing states,
which empowers the developer to debug and control the action traffic.

However, this scope of the report does not confirm that the archived conclusions are
always correct in all cases. To reach more solid conclusions, more research would
need to be conducted and compared.

Finally, the thesis was successful in comparing and drawing conclusions of Context
API and Redux.

Keywords: React, Redux, Hooks, Context API, state managements

Contents

List of Abbreviations

1 Introduction
 6

2 React and State Managements
 7

2.1 React Overview 7

2.2 State management in React 8

2.3 Context API 8

2.4 Redux 9

2.4.1 Actions 10

2.4.2 Reducer 11

2.4.3 Store 11

3 Development Environment
 12

3.1 Developer tools 12

3.1.1 Figma 12

3.1.2 VScode 12

3.1.3 GIT 13

3.1.4 Chrome Dev tool 13

3.1.5 React DevTool 14

3.1.6 Redux DevTool 14

3.2 Technologies 16

4 Project discussion and implementation
 17

4.1 Project idea and discussion 17

4.2 State Management Solution 18

4.2.1 Context API 18

4.2.2 Redux Hooks 22

5 Comparison
 28

5.1 Implementation 28

5.2 Tracking the state changes 30

5.2.1 Context API 30

5.2.2 Redux store 31

5.3 Additional package installations 34

5.4 Code Complexity 35

5.5 Resources consumption 37

5.6 Processing speed 39

5.7 Scalability 40

6 Conclusion
 41

References 42

Appendices

Appendix 1: Context API in Me_Portfolio project

Appendix 2: Redux Hook in Me_Portfolio project

List of Abbreviations

JSX: JavaScript XML

DOM: Document Object Model

MPV: Model-View-Presenter

API: Application Programming Interface

UI: User Interface

HTML: HyperText Markup Language

CSS: Cascading Style Sheets

IDE: Integrated Development Environment

AJAX: Asynchronous JavaScript And XML

XML: Extensible Markup Language

MIT: Massachusetts Institute of Technology

JS: JavaScript

1

1 Introduction

Nowadays, there are many web technologies assisting web developers to build

up a user interface easily and React is known as the most used Javascript

Library.

React was first introduced in 2011 by Jordan Walke who was a software

engineer at Facebook [1]. As the technology used in the world's largest social

network, React was quickly known by the programming community around the

world. Moreover, a variety of React's powerful tools and features facilitates new

React programmers to learn and enhance their experience of programming

React applications. Until now, the concepts of virtual DOM, reusable

components, function component, MVP, one-way data flow, Hooks, JSX are no

longer unfamiliar to website developers.

The huge success of React is powered by advanced state management

methods such as Context API and Redux. These methods have innovated the

way that components communicate and share states through the component

tree. This fact promotes the developers to create maintainable and scalable

websites by separating different parts of logic and states that belong to a

specific component.

However, it is doubted that the latest React update, including Context API first

launch, will be a predicted finish of the Redux library. This report’s purpose is to

clarify Context API and Redux as the most popular data management methods

and compare the differences between them.

https://www.education-ecosystem.com/guides/programming/react-js/history

2

2 React and State Managements

2.1 React Overview

ReactJS is a JavaScript library and is generated for the purpose of building

reusable UI components. The components receive some inputs as props, which

will decide how the components are rendered. In React, a component could be

nested inside other components until forming a complete web, which builds up a

tree of components called the virtual DOM. Loads of web developers are using

React as the View in MVC model and run their apps on the Node server.

Finally, React is built on Flex as the application architecture of one way data

flow (also known as the unidirectional data flow) that means the data has only

one way to transfer from a component to another component of the React app.

[2.]

React Features

- JSX is a JavaScript syntax extension that allows React developers to

write HTML code and Javascript and in the same file [2] as App.jsx given

below:

function App () {

 const greeting = 'Hello Function Component!';

 return <h1>{greeting}</h1>;

}

export default App;

- Components: to build up an application with React, developers have to

brainstorm how to break the complex user interface into simpler

components. Components in React could be nested and reusable, which

facilitates the developer team to test, maintain and expand the codebase

while building up the project [2]. At the moment, there are 2 types of

components: class component and function component. To not extend

from React as in class components, in the practical project, the author

was only using function components to accept props and return a React

component.

https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.

3

- Hooks: to be introduced in the React 16.8 version. It allows programmers

to use state and other React features to write function components

instead of class components. Hooks are only innovated to manage states

and lifecycle features for function components only. [3.]

React Advantages

- The virtual DOM enhances the app performance since it is faster than

the regular DOM. [2.]

- React library achieves high compatibility to run on client side, server side

or with other frameworks. [2.]

React Limitations

- Since React is a library to render the view layer of the app, the

developers may search for other technologies to fulfil an architecture

tooling set for development. [2.]

- JSX is underestimated by the developer community due to its complexity

and consequent hard learning curve. [2.]

2.2 State management in React

It can be said that passing data through the component tree in React is quite

complicated. In order to receive data in a low-level component, the data has to

be transferred as props through many middle-level components unnecessarily,

which results in writing loads of extra code and giving the middle-level

components unused properties. To solve this problem, there are many state

management libraries, typically Context API - built into React version 16.8 and

Redux, providing the global state solutions that all components in the virtual

DOM are able to access. [4.]

https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts.
https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts.
https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native.
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component.
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component.
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component.

4

2.3 Context API

Compared to previous versions of React, the developers are more successful

based on a pattern of storing the state in a location at a tree root. All React

developers need to learn how to pass the states of the component tree down

and up through properties. However, this is no longer necessary and

appropriate as React evolved and the component tree became larger.

Maintaining state in a position at the root of the component tree for a complex

application is not easy for many developers. There are many bug-ridden

devices that appear when the developers pass the state of the tree both down

and up through numerous components. [5.]

Most of the developers work on complex user interfaces. The component trees

have many layers, the root of the tree and leaves are far apart. Therefore, the

data layers being spaced apart and all components must receive the props that

the upper layer only passes to its dependent. As a result, the code will be

bloated and UI harder to scale. [5.]

State data passed through every component as props, which will finish when

props reach the needing components. This is similar to traveling by train, the

passenger will pass through every state but they only leave the train until they

reach their destination. [5.]

In React, developers create the context provider to put context. The context

provider is a component of React that the developer can wrap a part or entire

component tree. A context provider is the starting point of data to different

points. Each destination is a component of React, which pulls data from context.

[5.] When developers use context, state data is stored in a location that passed

through the tree without having to pass props down unnecessary components

[5, 6].

5

2.4 Redux

Facebook’s Flux and functional programming language Elm is the inspiration for

Dan Abramov to create Redux around June 2015 [7]. Redux is working as a

predictable state container and usually used in JavaScript applications. Redux

helps the developers generate applications that can run in different

environments, operate consistently, and be easily checked. Developers can

also achieve a great experience such as time travel debugging combined with

live code editing when using redux. Moreover, Redux can be used at the same

time with React or any other view library. Redux has a large ecosystem of add-

ons, even though it is very small. [8.]

Figure 1. Data flows through a React/Redux application [9].

As shown in Figure 1, Redux is created based on three main factors including

action, reducer and store. Redux operation follows the unidirectional data flow

so that data in the app will follow in one-way binding data flow [10]. To be more

clear, Redux data flow includes 4 following steps [10]:

● User triggers an action by interacting with the application.

● The root reducer function is called with the current state and the

dispatched action. The root reducer may divide the task among smaller

reducer functions, which ultimately returns a new state.

● The store notifies the view by executing their callback functions.

● The view can retrieve updated state and re-render again.

https://www.tutorialspoint.com/redux/redux_data_flow.htm

6

2.4.1 Actions

Everything happens in the app including the data to complete the transaction is

stored in a historical record by Action's inspection. This makes it easier for

developers to maintain a grasp of complex applications. [9.]

- The payload of information that sends data from the developer's

application to the store called actions. The store has only one source of

information is actions. The structure of Action depends on the Developer.

[11.]

- Action must have type property. Type should be formatted as a string to

display what kind of action being performed. Developers capitalize and

use underscores as separators when using this property. [9, 11.]

2.4.2 Reducer

A Reducer is considered as a worker in a factory who will receive an action as a

guideline of what to do (see Figure 2).

Figure 2. An abstract representation of a reducer's function signature [9].

In Figure 2, Reducers means to point out states that should be updated after a

specific action executed. However, it is noticed that the actions only describe

what should happen - not how the state changes. Being pure functions, the

reducers receive both the previous state and an action to return the new

upgraded states. The same input and action has to always yield the same value

return. This helps developers to easily create tests for them. [9.]

7

2.4.3 Store

Reducers will be in charge of how to update state in response to an action, but

they are not able to do it directly and that belongs to the store’s responsibility.

In Redux, all states will be kept in a single place called store and therefore any

components are able to access directly to the store and archive the data. There

are some principles of store, which are:

● Keep application state.

● Allow components to archive the state.

● Provide a way to specify updates to state by dispatching an action.

● Allow any components to subscribe to changes of state.

After the reducer processes the action and computes the next state, it is time for

updating states in the store and broadcasting the new state to all related

components. [5.]

3 Development Environment

3.1 Developer tools

3.1.1 Figma

As an interface design application, Figma provides all the tools needed for the

design phase of any application interfaces. In addition, there are plenty of UI

resources available on Figma library so that it boosts up significantly the

process of designing for designers. [12.] While working on Figma to create the

design of Me_Portfolio project, the author tends to group UI objects to be

components, which smooths the path of building up React components later on.

The step of design app is truly important as the final design or prototypes will be

prerequisite for front end developers to structure the app as well as to style up

the user interface with CSS code.

https://designshack.net/articles/software/what-is-figma-intro/
https://designshack.net/articles/software/what-is-figma-intro/
https://designshack.net/articles/software/what-is-figma-intro/

8

3.1.2 Visual Studio Code

Visual Studio Code is a powerful source code editor that was launched by

Microsoft based on the combination of IDE and Code Editor. Free to use and

compatible in macOS, Windows or Linux, Visual Studio Code supplies plenty of

features for optimizing programming such as debugging, git, syntax highlighting,

syntax auto completing, snippets, themes, shortcuts, etc. [13]. As Visual Studio

Code supports multiple programming languages, the author had chosen this

code editor to write code for the Me_Portfolio app.

3.1.3 GIT

Git is an open source distributed version control system or content tracker that

is because Git is used to store the content. Once the code in Git is updated, for

example, the codebase is modified or added, Git is responsible for maintaining

a history of the changes, which means when the new feature code is

committed, Git will add the commit into the historical commit tree. In addition,

developers are able to create new branches to develop new features or merge

the current code branch into the main branch to protect the current app features

and avoid generating the codebase conflicts [14]. In the Me_Portfolio project,

the author utilised Git to implement Context API and Redux Hooks on different

branches. The comparisons of these state management solutions will be

conducted later in the chapter 5.

3.1.4 Chrome Dev tool

Google Chrome browser provides a collection of web developer tools, also

known as Chrome Dev-Tools. With the powerful support of JavaScript console,

these tools are useful and handy to search for the problems in layouts, debug

the JavaScript errors or track other meta information related to the web

application [15]

- Element tab: since HTML and CSS code generate the layout and styles

of the web application, any UI issue could be seen and changed in the

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://developer.chrome.com/docs/devtools/overview/
https://developer.chrome.com/docs/devtools/overview/
https://developer.chrome.com/docs/devtools/overview/

9

element tab of Dev Tools. However, any fix on the element tab must be

copied to the codebase prior to refreshing or closing the website. [15.]

- Console tab: all the Javascript errors will be shown on the Javascript

console in detail from the console window, developers can access any

variables or functions defined in the codebase. [15.]

- Network tab: the meta data of the web application can be found on the

Network panel. Network tab records all of the network requests and

displays the information about the requests and responses. [15.]

- Performance tab: how the website performs will be analysed in the

performance panel such as response, animation, idle phases. [15.]

3.1.5 React DevTool

React Developer Tools is an extension on Chrome and implemented in the

open-source React JavaScript library to inspect the React component

hierarchies. There are 2 tabs on the Chrome DevTools: Components and

Profiler. [16.]

- The Components tab is to show all React components that were

rendered on the page in the tree format. By selecting one component,

developers are able to inspect or edit its current props and state in the

panel on the right. [16.]

- The Profiler tab is to record performance information while running the

application or executing an UI event. [16.]

https://developer.chrome.com/docs/devtools/overview/
https://developer.chrome.com/docs/devtools/overview/
https://developer.chrome.com/docs/devtools/overview/
https://developer.chrome.com/docs/devtools/overview/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely.
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely.
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely.
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely.
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely.

10

3.1.6 Redux DevTool

Redux Devtools enable developers to perform time-travel debugging and live

editing on Redux app [17]. The figure 3 below is a screenshot of Redux

Devtools that is showing the inspection of the modifying state after the action of

“[PROJECT] SET_SELECTED_PROJECT” was executed.

Figure 3. Redux DevTool panels

As seen in Figure 3 above, there are 2 panels of Redux Devtool. While the left

panel lists the actions throughout action types, there are more details of the

action presented on the right-side panel with many tabs: action, state, diff, trace

and test.

● Action tab: to view action type and payload/data of an action

● State tab: to present the state after the update

● Diff tab: to watch the changes from the last state to the current state.

● Trace tab: to inspect where the action has been called.

● Test tab: to run tests for the corresponding reducers.

https://www.tutorialspoint.com/redux/redux_devtools.htm

11

Moreover, developers have two options of “Jump” and “Skip” once hovering any

action.

● Skip button is to skip a particular action. The app will assume that the

selected action did not happen and recalculate the state. [17.]

● Jump button is to return to the state when the selected action happened.

This feature is helpful when debugging and finding errors in the

codebase. [17.]

3.2 Technologies

In the practical project, there are multiple technologies used in different roles.

Those are shown in the table 1.

Table 1. The technologies applied into The Me_Portfolio app

Technologies Version Roles

React 16.11.0 React, a JavaScript library, is used to build user

interfaces for the thesis practical project. [18.]

Typescript 3.7.2 Typescript is a programming language and built on

Javascript by adding static type definitions. [19.]

Redux 4.0.5 To store, manage and update state in the

application by using events called " actions".[20.]

Redux

Devtools

2.13.8 To inspect the application’s state changes. The

action and the changes of state are illustrated on

the Redux devtool window. [21.]

Thunk 2.3.0 As Redux store does not support async logic and

only handles synchronously dispatch actions and

update the state by executing the root reduce

function.Therefore, Thunk, a Redux middleware, is

applied to enable writing async functions inside

Redux stores. [22.]

https://www.tutorialspoint.com/redux/redux_devtools.htm
https://www.tutorialspoint.com/redux/redux_devtools.htm
https://www.tutorialspoint.com/redux/redux_devtools.htm
https://reactjs.org/docs/getting-started.html
https://www.typescriptlang.org/
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en#:~:text=Overview,It's%20an%20opensource%20project.
https://redux.js.org/tutorials/fundamentals/part-6-async-logic

12

Gatsby 2.17.11 Gatsby is a React-based open-source framework

that combines Webpack and GraphQL to build

websites following the latest web standard and

enhanced speed and security. [23.]

Contentful 2.1.57 Contentful is content infrastructure that is to create,

manage and distribute content to the website.[24.]

Netlify Netiflify is a platform to host the website

infrastructure, continuous integration and deploy

pipeline with a single workflow. [25.]

Node 14.15.4 Node js an open source server environment or an

synchronous event-driven JavaScript runtime,

used to run dynamic page content. [26.]

As in the above table, there is a list of technologies, libraries as well as their

roles and versions in the practical project.

4 Project discussion and implementation

4.1 Project idea and discussion

To serve the purpose of comparison between Redux and Context API, it is

necessary to create a simple project (Figure 4) that uses either Redux or

Context API on 2 different branches. The project selected in this thesis is about

building up a portfolio that illustrates developer’s information such as overview,

education, technologies, projects, etc. The Portfolio project will be kept as at a

simple level as possible to highlight the differences of state management

performance on a specific feature.

https://www.gatsbyjs.com/docs/
https://www.contentful.com/faq/about-contentful/#what-is-contentful
https://docs.netlify.com/
https://nodejs.org/en/about/

13

Figure 4. Schema of component architecture

For the portfolio website, there is only one page named IndexPage basically

including multiple child components such as Layout, header, about me,

projects, project info, technology, contact and footer, which can be seen in

Figure 4.

The first issue is, ProjectSection and ProjectInfoSection would like to access

data in IndexPage without prop drilling. The difference of the ProjectSection and

ProjectInfoSection is that while the ProjectSection presents a brief introduction

of projects in a list of cards, the ProjectInfoSection illustrates descriptions of the

project in detail.

For the second issue, once the user clicks on any project card in

ProjectSection, there will be an update at ProjectInfoSection with the selected

project.

In order to obtain data at any child component or listen to an event from

ProjectCard as a child component to update content inside ProjectSection,

14

there will be a demand for a global state management that wraps around those

components and makes them operate in a consistent way.

4.2 State Management Solution

In the React world, there are two common solutions applied as Context API and

Redux Hook. This section will lead through each of them clearly, so that the

comparison will be executed in the next chapters.

4.2.1 Context API

“Context provides a way to pass data through the component tree without

having to pass props down manually at every level.”

Context provides APIs that are functions to create Context objects and update

sharing states inside themselves.

First of all, to make the codebase transparent and clean, the Context should be

placed in a separate folder as in the picture below.

Figure 5. Portfolio App Architecture with Context

Splitting Context settings into their own files and stored in “contexts” folder

assists the developer team to manage Context sharing states in a more

effective direction, especially when it comes to the spec of scaling up the project

in the future (see Figure 5).

15

To create a context object, the `createContext` method should be called and

passed in an input as its default value as illustrated in the following figure.

Figure 6. Create a context object for sharing states.

As in the code example above, a context - ProjectContext is created with a

default value that is an empty object.

This ProjectContext method returns the Provider component that makes the

states available to all nested-level components inside itself. The Provider

component has a `value` prop that receives an object of states and functions to

update value of states in Figure 7.

Figure 7. ContextProvider component wraps the IndexPage component.

In Figure 7 is the IndexPage component. It has all data of the Portfolio website

that wishes to share to child components. The data, projectList, setProjectList,

16

selectedProjectIndex and setSelectedProjectIndex are now shared to all child

components covered by ProjectContext. Provider components.

To connect to a context, the child component should access the context by

calling useContext that needs a parameter to identify which context to connect

to. This is displayed in the Figure 8 below:

Figure 8. Access to ProjectContext from ProjectInfoSection.

As mentioned in picture 8, the function component - ProjectSection obtains

“projects” data for its rendering by connecting to ProjectContext. The “Grid”

component receives the data to render a list of “Card” components used to

update “selectedProjectIndex” state when click on it (see Figure 9).

17

Figure 9. Card component to update the state.

As shown in figure 9, the Card component gets the setSelectedProjectIndex

function from

Overall, there are 3 steps to set up a global state management using Context:

● Create Context

● Create states and Context Provider

● Call useContext to get state from child components

4.2.2 Redux Hooks

The following are steps of implementation of Redux into the Me_Portfolio app.

1. Create action types:

The very first step to work with Redux is creating action types that describe the

action implemented and displayed on the Redux console as the given example

10 underneath.

18

Figure 10. Redux Action types in Me_Portfolio App.

The action’s names are capitalized and made understandable in Figure 10

because of its string values. The description of an action should start with a

prefix such as state name, for example [PROJECT], which facilitates the project

able to scale up in the future without the problem of duplicating action

expression.

In the Me_Portfolio app, there are 2 actions to update the state:

● SET_DATA : to set all project data into a state in Redux’s store

● SET_SELECTED_PROJECT: to update the selected project that the

user would like to view more information on it.

2. Create Redux store

At this step, to create Redux store, there is a call of createStore function that

requires 3 inputs including:

● Reducer: update the current state in store based on action invoked [27].

● Initial state: as known as the default value to state.

● Middleware: dispatch the result of other action creators even though

those are synchronous or asynchronous.

https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers
https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers
https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers

19

Figure 11. Redux store in Me_Portfolio App.

The picture 11 shows how the store is set up with reducer, initialState and

reduxThunk (middleware).

● The reducers: to handle the state update.

● initialState is an object that has 2 properties: “projects” to hold all projects

in the app and “selectedProject” to demonstrate what project is chosen to

show in the ProjectInfor section.

● The middleware in the project is “redux-thunk”: to write async logic that

interacts with states in the store

3. Design actions:

As mentioned in the chapter 2.4.1, to create a Redux action, the developer has

to create an object having two properties: type and payload.

20

Figure 12. Design Redux actions in Me_Portfolio App.

As described from the above picture, the app has 2 action set up as followings:

● The “setData” action has the type of “SET_DATA” and the payload of

data containing “projects” and “selectedProject”.

● The “setSelectedProject” action has the type of

“SET_SELECTED_PROJECT” and the payload of data containing the

selected project information only.

Besides designing actions, the author creates boundSetData and

boundSetSelectedProject functions with the purpose of dispatching the actions

immediately at the using places without invoking store.dispatch again.

4. Create reducers:

It is required that each action needs a specific reducer to update state.

However, before all, the developer has to design the state structure with

initialState that is to set the default value for state at the starting point.

Because a reducer is a Javascript function that takes two arguments (current

state and action) in order to return a new state, it would reach a higher

optimizing level of codebase if using Javascript switch statement to classify

cases depending on action type rather than regenerating multiple reducers.

21

Figure 13. Creating Reducers to handle Redux actions

As seen in figure 13, the format of global states in the app includes “projects”

and “selectedProject” which are an empty array and an empty object

correspondingly at the beginning.

In the reducer, there are 2 cases to handle 2 different actions of SET_DATA

and SET_SELECTED_DATA. Specifically, they are set up as the followings:

- SET_DATA: since action.data is an object that has new “projects” and

new “selectedProject”, the reducer of SET_DATA will return “action.data”

as a new global state.

- SET_SELECTED_PROJECT: the payload of action in this case is

“projectIndex” that is the new index of the project that the user selected

to read more information on the UI. Hence, the new global states will be

formed based on the same “projects” property by destructing the current

global state. In the meanwhile, the “selectedProject” property is identified

by the selected project index in the “state.projects” array.

22

5. Wrap around the rootComponent:

Once finishing Redux setup, it is an important step to generate the connection

between React app and Redux store as the following figure 14.

Figure 14. Injecting Redux store into React app.

As described in the picture, to access the Redux store from React app, it is

necessary to import the Provider component from react-redux library and store

from Redux store.

This could be done in 2 following steps:

● The Provider component will cover the “element” as RootComponent

inside wrapRootElement component.

● After that, the Redux store created by the developer will be passed into

the store prop of the Provider component.

At this time, all child components in the app are able to access the store to get

the states or call any actions to update the store.

6. Get selectedProject from store

To extract data from Redux store state, the useSelector Hook will be called

along with the clear description of the state to return the state correctly.

23

Figure 15. Accessing a state in Redux store.

A Redux store is an object and contains states as the properties. In order to

gain any property like “selectedProject '', in the picture 15, the developer

accesses the store and gets state with useSelectore hook function, then

extracts the state to achieve selectedProject value.

7. Invoke an action of boundSetSelectedProject.

While building up the Card component, the developer creates a function of

handleCardSelected in order to handle onClick events on the project card.

Figure 16. Obtaining actions in Redux at a component.

The handleCardSelected function will get an input as index of the project in the

project list data so that the developer could set correct project data into

selectedProject state (figure 16).

In conclusion, Redux implementation contains 7 steps from settings to usage.

24

5 Comparison

To clarify the difference between Context and Redux, this chapter will make

comparison via criteria: usages, tracking changes, packages installations,

complexity, resource consumptions.

5.1 Implementation

The implementations of Context API and Redux Hooks are different regarding

their settings, data processing and code readability, which are analysed in the

following table.

Table 2. Comparison of Context API and Redux Hooks in implementation.

Context API Redux Hooks

To set up and apply at the child components

As explained in the chapter above, it is

obvious that Context’s setup is simple

through 3 steps:

1. Create context

2. Wrap the parent component with

context’s provider which

contains global states

3. Invoke global states to use at

any child components.

Redux requires more details for

its own setup with 5 steps as

below:

1. Create store

2. Create actions

3. Create reducers with

state’s default values

4. Wrap the parent

component with Redux’s

Provider

5. Invoke global states or

actions to use at child

components.

25

To handle complex data in the global state

In the chapter 3, to update the state in

the context, there are many functions

created and passed into Provider such

as setProjectList or

setSelectedProjectIndex. For big

projects, this would be a significant

disadvantage if the global state has

dozens of actions because it results in

a huge and complicated component.

Redux allows users to split

states, actions, reducers and

store settings into their own

separate files so that developers

could manage or review the data

flow in an easier way.

To code readability

Even though the global states (data or

projectList) in the Context are created

as states inside component IndexPage

only, those global states actually aim to

update IndexPage’s child components

further than the IndexPage component

itself. This means that when a

developer wants to investigate global

states, they will probably have to go to

a parent component that doesn't seem

to be related to them. For example, in

the Me_Portfolio app, the Provider

component should be placed inside the

Layout component but it is not because

IndexPage is a place to archive data

from the server.

The great benefit of Redux is that

Redux settings stay away from

React components and that each

action or reducer is separately on

their own file. Hence, it brings

higher transparency to inspect

any Redux changes throughout

it’s actions and reducers.

As discussed above, the Context API is superior in terms of use, but it has

many obstacles in extending the project and handling complex data. In other

words, Context API is more suitable for small and medium projects rather than

big projects.

26

5.2 Tracking the state changes

In the process of running the app or inspecting the changes of the global state,

the ability of tracking state changes plays a critical role as it facilitates

debugging tasks faster and more effectively, especially in the large projects.

5.2.1 Context API

In order to track changes with ContextAPI, the Chrome extension of React

Developer Tool is used popularly even though the tool only shows the state

after updating. However, in most cases, the front end developers would like to

earn more information on the update such as which components or events

triggered the update and how the states are changed from the last time.

Figure 17. Tracking state changing in Context API

As presented in figure 17, the global state could be viewed at value props of

Context.Provider components. To compare the versions of global state during

the update, a function of console.log should be injected into the update-affected

components. However, in a huge React App, this solution seems to be

impossible as the update could be triggered from hundreds of places.

27

5.2.2 Redux store

Regarding Redux technology, there is a Redux tool which is powerful and

developed along with the React-Redux. It allows developers to dive into every

single update to review the changes or even access to where the event is

called.

As in the Figure 18 below, the action tab shows the selected action object with

its properties: “type” and “projectIndex”.

Figure 18. Action tab in the Redux console.

Figure 18 is an example of when a user clicks on a project card on the website.

After the click event, the action of “[PROJECT] SET_SELECTED_PROJECT” is

executed with the payload is the new index of the selected project. Thanks for

this, the developer would ensure that the action object contains correct data that

will be transferred to the corresponding reduce to process and generate the

new global state.

Secondly, in order to review the value of state in the meanwhile, there is a state

tab in Figure 19 showing a clone of the current global state in three formats of

tree, chart or raw.

28

Figure 19. State tab in the Redux console.

With the state tab, the developers are able to explore all values belonging to the

global state as in the Figure 19. This option is the same on the tab of

Components in React Developer Tools when selecting “Provider” component.

By seeing this, the developers are confident to know the data in the global state

always in the control before firing new changes.

Thirdly, after executing an action, the diff tab in the figure 20 will show only what

that action changed in the state tree.

Figure 20. Diff tab in the Redux console.

29

The action of “[PROJECT] SET_SELECTED_PROJECT” selected in Figure 20

is created to only make a change at “selectedProject” of the global state so in

the diff panel, there are values of “selectedProject” state before and after

performing the action. In general, this tab strengthens the ability of tracking

changes of state to developers by illustrating what exactly occurs during an

action.

In such a big project where an action could be triggered in many places, it is

difficult to know the correct place running the action. To solve this problem and

help programmers reduce debugging time, the trace tab lists out files that action

invoked and previous happenings. This could be found in the Figure 21 below.

Figure 21. Trace tab in the Redux console.

As can be seen in the figure 21, the trace panel demonstrates the action of

“[PROJECT] SET_SELECTED_PROJECT” was called in

“boundSetSelectedProject” at the line 16 in the path of

“src/store/indexPage/actionCreators.ts”. Moreover, it also points out the flow of

all events happening from click event until the state completing the update.

30

Finally, it is the test tab that is in charge of displaying tests associated with the

action.

Figure 22. Test tab in the Redux console.

In Figure 22, the test panel is showing the test of reducer handling the related

action. Besides that, the programmers could add more tests of actions and

reducers into the test tab by using testing libraries such as React testing library,

JEST or Enzyme.

Overall, with the support of Redux Devtool, Redux has identified its superiority

against Context API by providing many extremely tracking features for React

programmers. In other words, React developers own full control to monitor the

state variations.

31

5.3 Additional package installations

The table below is presenting the installation packages for each state
management solution.

Table 3. Additional packages going along with Context and Redux.

Context API Redux

● From the React 16.8 version,
context API is built up into React

● React Dev tools

● Redux library
● Redux Dev tool
● Middleware Thunk

As presented in the table 3, from the release of React version 16.8, Context API

was built up into React as a solution to handle the complication of prop drilling

which assists React developers to approach or build up a state management

without needing to install any external package.

However Redux is known as a state management technology independent of

React, it needs to be installed into React apps as an external library which

definitely occupies a small amount of space from the development environment

memory.

In addition, as mentioned before in chapter 3.2, Redux is only able to process

simple synchronous updates throughout dispatching an action. Hence, Thunk

middleware is installed in the practical project to enable developers to write

async functions of accessing the store and handle AJAX requests. [28.]

In the last chapter, both Context API and Redux require browser extensions to

monitor the changes of state. While React Dev tool is built for Context, it is

Redux dev tool for Redux. These two extensions are available and easy to

install on Chrome, FireFox and other browsers.

https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk

32

5.4 Codebase Complexity

To reach a higher level of convincing in the comparison of codebase

complexity, the thesis takes into account practical projects of Context and

Redux thanks to Advanced Search Tool on GitHub [29]. The selected projects

are reliable replied on search conditions:

● Later than Jan 1st 2018

● MIT license

● More than 20 stars

The table 4 given below is built based on the measure of Context or Redux

related codebase into each project. After calculating, the values are rounded to

the nearest ten.

Table 4. Complexity of Context API and Redux Hooks in different React
projects.

State

Management

Solution

Project Link Project

size (in

KB)

Total code size of

state management

(in KB)

Complexity

percentage

%

Context API Movie List 4053 3 0.064

Budget App 646 2 0.31

Search Github

User

1443 2.6 0.18

Me Portfolio 998 874 0.5 0.00005

Redux React Social

Network

791 10 1.26

Shopping Cart 394 4 1

Me Portfolio 998 964 1.4 0.00014

https://github.com/search/advanced
https://github.com/search/advanced
https://github.com/search/advanced
https://github.com/MattDobsonWeb/movie-watchlist-react
https://github.com/lashaNoz/Budget-App
https://github.com/john-smilga/react-search-github-users
https://github.com/john-smilga/react-search-github-users
https://github.com/thanhlevu/Me-Portfolio
https://github.com/hidjou/classsed-react-firebase-client/tree/master/src
https://github.com/hidjou/classsed-react-firebase-client/tree/master/src
https://github.com/basir/react-shopping-cart
https://github.com/thanhlevu/Me-Portfolio

33

The table 4 illustrates the code complexity of context and Redux through

various practical projects in different sizes.

The complexity percentage in the table 4 is calculated based on the following

formula:

Complexity percentage =
𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 𝐾𝐵

𝑆𝑡𝑎𝑡𝑒 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 𝑖𝑛 𝐾𝐵
× 100%

Which are:

● Project size is the total project code base in KB.

● State management size is the state management codebase inside the

project in KB.

● Complexity percentage is how much state management codebase

occupies in the total project codebase in percentage.

It is obvious that the amount of Context code in projects is less than Redux,

which is because Context consumes less code setup while Redux structure

needs more code lines and files.

Regarding the portfolio website of Me_Portfolio that uses either Context or

Redux, the amount of Redux volume is double than Context’s in general.

Moreover, when reviewing the total code numbers, the size of the project with

Redux is slightly higher than one of Context.

Overall, even though Redux required more codebase than Context, the

consumptions of Context and Redux are negligible.

34

5.5 Resources consumption

These columns of General Memory and Javascript Memory below illustrate how

much the Me_Porfolio app is using memory on multiple device simulators under

a state management application of Context API or Redux Hook:

● The General Memory column is about native memory which stores DOM

nodes. If the value of General Memory is growing up, there are more

DOM nodes created on the DOM tree. [30.]

● The numbers in the JavaScript Memory column are representing the JS

heap which is how much memory the reachable objects on the app are

utilizing. These numbers are increasing once either more objects are

being created, or the existing objects are growing. [30.]

The table 5 describes how Context API and Redux Hooks use Chrome browser

memories. The data is collected from Chrome developer tools while running the

Me_Portfolio project only.

Table 5. Context API and Redux Hook on Chrome Browser resources.

 General

Memory

MB

Javascript

Memory

KB

Context

API

Desktop 71 ~ 95.9 ~ 12,972

Ipad 133 - 189 13,924 ~ 14,948

Iphone 113 - 120 11,156

Redux

Hook

Desktop 74 ~ 102 14,645 ~ 15,655

Ipad 133 - 273 15,215 ~ 15728

Iphone 120 - 128 15,472

From data in the table 5, these 2 state management solutions of Context API

and Redux HOOK obtain fast processing speeds. However, data also points out

https://developers.google.com/web/tools/chrome-devtools/memory-problems
https://developers.google.com/web/tools/chrome-devtools/memory-problems

35

that Redux spends more memory than Context API regarding General Memory

and Javascript Memory in the Me_Portfolio project scope.

5.6 Processing speed

Regarding the performance of Context API and Redux Hook technologies, the

speed of processing events is an important criterion. The measure was

conducted on 3 popular browsers such as Chrome, Firefox and Microsoft Edge

and the results show how much time it takes to process the same job in

milliseconds. All browsers return similar results after 20 measurements on each

browser. Therefore, the author selects the result from the chrome browser as

the representative result. See Figure 23 below.

The actual consumption time to update state is calculated by using the following

formula:

The actual consumption time = total consumption time - idle time

Figure 23. Performances of Context API (left) and Redux Hook (right) on

updating the state.

36

For the Me_Portfolio app using Context API, it takes 326 milliseconds to set a

newly selected project into global state while Redux Hook consumes less to 243

milliseconds, only 75% compared to Context API.

After many tests, the results are the same as Redux Hook brings higher

performance than Context API. The proper reason for this fact is that once any

state in context is modified then all context-related components will re-render

again. In a better way, Components using Redux states only update when that

specific state is changed.

5.7 Scalability

Context API prompts a re-render on each update of the state and re-renders all

components regardless. This is not always a good idea because the rendering

should be only triggered at components with state updated in order to reduce

unnecessary work for browsers. Redux seems to be smarter since it only re-

renders the updated-state components. This can be monitored on the Redux’s

console, as there is a log in each state update, which is quite helpful when

solving problems in a big and complicated project.

The truth, that states in Context API have to be created inside components by

useState, will scale up the components with unrelated update-state functions.

Since to update a state in specific cases, a developer needs to declare a

corresponding function for each of them. The difference that Redux is

considered as more successful is all actions to update state will be stored in a

separate file, which enhances significantly the ability of management for the

development team.

Overall, the Context API tends to serve better in a small scope of sharing states

while Redux assists every state update clearer and easier to monitor, especially

in huge projects

37

6 Conclusion

The target of this thesis is to analyse the differences of the state management

solutions between Context API and Redux Hooks. Moreover, the thesis also

points out the usage cases for each solution in the real practical projects. As a

result, the study reached the expectation of comparing those state management

solutions throughout 7 criteria: implementation, tracking changes, additional

package installations, codebase complexity, resources consumption,

processing speed and scalability. Besides creating the Me_Portfolio app to

conduct the internal comparisons, the thesis also references many reliable

outside applications to obtain the highest objectivity and persuasion in other

comparisons.

During the comparisons, the context proves that it is more comfortable and

flexible than Redux. Context API is a robust feature that performs nicely in

maintenance and data flow understanding at a simple level inside small React

projects. Besides that, it is an obstacle to monitor the changes of the global

state while Redux gets strong support to solve the problem thanks to the Redux

dev tools. However, it takes time to explore and practice Redux as well as its

additional packages since Redux setup splits store, actions, actiontypes and

reducers into their own files. This also explains the fact that the size of Redux

codebase is always higher than Context’s and Redux solutions consump more

memory than Context’s. Despite the issues, Redux technology performance is

better than Context API that is because all components using state from

Context API will be rerendered when the global states are modified. Therefore,

the projects of Redux are more feasible to scale up rather than Context API.

In conclusion, the thesis proved that Context API will be a better choice for

small projects or small scope of component tree while Redux is more matching

to the projects of processing complex state data.

Even though the comparison gained quite good results in the scope of the

thesis, it obviously needed more research in order that the outcome would be

more precise and conniving

38

References

1 ReactJS History. Online. Education Ecosystem. <https://www.education-
ecosystem.com/guides/programming/react-js/history>. Accessed 1 April 2021.

2 ReactJS - Overview. Online. Tutorialspoint.
<https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20
is%20a%20library%20for,data%20that%20changes%20over%20time.&text=Re
act%20can%20also%20render%20on,native%20apps%20using%20React%20
Native.>. Accessed 1 April 2021.

3 React Hooks. Online. Javatpoint. <https://www.javatpoint.com/react-
hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features
%20from%20function%20components.&text=Also%2C%20it%20does%20not%
20replace%20your%20knowledge%20of%20React%20concepts.>. Accessed 1
April 2021.

4 Fernando, Shalini. 2020. Using redux and Context API. Online.
Codehouse. <https://www.codehousegroup.com/insight-and-inspiration/tech-
stream/using-redux-and-context-
api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%
20component.>. Accessed 1 April 2021.

5 Banks, Alex & Porcello, Eve. 2020. Learning React. 2nd ed. Electronic
book. O’Reilly Media, Inc.

6 Context. Online. Facebook.<https://reactjs.org/docs/context.html>.
Accessed 1 April 2021.

7 Bachuk, Alex. 2016. Redux - An introduction. Online. Smashing
Magazine.<https://www.smashingmagazine.com/2016/06/an-introduction-to-
redux/>. Accessed 1 April 2021.

8 Getting started with redux. Online. Dan Abramov and the Redux
documentation authors. <https://redux.js.org/introduction/getting-started>.
Accessed 1 April 2021.

9 Garreau, Marc & Faurot, Will. 2018. Redux in Action. Electronic book.
Manning Publications.

10 Redux-Data flow. Online. Tutorials Point.
<https://www.tutorialspoint.com/redux/redux_data_flow.htm>. Accessed 1 April
2021.

11 Redux Fundamentals, Part 2: Concepts and Data Flow. Online. Reduxjs.
<https://redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow>.
Accessed 1 April 2021.

https://www.education-ecosystem.com/guides/programming/react-js/history
https://www.education-ecosystem.com/guides/programming/react-js/history
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native
https://www.tutorialspoint.com/reactjs/reactjs_overview.htm#:~:text=React%20is%20a%20library%20for,data%20that%20changes%20over%20time.&text=React%20can%20also%20render%20on,native%20apps%20using%20React%20Native
https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts
https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts
https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts
https://www.javatpoint.com/react-hooks#:~:text=Hooks%20are%20the%20new%20feature,lifecycle%20features%20from%20function%20components.&text=Also%2C%20it%20does%20not%20replace%20your%20knowledge%20of%20React%20concepts
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component
https://www.codehousegroup.com/insight-and-inspiration/tech-stream/using-redux-and-context-api#:~:text=Context%20API%20prompts%20a%20re,a%20log%20in%20each%20component
https://reactjs.org/docs/context.html
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://redux.js.org/introduction/getting-started
https://www.tutorialspoint.com/redux/redux_data_flow.htm
https://redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow

39

12 What Is Figma? a 101 Intro. Online. Compact
Creative.<https://designshack.net/articles/software/what-is-figma-intro/>.
Accessed 1 April 2021.

13 Visual Studio Code Overview. Online.
Microsoft.<https://code.visualstudio.com/docs>. Accessed 1 April 2021.

14 Sridhar, Aditya. 2018. An introduction to Git: what it is, and how to use it.
Online. freeCodeCam. <https://www.freecodecamp.org/news/what-is-git-and-
how-to-use-it-c341b049ae61/>. Accessed 1 April 2021

15 Chrome DevTools Overview. 2016. Online. Google Developer.
<https://developer.chrome.com/docs/devtools/overview/>. Accessed 1 April
2021.

16 React Developer Tools. Online. Facebook.
<https://chrome.google.com/webstore/detail/react-developer-
tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%2
0Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%
20extension%20requires%20permissions%20to,not%20transmit%20any%20dat
a%20remotely.>. Accessed 1 April 2021.

17 Redux - Devtools. Online. Tutorials Point.
<https://www.tutorialspoint.com/redux/redux_devtools.htm>. Accessed 1 April
2021.

18 Getting Started. Online. Facebok. <https://reactjs.org/docs/getting-
started.html>. Accessed 1 April 2021.

19 What is TypeScript. Online.
TypeScript.<https://www.typescriptlang.org/>. Accessed 1 April 2021.

20 Redux Essentials, Part 1: Redux Overview and Concepts. Online. Dan
Abramov and the Redux documentation authors.
<https://redux.js.org/tutorials/essentials/part-1-overview-concepts>. Accessed 1
April 2021.

21 Redux DevTools. Online. Remotedevio.
<https://chrome.google.com/webstore/detail/redux-
devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en#:~:text=Overview,It%27s%
20an%20opensource%20project.>. Accessed 1 April 2021.

22 Redux Fundamentals, Part 6: Async Logic and Data Fetching. Online.
Dan Abramov and the Redux documentation authors.
<https://redux.js.org/tutorials/fundamentals/part-6-async-logic>. Accessed 1
April 2021.

23 Welcome to the Gatsby Way of Building. Online.
Gatsbyjs.<https://www.gatsbyjs.com/docs/>. Accessed 1 April 2021.

https://designshack.net/articles/software/what-is-figma-intro/
https://code.visualstudio.com/docs
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://www.freecodecamp.org/news/what-is-git-and-how-to-use-it-c341b049ae61/
https://developer.chrome.com/docs/devtools/overview/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en#:~:text=React%20Developer%20Tools%20is%20a,in%20the%20Chrome%20Developer%20Tools.&text=This%20extension%20requires%20permissions%20to,not%20transmit%20any%20data%20remotely
https://www.tutorialspoint.com/redux/redux_devtools.htm
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.typescriptlang.org/
https://redux.js.org/tutorials/essentials/part-1-overview-concepts
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en#:~:text=Overview,It%27s%20an%20opensource%20project
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en#:~:text=Overview,It%27s%20an%20opensource%20project
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en#:~:text=Overview,It%27s%20an%20opensource%20project
https://redux.js.org/tutorials/fundamentals/part-6-async-logic
https://www.gatsbyjs.com/docs/

40

24 FAQ / About Contentful. Online. Contentful.
<https://www.contentful.com/faq/about-contentful/#what-is-contentful>.
Accessed 1 April 2021.

25 Welcome to Netlify. Online. Netlify.<https://docs.netlify.com/>. Accessed
1 April 2021.

26 About Node.js®. Online. OpenJS
Foundation.<https://nodejs.org/en/about/>. Accessed 1 April 2021.

27 Redux Fundamentals, Part 3: State, Actions, and Reducers. Online. Dan
Abramov and the Redux documentation
authors.<https://redux.js.org/tutorials/fundamentals/part-3-state-actions-
reducers>. Accessed 1 April 2021.

28 Redux Thunk. Online. GitHub. <https://github.com/reduxjs/redux-
thunk#why-do-I-need-this>. Accesses 1 April 2021.

29 Advanced Search Tool. Online.
Github.<https://github.com/search/advanced>. Accessed 1 April 2021.

30 Basques, Kayce. 2015. Fix memory problems. Online. Google
developer.<https://developer.chrome.com/docs/devtools/memory-problems/>.
Accesses 1 April 2021.

https://www.contentful.com/faq/about-contentful/#what-is-contentful
https://docs.netlify.com/
https://nodejs.org/en/about/
https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers
https://redux.js.org/tutorials/fundamentals/part-3-state-actions-reducers
https://github.com/reduxjs/redux-thunk#why-do-I-need-this
https://github.com/reduxjs/redux-thunk#why-do-I-need-this
https://github.com/search/advanced
https://developer.chrome.com/docs/devtools/memory-problems/

Appendix 1

1 (2)

Appendix: Context API in Me_Portfolio project

ProjectContext.tsx

Appendix 1

2 (2)

/pages/index.tsx

Appendix: Redux Hook in Me_Portfolio project

Appendix 1

3 (2)

actionTypes.ts

actionCreators.ts

Appendix 1

4 (2)

reducer.ts

Appendix 1

5 (2)

/store/index.js

gatsby-browser.js

Appendix 1

6 (2)

Card.tsx

