
Bachelor’s thesis

Bachelor of Engineering, Information and Communications Technology

2021

Martin Lehtomaa

IMAGE CLASSIFICATION
USING DEEP LEARNING WITH
JAVA

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

6.3.2021 | 38 sivua

Martin Lehtomaa

KUVANTUNNISTUS HYÖDYNTÄEN
SYVÄOPPIMISTA SEKÄ JAVAA

Nykyajan ongelmien, kuten esim. konenäön ja luonnollisen kielen käsittelyjärjestelmien,
ratkaisuissa hyödynnetään yhä enemmän kone- ja syväoppimisen menetelmiä. Tämän
opinnäytetyön tavoitteena on näyttää ja tutkia, miten Javaa voidaan hyödyntää syväoppimisen
sovelluksissa. Modernit syväoppimiseen pohjautuvat ratkaisut toteutetaan pitkälti Python- ja R-
ohjelmointikielillä. Vaikka Java ei ole suosittu ohjelmointikieli tekoälyn ohjelmoinnissa, siinä on
kattavat raamityökalut ja kirjastot kone- sekä syväoppimisen sovellusten kehitykseen. Javan
tunnettuja vahvuuksia ovat ohjelmiston skaalautuvuus, tietoturvallisuus ja hyvä suorituskyky.
Javaa käytetään mm. suurten yritystoimintojen järjestelmien sekä palvelinpuolen ratkaisujen
kehityksessä. Suuren kehittäjäyhteisön omaavana Javalla on myös paljon avoimen lähdekoodin
raamityökaluja ja kirjastoja. Yksi merkittävä tekoälyn ohjelmointiin tarkoitettu raamityökalu on
DeepLearnin4J (DL4J). Tässä opinnäytetyössä keskityttiin yksinomaan Javan sekä DL4J:n
käyttämiseen syväoppimiseen pohjautuvan kuvantunnistusmallin luomiseen ja hyödyntämiseen.

Demo-osiossa toteutetaan syväoppimiseen pohjautuva ratkaisu konenäön ydinongelmaan eli
kuvantunnistukseen. Työssä näytetään, miten malli luodaan ja koulutetaan käyttäen Javaa ja
DL4J. Tämän lisäksi näytetään, miten koulutettua mallia voidaan hyödyntää käytännössä
erillisessä Java-pohjaisessa sovelluksessa. Toteutettu malli on VGG16:een pohjautuva ja
koulutetaan suoriutumaan mekaanisten työkalujen kuvantunnistuksessa. Koulutettua mallia
käytetään demoa varten toteutetun SpringBoot-pohjaisen REST-www-sovelluspalvelun kautta.
Menetelmiä, joita hyödynnetään DL4J-raamityökalulla, ovat mm. siirto-oppiminen, ETL (Extract,
Transform, Load) operaatioita (sis. Datan kasvattamista) sekä mallin koulutus.

Koulutetun mallin ja toteutetun web-palvelun tuloksista näkee kuinka vaivattomasti Java-
pohjaisella ratkaisulla saa hyvin suoriutuvan mallin kuvantunnistukseen. Malli saavutti noin 85%
tarkkuuden vain noin 30min:n koulutuksella ja rajatulla tietoaineistolla. Lisäksi mallin käyttämistä
web-palvelun kautta näytti todenmukaisen tilanteen mallin hyödyntämisestä.

Mallin toteutuksen ja hyödyntämisen yhteydessä tehdyistä havainnoista ja saaduista tuloksista
voi todeta, että Java on varteenotettava ohjelmointikieli tekoälyn ohjelmoinnissa. Java ja DL4J-
raamityökalu tekevät sovellusten kehitystyön syväoppimisesta suoraviivaista ja tehokasta,
varsinkin Java-pohjaisissa projekteissa.

ASIASANAT:

Java, DeepLearning4J, Kuvantunnistus, Syväoppiminen, Koneoppiminen, Siirto-oppiminen,
Datan Kasvatus, Web Palvelu

BACHELOR´S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Bachelor of Engineering, Information and Communications Technology

6.3.2021 | 38 pages

Martin Lehtomaa

IMAGE CLASSIFICATION USING DEEP LEARNING
WITH JAVA

Modern problems, like Computer Vision and Natural Language Processing (NLP) are nowadays
tackled by leveraging Machine (ML) and Deep Learning (DL)-based solutions. This thesis strives
to demonstrate the use of Java for the implementation of DL applications. While ML and DL
solutions are heavily implemented with programming languages such as Python and R, there are
other popular languages that provide comprehensive frameworks and libraries for these tasks.
One of these languages is Java. Java provides application scalability, security and performance.
Therefore it is used worldwide in enterprise grade systems and server-side applications. Java,
having a huge developer community behind it, provides a bunch of open-source tools and
frameworks, one of which is DeepLearning4J (DL4J) for DL applications. The work carried out in
this thesis solely concentrates on the utilization of Java and DL4J for the creation and use of a
DL-based image classification model.

The demonstration part includes the implementation of a solution for one of the core problems
under the topic Computer Vision, which is Image Classification. The framework DL4J was
leveraged in the implementation of a VGG16 -based model capable of mechanical tool image
classification. The demonstration part also shows how the trained model can be utilized by an
external Java-based application. The utilization of the model was implemented through a
SpringBoot RESTful web service. Techniques applied with DLJ4 included Transfer Learning, ETL
(Extract, Transform, Load) operations (inc. data augmentation) and model training.

The results and findings from the implementation of the DL model and web service verify how
easy it is to become started and performant with a Java-based solution for Image Classification.
The model reached ~85% accuracy in only ~30min of training on a limited dataset. In addition, a
realistic use case scenario of the model was demonstrated by utilizing it from an external web
service.

The trained model combined with the implemented web service form a complete DL and Java-
based solution to tackle an Image Classification task specifically for mechanical tools. The
solution demonstrates the potential Java indeed has in the field of DL. The conclusion confirms
that the stack of Java and DL4J is a valid option for the development of DL based solutions. The
DL4J framework makes the development process of a DL-based solution straight forward,
especially for Java projects.

KEYWORDS:

Java, DeepLearning4J, Image Classification, Deep Learning, Transfer Learning, Machine
Learning, Data Augmentation, Web Service

CONTENTS

LIST OF ABBREVIATIONS 7

1 INTRODUCTION 8

2 DEEP LEARNING AND IMAGE CLASSIFICATION 10

2.1 Machine- and Deep Learning 10

2.1.1 Machine Learning Pipeline 10

2.1.2 Artificial Neural Networks 12

2.1.3 Deep Neural Networks 13

2.2 Image Classification 15

2.2.1 Convolutional Neural Networks for Image Classification 15

2.3 Pre-trained VGG16 and Transfer Learning 18

2.4 Data Augmentation 19

2.5 Java for Deep Learning 20

2.5.1 Java 21

2.5.2 DeepLeanring4J Framework 21

2.5.3 RESTful Web Services with Java 22

2.5.4 Picocli Command Line Framework 23

2.5.5 Maven for Java Projects 24

3 DATASET AND TOOLS 25

3.1 Initial dataset setup 25

3.2 Frameworks used for the RESTful Web Service 25

3.3 Command Line Tool for Image Classification Model Training 26

4 DEVELOPMENT WITH DL4J 27

4.1 Creation of the Tool Classification Model 27

4.1.1 Main application 28

4.1.2 Transfer Learning and creating a model 29

4.1.3 ETL operations 31

4.1.4 Training the model 33

4.2 Running the Model Trainer Tool 34

4.2.1 Initial setup 34

4.2.2 Executing the model trainer 35

4.3 Tool Classification REST Web Service 36

4.3.1 Using the compressed model 36

5 EVALUATION AND RESULTS OF TOOL CLASSIFICATION MODEL 38

5.1 Metrics and evaluating the model 38

5.2 Testing the Tool Classification Web Service 40

6 CONCLUSION 43

REFERENCES 45

FORMULAS

Formula 1. Optimal amount of neurons in Hidden Layer (Malik, 2019). 14

PICTURES

Picture 1. A nail dispensing hammer to test the classification. 40
Picture 2. Postman GET request to test classification of a hammer. 41

FIGURES

Figure 1. The ML Pipeline (Koen, 2019). 11
Figure 2. Deep Neural Network (Oppermann, 2019). 14
Figure 3. Structure of a CNN (Albelwi, Mahmood, 2017). 16
Figure 4. Convolution operation (Batista, 2018). 16
Figure 5. Average pooling and Max pooling operations (Cheng, 2017). 17
Figure 6. Architecture of VGG-16 (GeeksForGeeks, 2020). 18
Figure 7. Project structure of Model_Train_Tool. 27
Figure 8. ModelTrainerTool main application decorated with Picocli @Command
annotation. 28
Figure 9. Optional command line arguments enabled with @Optional. 28
Figure 10. Picocli executes ModelTrainerTool, which calls run() -method driver code. 29
Figure 11. IModelTrainer -interface. 29
Figure 12. Initializing a pre-trained VGG16 model with DL4J. 30
Figure 13. Fine-tuning configuration for the new model. 30
Figure 14. Applying Transfer Learning and constructing the new model with
TransferLearning.GraphBuilder object. 31

Figure 15. Defining dataset file paths and dataset iterators. 32
Figure 16. Constructing a DataSetIterator. 32
Figure 17. Data augmentation transforms. 33
Figure 18. Training and evaluation of the model. 33
Figure 19. Initial folder structure. 34
Figure 20. Folder structure after model trainer is executed. 35
Figure 21. Using the model for a classification task. 37
Figure 22. Method used for restoring the compressed model as ComputationGraph. 37
Figure 23. New VGG16 based model architecture to which Transfer Learning is
applied, logged with summary() -method. 38
Figure 24. Model evaluation method. 39
Figure 25. Evaluation metrics and confusion matrix on test dataset at the end of epoch
3. 39
Figure 26. Hammer classification response body returned from Tool Classification Web
Service. 41

LIST OF ABBREVIATIONS

AI Artificial Intelligence

CNN Convolutional Neural Network

DL Deep Learning

DL4J DeepLearning4J

DTO Data Transfer Object

ETL Extract, Transform, Load

GAN Generative Adversarial Network

GPU Graphics Processing Unit

HATEOAS Hypermedia as the Engine of Application State

HTTP Hypertext Transfer Protocol

JAR Java Archive

JSON JavaScript Object Notation

JVM Java Virtual Machine

ML Machine Learning

NLP Natural Language Processing

OOP Object-Oriented Programming

ReLU Rectified Linear Unit

REST Representational state transfer

SGD Stochastic Gradient Descent

8

1 INTRODUCTION

Over time Machine (ML) and Deep Learning (DL) solutions are leveraged more and more

to solve complex problems (Maruti techlabs, n.d.). Popular programming languages like

Python and R, are widely used for data analysis and statistical computing. In addition,

they are also used in the fields of Machine and Deep Learning. Despite the popularity

and high-level that Python and R has as programming languages, there are other valid

options that should be considered (Springboard India, 2020a) many of which are devel-

oped by the open-source community. In the Java Virtual Machine (JVM) platform Java

and Scala are both languages that provide comprehensive frameworks and libraries for

Big Data, Machine – and Deep Learning. (Pathmind, n.d.)

There are professional developers worldwide specializing in Java. Furthermore, most of

the platforms for large businesses are built with Java. Java provides application scala-

bility, security and performance, therefore, it is used in enterprise and server-side appli-

cations. (Code Institute, n.d.) Java, having a huge developer community behind it, pro-

vides a wide range of open-source tools and frameworks, one of which is DeepLearn-

ing4J (DL4J) for DL applications (Eclipse Foundation, n.d.).

The objective of this thesis is to show that Java can contribute to the field of ML and DL.

This objective is achieved by showing the implementation of a whole DL-based solution

done with Java and DL4J framework. The whole solution includes the creation and train-

ing of a DL model, and how it can be utilized by an external application (note that external

application means Web Service in this thesis). Often tutorials related to the implementa-

tion of a DL model only address how the model is created and trained. The work in this

thesis strives demonstrate how the trained model can be utilized in practice in addition

to how it is created.

The second chapter aims to unfold a comprehensive and theoretical background of im-

age classification, DL and the techniques used and applied in image classification. It also

includes a background of Java as a programming language and the introduction to

frameworks available for the implementation of DL applications.

The third chapter introduces the tools and data that are leveraged in this thesis to demon-

strate the use of Java and DL4J for DL applications. This is followed by the fourth chap-

ter, which is a walkthrough of the development process and implementation of an image

9

classifier capable of classifying mechanical tools. It also demonstrates how the trained

model can be utilized by a SpringBoot based representational state transfer (REST) web

service.

In the fifth chapter the results of the implemented DL model and Web Service are viewed,

in addition to some discussion on how the results were achieved. The results chapter

starts by presenting what metrics are used in the creation and training phases of the

model to determine the model’s performance. The results also cover how the imple-

mented Web Service can be consumed to perform a classification task by the model. In

addition, it shows what data is returned to the consumer from the performed classifica-

tion.

The sixth chapter, which is the conclusion, contains the author’s reflections on how the

result solution could be utilized in practice and how it could be further developed. It also

includes core limitations of the implemented solution and discussion on how fellow de-

velopers could adopt the demonstrated techniques and tools on other projects.

The work carried out in this thesis solely concentrates on the implementation of DL ap-

plications with Java and the open-source DL4J framework. Chapter four (demonstration

part of this thesis) only focuses on the creation and utilization of the DL model, so the

implementation of the Web Service is outside the scope of this thesis.

10

2 DEEP LEARNING AND IMAGE CLASSIFICATION

2.1 Machine- and Deep Learning

Machine Learning (ML), being a subfield under artificial intelligence (AI) is a way to use

algorithms to learn by processing structured and labeled data. Decisions and predictions

produced by a ML algorithm is not programmed beforehand, but the output is rather

performed and improved based on the data it has been trained against. Modern applica-

tions based on ML are recommendation systems, email spam detectors and digital voice

assistants. (IBM Cloud Education, 2020a)

Deep Learning (DL) is a step deeper in the subject of AI. DL is a subfield of Machine

Learning, and theories of DL have been around since 1943 (Keith D. Foote, 2017). DL

is a way to make a model learn and improve its performance by processing a lot of data

through multiple layers of algorithms called neural networks. DL differs from ML in the

way that DL is capable to process and learn from unstructured and unlabeled data in

addition to structured and labeled data. At its core, a DL model identifies and classifies

data on its own by extracting learning features from the data. (IBM Cloud Education,

2020b)

The applications of DL are leveraged now more than ever for problem solving. DL models

are used to handle tasks like self-driving cars, Natural Language Processing (NLP)

(voice-controlled systems) and Computer Vision (e.g., Image Classification, Video pro-

cessing). (IBM Cloud Education, 2020b)

2.1.1 Machine Learning Pipeline

In ML, the workflow of defining a problem all the way to creating a deployable model for

a ML solution has a defined pipeline. This ML pipeline is an iterative process where some

steps are repeated until the algorithm is successful. The ML pipeline typically constructs

of the following steps: Problem Definition, Data Ingestion, Data Preparation, Data Seg-

regation, Model Training, Evaluation, Deployment and Performance Monitoring (Picture

1.). (Koen, 2019)

11

Figure 1. The ML Pipeline (Koen, 2019).

The pipeline starts with definition of the business problem at hand. This is followed by

the step of Data Ingestion, which means the collection of data that is going to be used

for the problem. When the data is obtained, it must be cleaned, processed and normal-

ized before use. So, the third and most crucial step in the ML pipeline is Data Prepara-

tion. In practice this step includes removal of duplicate values, filling missing values and

correcting other possible problems regarding the data. The fourth step is Data Segrega-

tion, which includes the splitting of the processed data into dedicated train, validation

and test sets. Training set is used for training the model, while test and validation sets

are leveraged to see how the model performs on unseen data. (Koen, 2019)

In the ML pipeline, by the fourth step, the data should be ready to use, and the fifth step

of Model Training can begin. The model is trained against the training subset of the data.

After training, the model’s performance is evaluated iteratively against the test and vali-

dation subsets to see how it predicts unseen data. When the model is evaluated to per-

form as required, it can be deployed for use e.g., through an application programming

interface (API) that help complete an analytics solution. Finally, when the model is de-

ployed, it is monitored and incrementally improved on new data. (Koen, 2019)

12

2.1.2 Artificial Neural Networks

Artificial Neural Network (ANN), or Neural Network is a Machine Learning algorithm in-

spired by the way human brains function with a network of neurons (DeepAI, n.d.). A

neural network consists of layers of neurons that process incoming data and passes

produced outputs to other neurons. At its simplest, a neural network constructs of three

layers, an input layer, one hidden layer and an output layer. This is called a “shallow”

neural network (Missinglink.ai, n.d.a).

The output of a neuron is calculated based on a value called a weight and an activation

function. Each neuron holds a value called a weight and calculates its output by multi-

plying the weight with the neurons input value. The calculated output is then passed

through an activation function to the other neurons in the next layer. An activation func-

tion is used to determine the output of neural network. Furthermore, it determines if a

neuron should be activated or not. In addition, it maps the output of a neuron to a value

between 1 and 0 or between -1 and 1. E.g., an activation function can act based on a

rule or threshold as a step function that switches the output of a neuron on and off.

(Missinglink.ai, n.d.b)

There are three types of activation functions: binary step function, linear and non-linear

activation functions. A binary step function activates and passes a neuron signal as is to

the next layer if the input value exceeds a pre-defined threshold. Main cons are that it

does not support multi-value outputs e.g., multilabel classification. (Missinglink.ai, n.d.b)

A linear activation function enables a neural network to produce multiple outputs. It pro-

duces an output proportional to the input. Linear activation functions main cons are re-

lated to cases when it is applied on multi-layer neural networks. The use of a linear acti-

vation function will make the last layer of a neural network a linear function of the first

layer, so this basically makes a multi-layer network into a single-layer network. In addi-

tion, a technique called backpropagation cannot be applied on neural networks with lin-

ear activation functions. Linear activation functions restrict how complex data a neural

network can handle. (Missinglink.ai, n.d.b)

Backpropagation is an algorithm applied on neural networks that enable tuning of neu-

rons weights while training. After data has been fed through the network, backpropaga-

tion allows to go back and understand which neurons were involved in the produced

prediction, and then change the weight values to generate a more accurate prediction.

13

Backpropagation puts the activation function on constant strain, so it is crucial that it is

as efficient operation as possible. To allow a neural network to use backpropagation, it

must use non-linear activation functions. (Missinglink.ai, n.d.b)

Non-linear activation functions are used in multi-layered neural networks. Because mod-

ern neural networks use backpropagation, non-linear activation functions are developed

to be computationally efficient. With non-linear activation functions, a neural network can

learn more complex data by creating mappings between inputs and outputs of the net-

work. Complex data may include high dimensional data, images, video or audio. Some

common non-linear activation functions are Sigmoid, TanH, Softmax and Rectified Lin-

ear Unit (ReLU). (Missinglink.ai, n.d.b)

Out of the earlier mentioned activation functions, only Softmax and ReLU will be covered,

because they are leveraged in the implemented DL model, which is covered in chapter

four of this thesis. ReLU is generally a computationally efficient activation function (Miss-

inglink.ai, n.d.b). It is an activation function used in the hidden layers of a neural net-

works. ReLU simply outputs value of zero (0) if the input is negative, and whenever the

input value is positive the value will be passed as is to the next layer. Softmax is an

activation function used in the output layer of a neural network. Softmax outputs values

for each output neuron, where each value represents a probability of class membership.

The sum of the produced output values is always 1.0. (Brownlee, J., 2021)

2.1.3 Deep Neural Networks

As mentioned earlier, Deep Learning uses multiple layers of algorithms for data pro-

cessing to produce an output of given input. DL is the utilization of a model with a struc-

ture similar to shallow ANN:s, but instead of one hidden layer, there are two or more

hidden layers. These models are Deep Neural Networks (DNN) (Figure 1.) and can im-

prove accuracy by adding more hidden layers up to 9-10. Modern DNN:s implemented

have 3-10 hidden layers. (Missinglink.ai, n.d.b)

14

Figure 2. Deep Neural Network (Oppermann, 2019).

In DNN:s and ANN:s the role of the input layer is to receive data, while the output layers

role is to produces the result. Generally, the number of neurons in an input layer corre-

sponds to the number of features in the training data. The number of neurons in an output

layer depends on the kind of problem that is to be solved. When it is a regression or a

binary classification problem, the output layer has only one neuron. In cases of multi-

label classification, when the output layer uses Softmax as an activation function, the

number of neurons corresponds the amount of class labels in the model (this technique

is applied in the demonstration of this thesis). As for hidden layers, the number of neu-

rons, are commonly the same in all hidden layers. The optimal number of neurons can

be calculated by dividing the amount of trading data samples with the multiplication of a

tunable factor and the sum of input and output neurons (Formula 1.). The factor can be

tuned in range of 1-10 to prevent over-fitting. (Malik, 2019)

Formula 1. Optimal amount of neurons in Hidden Layer (Malik, 2019).

15

2.2 Image Classification

Image Classification, being one of the fundamental problems under the topic Computer

Vision, has different techniques in Machine and Deep Learning. Most common

techniques to perform classification are Support Vector Machine (SVM), K-Nearest

Neighbor (KNN), Multi-Layer Preceptron (MLP) and Convolutional Neural Networks

(CNN). Out of these techniques, classification performed by deep CNN:s have the high-

est accuracy and performance. (Hasabo, 2020)

Image Classification is the process where a computer model can identify an input image

to a class that the image represents. E.g., when feeding an image of a cat to an image

classification model, it would be able to classify and output a probability for a class label

‘cat’. (ThinkAutomation, n.d.)

2.2.1 Convolutional Neural Networks for Image Classification

As mentioned earlier, one of the best ways to tackle image classification, is the utilization

of CNN:s. CNN:s are generally more memory and computation heavy compared to the

other techniques, but it depends on the architecture of the CNN and dataset size. To

achieve great performance, it is crucial to design the CNN:s architecture according to the

dataset in use. With manual configuration of hyperparameters the performance of the

model can be tweaked. (Albelwi, Mahmood, 2017) CNN is a kind of Deep Neural Net-

work, where the hidden layers are convolution, pooling, fully connected and normaliza-

tion layers (Picture 2.) (Nigam, 2018).

16

Figure 3. Structure of a CNN (Albelwi, Mahmood, 2017).

A convolutional layer acts as an activation function and uses filters (also known as ker-

nels) on given input to perform feature extraction (Albelwi, Mahmood, 2017). As the level

of convolution layers increase, the higher-level the detected features are (Chatterjee,

2019). The produced feature map of detected features is done by calculating the dot

product from the input and filter (Picture 3.). In addition, a non-linear activation function

is performed. Among non-linear activation functions, the most preferred is ReLU because

it makes training take less time. (Albelwi, Mahmood, 2017)

Figure 4. Convolution operation (Batista, 2018).

17

The pooling layer is used for dimensional reduction of the input. A pooling layer is com-

monly min, max or average pooling. This means that e.g., min pooling is used for picking

the minimum pixel value from a region of a pixel matrix, hence the name “min pooling”.

Max and average pooling works in the same manner, but as the names imply, max pool-

ing selects the maximum pixel value and average pooling selects the average of all the

pixel values in the region. Pooling operations can be visualized in the picture below (Pic-

ture 4.). (Basavarajaiah, 2019)

Figure 5. Average pooling and Max pooling operations (Cheng, 2017).

While CNN:s have pros like automatic feature extraction and high flexibility as the archi-

tecture can be designed according to case specific datasets and hyperparameter tuning,

they also have drawbacks. Main cons of CNN:s are that they are complex, computation

heavy and requires a lot of data to train from scratch to perform accurately. Fortunately,

there are popular ready to use pre-trained models for classification available online that

have been trained on huge datasets. There is a variety of these pre-trained models with

different architectures, but most used and performant models are Xception (extension of

Inception), VGG-16/VGG-19, ResNet50 and NASNet (and more). These listed pre-

trained models have been trained on ImageNet dataset available from http://www.image-

net.org/. (Saket, 2017) This thesis only addresses the use of VGG16 and how it is utilized

for image classification with small datasets.

http://www.image-net.org/
http://www.image-net.org/

18

2.3 Pre-trained VGG16 and Transfer Learning

As mentioned before, one challenge when working with CNN:s is that training from them

scratch will require a lot of data to achieve good accuracy. To train an accurate case

specific image classifier with a small dataset we have pre-trained models like VGG16

available, and a concept called Transfer Learning.

VGG-16 is a deep CNN that was introduced by K. Simonyan and A. Zisserman from the

University of Oxford in 2014 on a report named “Very Deep Convolutional Networks for

Large-Scale Image Recognition” available from https://arxiv.org/pdf/1409.1556.pdf. In

the article report one can find in-depth theory about VGG-16. VGG-16 achieved accuracy

of 92.7% on the ImageNet dataset. In short, VGG-16 model is 16 layers deep with 1000

class labels and the ImageNet dataset consists of 14 million RGB images with the size

of 224*224. This means that the models input tensor must be in a dimension of (224,

224, 3) and that the output layer has 1000 neurons (one for each class) as seen in the

picture below of VGG-16 architecture (Picture 5.). (GeeksForGeeks, 2020)

Figure 6. Architecture of VGG-16 (GeeksForGeeks, 2020).

The VGG16 model has also its own dedicated pre-processor to help reduce data com-

plexity. According to the documentation and published report of VGG16, the VGG16 pre-

processor subtracts the mean RGB value from each pixel computed on the training set

(Simonyan, K., Zisserman, A., 2015).

https://arxiv.org/pdf/1409.1556.pdf

19

VGG-16 takes 528Mb of disk space, so it should be considered when estimating and

allocation storage space for a project that uses it. (GeeksForGeeks, 2020)

To leverage the layers of a pre-trained model, like VGG-16, for a new classification task,

a technique called Transfer Learning can be applied. Transfer Learning means reusing

the weights, or in other words taking the features learned from a model that has been

trained on a problem similar to the new at hand. When Transfer Learning has been ap-

plied and weights have been initialized in the new model, the only things left to do is fine-

tune configuration of the weights and model training on the case specific dataset.

(Brownlee, 2020) In practice fine-tuning means freezing the lower-level layers (close to

input), that hold generic features (e.g., edge detection), and retrain rest of the higher-

level layers on the model. It is also common to add new convolutional layers to be trained

in the retraining process. This results the fine-tuning of the model’s weights in the higher-

level layers to learn features according to the new classification task. (Sarkar, 2018) The

main benefits of Transfer Learning are the increase of generalization and less time spent

on training (Brownlee, 2020). This technique is leveraged when the available dataset for

solving the problem is too small.

2.4 Data Augmentation

When the dataset for a new classification task is too small, Data Augmentation can be

used. Data Augmentation is a technique to generate more data from the dataset that is

in use. It is possible to even 10x the dataset with Data Augmentation. In addition, a CNN

may avoid learning irrelevant features and patterns by using augmentation. (Gandhi,

n.d.) Common augmentation techniques used on images to generate new data are po-

sitional augmentation and color augmentation. Positional augmentation are modifica-

tions like scaling, cropping, flipping, padding, rotation, translation and affine transfor-

mation. Color augmentation includes modification of brightness, contrast saturation and

hue. There are also more advanced ways to produce more data form the space of the

initial dataset. Techniques like Generative Adversarial Network (GAN) and Neural Style

Transfer are highly used. (Kumar, n.d.)

20

Data Augmentation is applied in the DL pipeline on the data before it is given as input to

the model. This can be done in two ways called offline augmentation or online augmen-

tation. Offline augmentation means that the transformations are performed on the whole

dataset before feeding it to the model. Online augmentation means that the transfor-

mations are made on the fly to images right before being fed to the model. (Gandhi, n.d.)

2.5 Java for Deep Learning

The programming languages used to develop Machine and Deep Learning applications

are mostly done with Python or R. Python is even more used than R because of its

simplicity as a programming language and huge community built around it in the field of

Machine Learning. Despite the popularity of Python, there is still other valid options that

developers should consider to use more. (Springboard India, 2020a) Java Virtual

Machine (JVM) languages like Java and Scala are also highly used in the field of Big

Data, ML and DL. Furhtermore, Java has a huge developer community behind it and as

a programming language brings great performance, application scalability and security.

(Pathmind, n.d.)

Both Java and Python have their places when considering to leverage DL for solving a

problem. Python is more used for experimental use and to quickly get started on

developing the system. With Python, less resources are spent on the software

engineering aspects of the implementation and rather consentrated on the heuristics

related to DL. (Bhatia, 2018) Python has a bunch of libraries and frameworks related to

Deep Learning and the most popular ones are TensorFlow, Keras and PyTorch

(Bhattacharyya, 2020).

Java on the otherhand, is used for enterprise applications. It is not as much used in DL,

because of its steep learning curve and verboseness as a programming language

compared to Python. These characteristics of Java makes people to draw assumptions

that it would be unnecessarily complex to use it for DL. Java has great libraries for DL to

ease the implementation process and still achieve great performance. Most common

libraries used in Java for DL are DeepLearning4J (DL4J, target of this thesis) and Deep

Java Library (DJL) (Baeldung, 2020).

21

2.5.1 Java

Java is a general-purpose Object-Oriented programming (OOP) language developed by

James Gosling at Sun Microsystems in 1990s. Java is cross-platform which implies, that

a Java source code file (.java) can be compiled once into byte code (.class) then and ran

on any platform with JVM. (Thereaderwiki, 2020) Java is used mostly on enterprise ap-

plications for large businesses that require ease of scalability, high performance and

application security. Java also supports concurrent processing with a concept named

multithreading. Furthermore, these aspects make Java a preferred choice for the imple-

mentation of server-side applications.

Generally, Java is faster in runtime compared to Python because it is a compiled lan-

guage while Python is interpreted. Java is a statically typed language and therefore

known as a very verbose language. (Sayantini, 2020) Statically typed means that all

type-checking is performed by the compiler and possible errors are found before runtime.

In contrast, Python is a dynamically typed language, which means that type-checking is

made at runtime on the fly by CPU. This makes Python and other similar languages less

performant and more error prone. (JBallin, 2017).

One of the reasons why Python is in favor over Java, is because one can simply start

writing executable code starting from the first line with Python. Java requires definition

of classes and methods in-order to get started. This is one of the main reasons why Java

it is not considered as a good choice for complex Deep Learning applications. (Spring-

board Inidia, 2020b) Fortunately, there is an open-source library named DeepLearning4J

(DL4J), that makes the implementation of such applications more convenient and straight

forward (Eclipse Foundation, n.d.).

2.5.2 DeepLeanring4J Framework

DeepLearning4J is a commercial-grade open-source framework that was released under

Apache license 2.0 in 2014 by contributors from San Francisco and Tokyo. DL4J became

a part of Eclipse Foundations property in October 2017 and then was contributed to the

open-source Java Enterprise Edition library ecosystem. (Rao, 2017) DL4J was devel-

oped and intended for JVM based deep learning applications. It can be used with all the

22

popular JVM based languages like Java, Scala, Kotlin and Clojure. (Eclipse DL4J Re-

pository, 2015)

DL4J provides a developer the tools to handle the whole Deep Learning pipeline from

data preparation to the construction of simple or complex CNN:s. The great performance

of DL4J is achieved mainly because it uses C, C++ and Cuda as a backend for the

underlying computations. DL4J supports the utilization of GPU:s to decrease time spent

on training a model. For distributed computing it leverages Apache Spark and Hadoop.

DL4J is also highly flexible because it is possible to import Keras models that are saved

in h5 format. As of from 1.0.0-beta7 version of DL4J, it also supports importing of tf.keras

models. (Eclipse DL4J Repository, 2015)

The main stack of libraries available in the framework are DL4J, ND4J, SameDiff,

DataVec, Arbiter and LibND4J. From this collection of libraries, DL4J contains the high-

level API (Application Programming Interface) to build Deep Learning models. The main

classes used for the creation of a neural network are MultiLayerNetwork and Computa-

tionGraph. All the scientific computations like mathematical, linear algebra and deep

learning operations are in the ND4J library, which is based on LibND4J. LibND4J is a

highly optimized C++ engine that handles the processing of n-dimensional arrays from

ND4J for Java. The handling of ETL for data used on a Deep Learning project is done

by DataVec library. DataVec supports file formats like HDFS, Spark, Images, Video, Au-

dio, CSV, Excel and many others. (Eclipse DL4J Repository, 2015)

2.5.3 RESTful Web Services with Java

The strengths of Java as a server-side language are utilized in the work done in this

thesis by creating a representational state transfer (REST) web service, from which an

image classification model can be used.

A REST web service is also known as a REST application programming interface (API).

An API allows to integrate application software without having to know how the imple-

mentation of the communication between two systems (or more) is made. API:s ease the

designing and integration of new features into existing systems, and help to maintain

security and control of a resource. (RedHat, n.d.a)

23

A REST API is a standardized way for information exchange. It is a specification where

an API has REST architectural constraints. The core constraints include having Client-

Server architecture, being stateless, utilization of caching, having a layered system and

being a uniform interface. (RedHat, n.d.a) A REST API supports transferring of many

different formats through HTTP, including JavaScript Object Notation (JSON), HTML,

XLT, Python, PHP or plain text. Out of these formats, JSON is the most popular one.

(RedHat, n.d.b)

A REST web service can be made Hypermedia as the Engine of Application State

(HATEOAS) driven. As a small improvement to a typical REST application architecture,

HATEOAS enables dynamic navigation between resources of a web service. Navigation

is done through hypermedia links that are sent back to the client in the HTTP response

body. In addition of returning the requested data, the resource returns links to other re-

lated actions. With HATEOAS the service consumer does not need prior knowledge of

the service because of the guidance provided by the hypermedia links. (Karanam, 2019)

There is a variety of frameworks available for Java that allow the building of a REST API.

Some frameworks available include Spring Boot, Spring (MVC), Quarkus, Apahe CFX,

Jersey, RESTEasy, Restlet, Micronaut, TomEE and Dropwizard. (Brannan, 2021)

2.5.4 Picocli Command Line Framework

In this thesis, a VGG16 based image classification model is created and trained via a

command line tool to demonstrate the use of DL4J components. The command line tool

is implemented with a lightweight framework available for Java called Picocli.

Main benefits of Picocli, is within its flexibility, because it does not need to be included

as an external dependency. Picocli source is all in one file, so it can be included as

source. In addition, it supports different types of command line syntax styles like POSIX,

GNU, MS-DOS and others. (Picocli, 2021)

24

2.5.5 Maven for Java Projects

Apache Maven Project is a tool created to simplify a Java-based projects build process,

keep the build system uniform and provide quality project information. A maven project

is built according to a project object model (POM) file that a maven projects holds. The

POM file (POM.xml) contains information of the project. The POM includes information

like what dependencies the project uses, possible build plugins that are leveraged and

cross-referenced sources (among other beneficial information). Another important as-

pect of Maven is that it provides guidelines on how a project’s layout and directory struc-

ture should be. This enables the ease of navigation in new projects that use Maven.

(Apache Maven Project, n.d.)

25

3 DATASET AND TOOLS

To demonstrate the use of Java and DL4J for a DL solution, an image classification

model capable of classifying mechanical tools is implemented. The dataset used for the

training of the image classification model is available at Kaggle

https://www.kaggle.com/salmaneunus/mechanical-tools-dataset. Classifiable objects

are Gasoline Can, Hammer, Pebbles, Rope, Screwdriver, Toolbox, Wrench and Pilers.

The model is deployed and used through a Java Representational state transfer (REST)

web service.

3.1 Initial dataset setup

The Mechanical Tool dataset fetched from Kaggle is split according to a common split

percentage, which is 80% for training and 20% for test sets (80/20). All data in both

training and test sets are organized into dedicated subdirectories according to tool type

(pictures of hammers are in a directory named “Hammer” etc.). In addition of having a

separate training and test set, the training set is split into actual training set and validation

set (80/20). The splitting of training and validation set is done internally by the imple-

mented Java application, which performs the model training. Data augmentation is ap-

plied only for the actual training set that is fed to the model.

3.2 Frameworks used for the RESTful Web Service

A Java EE framework named Spring Framework is leveraged in the implementation of

the REST web service. To make the process of setting up the server application simple,

SpringBoot is used to auto-configure the application setup.

The created Java application is a Maven project. This eases the handling of dependen-

cies, like the use of SpringBoot and other libraries. All the dependencies are configured

in the pom.xml file, which is located under project root. Maven projects have clear folder

structure as default and helps to organize the architecture of the project.

https://www.kaggle.com/salmaneunus/mechanical-tools-dataset

26

The trained model is uploaded in a directory named “saved” under the resources folder.

Because it is a Maven project, the default resources folder is found under the source

folder that is in root (project_name/src/main/resources/saved).

The Tool Classification REST web service is made HATEOAS driven. Spring HATEOAS

is used in the implementation of HATEOAS support.

3.3 Command Line Tool for Image Classification Model Training

The creation and training of the VGG16 based tool classification model is performed and

executed via a Picocli based command line tool created in this thesis for the demonstra-

tion of DL4J. To execute the command line model trainer, it can be provided with an

optional argument (-p, -P or --path) to specify where the trained model will be saved. As

default, the model will be saved under C:/<userPath>/image_recognition_model/. The

model will be saved as a compressed .zip file. After obtaining the compressed model, it

is ready to use and can be deployed/uploaded to the tool classification web service.

This command line tool is a Maven project, which helps the dependency management

of Picocli and DL4J components. In addition, it leverages a maven-assembly build plugin,

which enables the building of the project into an executable Java Archive (JAR) file con-

taining all necessary dependencies. The build plugin allows to use the command line tool

as a exportable and executable JAR file.

27

4 DEVELOPMENT WITH DL4J

The walkthrough of the development process with Java and DL4J framework is done by

introducing the components used in the creation of the image classification model trainer.

This includes showing the actual implementation and use of different DL4J components

for the creation of the image classification model. In addition, this section shows the

implementation on how the web service leverages the trained model with DL4J compo-

nents.

The workflow for the demonstration is going as follows. First the image classification

model trainer is utilized to create a compressed .zip file of the new VGG16 based model.

When the model is obtained, the SpringBoot application can be executed to start the web

service. Before starting the web service, the SpringBoot application uploads the com-

pressed model into the projects resources folder, where it can then be used by the web

service.

4.1 Creation of the Tool Classification Model

Most of the implementation regarding DL4J framework is done withing the command line

tool project “Model_train_tool”. The projects main application to run the Picocli command

line tool is in a java file named “ModelTrainerTool.java”. (Figure 2.)

Figure 7. Project structure of Model_Train_Tool.

The main application uses an interface named “IModelTrainer.java” to perform the crea-

tion and training of the compressed model. (Figure 6.)

28

All the source code regarding the implementation of the DL pipeline can be found under

the package “com.image.net.model_train_tool.ml”. This package holds a java class file

named “ToolClassificationVGG16ModelTrainer.java” that implements and is used

through the java interface “IModelTrainer.java” (Figure 5.). The class “ToolClassifica-

tionVGG16ModelTrainer” contains the implementation of creation, training and saving of

the tool classification model by utilizing DL4J components.

4.1.1 Main application

The main application class ModelTrainerTool is decorated with an annotation @Com-

mand, which indicates that it is Picocli command line executable application.

Figure 8. ModelTrainerTool main application decorated with Picocli @Command anno-
tation.

With the @Command annotation, the class can also utilize an annotation @Option that

allows the application to use command line arguments. The @Option annotation

maps an optional command line argument to its dedicated class field variable (Figure4.).

In this demonstration it enables the user to specify a desired location to which the appli-

cation will read and write data from/to regarding the DL pipeline (location for reading

datasets and model saving). The arguments can be set with optional argument --path, -

p or -P. As default the fields value is initialized to hold the path to directory named im-

age_recognition_model under local user folder (C:/users/userPath/image_recogni-

tion_model).

Figure 9. Optional command line arguments enabled with @Optional.

29

The main class ModelTrainerTool implements Runnable interface so that Picocli Com-

mandLine object can be leveraged to execute the program in a new thread. When exe-

cuted by Picocli, a implemented method named run() is called (Figure 5.). The method

run() acts as the driver of the program and is implemented from the Runnable interface.

Figure 10. Picocli executes ModelTrainerTool, which calls run() -method driver code.

4.1.2 Transfer Learning and creating a model

As mentioned earlier, the Java class used to perform the model’s creation and training

with DL4J is named “ToolClassificationVGG16ModelTrainer.java”. It has two main meth-

ods that can be used through its interface “IModelTrainer.java”: initPreTrainedModel-

WithTransferLearning() and trainPretrainedModel() (Figure 6.).

Figure 11. IModelTrainer -interface.

30

The method initPreTrainedModelWithTransferLearning() initializes the pre-trained model

(Figure 7.) and performs the transfer learning to the new model (Figure 9.). In addition,

it fine-tunes the new model. DL4J core library contains a dedicated class “VGGBuilder“

(used through org.deeplearning4j.zoo.model.VGG16.builder()) that is used to create an

object instance of a pre-trained VGG16 model. All pre-trained model instances from

DL4J are class type of ZooModel (org.deeplearning4j.zoo.ZooModel).

The ZooModel class object itself is not meant to be programmatically manipulated and

therefore needs to be converted to a neural network object representation. To do so it

can be instantiated to an object instance type of ComputationGraph (org.deeplearn-

ing4j.nn.graph.ComputationGraph) which indeed is the programmable neural network

class object.

Figure 12. Initializing a pre-trained VGG16 model with DL4J.

The fine-tuning of the new model is performed by applying a configurable object instance

type of FineTuneConfiguration (org.deeplearning4j.nn.transferlearning.FineTuneConfig-

uration) to it (Figure 8.) (Figure 9.). Again DL4J has a dedicated builder class (used

through org.deeplearning4j.nn.transferlearning.FineTuneConfigura-

tion.Builder.Builder()) that makes the usage of the object straight forward. In the demon-

stration the FineTuneConfiguration object is used to define the optimization algorithm to

be SGD (Stochastic Gradient Descent) and then to leverage Nesterov’s momentum to

keep the gradient updated.

Figure 13. Fine-tuning configuration for the new model.

Transfer Learning is performed by constructing and initializing a new ComputationGraph

object based on the pre-trained model. To apply the defined fine-tuning for the new

model, the FineTuneConfiguration object is passed to its builder in the object construc-

tion phase. DL4J has a dedicated API for Transfer Learning and through it a

31

GraphBuilder class (org.deeplearning4j.nn.transferlearning.TransferLearn-

ing.GraphBuilder) is leveraged to build the new ComputationGraph. Again, DL4J has a

good implementation of the common builder pattern, which makes the construction of

such complex and highly configurable object effortless and readable.

Figure 14. Applying Transfer Learning and constructing the new model with Transfer-
Learning.GraphBuilder object.

The new model is given a custom output layer holding the predictable class labels for all

eight mechanical tools (Gasoline Can, Hammer, Pebbles, Rope, Screwdriver, Toolbox,

Wrench and Pilers). All layers up to the last fully connected layer (fc2) are frozen on the

model to keep the weights fixed while training. The activation function used on the output

layer is defined to be Softmax (Figure 9.).

All parameters regarding Transfer Learning and fine-tuning are defined as static class

field variables to make the accessing of these parameters efficient.

4.1.3 ETL operations

The model is trained in three epochs, which means that the whole training dataset has

been fed through the network three times. The dataset is not passed as whole, but rather

fed in small batches with the size of 16. All ETL operations like defining and splitting

datasets, including data augmentation are done with components provided from the

DL4J DataVec library.

The paths for the datasets are first instantiated into object instances type of FileSplit

(org.datavec.api.split.FileSplit). Furthermore, the FileSplit objects are used for getting the

32

datasets as InputSplit (org.datavec.api.split.InputSplit) instances that hold the actual lists

of loadable file locations. To get the datasets as traversable objects, they are constructed

into instances DataSetIterator (org.nd4j.linalg.dataset.api.iterator.DataSetIterator). The

iterator is initialized according to the provided InputSplit paths. (Figure 10.)

Figure 15. Defining dataset file paths and dataset iterators.

A method named getDataSetIterator() (com.image.net.model_train_tool.ml.ToolClassifi-

cationVGG16ModelTrainer.getDataSetIterator(InputSplit, boolean)) is implemented to

construct and initialize the iterator (Figure 11.). The class instance of the constructed

DataSetIterator is type of RecordReaderDataSetIterator (org.deeplearning4j.da-

tasets.datavec.RecordReaderDataSetIterator.RecordReaderDataSetIterator()). The it-

erator is equipped with a image pre-processor dedicated for a VGG16 model

(org.nd4j.linalg.dataset.api.preprocessor.VGG16ImagePreProcessor).

Figure 16. Constructing a DataSetIterator.

Because the images in training and test datasets are organized into subdirectories by

their tool type, the label for an image is generated according to the parent directory it is

in. A class named ParentPathLabelGenerator (org.datavec.api.io.labels.ParentPathLa-

belGenerator) is used to perform the label generation. In this ToolClassifica-

tionVGG16ModelTrainer class the label generator is assigned to a dedicated static field

named LABEL_GENERATOR_MAKER (seen in the picture above).

33

Data augmentation is also applied at this point by the method getDataSetIterator() de-

pending on the given boolean flag argument (Figure 11.). The augmented transforms

applied on the data include simple flipping, rotation and wrapping (Figure 12.).

Figure 17. Data augmentation transforms.

4.1.4 Training the model

The training of the model is performed in a while loop by incrementing the number epochs

after each time the whole training set has been fed. There is also an inner while loop

which feeds the dataset in the earlier defined 16 size batches to the model. The model

is evaluated every ten iterations against the validation set and after every epoch against

the test set. Finally, after three epochs the model is saved as a .zip file. (Figure 13.)

Figure 18. Training and evaluation of the model.

34

4.2 Running the Model Trainer Tool

4.2.1 Initial setup

Before running the model trainer, there is some setup required to be done regarding the

dataset and folder structure. The dataset is already properly split into training and test

sets, they need to be uploaded to the right dedicated location. As default the application

will read and write data from/to a folder named image_recognition_model under user

path (C:/Users/userPath/image_recognition_model). The training and test sets (directo-

ries train_all and test_all) are placed under a directory named tool_data (../image_recog-

nition_model/tool_data) as seen in the figure below (Figure 14.).

Figure 19. Initial folder structure.

After setting up the directories for the datasets the initial setup is complete, and the com-

mand line tool can be executed. The model trainer tool will create new directories named

saved and log under the base directory image_recognition_model. The directory im-

age_recognition_model/saved is where the compressed model is saved by the tool. The

directory image_recognition_model/log contains a log file with all logging entries pro-

duced while executing and running the model trainer tool. The image below shows the

complete folder structure after the tool is executed (Figure 15.).

35

Figure 20. Folder structure after model trainer is executed.

4.2.2 Executing the model trainer

Before execution, the project is packaged into a JAR file containing all necessary de-

pendencies, which enables to use it as an exportable tool. To build the JAR file of the

project, the following maven commands are executed through command line in the pro-

ject root (model_train_tool/); mvn clean followed by mvn package. As a result, a JAR

file (among other build related files and directories) named model-train-tool-jar-with-

dependencies.jar is produced and located under project root in a folder /target

(model_train_tool/target/model-train-tool-jar-with-dependencies.jar).

The JAR can be executed from project root through command line with default path lo-

cation for the dataset reading and model saving:

 java -jar target/model-train-tool-jar-with-dependencies.jar

Or with specified location by providing -p argument:

36

 java -jar target/model-train-tool-jar-with-dependencies.jar -p C:/us-

ers/myUser/files/recognition_model

When the program has finished training, it produces the compressed model im-

age_recognition_model/saved/tool_classification_model_vgg16.zip (or in other spec-

ified location). The compressed model is ready for deployment and use for the REST

web service.

4.3 Tool Classification REST Web Service

The SpringBoot server application for the classification REST web service is imple-

mented as a basic Rest Controller. It contains two GET endpoints for the consumer:

/api/tools/detect and /api/tools/labels.

The endpoint /api/tools/detect performs the classification. The HTTP request sent to

the endpoint has to contain an image file (key: imageFile, formats: tif, jpg, png, jpeg,

bmp, JPEG, JPG, TIF, PNG) that the classification is performed on. As a response the

web service returns a Data Transfer Object (DTO) containing the label which the image

is classified as and rest of the label predictions. The predictions are returned as double

data type to represent percentage, so the value for a prediction is between 0-1 (1.0 =

100%). In addition of returning the classification and prediction, the response contains

HATEOAS links to the /api/tools/labels endpoint and the base entry point for the web

service.

The endpoint /api/tools/labels simply returns a list of all classifiable labels.

4.3.1 Using the compressed model

The Rest Controller uses a ToolRecognitionService -interface to get the predictions. The

class implementation ToolRecognitionServiceImpl deserializes and initializes the com-

pressed model as a ComputationGraph into a dedicated class field (Figure 17.). The

predictions are then be obtained as a vectorized representation holding a prediction for

each output label (eight elements). The predictions are returned from the service as a

37

Map data structure containing the tool type as a key and the prediction as a value

(Map<ToolType, Double>). (Figure 16.)

The dimensions of an image file sent in the request must match the models input layers

dimensions (224, 224, 3). Before using the image to get predictions, it is converted to a

vectorized representation with the required dimensions of height 224, length 224 and

channels 3 for RGB values (224, 224, 3). In addition, a dedicated VGG16 pre-processor

used on it. (Figure 16.)

Figure 21. Using the model for a classification task.

Figure 22. Method used for restoring the compressed model as ComputationGraph.

38

5 EVALUATION AND RESULTS OF TOOL

CLASSIFICATION MODEL

5.1 Metrics and evaluating the model

Before getting into the actual evaluation of the new VGG16 based model, one needs to

verify the architecture of the new model. This includes checking that it has the eight

outputs, and that all layers excluding the output and input layers are frozen (as defined

earlier in chapter four). The architecture of the new model is verified through auditing a

log entry of the model’s structure before the actual training process. A comprehensive

summary of the models architecture is logged with summary() -method provided by the

ComputationGraph (org.deeplearning4j.nn.graph.ComputationGraph.summary()).

Figure 23. New VGG16 based model architecture to which Transfer Learning is applied,
logged with summary() -method.

The audited log entry of the model summary above (Figure 18.) verifies that the new

model has frozen layers until the last fully connected layer (fc2 layer). The column Ver-

texType contains information about what type a layer is and if it is frozen or not. The

summary also shows that the new model has a new custom layer for predictions con-

taining eight outputs. The output layer can be identified by locating the layer with Ver-

texType of OutputLayer (layer name predictions). Other beneficial metrics displayed by

the summary, are the dimensions that each layer has and in what dimensions the input

data for each layer has to be (columns nIn,nOut and ParamsShape).

39

When the model’s architecture is verified, the evaluation can begin. The model is evalu-

ated mostly according to its prediction accuracy calculated against the validation and test

datasets. To get comprehensive log entry of the evaluation metrics, the Computa-

tionGraph has a evaluate() -method (org.deeplearning4j.nn.graph.Computa-

tionGraph.evaluate(DataSetIterator)), which enables evaluation against provided da-

taset (Figure 19.). In addition of the prediction accuracy, it also displays a confusion

matrix that help visualize the distribution of predictions performed on the dataset (Figure

19.).

Figure 24. Model evaluation method.

Figure 25. Evaluation metrics and confusion matrix on test dataset at the end of epoch
3.

The model’s performance is monitored by following the metrics logged from the evalua-

tion performed on both validation and test sets. This data was leveraged to prevent over-

fitting and some tweaking of the hyperparameters. Tweaked hyperparameters include

such as learning rate of Nesterov’s updater, different weight initialization techniques (Xa-

vier vs Normal distribution), effect of batch size and number of epochs.

40

The above figure (20.) shows the final statistics evaluated of the model’s performance

on the test set. In three epochs the model has a reached accuracy of ~86%, which is

quite good considering that the training on CPU took only ~30min and the dataset avail-

able was limited.

The training of a model from scratch against the same dataset would take longer time

and the accuracy would not reach more than ~40-50% (tested without proper tweaking

of hyperparameters).

5.2 Testing the Tool Classification Web Service

To test the implemented Tool Classification web service, a HTTP GET request containing

an image file is sent. The following request is sent with Postman to the Tool Classification

REST endpoint with a picture of a nail dispensing hammer in request body (Picture 6.).

Picture 1. A nail dispensing hammer to test the classification.

41

Picture 2. Postman GET request to test classification of a hammer.

The web service returns a HTTP response body in JSON format (Figure 21.).

Figure 26. Hammer classification response body returned from Tool Classification Web
Service.

The goal is that the model could classify the image as a hammer. It can be confirmed

that the classification model and web service indeed work and is able to classify the nail

dispensing hammer as a HAMMER (Figure 21.). Rest of the predictions gives some in-

42

sight data of other possible classifications. The web service classifies an item as a spe-

cific tool type if the prediction is > 0.5 (50%). Here is also displayed how the leveraged

Softmax activation function of the model returns the values of each output as a repre-

sented prediction of class membership (output values sum is 1.0).

43

6 CONCLUSION

The objective of this thesis was to demonstrate how and why Java and DL4J framework

should be considered as a good option for the implementation of an image classifier and

other DL related tasks. The core concepts of DL and image classification were introduced

as a starting point. The theoretical part was followed with an introduction to Java’s

strengths as a programming language and the core libraries that DL4J offers for devel-

opers to implement DL projects.

The application of these powerful tools was demonstrated with an implementation of a

command line tool that trains a VGG16 based mechanical tool image classifier with

DL4J. The creation of the mechanical tool classifier included techniques such as transfer

learning, fine-tuning, ETL operations (inc. data augmentation), evaluation and practical

ways on how to tweak the model hyperparameters. The usage of the model was demon-

strated through a SpringBoot RESTful web service that utilizes the model to perform the

tool classification task on a given image.

The demonstration part demonstrates the ease of use of DL4J libraries due to their high-

level implementations. The trained model reached accuracy of ~85% within ~30min of

training on a limited dataset. The model was capable of classifying tools through the web

service and give the right predictions as response. The main limitations regarding the

application are that it is only capable of detecting a small variety of tools. A more scaled

version of this classifier and service could be utilized e.g., as a customer service helper.

A consumer could use it to query the availability of some product by providing an image

through camera and the helper would recognize and response with the availability.

All techniques applied with DL4J on the result can be implemented on any Java-based

project. Java experts or developers may find it easier to integrate state-of-the-art DL-

based solutions into a project when the programming language stays the same. This

benefits also further development so that any fellow Java developer on the project can

make changes and additions if needed.

To further develop the classifier, a GAN could be implemented to handle data augmen-

tation and boost the training with a limited dataset. Also, some modifications and addi-

tions could be made regarding the layers of the CNN. Layer modifications would include

44

the addition of a dense layer, the change of the feature extraction layer and unfreezing

different layers to enable later layers to be tweaked properly during training.

45

REFERENCES

Albelwi, S. and Mahmood, A., 2021. ‘A Framework for Designing the Architectures of Deep Con-
volutional Neural Networks’ Entropy, [Online]. 19 (6), 242. Available from:
https://www.mdpi.com/1099-4300/19/6/242/htm [Accessed 9 January 2021]

Apache Maven Project, n.d., ‘What is Maven?’, Available from: https://maven.apache.org/what-
is-maven.html [Accessed 4 March 2021]

Baeldung, 2020, ‘Overview of AI Libraries in Java’, Available from:
https://www.baeldung.com/java-ai [Accessed 29 December 2020]

Basavarajaiah, M., 2019, ‘Maxpooling vs minpooling vs average pooling’, Available from:
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-
average-pooling-95fb03f45a9 [Accessed 9 January 2021]

Batista, D. S., 2018, ‘Convolutional Neural Networks for Text Classification’, Available from:
http://www.davidsbatista.net/blog/2018/03/31/SentenceClassificationConvNets/

Bhatia, R., 2018, ’Why Do Data Scientists Prefer Python Over Java?’, Available from: https://an-
alyticsindiamag.com/why-do-data-scientists-prefer-python-over-java/ [Accessed 6 January 2021]

Bhattacharyya, J., 2020, ‘Popular Deep Learning Frameworks: An Overview’, Available from:
https://analyticsindiamag.com/deep-learning-frameworks/ [Accessed 18 February 2021]

Brannan, J., 2021, ‘Top 10 Best Java REST and Microservice Frameworks (2021)’, Available
from: https://rapidapi.com/blog/top-java-rest-frameworks/ [Accessed 4 March 2021]

Brownlee, J., 2020, ‘How to Improve Performance With Transfer Learning for Deep Learning Neu-
ral Networks’, Available from: https://machinelearningmastery.com/how-to-improve-performance-
with-transfer-learning-for-deep-learning-neural-networks/ [Accessed 10 January 2021]

Brownlee, J., 2021, ‘How to Choose an Activation Function for Deep Learning’, Available from:
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/ [Accessed
1 March 2021]

Chatterjee, C. C., 2019, ‘Basics of the Classic CNN’, Available from: https://towardsdatasci-
ence.com/basics-of-the-classic-cnn-a3dce1225add [Accessed 9 January 2021]

Cheng, A.J., 2017, ‘Convolutional Neural Network’, Available from: https://me-
dium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb [Accessed 10 January 2021]

Code Institute, n.d., ‘What is Java and why is it important?’, Available from: https://codeinsti-
tute.net/blog/what-is-java/ [Accessed 17 February 2021]

DeepAI, n.d., ‘What is a Neural Network?’, Available from: https://deepai.org/machine-learning-
glossary-and-terms/neural-network [Accessed 27 February 2021]

Eclipse DL4J Repository, 2015, ‘DeepLearning4J’ (Repository README.md file), Available from:
https://github.com/eclipse/deeplearning4j [Accessed 12 January 2021]

Eclipse Foundation, n.d., ‘Deep Learning for Java’, Available from: https://deeplearning4j.org/ [Ac-
cessed 17 February 2021]

Foote, K. D., 2017, ‘A Brief History Of Deep Learning’, Available from: https://www.dataver-
sity.net/brief-history-deep-learning/ [Accessed 28 December 2020]

https://www.mdpi.com/1099-4300/19/6/242/htm
https://maven.apache.org/what-is-maven.html
https://maven.apache.org/what-is-maven.html
https://www.baeldung.com/java-ai
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9
https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9
http://www.davidsbatista.net/blog/2018/03/31/SentenceClassificationConvNets/
https://analyticsindiamag.com/why-do-data-scientists-prefer-python-over-java/
https://analyticsindiamag.com/why-do-data-scientists-prefer-python-over-java/
https://analyticsindiamag.com/deep-learning-frameworks/
https://rapidapi.com/blog/top-java-rest-frameworks/
https://machinelearningmastery.com/how-to-improve-performance-with-transfer-learning-for-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-improve-performance-with-transfer-learning-for-deep-learning-neural-networks/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://towardsdatascience.com/basics-of-the-classic-cnn-a3dce1225add
https://towardsdatascience.com/basics-of-the-classic-cnn-a3dce1225add
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
https://codeinstitute.net/blog/what-is-java/
https://codeinstitute.net/blog/what-is-java/
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://github.com/eclipse/deeplearning4j
https://deeplearning4j.org/
https://www.dataversity.net/brief-history-deep-learning/
https://www.dataversity.net/brief-history-deep-learning/

46

Gandhi, A., n.d., ‘Data Augmentation | How to use Deep Learning when you have Limited Data —
 Part 2’, Available from: https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-
when-you-have-limited-data-part-2/ [Accessed 11 January 2021]

GeeksForGeeks, 2020 ‘VGG-16 | CNN model’, Available from: https://www.geeksfor-
geeks.org/vgg-16-cnn-model/ [Accessed 10 January 2021]

Hasabo, I., 2020, ‘Image Classification using Machine Learning and Deep Learning’, Available
from: https://medium.com/swlh/image-classification-using-machine-learning-and-deep-learning-
2b18bfe4693f [Accessed 9 January 2021]

IBM Cloud Education, 2020a, ‘Machine Learning’, Available from:
https://www.ibm.com/cloud/learn/machine-learning [Accessed 22 February 2021]

IBM Cloud Education, 2020b, ‘Deep Learning’, Available from:
https://www.ibm.com/cloud/learn/deep-learning#toc-deep-learn-md_Q_Of3 [Accessed 24 Febru-
ary 2021]

JBallin, 2017, ‘I Finally Understand Static vs. Dynamic Typing and You Will Too!’, Available from:
https://hackernoon.com/i-finally-understand-static-vs-dynamic-typing-and-you-will-too-
ad0c2bd0acc7 [Accessed 29 January 2021]

Karanam, R., 2019, ‘REST API – What is HATEOAS?’, Available from: https://dzone.com/arti-
cles/rest-api-what-is-hateoas [Accessed 14 January 2021]

Koen, S., 2019, ‘Not yet another article on Machine Learning!’, Available from: https://to-
wardsdatascience.com/not-yet-another-article-on-machine-learning-e67f8812ba86 [Accessed 6
March 2021]

Kumar, H., n.d., ‘Data augmentation Techniques’, Available from: https://iq.opengenus.org/data-
augmentation/ [Accessed 11 January 2021]

Malik, F., 2019, ‘What Are Hidden Layers?’, Available from: https://medium.com/fintechex-
plained/what-are-hidden-layers-4f54f7328263 [Accessed 29 December 2020]

Maruti Techlabs, n.d., ‘9 Real-World Problems that can be Solved by Machine Learning’, Availa-
ble from: https://marutitech.com/problems-solved-machine-learning/ [Accessed 17 February
2021]

Missinglink.ai, n.d.a, ‘The Complete Guide to Artificial Neural Networks: Concepts and Models’,
Available from: https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-
neural-networks/ [Accessed 24 February 2021]

Missinglink.ai, n.d.b, ‘7 Types of Neural Network Activation Functions: How to Choose?’, Availa-
ble from: https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activa-
tion-functions-right/ [Accessed 27 February 2021]

Nigam, V., 2018, ’Understanding Neural Networks. From neuron to RNN, CNN, and Deep Learn-
ing’, Available from: https://medium.com/analytics-vidhya/understanding-neural-networks-from-
neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90 [Accessed 9 January 2021]

Oppermann, A., 2019, ’What is Deep Learning and How does it work?’, Available from: https://to-
wardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac [Accessed
29 December 2020]

Pathmind, n.d., ‘Java Tools for Deep Learning, Machine Learning and AI’, Available from:
https://wiki.pathmind.com/java-ai [Accessed 17 February 2021]

Picocli, 2021, ‘picocli - a mighty tiny command line interface’, Available from: https://picocli.info/
[Accessed 16 January 2021]

https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
https://medium.com/swlh/image-classification-using-machine-learning-and-deep-learning-2b18bfe4693f
https://medium.com/swlh/image-classification-using-machine-learning-and-deep-learning-2b18bfe4693f
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/deep-learning#toc-deep-learn-md_Q_Of3
https://hackernoon.com/i-finally-understand-static-vs-dynamic-typing-and-you-will-too-ad0c2bd0acc7
https://hackernoon.com/i-finally-understand-static-vs-dynamic-typing-and-you-will-too-ad0c2bd0acc7
https://dzone.com/articles/rest-api-what-is-hateoas
https://dzone.com/articles/rest-api-what-is-hateoas
https://towardsdatascience.com/not-yet-another-article-on-machine-learning-e67f8812ba86
https://towardsdatascience.com/not-yet-another-article-on-machine-learning-e67f8812ba86
https://iq.opengenus.org/data-augmentation/
https://iq.opengenus.org/data-augmentation/
https://medium.com/fintechexplained/what-are-hidden-layers-4f54f7328263
https://medium.com/fintechexplained/what-are-hidden-layers-4f54f7328263
https://marutitech.com/problems-solved-machine-learning/
https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/
https://missinglink.ai/guides/neural-network-concepts/complete-guide-artificial-neural-networks/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://medium.com/analytics-vidhya/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://medium.com/analytics-vidhya/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac
https://towardsdatascience.com/what-is-deep-learning-and-how-does-it-work-2ce44bb692ac
https://wiki.pathmind.com/java-ai
https://picocli.info/

47

Rao, V., 2017, ‘Get started with Deeplearning4j’, Available from: https://developer.ibm.com/arti-
cles/cc-get-started-deeplearning4j/ [Accessed 12 January 2021]

RedHat, n.d.a, ‘What is an API?’, Available from: https://www.redhat.com/en/topics/api/what-are-
application-programming-interfaces [Accessed 4 March 2021]

RedHat, n.d.b, ‘What is an REST API?’, Available from: https://www.redhat.com/en/top-
ics/api/what-is-a-rest-api [Accessed 4 March 2021]

Saket, 2017, ‘7 Best Models for Image Classification using Keras’, Available from:
https://www.it4nextgen.com/keras-image-classification-models/ [Accessed 10 January 2021]

Salinas, D., 2020, ‘Deep Learning Use Cases: Separating Reality from Hype in Neural Networks’,
Available from: https://towardsdatascience.com/deep-learning-use-cases-separating-reality-
from-hype-in-neural-networks-9d31cc1bc746 [Accessed 28 December 2020]

Sarkar, D., 2018, ‘A Comprehensive Hands-on Guide to Transfer Learning with Real-World Ap-
plications in Deep Learning’, Available from: https://towardsdatascience.com/a-comprehensive-
hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
[Accessed 11 January 2021]

Sayantini, N. 2020, ‘Java vs Python : Comparison between the Best Programming Languages’,
Available from: https://www.edureka.co/blog/java-vs-python/ [Accessed 6 January 2021]

Simonyan, K., Zisserman, A., 2015, ‘VERY DEEP CONVOLUTIONAL NETWORKS FOR
LARGE-SCALE IMAGE RECOGNITION’, Available from: https://arxiv.org/pdf/1409.1556.pdf [Ac-
cessed 26 January 2021]

Springboard India, 2020a, ‘Best language for Machine Learning: Which Programming Language
to Learn’, Available from: https://in.springboard.com/blog/best-language-for-machine-learning/
[Accessed 17 February 2021]

Springboard Inidia, 2020b, ‘Which is Better for AI Java or Python? Which Programming Language
Should I Learn?’, Available from: https://in.springboard.com/blog/which-is-better-for-ai-java-or-
python/ [Accessed 18 February 2021]

Thereaderwiki, 2020, ‘Java (programming language)’, Available from: https://thereader-
wiki.com/en/Java_(programming_language) [Accessed 29 December 2020]

ThinkAutomation, n.d., ‘ELI5: what is image classification in deep learning?’, Available from:
https://www.thinkautomation.com/eli5/eli5-what-is-image-classification-in-deep-learning/ [Ac-
cessed 3 March 2021]

https://developer.ibm.com/articles/cc-get-started-deeplearning4j/
https://developer.ibm.com/articles/cc-get-started-deeplearning4j/
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.it4nextgen.com/keras-image-classification-models/
https://towardsdatascience.com/deep-learning-use-cases-separating-reality-from-hype-in-neural-networks-9d31cc1bc746
https://towardsdatascience.com/deep-learning-use-cases-separating-reality-from-hype-in-neural-networks-9d31cc1bc746
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
https://www.edureka.co/blog/java-vs-python/
https://arxiv.org/pdf/1409.1556.pdf
https://in.springboard.com/blog/best-language-for-machine-learning/
https://in.springboard.com/blog/which-is-better-for-ai-java-or-python/
https://in.springboard.com/blog/which-is-better-for-ai-java-or-python/
https://thereaderwiki.com/en/Java_(programming_language)
https://thereaderwiki.com/en/Java_(programming_language)
https://www.thinkautomation.com/eli5/eli5-what-is-image-classification-in-deep-learning/

	List of abbreviations
	1 Introduction
	2 Deep Learning And Image Classification
	2.1 Machine- and Deep Learning
	2.1.1 Machine Learning Pipeline
	2.1.2 Artificial Neural Networks
	2.1.3 Deep Neural Networks

	2.2 Image Classification
	2.2.1 Convolutional Neural Networks for Image Classification

	2.3 Pre-trained VGG16 and Transfer Learning
	2.4 Data Augmentation
	2.5 Java for Deep Learning
	2.5.1 Java
	2.5.2 DeepLeanring4J Framework
	2.5.3 RESTful Web Services with Java
	2.5.4 Picocli Command Line Framework
	2.5.5 Maven for Java Projects

	3 Dataset and tools
	3.1 Initial dataset setup
	3.2 Frameworks used for the RESTful Web Service
	3.3 Command Line Tool for Image Classification Model Training

	4 Development with DL4J
	4.1 Creation of the Tool Classification Model
	4.1.1 Main application
	4.1.2 Transfer Learning and creating a model
	4.1.3 ETL operations
	4.1.4 Training the model

	4.2 Running the Model Trainer Tool
	4.2.1 Initial setup
	4.2.2 Executing the model trainer

	4.3 Tool Classification REST Web Service
	4.3.1 Using the compressed model

	5 Evaluation and Results of Tool classification Model
	5.1 Metrics and evaluating the model
	5.2 Testing the Tool Classification Web Service

	6 Conclusion
	References

