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Nykyajan ongelmien, kuten esim. konenäön ja luonnollisen kielen käsittelyjärjestelmien, 
ratkaisuissa hyödynnetään yhä enemmän kone- ja syväoppimisen menetelmiä. Tämän 
opinnäytetyön tavoitteena on näyttää ja tutkia, miten Javaa voidaan hyödyntää syväoppimisen 
sovelluksissa. Modernit syväoppimiseen pohjautuvat ratkaisut toteutetaan pitkälti Python- ja R-
ohjelmointikielillä. Vaikka Java ei ole suosittu ohjelmointikieli tekoälyn ohjelmoinnissa, siinä on 
kattavat raamityökalut ja kirjastot kone- sekä syväoppimisen sovellusten kehitykseen. Javan 
tunnettuja vahvuuksia ovat ohjelmiston skaalautuvuus, tietoturvallisuus ja hyvä suorituskyky. 
Javaa käytetään mm. suurten yritystoimintojen järjestelmien sekä palvelinpuolen ratkaisujen 
kehityksessä. Suuren kehittäjäyhteisön omaavana Javalla on myös paljon avoimen lähdekoodin 
raamityökaluja ja kirjastoja. Yksi merkittävä tekoälyn ohjelmointiin tarkoitettu raamityökalu on 
DeepLearnin4J (DL4J). Tässä opinnäytetyössä keskityttiin yksinomaan Javan sekä DL4J:n 
käyttämiseen syväoppimiseen pohjautuvan kuvantunnistusmallin luomiseen ja hyödyntämiseen. 

Demo-osiossa toteutetaan syväoppimiseen pohjautuva ratkaisu konenäön ydinongelmaan eli 
kuvantunnistukseen. Työssä näytetään, miten malli luodaan ja koulutetaan käyttäen Javaa ja 
DL4J. Tämän lisäksi näytetään, miten koulutettua mallia voidaan hyödyntää käytännössä 
erillisessä Java-pohjaisessa sovelluksessa. Toteutettu malli on VGG16:een pohjautuva ja 
koulutetaan suoriutumaan mekaanisten työkalujen kuvantunnistuksessa. Koulutettua mallia 
käytetään demoa varten toteutetun SpringBoot-pohjaisen REST-www-sovelluspalvelun kautta. 
Menetelmiä, joita hyödynnetään DL4J-raamityökalulla, ovat mm. siirto-oppiminen, ETL (Extract, 
Transform, Load) operaatioita (sis. Datan kasvattamista) sekä mallin koulutus. 

Koulutetun mallin ja toteutetun web-palvelun tuloksista näkee kuinka vaivattomasti Java-
pohjaisella ratkaisulla saa hyvin suoriutuvan mallin kuvantunnistukseen. Malli saavutti noin 85% 
tarkkuuden vain noin 30min:n koulutuksella ja rajatulla tietoaineistolla. Lisäksi mallin käyttämistä 
web-palvelun kautta näytti todenmukaisen tilanteen mallin hyödyntämisestä. 

Mallin toteutuksen ja hyödyntämisen yhteydessä tehdyistä havainnoista ja saaduista tuloksista 
voi todeta, että Java on varteenotettava ohjelmointikieli tekoälyn ohjelmoinnissa. Java ja DL4J-
raamityökalu tekevät sovellusten kehitystyön syväoppimisesta suoraviivaista ja tehokasta, 
varsinkin Java-pohjaisissa projekteissa. 
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Modern problems, like Computer Vision and Natural Language Processing (NLP) are nowadays 
tackled by leveraging Machine (ML) and Deep Learning (DL)-based solutions. This thesis strives 
to demonstrate the use of Java for the implementation of DL applications. While ML and DL 
solutions are heavily implemented with programming languages such as Python and R, there are 
other popular languages that provide comprehensive frameworks and libraries for these tasks. 
One of these languages is Java. Java provides application scalability, security and performance. 
Therefore it is used worldwide in enterprise grade systems and server-side applications. Java, 
having a huge developer community behind it, provides a bunch of open-source tools and 
frameworks, one of which is DeepLearning4J (DL4J) for DL applications. The work carried out in 
this thesis solely concentrates on the utilization of Java and DL4J for the creation and use of a 
DL-based image classification model.  

The demonstration part includes the implementation of a solution for one of the core problems 
under the topic Computer Vision, which is Image Classification. The framework DL4J was 
leveraged in the implementation of a VGG16 -based model capable of mechanical tool image 
classification. The demonstration part also shows how the trained model can be utilized by an 
external Java-based application. The utilization of the model was implemented through a 
SpringBoot RESTful web service. Techniques applied with DLJ4 included Transfer Learning, ETL 
(Extract, Transform, Load) operations (inc. data augmentation) and model training.  

The results and findings  from the implementation of the DL model and web service verify how 
easy it is to become started and performant with a Java-based solution for Image Classification. 
The model reached ~85% accuracy in only ~30min of training on a limited dataset. In addition, a 
realistic use case scenario of the model was demonstrated by utilizing it from an external web 
service. 

The trained model combined with the implemented web service  form a complete DL and Java-
based solution to tackle an Image Classification task specifically for mechanical tools. The 
solution demonstrates the potential  Java indeed has  in the field of DL. The conclusion confirms 
that the stack of Java and DL4J is a valid option for the development of DL based solutions. The 
DL4J framework makes the development process of a DL-based solution straight forward, 
especially for Java projects. 
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1 INTRODUCTION 

Over time Machine (ML) and Deep Learning (DL) solutions are leveraged more and more 

to solve complex problems (Maruti techlabs, n.d.). Popular programming languages like 

Python and R, are widely used for data analysis and statistical computing. In addition, 

they are also used in the fields of Machine  and Deep Learning. Despite the popularity 

and high-level that Python and R has as programming languages, there are other valid 

options that should be considered (Springboard India, 2020a) many of which are devel-

oped by the open-source community. In the Java Virtual Machine (JVM) platform Java 

and Scala are both languages that provide comprehensive frameworks and libraries for 

Big Data, Machine – and Deep Learning. (Pathmind, n.d.)  

There are professional developers  worldwide specializing in Java. Furthermore, most of 

the platforms for large businesses are built with Java. Java provides application scala-

bility, security and performance, therefore, it is used in enterprise and server-side appli-

cations. (Code Institute, n.d.) Java, having a huge developer community behind it, pro-

vides a wide range of open-source tools and frameworks, one of which is DeepLearn-

ing4J (DL4J) for DL applications (Eclipse Foundation, n.d.).  

The objective of this thesis is to show that Java can contribute to the field of ML and DL. 

This objective is achieved by showing the implementation of a whole DL-based solution 

done with Java and DL4J framework. The whole solution includes the creation and train-

ing of a DL model, and how it can be utilized by an external application (note that external 

application means Web Service in this thesis). Often tutorials related to the implementa-

tion of a DL model only address how the model is created and trained. The work in this 

thesis strives demonstrate how the trained model can be utilized in practice in addition 

to how it is created.  

The second chapter aims to unfold a comprehensive and theoretical background of im-

age classification, DL and the techniques used and applied in image classification. It also 

includes a background of Java as a programming language and the introduction to 

frameworks available for the implementation of DL applications. 

The third chapter introduces the tools and data that are leveraged in this thesis to demon-

strate the use of Java and DL4J for DL applications. This is followed by the fourth chap-

ter, which is a walkthrough of the development process and implementation of an image 
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classifier capable of classifying mechanical tools. It also demonstrates how the trained 

model can be utilized by a SpringBoot based representational state transfer (REST) web 

service.  

In the fifth chapter the results of the implemented DL model and Web Service are viewed, 

in addition to some discussion on how the results were achieved. The results chapter 

starts by presenting what metrics are used in the creation and training phases of the 

model to determine the model’s performance. The results also cover how the imple-

mented Web Service can be consumed to perform a classification task by the model. In 

addition, it shows what data is returned to the consumer from the performed classifica-

tion.  

The sixth chapter, which is the conclusion, contains the author’s reflections on how the 

result solution could be utilized in practice and how it could be further developed. It also 

includes core limitations of the implemented solution and discussion on how fellow de-

velopers could adopt the demonstrated techniques and tools on other projects. 

The work carried out in this thesis solely concentrates on the implementation of DL ap-

plications with Java and the open-source DL4J framework. Chapter four (demonstration 

part of this thesis)  only focuses on the creation and utilization of the DL model, so the 

implementation of the Web Service is outside the scope of this thesis. 
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2 DEEP LEARNING AND IMAGE CLASSIFICATION 

2.1 Machine- and Deep Learning 

Machine Learning (ML), being a subfield under artificial intelligence (AI) is a way to use 

algorithms to learn by processing structured and labeled data. Decisions and predictions 

produced by a ML algorithm is not programmed beforehand, but the output is rather 

performed and improved based on the data it has been trained against. Modern applica-

tions based on ML are recommendation systems, email spam detectors and digital voice 

assistants. (IBM Cloud Education, 2020a) 

Deep Learning (DL) is a step deeper in the subject of AI. DL is a subfield of Machine 

Learning, and theories of DL have been around since 1943 (Keith D. Foote, 2017). DL 

is a way to make a model learn and improve its performance by processing a lot of data 

through multiple layers of algorithms called neural networks. DL differs from ML in the 

way that DL is capable to process and learn from unstructured and unlabeled data in 

addition to structured and labeled data. At its core, a DL model identifies and classifies 

data on its own by extracting learning features from the data. (IBM Cloud Education, 

2020b) 

The applications of DL are leveraged now more than ever for problem solving. DL models 

are used to handle tasks like self-driving cars, Natural Language Processing (NLP) 

(voice-controlled systems) and Computer Vision (e.g., Image Classification, Video pro-

cessing). (IBM Cloud Education, 2020b) 

2.1.1 Machine Learning Pipeline 

In ML, the workflow of defining a problem all the way to creating a deployable model for 

a ML solution has a defined pipeline. This ML pipeline is an iterative process where some 

steps are repeated until the algorithm is successful. The ML pipeline typically constructs 

of the following steps: Problem Definition, Data Ingestion, Data Preparation, Data Seg-

regation, Model Training, Evaluation, Deployment and Performance Monitoring (Picture 

1.). (Koen, 2019) 
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Figure 1. The ML Pipeline (Koen, 2019).  

The pipeline starts with definition of the business problem at hand. This is followed by 

the step of Data Ingestion, which means the collection of data that is going to be used 

for the problem. When the data is obtained, it must be cleaned, processed and normal-

ized before use. So, the third and most crucial step in the ML pipeline is Data Prepara-

tion. In practice this step includes removal of duplicate values, filling missing values and 

correcting other possible problems regarding the data. The fourth step is Data Segrega-

tion, which includes the splitting of the processed data into dedicated train, validation 

and test sets. Training set is used for training the model, while test and validation sets 

are leveraged to see how the model performs on unseen data. (Koen, 2019) 

In the ML pipeline, by the fourth step, the data should be ready to use, and the fifth step 

of Model Training can begin. The model is trained against the training subset of the data. 

After training, the model’s performance is evaluated iteratively against the test and vali-

dation subsets to see how it predicts unseen data. When the model is evaluated to per-

form as required, it can be deployed for use e.g., through an application programming 

interface (API) that help complete an analytics solution. Finally, when the model is de-

ployed, it is monitored and incrementally improved on new data. (Koen, 2019) 
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2.1.2 Artificial Neural Networks 

Artificial Neural Network (ANN), or Neural Network is a Machine Learning algorithm in-

spired by the way human brains function with a network of neurons (DeepAI, n.d.).  A 

neural network consists of layers of neurons that process incoming data and passes 

produced outputs to other neurons. At its simplest, a neural network constructs of three 

layers, an input layer, one hidden layer and an output layer. This is called a “shallow” 

neural network (Missinglink.ai, n.d.a).  

The output of a neuron is calculated based on a value called a weight and an activation 

function. Each neuron holds a value called a weight and calculates its output by multi-

plying the weight with the neurons input value. The calculated output is then passed 

through an activation function to the other neurons in the next layer. An activation func-

tion is used to determine the output of neural network. Furthermore, it determines if a 

neuron should be activated or not. In addition, it maps the output of a neuron to a value 

between 1 and 0 or between -1 and 1. E.g., an activation function can act based on a 

rule or threshold as a step function that switches the output of a neuron on and off. 

(Missinglink.ai, n.d.b) 

There are three types of activation functions: binary step function, linear and non-linear 

activation functions. A binary step function activates and passes a neuron signal as is to 

the next layer if the input value exceeds a pre-defined threshold. Main cons are that it 

does not support multi-value outputs e.g., multilabel classification. (Missinglink.ai, n.d.b) 

A linear activation function enables a neural network to produce multiple outputs. It pro-

duces an output proportional to the input. Linear activation functions main cons are re-

lated to cases when it is applied on multi-layer neural networks. The use of a linear acti-

vation function will make the last layer of a neural network a linear function of the first 

layer, so this basically makes a multi-layer network into a single-layer network. In addi-

tion, a technique called backpropagation cannot be applied on neural networks with lin-

ear activation functions. Linear activation functions restrict how complex data a neural 

network can handle. (Missinglink.ai, n.d.b)  

Backpropagation is an algorithm applied on neural networks that enable tuning of neu-

rons weights while training. After data has been fed through the network, backpropaga-

tion allows to go back and understand which neurons were involved in the produced 

prediction, and then change the weight values to generate a more accurate prediction. 
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Backpropagation puts the activation function on constant strain, so it is crucial that it is 

as efficient operation as possible. To allow a neural network to use backpropagation, it 

must use non-linear activation functions. (Missinglink.ai, n.d.b) 

Non-linear activation functions are used in multi-layered neural networks. Because mod-

ern neural networks use backpropagation, non-linear activation functions are developed 

to be computationally efficient. With non-linear activation functions, a neural network can 

learn more complex data by creating mappings between inputs and outputs of the net-

work. Complex data may include high dimensional data, images, video or audio. Some 

common non-linear activation functions are Sigmoid, TanH, Softmax and Rectified Lin-

ear Unit (ReLU). (Missinglink.ai, n.d.b)  

Out of the earlier mentioned activation functions, only Softmax and ReLU will be covered, 

because they are leveraged in the implemented DL model, which is covered in chapter 

four of this thesis. ReLU is generally a computationally efficient activation function (Miss-

inglink.ai, n.d.b). It is an activation function used in the hidden layers of a neural net-

works. ReLU simply outputs value of zero (0) if the input is negative, and whenever the 

input value is positive the value will be passed as is to the next layer. Softmax is an 

activation function used in the output layer of a neural network. Softmax outputs values 

for each output neuron, where each value represents a probability of class membership. 

The sum of the produced output values is always 1.0. (Brownlee, J., 2021) 

2.1.3 Deep Neural Networks 

As mentioned earlier, Deep Learning uses multiple layers of algorithms for data pro-

cessing to produce an output of given input. DL is the utilization of a model with a struc-

ture similar to shallow ANN:s, but instead of one hidden layer, there are two or more 

hidden layers. These models are Deep Neural Networks (DNN) (Figure 1.) and can im-

prove accuracy by adding more hidden layers up to 9-10. Modern DNN:s implemented 

have 3-10 hidden layers. (Missinglink.ai, n.d.b) 
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Figure 2. Deep Neural Network (Oppermann, 2019). 

In DNN:s and ANN:s the role of the input layer is to receive data, while the output layers 

role is to produces the result. Generally, the number of neurons in an input layer corre-

sponds to the number of features in the training data. The number of neurons in an output 

layer depends on the kind of problem that is to be solved. When it is a regression or a 

binary classification problem, the output layer has only one neuron. In cases of multi-

label classification, when the output layer uses Softmax as an activation function, the 

number of neurons corresponds the amount of class labels in the model (this technique 

is applied in the demonstration of this thesis). As for hidden layers, the number of neu-

rons, are commonly the same in all hidden layers. The optimal number of neurons can 

be calculated by dividing the amount of trading data samples with the multiplication of a 

tunable factor and the sum of input and output neurons (Formula 1.). The factor can be 

tuned in range of 1-10 to prevent over-fitting. (Malik, 2019) 

 

Formula 1. Optimal amount of neurons in Hidden Layer (Malik, 2019).  
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2.2 Image Classification 

Image Classification, being one of the fundamental problems under the topic Computer 

Vision, has different techniques in Machine and Deep Learning. Most common 

techniques to perform classification are Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Multi-Layer Preceptron (MLP) and Convolutional Neural Networks 

(CNN). Out of these techniques, classification performed by deep CNN:s have the high-

est accuracy and performance. (Hasabo, 2020) 

Image Classification is the process where a computer model can identify an input image 

to a class that the image represents. E.g., when feeding an image of a cat to an image 

classification model, it would be able to classify and output a probability for a class label 

‘cat’. (ThinkAutomation, n.d.) 

 

2.2.1 Convolutional Neural Networks for Image Classification 

As mentioned earlier, one of the best ways to tackle image classification, is the utilization 

of CNN:s. CNN:s are generally more memory and computation heavy compared to the 

other techniques, but it depends on the architecture of the CNN and dataset size. To 

achieve great performance, it is crucial to design the CNN:s architecture according to the 

dataset in use. With manual configuration of hyperparameters the performance of the 

model can be tweaked. (Albelwi, Mahmood, 2017) CNN is a kind of Deep Neural Net-

work, where the hidden layers are convolution, pooling, fully connected and normaliza-

tion layers (Picture 2.) (Nigam, 2018).  
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Figure 3. Structure of a CNN (Albelwi, Mahmood, 2017). 

A convolutional layer acts as an activation function and uses filters (also known as ker-

nels) on given input to perform feature extraction (Albelwi, Mahmood, 2017). As the level 

of convolution layers increase, the higher-level the detected features are (Chatterjee, 

2019). The produced feature map of detected features is done by calculating the dot 

product from the input and filter (Picture 3.). In addition, a non-linear activation function 

is performed. Among non-linear activation functions, the most preferred is ReLU because 

it makes training take less time. (Albelwi, Mahmood, 2017)  

 

Figure 4. Convolution operation (Batista, 2018). 
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The pooling layer is used for dimensional reduction of the input. A pooling layer is com-

monly min, max or average pooling. This means that e.g., min pooling is used for picking 

the minimum pixel value from a region of a pixel matrix, hence the name “min pooling”. 

Max and average pooling works in the same manner, but as the names imply, max pool-

ing selects the maximum pixel value and average pooling selects the average of all the 

pixel values in the region. Pooling operations can be visualized in the picture below (Pic-

ture 4.). (Basavarajaiah, 2019) 

 

Figure 5. Average pooling and Max pooling operations (Cheng, 2017). 

While CNN:s have pros like automatic feature extraction and high flexibility as the archi-

tecture can be designed according to case specific datasets and hyperparameter tuning, 

they also have drawbacks. Main cons of CNN:s are that they are complex, computation 

heavy and requires a lot of data to train from scratch to perform accurately. Fortunately, 

there are popular ready to use pre-trained models for classification available online that 

have been trained on huge datasets. There is a variety of these pre-trained models with 

different architectures, but most used and performant models are Xception (extension of 

Inception), VGG-16/VGG-19, ResNet50 and NASNet (and more). These listed pre-

trained models have been trained on ImageNet dataset available from http://www.image-

net.org/. (Saket, 2017) This thesis only addresses the use of VGG16 and how it is utilized 

for image classification with small datasets. 

http://www.image-net.org/
http://www.image-net.org/
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2.3 Pre-trained VGG16 and Transfer Learning 

As mentioned before, one challenge when working with CNN:s is that training from them 

scratch will require a lot of data to achieve good accuracy. To train an accurate case 

specific image classifier with a small dataset we have pre-trained models like VGG16 

available, and a concept called Transfer Learning.  

VGG-16 is a deep CNN that was introduced by K. Simonyan and A. Zisserman from the 

University of Oxford in 2014 on a report named “Very Deep Convolutional Networks for 

Large-Scale Image Recognition” available from https://arxiv.org/pdf/1409.1556.pdf. In 

the article report one can find in-depth theory about VGG-16. VGG-16 achieved accuracy 

of 92.7% on the ImageNet dataset. In short, VGG-16 model is 16 layers deep with 1000 

class labels and the ImageNet dataset consists of 14 million RGB images with the size 

of 224*224. This means that the models input tensor must be in a dimension of (224, 

224, 3) and that the output layer has 1000 neurons (one for each class) as seen in the 

picture below of VGG-16 architecture (Picture 5.). (GeeksForGeeks, 2020)  

 

 

Figure 6. Architecture of VGG-16 (GeeksForGeeks, 2020). 

The VGG16 model has also its own dedicated pre-processor to help reduce data com-

plexity. According to the documentation and published report of VGG16, the VGG16 pre-

processor subtracts the mean RGB value from each pixel computed on the training set 

(Simonyan, K., Zisserman, A., 2015). 

https://arxiv.org/pdf/1409.1556.pdf
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VGG-16 takes 528Mb of disk space, so it should be considered when estimating and 

allocation storage space for a project that uses it. (GeeksForGeeks, 2020) 

To leverage the layers of a pre-trained model, like VGG-16, for a new classification task, 

a technique called Transfer Learning can be applied. Transfer Learning means reusing 

the weights, or in other words taking the features learned from a model that has been 

trained on a problem similar to the new at hand. When Transfer Learning has been ap-

plied and weights have been initialized in the new model, the only things left to do is fine-

tune configuration of the weights and model training on the case specific dataset. 

(Brownlee, 2020) In practice fine-tuning means freezing the lower-level layers (close to 

input), that hold generic features (e.g., edge detection), and retrain rest of the higher-

level layers on the model. It is also common to add new convolutional layers to be trained 

in the retraining process. This results the fine-tuning of the model’s weights in the higher-

level layers to learn features according to the new classification task. (Sarkar, 2018) The 

main benefits of Transfer Learning are the increase of generalization and less time spent 

on training (Brownlee, 2020). This technique is leveraged when the available dataset for 

solving the problem is too small. 

 

2.4 Data Augmentation 

When the dataset for a new classification task is too small, Data Augmentation can be 

used. Data Augmentation is a technique to generate more data from the dataset that is 

in use. It is possible to even 10x the dataset with Data Augmentation. In addition, a CNN 

may avoid learning irrelevant features and patterns by using augmentation. (Gandhi, 

n.d.) Common augmentation techniques used on images to generate new data are po-

sitional augmentation and color augmentation. Positional augmentation are modifica-

tions like scaling, cropping, flipping, padding, rotation, translation and affine transfor-

mation. Color augmentation includes modification of brightness, contrast saturation and 

hue. There are also more advanced ways to produce more data form the space of the 

initial dataset. Techniques like Generative Adversarial Network (GAN) and Neural Style 

Transfer are highly used. (Kumar, n.d.)  
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Data Augmentation is applied in the DL pipeline on the data before it is given as input to 

the model. This can be done in two ways called offline augmentation or online augmen-

tation. Offline augmentation means that the transformations are performed on the whole 

dataset before feeding it to the model. Online augmentation means that the transfor-

mations are made on the fly to images right before being fed to the model. (Gandhi, n.d.) 

2.5 Java for Deep Learning 

The programming languages used to develop Machine and Deep Learning applications 

are mostly done with Python or R. Python is even more used than R because of its 

simplicity as a programming language and huge community built around it in the field of 

Machine Learning. Despite the popularity of Python, there is still other valid options that 

developers should consider to use more. (Springboard India, 2020a) Java Virtual 

Machine (JVM) languages like Java and Scala are also highly used in the field of Big 

Data, ML and DL. Furhtermore, Java has a huge developer community behind it and as 

a programming language brings great performance, application scalability and security. 

(Pathmind, n.d.) 

Both Java and Python have their places when considering to leverage DL for solving a 

problem. Python is more used for experimental use and to quickly get started on 

developing the system. With Python, less resources are spent on the software 

engineering aspects of the implementation and rather consentrated on the heuristics 

related to DL. (Bhatia, 2018) Python has a bunch of libraries and frameworks related to 

Deep Learning and the most popular ones are TensorFlow, Keras and PyTorch 

(Bhattacharyya, 2020). 

Java on the otherhand, is used for enterprise applications. It is not as much used in DL, 

because of its steep learning curve and verboseness as a programming language 

compared to Python. These characteristics of Java makes people to draw assumptions 

that it would be unnecessarily complex to use it for DL. Java has great libraries for DL to 

ease the implementation process and still achieve great performance. Most common 

libraries used in Java for DL are DeepLearning4J (DL4J, target of this thesis) and Deep 

Java Library (DJL) (Baeldung, 2020). 
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2.5.1 Java 

Java is a general-purpose Object-Oriented programming (OOP) language developed by 

James Gosling at Sun Microsystems in 1990s. Java is cross-platform which implies, that 

a Java source code file (.java) can be compiled once into byte code (.class) then and ran 

on any platform with JVM. (Thereaderwiki, 2020) Java is used mostly on enterprise ap-

plications for large businesses that require ease of scalability, high performance and 

application security. Java also supports concurrent processing with a concept named 

multithreading. Furthermore, these aspects make Java a preferred choice for the imple-

mentation of server-side applications.  

Generally, Java is faster in runtime compared to Python because it is a compiled lan-

guage while Python is interpreted. Java is a statically typed language and therefore 

known as a very verbose language. (Sayantini, 2020) Statically typed means that all 

type-checking is performed by the compiler and possible errors are found before runtime. 

In contrast, Python is a dynamically typed language, which means that type-checking is 

made at runtime on the fly by CPU. This makes Python and other similar languages less 

performant and more error prone. (JBallin, 2017). 

One of the reasons why Python is in favor over Java, is because one can simply start 

writing executable code starting from the first line with Python. Java requires definition 

of classes and methods in-order to get started. This is one of the main reasons why Java 

it is not considered as a good choice for complex Deep Learning applications. (Spring-

board Inidia, 2020b) Fortunately, there is an open-source library named DeepLearning4J 

(DL4J), that makes the implementation of such applications more convenient and straight 

forward (Eclipse Foundation, n.d.).  

 

2.5.2 DeepLeanring4J Framework 

DeepLearning4J is a commercial-grade open-source framework that was released under 

Apache license 2.0 in 2014 by contributors from San Francisco and Tokyo. DL4J became 

a part of Eclipse Foundations property in October 2017 and then was contributed to the 

open-source Java Enterprise Edition library ecosystem. (Rao, 2017) DL4J was devel-

oped and intended for JVM based deep learning applications. It can be used with all the 
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popular JVM based languages like Java, Scala, Kotlin and Clojure. (Eclipse DL4J Re-

pository, 2015) 

DL4J provides a developer the tools to handle the whole Deep Learning pipeline from 

data preparation to the construction of simple or complex CNN:s. The great performance 

of DL4J is achieved mainly because it uses C, C++ and Cuda as a backend for the 

underlying computations. DL4J supports the utilization of GPU:s to decrease time spent 

on training a model. For distributed computing it leverages Apache Spark and Hadoop. 

DL4J is also highly flexible because it is possible to import Keras models that are saved 

in h5 format. As of from 1.0.0-beta7 version of DL4J, it also supports importing of tf.keras 

models. (Eclipse DL4J Repository, 2015) 

The main stack of libraries available in the framework are DL4J, ND4J, SameDiff, 

DataVec, Arbiter and LibND4J. From this collection of libraries, DL4J contains the high-

level API (Application Programming Interface) to build Deep Learning models. The main 

classes used for the creation of a neural network are MultiLayerNetwork and Computa-

tionGraph. All the scientific computations like mathematical, linear algebra and deep 

learning operations are in the ND4J library, which is based on LibND4J. LibND4J is a 

highly optimized C++ engine that handles the processing of n-dimensional arrays from 

ND4J for Java. The handling of ETL for data used on a Deep Learning project is done 

by DataVec library. DataVec supports file formats like HDFS, Spark, Images, Video, Au-

dio, CSV, Excel and many others. (Eclipse DL4J Repository, 2015) 

 

2.5.3 RESTful Web Services with Java 

The strengths of Java as a server-side language are utilized in the work done in this 

thesis by creating a representational state transfer (REST) web service, from which an 

image classification model can be used.  

A REST web service is also known as a REST application programming interface (API). 

An API allows to integrate application software without having to know how the imple-

mentation of the communication between two systems (or more) is made. API:s ease the 

designing and integration of new features into existing systems, and help to maintain 

security and control of a resource. (RedHat, n.d.a) 
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A REST API is a standardized way for information exchange. It is a specification where 

an API has REST architectural constraints. The core constraints include having Client-

Server architecture, being stateless, utilization of caching, having a layered system and 

being a uniform interface. (RedHat, n.d.a) A REST API supports transferring of many 

different formats through HTTP, including JavaScript Object Notation (JSON), HTML, 

XLT, Python, PHP or plain text. Out of these formats, JSON is the most popular one. 

(RedHat, n.d.b) 

A REST web service can be made Hypermedia as the Engine of Application State 

(HATEOAS) driven. As a small improvement to a typical REST application architecture, 

HATEOAS enables dynamic navigation between resources of a web service. Navigation 

is done through hypermedia links that are sent back to the client in the HTTP response 

body. In addition of returning the requested data, the resource returns links to other re-

lated actions. With HATEOAS the service consumer does not need prior knowledge of 

the service because of the guidance provided by the hypermedia links. (Karanam, 2019) 

There is a variety of frameworks available for Java that allow the building of a REST API. 

Some frameworks available include Spring Boot, Spring (MVC), Quarkus, Apahe CFX, 

Jersey, RESTEasy, Restlet, Micronaut, TomEE and Dropwizard. (Brannan, 2021) 

2.5.4 Picocli Command Line Framework 

In this thesis, a VGG16 based image classification model is created and trained via a 

command line tool to demonstrate the use of DL4J components. The command line tool 

is implemented with a lightweight framework available for Java called Picocli. 

Main benefits of Picocli, is within its flexibility, because it does not need to be included 

as an external dependency. Picocli source is all in one file, so it can be included as 

source. In addition, it supports different types of command line syntax styles like POSIX, 

GNU, MS-DOS and others. (Picocli, 2021) 
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2.5.5 Maven for Java Projects 

Apache Maven Project is a tool created to simplify a Java-based projects build process, 

keep the build system uniform and provide quality project information. A maven project 

is built according to a project object model (POM) file that a maven projects holds. The 

POM file (POM.xml) contains information of the project. The POM includes information 

like what dependencies the project uses, possible build plugins that are leveraged and 

cross-referenced sources (among other beneficial information). Another important as-

pect of Maven is that it provides guidelines on how a project’s layout and directory struc-

ture should be. This enables the ease of navigation in new projects that use Maven. 

(Apache Maven Project, n.d.) 
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3 DATASET AND TOOLS 

To demonstrate the use of Java and DL4J for a DL solution, an image classification 

model capable of classifying mechanical tools is implemented. The dataset used for the 

training of the image classification model is available at Kaggle 

https://www.kaggle.com/salmaneunus/mechanical-tools-dataset. Classifiable objects 

are Gasoline Can, Hammer, Pebbles, Rope, Screwdriver, Toolbox, Wrench and Pilers. 

The model is deployed and used through a Java Representational state transfer (REST) 

web service. 

 

3.1 Initial dataset setup 

The Mechanical Tool dataset fetched from Kaggle is split according to a common split 

percentage, which is 80% for training and 20% for test sets (80/20). All data in both 

training and test sets are organized into dedicated subdirectories according to tool type 

(pictures of hammers are in a directory named “Hammer” etc.). In addition of having a 

separate training and test set, the training set is split into actual training set and validation 

set (80/20). The splitting of training and validation set is done internally by the imple-

mented Java application, which performs the model training. Data augmentation is ap-

plied only for the actual training set that is fed to the model. 

 

3.2 Frameworks used for the RESTful Web Service 

A Java EE framework named Spring Framework is leveraged in the implementation of 

the REST web service. To make the process of setting up the server application simple, 

SpringBoot is used to auto-configure the application setup. 

The created Java application is a Maven project. This eases the handling of dependen-

cies, like the use of SpringBoot and other libraries. All the dependencies are configured 

in the pom.xml file, which is located under project root. Maven projects have clear folder 

structure as default and helps to organize the architecture of the project. 

https://www.kaggle.com/salmaneunus/mechanical-tools-dataset
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The trained model is uploaded in a directory named “saved” under the resources folder. 

Because it is a Maven project, the default resources folder is found under the source 

folder that is in root (project_name/src/main/resources/saved).  

The Tool Classification REST web service is made HATEOAS driven. Spring HATEOAS 

is used in the implementation of HATEOAS support. 

 

3.3 Command Line Tool for Image Classification Model Training 

The creation and training of the VGG16 based tool classification model is performed and 

executed via a Picocli based command line tool created in this thesis for the demonstra-

tion of DL4J. To execute the command line model trainer, it can be provided with an 

optional argument (-p, -P or --path) to specify where the trained model will be saved. As 

default, the model will be saved under C:/<userPath>/image_recognition_model/. The 

model will be saved as a compressed .zip file. After obtaining the compressed model, it 

is ready to use and can be deployed/uploaded to the tool classification web service. 

This command line tool is a Maven project, which helps the dependency management 

of Picocli and DL4J components. In addition, it leverages a maven-assembly build plugin, 

which enables the building of the project into an executable Java Archive (JAR) file con-

taining all necessary dependencies. The build plugin allows to use the command line tool 

as a exportable and executable JAR file. 
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4 DEVELOPMENT WITH DL4J 

The walkthrough of the development process with Java and DL4J framework is done by 

introducing the components used in the creation of the image classification model trainer. 

This includes showing the actual implementation and use of different DL4J components 

for the creation of the image classification model. In addition, this section shows the 

implementation on how the web service leverages the trained model with DL4J compo-

nents.  

The workflow for the demonstration is going as follows. First the image classification 

model trainer is utilized to create a compressed .zip file of the new VGG16 based model. 

When the model is obtained, the SpringBoot application can be executed to start the web 

service. Before starting the web service, the SpringBoot application uploads the com-

pressed model into the projects resources folder, where it can then be used by the web 

service. 

 

4.1 Creation of the Tool Classification Model 

Most of the implementation regarding DL4J framework is done withing the command line 

tool project “Model_train_tool”. The projects main application to run the Picocli command 

line tool is in a java file named “ModelTrainerTool.java”. (Figure 2.) 

 

Figure 7. Project structure of Model_Train_Tool. 

The main application uses an interface named “IModelTrainer.java” to perform the crea-

tion and training of the compressed model. (Figure 6.) 
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All the source code regarding the implementation of the DL pipeline can be found under 

the package “com.image.net.model_train_tool.ml”. This package holds a java class file 

named “ToolClassificationVGG16ModelTrainer.java” that implements and is used 

through the java interface “IModelTrainer.java” (Figure 5.). The class “ToolClassifica-

tionVGG16ModelTrainer” contains the implementation of creation, training and saving of 

the tool classification model by utilizing DL4J components. 

4.1.1 Main application  

The main application class ModelTrainerTool is decorated with an annotation @Com-

mand, which indicates that it is Picocli command line executable application.  

 

Figure 8. ModelTrainerTool main application decorated with Picocli @Command anno-
tation. 

With the @Command annotation, the class can also utilize an annotation @Option that 

allows the application to use command line arguments. The @Option annotation                                                                                                       

maps an optional command line argument to its dedicated class field variable (Figure4.). 

In this demonstration it enables the user to specify a desired location to which the appli-

cation will read and write data from/to regarding the DL pipeline (location for reading 

datasets and model saving). The arguments can be set with optional argument --path, -

p or -P. As default the fields value is initialized to hold the path to directory named im-

age_recognition_model under local user folder (C:/users/userPath/image_recogni-

tion_model). 

 

Figure 9. Optional command line arguments enabled with @Optional. 
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The main class ModelTrainerTool implements Runnable interface so that Picocli Com-

mandLine object can be leveraged to execute the program in a new thread. When exe-

cuted by Picocli, a implemented method named run() is called (Figure 5.). The method 

run() acts as the driver of the program and is implemented from the Runnable interface. 

 

Figure 10. Picocli executes ModelTrainerTool, which calls run() -method driver code. 

 

4.1.2 Transfer Learning and creating a model 

As mentioned earlier, the Java class used to perform the model’s creation and training 

with DL4J is named “ToolClassificationVGG16ModelTrainer.java”. It has two main meth-

ods that can be used through its interface “IModelTrainer.java”: initPreTrainedModel-

WithTransferLearning() and trainPretrainedModel() (Figure 6.). 

 

Figure 11. IModelTrainer -interface. 
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The method initPreTrainedModelWithTransferLearning() initializes the pre-trained model 

(Figure 7.) and performs the transfer learning to the new model (Figure 9.). In addition, 

it fine-tunes the new model. DL4J core library contains a dedicated class “VGGBuilder“ 

(used through org.deeplearning4j.zoo.model.VGG16.builder()) that is used to create an 

object instance of a pre-trained VGG16 model. All pre-trained model instances from 

DL4J are class type of ZooModel (org.deeplearning4j.zoo.ZooModel).  

The ZooModel class object itself is not meant to be programmatically manipulated and 

therefore needs to be converted to a neural network object representation. To do so it 

can be instantiated to an object instance type of ComputationGraph (org.deeplearn-

ing4j.nn.graph.ComputationGraph) which indeed is the programmable neural network 

class object. 

 

Figure 12. Initializing a pre-trained VGG16 model with DL4J. 

The fine-tuning of the new model is performed by applying a configurable object instance 

type of FineTuneConfiguration (org.deeplearning4j.nn.transferlearning.FineTuneConfig-

uration) to it (Figure 8.) (Figure 9.). Again DL4J has a dedicated builder class (used 

through org.deeplearning4j.nn.transferlearning.FineTuneConfigura-

tion.Builder.Builder()) that makes the usage of the object straight forward. In the demon-

stration the FineTuneConfiguration object is used to define the optimization algorithm to 

be SGD (Stochastic Gradient Descent) and then to leverage Nesterov’s momentum to 

keep the gradient updated.   

 

Figure 13. Fine-tuning configuration for the new model. 

Transfer Learning is performed by constructing and initializing a new ComputationGraph 

object based on the pre-trained model. To apply the defined fine-tuning for the new 

model, the FineTuneConfiguration object is passed to its builder in the object construc-

tion phase. DL4J has a dedicated API for Transfer Learning and through it a 
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GraphBuilder class (org.deeplearning4j.nn.transferlearning.TransferLearn-

ing.GraphBuilder) is leveraged to build the new ComputationGraph. Again, DL4J has a 

good implementation of the common builder pattern, which makes the construction of 

such complex and highly configurable object effortless and readable. 

 

 

Figure 14. Applying Transfer Learning and constructing the new model with Transfer-
Learning.GraphBuilder object. 

The new model is given a custom output layer holding the predictable class labels for all 

eight mechanical tools (Gasoline Can, Hammer, Pebbles, Rope, Screwdriver, Toolbox, 

Wrench and Pilers). All layers up to the last fully connected layer (fc2) are frozen on the 

model to keep the weights fixed while training. The activation function used on the output 

layer is defined to be Softmax (Figure 9.). 

All parameters regarding Transfer Learning and fine-tuning are defined as static class 

field variables to make the accessing of these parameters efficient. 

 

4.1.3 ETL operations 

The model is trained in three epochs, which means that the whole training dataset has 

been fed through the network three times. The dataset is not passed as whole, but rather 

fed in small batches with the size of 16. All ETL operations like defining and splitting 

datasets, including data augmentation are done with components provided from the 

DL4J DataVec library. 

The paths for the datasets are first instantiated into object instances type of FileSplit 

(org.datavec.api.split.FileSplit). Furthermore, the FileSplit objects are used for getting the 
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datasets as InputSplit (org.datavec.api.split.InputSplit) instances that hold the actual lists 

of loadable file locations. To get the datasets as traversable objects, they are constructed 

into instances DataSetIterator (org.nd4j.linalg.dataset.api.iterator.DataSetIterator). The 

iterator is initialized according to the provided InputSplit paths. (Figure 10.) 

 

Figure 15. Defining dataset file paths and dataset iterators. 

A method named getDataSetIterator() (com.image.net.model_train_tool.ml.ToolClassifi-

cationVGG16ModelTrainer.getDataSetIterator(InputSplit, boolean)) is implemented to 

construct and initialize the iterator (Figure 11.). The class instance of the constructed 

DataSetIterator is type of RecordReaderDataSetIterator (org.deeplearning4j.da-

tasets.datavec.RecordReaderDataSetIterator.RecordReaderDataSetIterator()). The it-

erator is equipped with a image pre-processor dedicated for a VGG16 model 

(org.nd4j.linalg.dataset.api.preprocessor.VGG16ImagePreProcessor). 

  

 

Figure 16. Constructing a DataSetIterator. 

Because the images in training and test datasets are organized into subdirectories by 

their tool type, the label for an image is generated according to the parent directory it is 

in. A class named ParentPathLabelGenerator (org.datavec.api.io.labels.ParentPathLa-

belGenerator) is used to perform the label generation. In this ToolClassifica-

tionVGG16ModelTrainer class the label generator is assigned to a dedicated static field 

named LABEL_GENERATOR_MAKER (seen in the picture above). 
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Data augmentation is also applied at this point by the method getDataSetIterator() de-

pending on the given boolean flag argument (Figure 11.). The augmented transforms 

applied on the data include simple flipping, rotation and wrapping (Figure 12.). 

 

Figure 17. Data augmentation transforms. 

 

4.1.4 Training the model 

The training of the model is performed in a while loop by incrementing the number epochs 

after each time the whole training set has been fed. There is also an inner while loop 

which feeds the dataset in the earlier defined 16 size batches to the model. The model 

is evaluated every ten iterations against the validation set and after every epoch against 

the test set. Finally, after three epochs the model is saved as a .zip file. (Figure 13.) 

 

Figure 18. Training and evaluation of the model. 
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4.2 Running the Model Trainer Tool 

4.2.1 Initial setup 

Before running the model trainer, there is some setup required to be done regarding the 

dataset and folder structure. The dataset is already properly split into training and test 

sets, they need to be uploaded to the right dedicated location. As default the application 

will read and write data from/to a folder named image_recognition_model under user 

path (C:/Users/userPath/image_recognition_model). The training and test sets (directo-

ries train_all and test_all) are placed under a directory named tool_data (../image_recog-

nition_model/tool_data) as seen in the figure below (Figure 14.). 

 

Figure 19. Initial folder structure. 

After setting up the directories for the datasets the initial setup is complete, and the com-

mand line tool can be executed. The model trainer tool will create new directories named 

saved and log under the base directory image_recognition_model. The directory im-

age_recognition_model/saved is where the compressed model is saved by the tool. The 

directory image_recognition_model/log contains a log file with all logging entries pro-

duced while executing and running the model trainer tool. The image below shows the 

complete folder structure after the tool is executed (Figure 15.). 
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Figure 20. Folder structure after model trainer is executed. 

 

4.2.2 Executing the model trainer 

Before execution, the project is packaged into a JAR file containing all necessary de-

pendencies, which enables to use it as an exportable tool. To build the JAR file of the 

project, the following maven commands are executed through command line in the pro-

ject root (model_train_tool/); mvn clean followed by mvn package. As a result, a JAR 

file (among other build related files and directories) named model-train-tool-jar-with-

dependencies.jar is produced and located under project root in a folder /target 

(model_train_tool/target/model-train-tool-jar-with-dependencies.jar). 

The JAR can be executed from project root through command line with default path lo-

cation for the dataset reading and model saving: 

 java -jar target/model-train-tool-jar-with-dependencies.jar 

Or with specified location by providing -p argument: 
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 java -jar target/model-train-tool-jar-with-dependencies.jar -p C:/us-

ers/myUser/files/recognition_model 

When the program has finished training, it produces the compressed model im-

age_recognition_model/saved/tool_classification_model_vgg16.zip (or in other spec-

ified location). The compressed model is ready for deployment and use for the REST 

web service. 

 

4.3 Tool Classification REST Web Service 

The SpringBoot server application for the classification REST web service is imple-

mented as a basic Rest Controller. It contains two GET endpoints for the consumer: 

/api/tools/detect and /api/tools/labels.  

The endpoint /api/tools/detect performs the classification. The HTTP request sent to 

the endpoint has to contain an image file (key: imageFile, formats: tif, jpg, png, jpeg, 

bmp, JPEG, JPG, TIF, PNG) that the classification is performed on. As a response the 

web service returns a Data Transfer Object (DTO) containing the label which the image 

is classified as and rest of the label predictions. The predictions are returned as double 

data type to represent percentage, so the value for a prediction is between 0-1 (1.0 = 

100%). In addition of returning the classification and prediction, the response contains 

HATEOAS links to the /api/tools/labels endpoint and the base entry point for the web 

service. 

The endpoint /api/tools/labels simply returns a list of all classifiable labels. 

 

4.3.1 Using the compressed model 

The Rest Controller uses a ToolRecognitionService -interface to get the predictions. The 

class implementation ToolRecognitionServiceImpl deserializes and initializes the com-

pressed model as a ComputationGraph into a dedicated class field (Figure 17.). The 

predictions are then be obtained as a vectorized representation holding a prediction for 

each output label (eight elements). The predictions are returned from the service as a 
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Map data structure containing the tool type as a key and the prediction as a value 

(Map<ToolType, Double>). (Figure 16.) 

The dimensions of an image file sent in the request must match the models input layers 

dimensions (224, 224, 3). Before using the image to get predictions, it is converted to a 

vectorized representation with the required dimensions of height 224, length 224 and 

channels 3 for RGB values (224, 224, 3). In addition, a dedicated VGG16 pre-processor 

used on it. (Figure 16.) 

 

Figure 21. Using the model for a classification task. 

 

Figure 22. Method used for restoring the compressed model as ComputationGraph. 
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5 EVALUATION AND RESULTS OF TOOL 

CLASSIFICATION MODEL 

5.1 Metrics and evaluating the model 

Before getting into the actual evaluation of the new VGG16 based model, one needs to 

verify the architecture of the new model. This includes checking that it has the eight 

outputs, and that all layers excluding the output and input layers are frozen (as defined 

earlier in chapter four). The architecture of the new model is verified through auditing a 

log entry of the model’s structure before the actual training process. A comprehensive 

summary of the models architecture is logged with summary() -method provided by the 

ComputationGraph (org.deeplearning4j.nn.graph.ComputationGraph.summary()). 

 

Figure 23. New VGG16 based model architecture to which Transfer Learning is applied, 
logged with summary() -method. 

The audited log entry of the model summary above (Figure 18.) verifies that the new 

model has frozen layers until the last fully connected layer (fc2 layer). The column Ver-

texType contains information about what type a layer is and if it is frozen or not. The 

summary also shows that the new model has a new custom layer for predictions con-

taining eight outputs. The output layer can be identified by locating the layer with Ver-

texType of OutputLayer (layer name predictions). Other beneficial metrics displayed by 

the summary, are the dimensions that each layer has and in what dimensions the input 

data for each layer has to be (columns nIn,nOut and ParamsShape). 
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When the model’s architecture is verified, the evaluation can begin. The model is evalu-

ated mostly according to its prediction accuracy calculated against the validation and test 

datasets. To get comprehensive log entry of the evaluation metrics, the Computa-

tionGraph has a evaluate() -method (org.deeplearning4j.nn.graph.Computa-

tionGraph.evaluate(DataSetIterator)), which enables evaluation against provided da-

taset (Figure 19.). In addition of the prediction accuracy, it also displays a confusion 

matrix that help visualize the distribution of predictions performed on the dataset (Figure 

19.).  

 

Figure 24. Model evaluation method. 

 

Figure 25. Evaluation metrics and confusion matrix on test dataset at the end of epoch 
3. 

The model’s performance is monitored by following the metrics logged from the evalua-

tion performed on both validation and test sets. This data was leveraged to prevent over-

fitting and some tweaking of the hyperparameters. Tweaked hyperparameters include 

such as learning rate of Nesterov’s updater, different weight initialization techniques (Xa-

vier vs Normal distribution), effect of batch size and number of epochs. 
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The above figure (20.) shows the final statistics evaluated of the model’s performance 

on the test set. In three epochs the model has a reached accuracy of ~86%, which is 

quite good considering that the training on CPU took only ~30min and the dataset avail-

able was limited. 

The training of a model from scratch against the same dataset would take longer time 

and the accuracy would not reach more than ~40-50% (tested without proper tweaking 

of hyperparameters).  

5.2 Testing the Tool Classification Web Service 

To test the implemented Tool Classification web service, a HTTP GET request containing 

an image file is sent. The following request is sent with Postman to the Tool Classification 

REST endpoint with a picture of a nail dispensing hammer in request body (Picture 6.). 

 

Picture 1. A nail dispensing hammer to test the classification. 
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Picture 2. Postman GET request to test classification of a hammer. 

The web service returns a HTTP response body in JSON format (Figure 21.). 

 

Figure 26. Hammer classification response body returned from Tool Classification Web 
Service. 

The goal is that the model could classify the image as a hammer. It can be confirmed 

that the classification model and web service indeed work and is able to classify the nail 

dispensing hammer as a HAMMER (Figure 21.). Rest of the predictions gives some in-
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sight data of other possible classifications. The web service classifies an item as a spe-

cific tool type if the prediction is > 0.5 (50%). Here is also displayed how the leveraged 

Softmax activation function of the model returns the values of each output as a repre-

sented prediction of class membership (output values sum is 1.0). 
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6 CONCLUSION 

The objective of this thesis was to demonstrate how and why Java and DL4J framework 

should be considered as a good option for the implementation of an image classifier and 

other DL related tasks. The core concepts of DL and image classification were introduced  

as a starting point. The theoretical part was followed with an introduction to Java’s 

strengths as a programming language and the core libraries that DL4J offers for devel-

opers to implement DL projects.  

The application of these powerful tools was demonstrated with an implementation of a 

command line tool that trains a VGG16 based mechanical tool image classifier with 

DL4J. The creation of the mechanical tool classifier included techniques such as transfer 

learning, fine-tuning, ETL operations (inc. data augmentation), evaluation and practical 

ways on how to tweak the model hyperparameters. The usage of the model was demon-

strated through a SpringBoot RESTful web service that utilizes the model to perform the 

tool classification task on a given image.  

The demonstration part demonstrates the ease of use of DL4J libraries due to their high-

level implementations. The trained model reached accuracy of ~85% within ~30min of 

training on a limited dataset. The model was capable of classifying tools through the web 

service and give the right predictions as response. The main limitations regarding the 

application are that it is only capable of detecting a small variety of tools. A more scaled 

version of this classifier and service could be utilized e.g., as a customer service helper. 

A consumer could use it to query the availability of some product by providing an image 

through camera and the helper would recognize and response with the availability. 

All techniques applied with DL4J on the result can be implemented on any Java-based 

project. Java experts or developers may find it easier to integrate state-of-the-art DL-

based solutions into a project when the programming language stays the same. This 

benefits also  further development so that any fellow Java developer on the project can 

make changes and additions if needed.  

To further develop the classifier, a GAN could be implemented to handle data augmen-

tation and boost the training with a limited dataset. Also, some modifications and addi-

tions could be made regarding the layers of the CNN. Layer modifications would include 
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the addition of a dense layer, the change of the feature extraction layer and unfreezing 

different layers to enable later layers to be tweaked properly during training. 
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