

Phuoc Nguyen

How JavaScript ecosystem and open-
source tooling enable a modern era of
Single-Page Applications

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

20th April 2021

 Abstract

Author
Title

Number of Pages
Date

Phuoc Nguyen
How JavaScript ecosystem and open-source tooling enable
a modern era of Single-Page Applications
45 pages
20th April 2021

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors Janne Salonen, Supervisor

Over the years, the term "single-page application" has meant both a specific type of
website and a development model for web programming. A website could be re-
garded as a single-page application when it is designed to replicate the behaviors of
a desktop application more than acting as a traditional static web document. It
achieved the additional smoothness and dynamicity to your average web experience
by taking advantage of structured JavaScript to interact with server-side services
and modifies the view as needed.

Regarding JavaScript, it has recently become extremely popular and powerful; it can
be used to build web applications, servers, mobile applications, games and IoT de-
vices. Huge adoption leads to a broad ecosystem, the community has been building
plenty of tools to ease the developer experience.

The purpose of this thesis is to study the origins of Single-Page Applications and
follow along the evolution of JavaScript and its ecosystem on how they redefine the
norms of building modern web applications. To demonstrate the functionalities of the
mentioned JavaScript tooling, the thesis will include examples of SPAs as subjects
of research, and explore how they are being orchestrated in harmony under-the-
hood by tools and libraries such as React.js, Next.js, Webpack.js, TypeScript. In ad-
dition, different types of SPA will be taken into account, for example server-side ren-
dering, client-side rendering and static site generation, to measure impact of JavaS-
cript toolkit on the process of creating those applications.

In conclusion, when a web application is being developed as a SPA, it can isolate
communicating with the server and updating its views into two separate concerns,
thus accomplishing huge gains in user experience and preserving bandwidth. How-
ever, in order to reach such achievement, modern JavaScript engineering tools re-
main essential factors in paving the path to build a user-friendly, performant and
scalable application.

 Abstract

Keywords Single-Page Application, JavaScript, open-source, tool-
ing, server-side rendering, client-side rendering, static
site generation

Contents

List of Abbreviations

1 Introduction 1

2 JavaScript Ecosystem 2

2.1 From JavaScript to ECMAScript 2
2.1.1 The origins of JavaScript 2
2.1.2 JavaScript standardization: ECMAScript 3

2.2 Open-source tooling 4
2.2.1 Package Managers 4
2.2.2 User Interface Libraries 5
2.2.3 Code Formatters and Linters 7
2.2.4 Static Type Checkers 9
2.2.5 Transpilers 10
2.2.6 Module Bundlers 11

3 Single-Page Application 12

3.1 Traditional Web Applications and Single-Page Applications 12

3.2 SPA Implementation Strategy 13
3.2.1 Client-side Rendering 13
3.2.2 Server-side Rendering 15
3.2.3 Static Rendering and Prerendering 17

4 Jamstack Technology 19

4.1 What is Jamstack? 19
4.1.1 JavaScript 20
4.1.2 APIs 21
4.1.3 Markup 21

4.1.3.1 Prebuilding Markup in Jamstack 22
4.1.4 Type of Jamstack Projects 23

4.1.4.1 HTML Content 23
4.1.4.2 Web Applications 23

4.1.5 Advantages of Jamstack compared to traditional and monolith applications 23
4.1.5.1 Cost 24
4.1.5.2 Scale 25
4.1.5.3 Performance 25
4.1.5.4 Security 27

4.2 Jamstack Enablers 27
4.2.1 Introduction of Next.js, the hybrid server-side rendering framework 27
4.2.2 Comparison of Next.js to Gatsby.js and traditional React.js applications 29
4.2.3 Headless CMS 31

5 Implementation 33

5.1 Introduction of SY Store, a local fashion store based in Vietnam 33

5.2 Applying Jamstack to build a webstore 34
5.2.1 Presentation Layer with Next.js Commerce 34
5.2.2 Content Management with BigCommerce’s User Interface 41

6 Conclusion 44

7 References 45

List of Abbreviations

SPA Single-Page Application.

API Application Programming Interface

ECMA European Computer Manufacturers Association

AJAX Asynchronous JavaScript and XML

URL Unique Resource Locator

FP First Paint

FCP First Contentful Paint

TTI Time to Interactive

 1

1 Introduction

As technology evolves, web applications have become gradually more

accessible, and are undoubtedly replacing the legacy desktop applications.

Modern web applications have higher standards and greater requirements from

users than ever before. Today's web apps are expected to be highly available

worldwide and can be used virtually on any platform or screen size. To tackle

increasingly complex user experience scenarios, there are two major ways of

building websites nowadays: as traditional multi-page applications (MPAs) or as

single-page applications (SPAs). SPAs are considered as the norm in the modern

web, since they allow a much more linear user experience, fast and responsive

interactions, and support rich user interfaces with many features. Compared to

the traditional web apps, where functionalities that can be built are quite limited,

and often only contain simple operations.

In order to build a full-fledged and efficient SPA, familiarity with JavaScript and

client-side programming techniques and libraries are required. With that notion

set in stone, JavaScript has a lot to offer to web developers with a variety of

different toolkits. Each of them can be categorized extensively based on their

responsibility in the process of building a web app, ranging from module bundlers,

static type checkers to user interface libraries. Those tools may call for a

significant effort to be proficient at them, but ultimately, they are created in order

to serve towards a common goal: enable the creation of the best user

experiences software has to offer.

The objective of this thesis is to research the origins of Single-Page Applications

and demonstrate its effectiveness in enhancing user experience in modern

software. Different ways of building SPAs will be constructed, and then assessed

and compared to provide the advantages and disadvantages between those

methods. In addition, the thesis evaluates several JavaScript open-source

toolkits to measure their impacts on the process of implementing such

applications, and thus offer an overview of why SPA and JavaScript are so tightly

coupled with each other.

The thesis is structured as follow. The first chapter introduces the general

background and the goal of the project. The second chapter describes an

overview of JavaScript ecosystem and its toolkits applications. The third chapter

provides history context of Single Page Applications and how they have affected

the standard user experience in modern web application, followed by the fourth

chapter which discusses the practical implementations SPAs through Jamstack.

 2

The fifth chapter gives details of the practical case of applying Jamstack and SPA

principles to build a modern webstore. Finally, the last chapter states the

conclusion of this project.

2 JavaScript Ecosystem

2.1 From JavaScript to ECMAScript

2.1.1 The origins of JavaScript

The first popular web browser in 1993 was NCSA Mosaic. In 1994, a company

named Netscape was established to leverage the power of the emerging World

Wide Web. Netscape developed the exclusive Netscape Navigator web

browser, which dominated the majority of the 1990s. Many of the initial Mosaic

developers went to work on the Navigator but the two deliberately had no com-

mon code.

At that time in the web, in order to do an operation as simple as checking if the

form values are entered correctly by the user must be done by sending the data

to the server side to evaluate them. This raises a lot of complications, and

Netscape decided that the web needs to have its own scripting language. In

1995, Netscape recruited Brendan Eich agreeing to let him implement Scheme

(Lisp-inspired language) in the browser. Before Brendan started his job,

Netscape has already partnered with software company Sun (which later got

acquired by Oracle) to integrate its Java programming language in the Naviga-

tor. [2] As a result, an intensely discussed question at Netscape was why the

web needed two programming languages: a scripting language and Java. The

advocates of the scripting language offered the following explanation:

We aimed to provide a “glue language” for the Web designers and part time programmers who

were building Web content from components such as images, plugins, and Java applets. We saw

Java as the “component language” used by higher-priced programmers, where the glue pro-

grammers—the Web page designers—would assemble components and automate their interac-

tions using [a scripting language].[3]

By then, Netscape management had decided to go with the idea to have the

core interactive parts of the browser to be implemented in a scripting language

that is similar to Java. With that context, popular languages at the time such as

Scheme or Python are not the suitable solutions for JavaScript to be based on

anymore. Netscape needed a prototype to protect the JavaScript concept

against competing propositions. In May 1995, a proposal was completed by

 3

Eich in 10 days. JavaScript’s initial code name was Mocha, conceived by Marc

Andreesen. It got later renamed to LiveScript, as to align with other Netscape’s

products that already have the prefix “Live”. In early December 1995, Java’s in-

fluence continues to grow exponentially, and to match the popularity of it, the

language was changed to its final name: JavaScript. [4]

2.1.2 JavaScript standardization: ECMAScript

In late 1995, when Microsoft started noticing on the competitive threat the Web
posed, the Internet Explorer project was launched in an all-out effort to take
ownership of the emerging platform from Netscape. After the release of JavaS-
cript, Microsoft introduced the same language under the different name of
JScript in Internet Explorer 3.0. Partially to prevent Microsoft from taking control
of the JavaScript language, Netscape decided to begin the JavaScript standard-
ization process and asked the standards organization European Computer
Manufacturers Association International (ECMA International) to host the stand-
ard. Because at that time, the name JavaScript was trademarked by Sun so it
cannot be the name for the standardized language. Hence, the term ECMAS-
cript was coined, combined from JavaScript and ECMA. In essence, JavaScript
and ECMAScript have the same meaning, though some distinctions can be
made as follows:

• JavaScript means the language and its implementation.

• ECMAScript means the language standard specifications.

ECMAScript specifications are managed and developed by Ecma’s Technical
Committee 39 (TC39). Its members are companies such as Microsoft, Mozilla,
Google, Facebook, Apple, Twitter and others, which appoint employees to par-
ticipate in committee work. These companies usually compete with each other
intensely on the web platform but comes together in the committee to work for a
better future of the language. TC39 holds meetings every two months at which
delegates elected by members and open-source experts participate. The details
of those meetings are open to public in TC39 GitHub repository.

The following is a list of ECMAScript versions and their key features:

• ECMAScript 1 (June 1997): First edition of the standard.

• ECMAScript 2 (June 1998): Editorial changes to keep ECMA-262 in sync
with the ISO standard.

• ECMAScript 3 (December 1999): Many new core features are imple-
mented– “do-while, switch, regular expressions, try/catch exception, bet-
ter string handling”

https://github.com/tc39/tc39-notes/

 4

• ECMAScript 4 (abandoned in July 2008): Might have been a major up-
date but ended up being too ambitious and cause disagreements be-
tween the language’s administrators.

• ECMAScript 5 (December 2009): Strict mode supported, new array
methods, support for JSON, getters and setters, and more.

• ECMAScript 5.1 (June 2011): Minor change to keep Ecma and ISO
standards align.

• ECMAScript 6 (June 2015): A major update that carry out many of the
planned features of ECMAScript 4. This version is the first one whose of-
ficial name – ECMAScript 2015 – is based on the year of publication.

• ECMAScript 2016 (June 2016): First yearly release. The shorter release
life cycle resulted in fewer new features compared to the large ES6.

• ECMAScript 2017 (June 2017). Second yearly release.

• Subsequent ECMAScript versions (from ECMAScript 2018 onwards) are
always released in June and named after the year it was released. [1]

2.2 Open-source tooling

This section will focus on exploring the open-source tooling that the JavaScript
ecosystem offers to its developers.

2.2.1 Package Managers

Packages are collections of code that you can publish and reuse like low-level
components, libraries or frameworks. These packages are versioned and in-
stalled based on semantic versioning. Applications can use these packages as
dependencies, and each package can be either dependent or independent on
other packages.

Package managers are software tools that help you automate the process of
managing packages as dependencies of individual applications, or of the whole
computer’s system through global package registry. These tools utilize manifest
files to keep track of application’s metadata and relevant dependencies, and
lock files to control deterministic installations.

 5

In the Node ecosystem, a directory named “node_modules” will contain all the
dependencies of the application. The installation process of dependencies goes
as follow:

• The package manager starts with resolving the dependencies by making
request to the registry.

• Then, it recursively looks up each dependency in the registry, and
fetches the relevant package tarballs.

• Finally, it links all the dependencies together based on the metadata in
the registry files.

There are several package managers that handle JavaScript packages, and the
major threes that are actively developed and used by the developers are:

• Node Package Manager, or npm is the most popular JavaScript package
manager. It consists of a website to discover packages, a CLI to interact
with the packages through terminal, and a global registry to share both
private and public packages.

• Yarn is a JavaScript package manager release by Facebook in 2016,
compatible with the npm registry. Its major advantages over npm are ul-
tra-fast, consistent and secure CLI client, with easy to memorize
shortcuts terminal commands.

• PNPM was released in 2016 to solve the problem of huge “node_mod-
ules” folder size. Its way of working is different compared to npm/yarn
was it caches all previously installed dependencies in a central folder,
and any applications/projects that use those packages will contain links
to them, ensuring no duplicate packages are installed.

2.2.2 User Interface Libraries

User Interface libraries are packages that help JavaScript, or web developers in
general to easily build a consistent and interactive applications. In the earliest
day, the most prominent JavaScript UI library was jQuery. In fact, several useful
features of jQuery are incorporated into JavaScript itself at the present, and
jQuery has served its purpose to be a supportive bridge that helps millions of
web developers to build clean and consistent UI.

Nowadays, the modern methodology to build a rich and interactive application is
component-based approach, where UI libraries like React, Angular or Vue is
most famous for.

 6

• React is a JavaScript library, with a focus on building reusable compo-
nents. It is developed and maintained by Facebook and an open-source
community of developers. It is introduced in May 2013 and is extensively
used and battle-tested by Facebook products (Instagram, Messenger,
new Facebook). React can be used to build both web and mobile devel-
opment. However, apps written with React itself is not sufficient. For
complex application, state management, routing or form validation re-
quire additional libraries, built on-top of React.

• Angular is full-fledge UI framework, TypeScript-based and is maintained
by Google’s Angular team and the Angular open-source community. It
was first released in 2010, though there is a major shift in philosophy be-
tween the first version and second version of Angular. It can be also
used to build both web and mobile applications. Compared to React, An-
gular offer its developers all the necessary tool from the beginning. How-
ever, come with that is the steep learning curve, and developers may not
use all the feature Angular offer.

• Vue is the youngest member of the group, introduced in 2014 by ex-
Google employee Evan You. The framework used to be a one-man pro-
ject, but nowadays it got a dedicated community of core contributors.
Similar to Angular, it also offers a semi-accomplished kit to its developers
to build a rich and complex application from the start.

A short comparison table that shows differences of the three major UI Libraries
are shown in figure 1.

Figure 1. Feature comparison of Angular, React and Vue. Retrieved from
https://academind.com/tutorials/angular-vs-react-vs-vue-my-thoughts/

https://academind.com/tutorials/angular-vs-react-vs-vue-my-thoughts/

 7

2.2.3 Code Formatters and Linters

Code linter are tools that analyse source code to detect inconsistency and dis-
crepancy in code formatting based on pre-written rules and then output them as
warnings or errors. They are used to enhance code quality, configured manually
and are run automatically on code changes.

Code formatters are tools to format codebase deterministically based on format-
ting rules to enforce a unified coding style. They can act as linters in term of for-
matting rules but have no values when it comes to code quality rules. They are
often integrated into workflow together with linters to do both formatting and lint-
ing.

Even though JavaScript compliers or static type checkers have evolved to in-
clude many of linting functions, linters have also evolved to detect even a wider
range of incorrect behaviours: warning about syntax errors, undeclared varia-
bles, misuse of scope.

The most popular JavaScript linters are ESLint and JSLint. They provide online
Graphical User Interface to try out formatting rules with live coding. They also
offer plugins extensions for text editors like VS Code, Sublime Text and Atom.

• ESLint is a highly configurable linter that also support JSX. It can auto

format your code to match the preferred formatting style based on pre-

written rules. However, its upside is also its downside as too much cus-

tomisation causes the tool hard to pick up for beginners. A typical ESLint

 8

configuration for a React application can be referenced from figure 2.

Figure 2. ESLint configruation file for a React project. Retrieve from

https://github.com/standard/eslint-config-standard-

react/blob/master/eslintrc.json

• JSLint is an opinionated linter, based on the book How JavaScript Works

by Douglas Crockford. It is super straightforward to start using but come

with that is the low level of configuration.

In addition to linters, the most famous code formatters are Prettier and Stand-
ardJS, where they are both able to integrate seamlessly with linters to provide
an efficient workflow:

• Prettier is no doubt the best code formatter that have ever been created

in the JavaScript ecosystem. It supports all major languages like JavaS-

cript, JSX, HTML, CSS and Markdown. It is also able to integrate with

popular text editors, easy to use and have a huge ecosystem of plugins.

https://github.com/standard/eslint-config-standard-react/blob/master/eslintrc.json
https://github.com/standard/eslint-config-standard-react/blob/master/eslintrc.json

 9

Difference in formatting when using Prettier can be shown in figure 3.

Figure 3. Code without Prettier vs Code with Prettier. Retrieved from live

GUI https://prettier.io/playground/

• StandardJS is an all-in-one JavaScript style guide, linter and formatter.

Its core principles are no configuration, automated code formatting and

catch style issues and programming errors early. It is available both as a

npm package and text editor plugins.

2.2.4 Static Type Checkers

JavaScript is a dynamic type checking language, which translate to type safety
is only validated at runtime. It brings flexibility to the language, but also cause
unexpected errors at runtime. This is where static type checkers come in handy.

Static type checking is the process of checking type safety of source code at
compile-time. It offers a lot of great benefits compared to bare bone dynamic
type checking: catching errors early, limiting type errors, providing auto-comple-
tion, code documentation. JavaScript static type checkers are developed by ex-
tending JavaScript with type systems, which will at the end be removed at com-
pile-time. This results in many productive development tools and practices like
code refactoring and static checking.

There are two major static type checkers in the JavaScript ecosystem: Flow and
TypeScript. They both have their own strength and weaknesses. Using them
can greatly improve the confidence in producing high quality code, but it comes
with a cost like steep learning curve, or increased verbosity of your code.

• Flow is a static type checker for JavaScript, developed and maintained
by Facebook. Flow checks code for errors through static type

https://prettier.io/playground/

 10

annotations, which in turns allow Flow to understand how the code works
and ensure it works that way. It is lightweight and easy to set up, but its
ecosystem is not as developed as TypeScript’s.

• TypeScript is an open-source language which builds on JavaScript, by
extending it with static type definitions. It is developed and maintained by
Microsoft and is open source. It can act as static type checker, compile to
JavaScript at the end, and is supported by major text editors and Inte-
grated Development Environments. Similar to Flow, writing type with it is
optional as type inference allows a lot of power without writing additional
code.

2.2.5 Transpilers

Transpilers in JavaScript are source-to-source translators that convert JavaS-
cript variants (ClojureScript, ReasonML, TypeScript) or modern JavaScript ver-
sions (ES2015+) to equivalent vanilla JavaScript that meets pre-defined con-
straint like browser compatibility, uglification, minification or strict.

Compiler and transpiler are often used interchangeably in JavaScript world.
However, a transpiler translates between programming languages that function
at the same degree of generalization, meanwhile a standard compiler will trans-
late from higher-level programming language to a lower-level language like
Java to WebAssembly or C++ to binary. [5]

• Babel is the de facto most common JavaScript transpiler. It is a open-
source toolkit that is mainly used to transform modern ECMAScript
standards into a backward compatible version of JavaScript in targeted
browser environments. Babel provides a set of awesome features includ-
ing: syntax transformers, polyfill features that are missing in the targeted
environment, and source code transformations (codemods).[6]

• TypeScript can also act as a transpiler, as it is strictly a syntactical super-
set of JavaScript with optional static type. As a superset of JavaScript, it
also transpiles the code to match targeted ECMAScript standard, which
allows developers to support multiple browsers with minimal effort, or to
take advantage of new ECMAScript standards early on. In figure 4. is
shown how TypeScript acts as a transpiler to compile TypeScript to rele-
vant version JavaScript with pre-defined attributes.

 11

Figure 4. A typical transpiler configuration for TypeScript project

2.2.6 Module Bundlers

Module bundlers are tools that pack JavaScript applications into one or more
bundles, typically used to optimize deployment steps. It internally builds a de-
pendency tree which maps every module that your project needs and generate,
based on configuration, one or multiple bundles. The main difference across
various module bundlers is how many types of non-JavaScript file they can pro-
cess (such as CSS, JSON, PNG, JPEG, XML), and whether they will bundle a
npm package, a web app on the browser, or back-end apps to run on Node.js.

They are not general-purpose task runners but can be used like one with limited
configuration (such as Webpack is used for automating front-end building
tasks). Module bundlers are often released as CLI applications which develop-
ers can use to run development server, serving static content, building produc-
tion files or watching changes.

• Webpack is the most popular and powerful module bundler for JavaS-
cript applications. It can process all type of files, and can generate either
package, a modern web app or server app. It has a dynamic architecture,
with highly customizable configuration, extensive plugins and loaders
ecosystem. It also has default support for production optimization that
cannot be configured manually such as lazy loading, minification, uglified
JavaScript, tree shaking or scope hoisting.

• Rollup is a module bundler that can generate both npm packages and
JavaScript applications. It has default support for ES Modules (zero con-
figuration) and famous for tree shaking optimization. It also has an exten-
sive plugin system to customize its behaviour. Rollup is often used to
bundle JavaScript libraries, as it optimizes tree shaking much better com-
pared to Webpack. However, for normal JavaScript application, Webpack

 12

is a better alternative since it offers much wider build plugins and default
configurations.

• Parcel is the rising dark horse in the module bundler competition, with a
focus on offering bundling web application with no configuration. It has
out of the box support bundling capability for CSS, HTML, JS file assets
with no external plugins required.

3 Single-Page Application

3.1 Traditional Web Applications and Single-Page Applications

Figure 5. blows describe a typical operation flow that happened in a Traditional
Web Applications (a) compared to a Single-Page Applications (b), which is pop-
ularized through the introduction of AJAX technique (Asynchronous JavaScript
and XML)

Figure 5. Traditional Web application and Ajax Web application. Retrieve from

 13

https://www.semanticscholar.org/paper/Building-Rich-Web-Applications-with-
Ajax-Paulson/a4777cea6758969602098785d10a599a77fd0d30

Traditional Web Applications required little to no client-side behaviour, and
heavily relied on the server for all actions from navigation, queries to updating
the app with relevant information. Each operation on the app would result in a
HTTP request to the web server and interact with the server-side systems to
handle proper data pieces, which then translate into a full reload on the end
user’s browser (a HTML page response to the original HTTP request). Classic
Model-View-Controller (MVC) frameworks generally adopt this approach, with
each request corresponding to a different controller action, which in turn would
interact with a model and return a view.

On the other hand, Single-Page Applications involve very few dynamically gen-
erated server-side page loads. AJAX technique is the core technology that al-
lows SPA to shine: this technique allows web applications to make dynamic re-
quests to the server without loading a new page, hence the term Single-Page.
SPA is typically deployed as a HTML static file that then loads necessary Ja-
vaScript libraries to initialize and run the app. These apps make heavy usage of
browser’s APIs to handle their data requests and in turns provide a much richer
user experience as it allows user to interact with the app without reload while
the data is being exchanged with the server-side systems.

However, it is worth noting that when building a modern application, a hybrid
approach can be achieved through the combination of Traditional Web Applica-
tion behaviour, mainly for content, and SPAs, for interactivity.

3.2 SPA Implementation Strategy

It is expected for modern web applications to be mostly built with a SPA ap-
proach. With that perspective in mind, the web community has developed multi-
ple ways to achieve the interactivity of SPAs with a set of different qualities are
being taken into consideration: fast user experience, Search Engine Optimiza-
tion (SEO) or both. In this section, different methods that are used to build SPA
and its trade-offs will be analysed and compared to provide the most suitable
technique for a application’s needs

3.2.1 Client-side Rendering

Client-side rendering (CSR) in the purest form means HTML pages are ren-
dered directly on the browser using JavaScript. Application’s business logic,
data accessing, navigation are handled on the client-side (browser) rather than
on the server.

https://www.semanticscholar.org/paper/Building-Rich-Web-Applications-with-Ajax-Paulson/a4777cea6758969602098785d10a599a77fd0d30
https://www.semanticscholar.org/paper/Building-Rich-Web-Applications-with-Ajax-Paulson/a4777cea6758969602098785d10a599a77fd0d30

 14

Figure 6. How a request is processed in CSR applications. Retrieve from
https://developers.google.com/web/updates/2019/02/rendering-on-the-web

With CSR solution, the application redirects the request to a single HTML file
and the server will deliver the blank page without any content until the request
to fetch all the necessary JavaScript, or First Contentful Paint (FCP) is com-
pleted. Then, after the browser compiles every required JavaScript files, the ap-
plication can be considered fully rendered and ready for Time to Interactive
(TTI). [7]

Under a stable and reliable internet connection, this approach can work well.
However, its downside was that the size of necessary JavaScript will grow ex-
ponentially as the application grows. The initial loading time before FCP will be
significantly larger than needed because of the additional new JavaScript
polyfills or libraries, which compete for the browser’s processing capability and
must often be handled before the presentation layer can be fully rendered. [7]

Applications that chose this approach with large JavaScript bundles must con-
sider solutions like aggressive code-splitting and lazy-loading – “serve only what
you need, when you need it”. Especially when building a SPA, technique like
Application Shell caching can be utilized to cache common parts of User Inter-
face share by most views in the application. An application shell means the core
HTML, CSS and JS needed to power a common User Interface [7]. Example of
Application Shell caching is shown in figure 7.

https://developers.google.com/web/updates/2019/02/rendering-on-the-web

 15

Figure 7. A practical example of Application Shell caching technique in action.
Retrieve from https://developers.google.com/web/updates/2015/11/app-shell

3.2.2 Server-side Rendering

Server-side rendering compiles a full HTML page on the server corresponding
to each user’s action. With this approach, additional requests to fetch data or
template on the client can be avoided, as those actions are processed before

https://developers.google.com/web/updates/2015/11/app-shell

 16

the browser interacts with the response.

Figure 8. Operation flow of Server Rendering solution. Retrieve from https://de-
velopers.google.com/web/updates/2019/02/rendering-on-the-web

Figure 8. demonstrates how server-side applications are rendered in response
to each user’s request. Typically, server rendering can provide a quick First
Paint (FP) and FCP meaning requested content can become instantly visible to
user. By combining rendering and business logic handling on the server, it stops
the process of sending large JavaScript files to the client side, which help
achieves a fast TTI.

With server rendering, users can ignore the client-side JavaScript processes
before accessing the site. Even when subsidiary JavaScript like ads, analytics,
trackers, social media cannot be prevented, using server-rendering to reduce
your own primary JavaScript sizes can give more room and performance power
for the rest of your application. However, there is one key disadvantage to this
approach: generating pages with fully loaded JavaScript take time and can lead
to a larger Time to First Byte (TTFB), meaning the time between the client mak-
ing an HTTP request and the first byte of the page being received by the user’s
browser will be increased. [7]

Whether server-side rendering approach is the suitable method to build out a
web application mainly depends on what kind of experience the developers
want to deliver to their users. There has been an enduring discussion over the
optimal way to build one’s applications of client-side rendering versus server
rendering, but there is one critical factor to take in mind is that for some certain
pages, server-rendering can be utilized while some others cannot. Some sites
have picked up a hybrid technique with success, such as Netflix. On Netflix, it

https://developers.google.com/web/updates/2019/02/rendering-on-the-web#server-rendering
https://developers.google.com/web/updates/2019/02/rendering-on-the-web#server-rendering

 17

server-renders the core static pages, while on the background with hybrid ap-
proach, prefetching all the JavaScript for highly-interactive pages, enable these
client-heavy pages to load quicker compared to traditional approach.

Nowadays, there are many modern architectures and frameworks that allow the
possibility to render one’s application in a hybrid way, both on the server and
the client. These methods can be used to server-side rendering as well, but
there is one crucial factor about this approach was that structures of these ap-
plications where rendering happens in a hybrid way is its own degree of solution
with distinct features and trade-offs. In React, developers can utilize the ”ren-
derToString()” method or solutions built on top of React like Next.js for either
server-side rendering or hybrid approach via rehydration. For Vue there is a
complete server-rendering guide on the Vue official documentation page, or
Nuxt.js. For Angular, there is Universal.

One important factor when it comes to choosing render strategy in the web is
the impact of SEO on the application. More than often enough, server rendering
is the most complete technique for SEO as crawler can easily interpret one’s
application. JavaScript can also be analysed by crawlers, but there are often re-
strictions and problems bound to JavaScript that should be taken into consider-
ation on how they can affect the parse ability of crawler. Thus, this often influ-
ences pure client-side rendering strategy where the application is mostly com-
prised of JavaScript. However, hybrid approach can be considered to improve
your application’s SEO if it relied heavily on client-side JavaScript.

3.2.3 Static Rendering and Prerendering

With static rendering, applications generally compile a single HTML file for
every page that the user can navigate to ahead of time. Then, these pages can
be served through a cloud service like Amazon S3 instances or from a running
customized server like nginx. Figure 9. shows how a static rendering site oper-
ates: when user navigates to a new Unique Resource Locator (URL), a HTML
file will be produced ahead of time as a response to user’s actions.

https://reactjs.org/docs/react-dom-server.html
https://reactjs.org/docs/react-dom-server.html
https://nextjs.org/
https://ssr.vuejs.org/
https://nuxtjs.org/
https://angular.io/guide/universal

 18

Figure 9. Static Rendering flow. Retrieve from https://develop-
ers.google.com/web/updates/2019/02/rendering-on-the-web

Static rendering is typically utilized at build-time, which lead to a fast FP, FCP
and TTI– assuming the size of JavaScript files is reasonable. Compared to
server rendering, static rendering can achieve a quick Time to First Byte since it
can avoid generate HTML pages on the fly. With HTML responses are compiled
ahead of time, static rendering applications are often deployed to Content Deliv-
ery Networks (CDNs) to make use of edge-caching.

One major downside to static rendering is each HTML file must be compiled in
response to any available URL. This problem can be difficult and infeasible
since more than often developers cannot predict all the possible URLs ahead of
time, or the application has many unique pages.

React developers may be used to libraries like Gatsby or Next.js static export –
these libraries and methods make it favourable to develop static rendering ap-
plications or components. However, there is one major distinction between
static rendering and prerendering: users can interact with static rendered pages
regardless of the client-side JavaScript, compared to prerendering where it im-
proves the FP or FCP of a SPA that must be powered on the client with JavaS-
cript for pages to achieve interactivity.

For static rendered pages, most functionality of the web application are availa-
ble without JavaScript. For prerendered pages, some basic operations like navi-
gation through link are available, but the page will be mainly inactive. Preren-
dering mainly requests more JavaScript to achieve dynamic actions, and those
bits of JavaScript tend to be more intricate than the Progressive Enhancement
method utilized by static rendering. [7]

https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://www.gatsbyjs.com/
https://nextjs.org/docs/advanced-features/static-html-export
https://developer.mozilla.org/en-US/docs/Glossary/Progressive_Enhancement

 19

4 Jamstack Technology

4.1 What is Jamstack?

The Jamstack at its fundamental is an effort to name a range of popular archi-
tecture practices. The term was coined in order to summarize a wide range of
architectural decisions. It originated from discussions between communities of
static site generators, SPA libraries, build tools and API-driven services as they
perceived that the changes they are making in their own domain are intercon-
nected.

The initial wave of static site generators found its popularity when it was sup-
ported natively by GitHub Pages. These tools allow a simplicity in control over
the convoluted data-heavy approach Content Management Systems (CMSs)
that they replaced.

Simultaneously, SPA frameworks like React and Vue initiate a process of de-
coupling the front-end from the back-end, with the assistance of new JavaScript
toolkits like Gulp, Grunt, and later, Webpack, Parcel and Rollup, which all con-
tributed to the notion of a innovative front-end with its own integration and deliv-
ery pipeline. This results into a conventional software architecture for front-end
applications and allows front-end engineers to develop much quicker on the in-
teractivity layer.

A new API economy starts to emerge when these approaches to build new
website and applications intersect. Tools like Google Map, Stripe, Disqus allow
features such as map direction, payment and comment available for the front-
end to consume through API-driven services.

A new set of expressions that describe these innovative software compositions
began to materialize: progressive web apps, static hosting, front-end continuous
deployment, SPAs and serverless function. However, none of these terms really
captured the big picture of the rising new software structure that incorporates
content-driven static site, web applications and all the fascinating combinations
between the two. [8, p.8]

The Jamstack name set a cohesive conclusion to all those rising trends.

In modern web architecture, the “stack” has ascended a tier. Before, the com-
mon discussion around the “stack” would be about operating system, database
and the web server (such as Linux Apache Mysql PHP (LAMP) stack or Mon-
goDB Express Angular Node (MEAN) stack), however, with the new trends of
architecture practices, the new paradigm emerges as follow: [8, p.8]

 20

• JavaScript in the browser as runtime. [8, p.8]

• Reuseable HTTP APIs services rather than application’s business logic
programs. [8, p.8]

• Prebuilt Markup served through CDN as the distribution procedure for
Jamstack applications. [8, p.8]

These components are the JAM in the JAMstack. Each of these elements is an
important piece of the way to build a modern Jamstack architecture, and they
will be analysed in detail in the following chapters.

4.1.1 JavaScript

Nowadays, JavaScript is undoubtedly the most common programming lan-
guage, especially dominant in web-based application. It has grown from a sim-
plistic, scripting language with Java-like syntaxes into the most highly optimized
language in the world. ECMAScript is the official committee behind the ad-
vancement of the language, includes of various open-source leaders in the web
community. Elegant features are being reviewed and added continuously to the
language from time to time, ranging from state-of-the-art constructs for asyn-
chronous action, agile class and module system, to refined syntactic constructs
such as destructuring assignment, and an object syntax named JavaScript Ob-
ject Notation (JSON) that has become the most popular data exchange format
on the web. [8, p.9]

JavaScript has evolved from a standalone programming language into a compi-
lation target for transpilers, which convert JavaScript variants into pure opera-
tional JavaScript in the targeted browsers, as well as compilers for new or exist-
ing languages such as ClojureScript, ReasonML or TypeScript. As a result, Ja-
vaScript has transformed into the universal runtime on the web that Sun Mi-
crosystems envisioned when they first build the Java Virtual Machine (JVM). [8,
p.9]

This web-based “Virtual Machine” is the runtime platform of the Jamstack. It is
the place where developers can make modifications when they need to estab-
lish dynamic workflows that are not limited to the content and presentation
layer, such as fully functional applications or adding extra potent features to a
content-based website. As the browsers have developed to become the func-
tional system of the web, JavaScript evolve into the same role in Jamstack as C
has in Unix [8, p.9]

 21

4.1.2 APIs

The World Wide Web at its core is just a user interface and presentation level
on top of a stateless protocol called the HyperText Transfer Protocol (HTTP).
The web’s foundational functionality is the Universal Resource Locator (URL).
[8, p.9]

The most basic user experience flow of a web application goes as typing a URL
into a browser or follows a link from website and finally land on a different web-
site. URL architecture and structure of modern web application should be built
with a careful mindset. In addition, URL also allow programs running in the
browser the ability to reach any programmatic resource that has been exposed
to the web. [8, p.9]

Originally, browser APIs were created only to be utilized in server-side applica-
tions. Without techniques like proxying through a mediator server or using exter-
nal plugins like Flash, it is impossible for a program running in regular browser
to consume any browser API outside of its own space [8, p.10]. Since JavaS-
cript emerged from just a scripting language designed mainly to perform minor
progressive upgrades for server-side rendered applications into a complete
runtime layer, new standards such as WebSocket and CORS appeared. To-
gether with other modern standards such as OAuth2 and JSON Web Token
(JWT) for authorization and stateless authentication, any latest browser API has
become unexpectedly accessible from any JavaScript client running in the
browser. [8, p.10]

This massive innovation on the web has enabled JAMstack emergence as one
of the most important architectural guideline for websites and applications. Im-
mediately, the whole web ecosystem has morphed into a massive operating
system. A new API economy evolution began to appear—from payments or
subscription through advanced machine learning model on the cloud, to ser-
vices that affect the physical daily life such as traffic direction or shipping ser-
vices, or anything else people can imagine. Possibly for every practical problem
exists, a solution with API-driven services will exist to combat such issue.

4.1.3 Markup

The web’s foundational element is the HyperText Markup Language (HTML).
HTML, parsed and interpreted by all browsers, represents how content should
be distributed and structured on the web. It manages the accessibility to re-
sources and assets for a website and presents a Document Object Model
(DOM) that can be parsed, exhibited, and handled by anything from the com-
mon web browser to search engine crawler, to mobile devices or smart
watches. [8, p.10]

 22

In the beginning days of the web, a website simply consists of a folder of HTML
files exposed over HTTP by a web server [8, p.10]. As the web matured, a run-
ning program on the server would compile the HTML directly correspond to
each user’s navigation, normally after communicating with the database. This
approach as we discussed in chapter 3 was the traditional way of how web ap-
plications are being operated. It was a very slow and complex approach, com-
pared to just serving static assets, but at the time due to the limited technology
this is the only viable way to make a simple document viewers web application
dynamic. Because of this document-focused software architecture, web experi-
ences are underwhelmed and much less interactive compared to desktop appli-
cations.

However, this approach was only the most common way before the emergence
of JavaScript and the revolution of modern web APIs available in the browser.
Most modern web applications have move away from such legacy architecture,
adopting a more progressive approach such as the Jamstack.

4.1.3.1 Prebuilding Markup in Jamstack

Markup is delivered in a different paradigm in Jamstack, compared to the tradi-
tional way of frontend web servers build HTML pages at runtime. Alternatively,
the Jamstack way was to build all the static assets ahead of time and serve
them directly on the browser through CDN. This approach typically involves a
build tool such as static site generator like Gatsby or Hugo; or front-end toolkits
like Webpack, Parcel or Rollup where all relevant assets are bundled into
HTML, scripting files are either compiled or transpiled into vanilla JavaScript,
and CSS files are run via pre-processor and post-processor.

This strategy creates a clear distinction and decouples the front-end from any
back-end services. It allows a much more simplicity architecture in infrastructure
and live system, which results in a much better isolation considering the front-
end and individual APIs. In a lot of ways, this decoupled architecture resembles
the architecture of mobile apps. Unlike the traditional building model of web ap-
plication where the full UI would be refreshed from the server each time users
interacts with apps, iOS applications are built in such a way that each app is
distributed to the users as an app store package with fully functional UI and
compiled together with additional assets to interact with JSON or XML-based
browser API. This strategy is the same as the Jamstack approach. The front-
end is the iOS app. It is distributed to users on browsers through CDN and take
advantages of the JavaScript on the browser to communicate with web-based
APIs.

 23

4.1.4 Type of Jamstack Projects

4.1.4.1 HTML Content

The simplest form of a Jamstack site is a pure static site: a folder with HTML
and supporting assets (JS, CSS, images, fonts); plain-text files that can be kept
under version control and be modified on the fly in the chosen editor [8, p.12].

With application that has more than a single page, common elements like head-
ers, navigation, footers or any repeat elements in general can be extracted into
their own template and HTML components files. If the application requires Ja-
vaScript, modules from npm can be use as well as ES6 modern features availa-
ble directly from the browser’s APIs. If the application’s stylesheet starts to grow
complex, techniques like pre-processing or post-processing CSS can be applied
in order to manage the scalability of the stylesheet.

A proper build toolkit such as Webpack can bundle all these extra complex
steps as static assets while maintaining the basic simplicity of the site. The
whole basis of such application binds to simple text files that lives in Git-reposi-
tory, under the effect of version control and can be modified to likings with any
text-centric developer tools. In addition, combined with continuous deployment
(CD) workflow, publishing these applications becomes as simple as a Git com-
mit and push.

4.1.4.2 Web Applications

True SPAs come to live when JavaScript performance on the web becomes
reasonable enough so developers can invert the legacy existing model of rely-
ing refreshing pages after each’s user navigation to handle all pages transition
directly in the browser. The first generation of SPAs was developed as a
frontend inside a large, monolith database-driven applications. As JavaScript
becomes more and more mature, modern SPAs architectures start to separate
the front-end and back-end thoroughly. The emergence of a new generation of
front-end build tools improves the SPAs building experience and make working
with front-end in isolation extremely satisfied. Webpack, again, is the core ena-
bler for this new wave of building the web: it offers a complete workflow that
supports JavaScript and Stylesheet transpiling, pre/post processing, code split-
ting & lazy loading, as well as watching live changes.

4.1.5 Advantages of Jamstack compared to traditional and monolith applica-
tions

In recent years, front-end architectures have proven to be rather sophisticated,
but with that is the growth of browser native APIs as well as HTML and CSS.
This leads to the capability to be a full-stack developer is rather difficult and

 24

challenging, as it is not an easy task to be both fluent in client-side JavaScript
functionalities as well as back-end operations such as database query optimiza-
tion, cache invalidation or infrastructure work. With Jamstack, decoupling front-
end from back-end allow developers to focus on one area of work without sacri-
ficing the cost of performance or maintainability. Nowadays, front-end pro-
cesses can be run locally with a live watching development server communi-
cating directly with a production API and switching between staging or testing
environment is as easy as changing an environment variable.

With Jamstack approach utilizing the microservices architecture, the service
layer becomes much more small, focused and maintainable compared to one
big monolithic application. This leads to a thriving API economy, with produc-
tion-ready API driven services like authentication, public discussion, map direc-
tion, ecommerce, searching and so on. Jamstack applications can out-source
complex domains to these third-party tools with confidence knowing these pro-
viders have thoroughly professional teams focus exclusively on tackling prob-
lems in their own space.

4.1.5.1 Cost

With traditional architectures, where page requests are highly active at every
level of the stack, that volume to respond to the requests are increased through
each rank, often leading to numerous, convoluted physical or virtual machines
for databases, message queues and load balancers. Each of these infrastruc-
ture layers are associated with cost. The cost of these pieces can grow expo-
nentially with software certificates, machine costs and human labor to maintain
physical or virtual servers. In addition, in a practical web development project,
each application will have multiple environments from testing to staging and
production, meaning for each environment, these pieces of infrastructure need
to be duplicate to provide suitable requirements, lead to even more absurd
costs.

Jamstack sites do not have to deal with such costs as they take advantages of
much more straightforward technical architecture. To deal with peak traffics
problem, Jamstack sites often offload the difficulty to Content Delivery Network
that is serving the application’s resources instead of having to scale each level
of the stack to deal with such issue. Even if a Jamstack application does not
adopt the highly flexible functionalities of CDN, the infrastructure layer would
still be significantly rationalized compared to traditional approach. When the op-
erations such as data fetching and page routing are decoupled from the invoca-
tions for these operations, it translates to the requirement for these fractions of
the infrastructure does not corelate to the traffic of the website at all. Major parts
of traditional architecture do not need to be scaled or possibly might not even
exist in the Jamstack approach.

In conclusion, the cost to build, develop and maintain website and applications
are greatly reduced with the Jamstack.

 25

4.1.5.2 Scale

Even with the most meticulous capacity planning, applications will, at certain
points in time, receive heavy spikes in traffic loads. In order to tackle this prob-
lems, high traffic sites often adopt the technique to add a caching layer or CDNs
to their infrastructure.

In traditional stacks, web applications need to cope with their dynamic data by
adding various caching layers and CDNs in front of the services that are dealing
with those data. This is a very expensive and complex set of functions. This re-
sults in an addtional level of complexity just to enable the ability to serve static
assets with static hosting infrastructure in order to solve the scaling traffic prob-
lems.

Meanwhile, applications built with Jamstack approach are already bundled and
prebuilt into the required static assets that are optimized to be served directly
through CDN without any additional layers of complexity. Furthermore, CDN will
often have nodes distributed globally. Therefore, applications that are served
through CDN do not have to deal with the situation where main traffics of the
application locate far away from the server. Instead, they can utilize the global
characteristic of CDN to distribute the content to anywhere in the world. In addi-
tion, when sites are being served through CDN, the application’s servers are no
longer act as the Single Point of Failure that could block visitor from accessing
the site. If a single node within a global CDN fails, the traffic would be redirected
through a different healthy node, available at other places in the network.

As such, Jamstack sites prove to be capable of dealing with resiliency, redun-
dancy and capacity in the simplest way compared to the traditional, monolithic
applications.

4.1.5.3 Performance

In traditional architectures, performance optimizations are typically conducted in
the server side. This leads to back-end engineering leading the performance
game and leaving the front-end side behind as a less-complicated field of engi-
neering. However, this has changed considerably in the modern way of building
the web. The fact that highly organized architecture and delivery of front-end
code could make a significant improvement to the performance of an application
has established a crucial field where important enhancements can be con-
ducted.

Let assess a simple request for a page in a dynamic site:

1. The browser requests for a page in response to user’s navigation
2. The invocation then is processed by a web server that assess the re-

quested URL and routes the request to the appropriate piece of logic.

3. The web server then routes the request to an application server that

deals with logic that is related to data.

 26

4. The application server queries for the relevant data from a database and

forms a response with new data to the request.

5. The response is returned from the application server, and then to the

web server and then passed back to the browser where it can finally be

shown to the user. [8, p.27]

Figure 10. demonstrate such process in the traditional stack.

 Figure 10. Request flow in Traditional Architecture versus Jamstack.

In legacy stacks like the one mentioned above, with a flexible back-end, in order
to improve performance, it is common start adding layers in between to cache
data. It can be either a caching level between a web server and an application
server, or between the database layer and application server. Such layers have
operations act like the layers are static but in fact it must be managed and modi-
fied accordingly by the application over the span of operation.

Now let assess the similar request for Jamstack applications instead, demon-
strate in figure 10 as well, where the compilation of page views is prebuilt ahead
of time instead of being generated on the fly:

1. The browser requests for a page in response to user’s navigation
2. A CDN connects the request to a prebuilt response and returns it in-

stantly to the browser and shows to the user.
Consequently, advantages of Jamstack approach are proven immediately with
less back-end layers to take care of. There are fewer failure mistakes and fewer
systems in the operation to render response for the requests. This leads to im-
proved performance in the hosting environment by default. Resources are

 27

instantly ready to be served to the front-end and shown to the end-user as
quickly as possible in recognition of the CDN.

4.1.5.4 Security

As discussed in previous chapters, Jamstack approach provides advantages of
a compact and focused stack when compared to legacy architecture with its
complicated database and caching layers, each expose the capability to read
and interchange data. By ignoring those layers, Jamstack also removes the im-
pact points at which different systems can communicate and exchange data.
Occasions of compromising the back-end layers are reduced. The effort needed
to spend patching and protecting pieces of infrastructure is simplified. Security
is improved.

Moreover, Jamstack sites enable a read-only system compared to the tradi-
tional stack where write operations for servers to execute code exists. Thus,
Jamstack applications typically can avoid the attacks that normally only happen
in legacy web stack. In addition, by out-sourcing certain complexity in the appli-
cations to third-party specialist tools, Jamstack advocates for a more rational
separation of individual layers and underlying capabilities. This leads to a clear
separation of concerns combined with security responsibilities.

4.2 Jamstack Enablers

After the discussion about benefits and details of the Jamstack architecture in
previous chapter, this section will focus on the practical implementation of Jam-
stack and the tooling that enable to build a Jamstack application with all the ad-
vantages it offers.

4.2.1 Introduction of Next.js, the hybrid server-side rendering framework

In simple terms, Next.js is a React.js-based framework that focus on offering the
static strategy to build Single-Page Applications. Besides that, it also includes
out-of-the-box many great features and advantages that enhances developer
experience and application’s performance such as: Fast Refresh, Zero Config,
Hybrid Static Site Generation and Server-side Rendering, Automatic Code Split-
ting and many more. Even though Next.js is open-source, it is largely main-
tained by a company named Vercel, which is one of the leading companies that
provides the deployment platform for Jamstack applications.

The core benefits of using Next.js compared to bare bone React.js approach
was that many of the complex optimization tasks are supported by default in
Next.js. When building a React application from scratch, there are many details
that need to be considered like code bundling and transpiling through external

 28

build tools like Webpack or Babel, statically pre-render pages to improve perfor-
mance and SEO or writing server-side code to handle data exchange. All these
advantages that it provides to developers make it a perfect tool to build a Jam-
stack application where all the important optimization techniques are supported.
In addition, with Vercel as the deployment platform, Next.js applications have
built-in analytics to measure performance based on metrics like First Contentful
Paint, Largest Contentful Paint, First Input Delay, which are crucial factors to
determine a good Lighthouse score.

One key difference between Next.js and other ways to build React.js application
is that Next.js is a React.js framework, where routing, data fetching are built-in.
This allows developers to quickly prototype an application without doing re-
search on which libraries to use to handle those features.

 29

Figure 11. An example structure of a Next.js Application

In figure 11 shows a typical structure of a Next.js application where pages folder
is parsed by Next.js engine to provide dynamic routing to the application without
the need install additional library. Each component in “pages” folder will be redi-
rected to the routing corresponding with the component’s name, like
“pages/blog.tsx” component will take the users to path “/blog”.

The magical features of Next.js are possible thanks to the tools it is using un-
der-the-hood like Webpack and Babel. By taking advantage of them as build
tools, many optimization features are integrated out of the box. Developers that
use Next.js do not need to worry about configuring Webpack and Babel since
Next.js already takes care of the heavy lifting part. As such, Zero Config is the
highlighted feature that Next.js proudly presents to its users. In addition, with
Babel as the transpiling/compiling tool, many syntactic features from Node.js
Engine V8 are supported like ES6 and async and await, allow developers to
make use of the latest cutting-edge JavaScript attributes.

4.2.2 Comparison of Next.js to Gatsby.js and traditional React.js applications

Gatsby.js is also another React.js framework that focus on building static Sin-
gle-Page Applications. It acts the same as Next.js as a foundation layer for a
React app and offer users a clear guideline to build out the application. Com-
pared to the traditional way to build React app with “create-react-app”, where it
only provides the boilerplate and developers must choose additional libraries to
handle various operations, Gatsby.js and Next.js each acts as a toolkit where it
provides the full-fledge bricks and instructions for you to build a complete appli-
cation.

At the time of writing this paper, Next.js has supported both to build static gen-
erating pages or pre-render pages and server side rendering as well. This in
previous version of Next.js was not possible, hence, it is used to be that when
developers want to build static pages, they will often choose Gatsby.js but now
it is not the case anymore. However, there are still certain features that Gatsby
do well compared to Next.js and will be discussed in this chapter.

The first main difference between Gatsby and Next was that how each frame-
work handles their data exchange/fetching. With Gatsby, data access is han-
dled through a query language named GraphQL. The benefit of GraphQL is its
declarative nature where it only accepts specific data fetching, extracts only the
relevant information compared to the alternative REST API where it often re-
turns all the data, irrelevant of the information requirement. In figure 12, the re-
quiring query is on the left, and only the specified properties define on the left
are return on the right like “name” of the “country”.

 30

Figure 12. Example of a GraphQL Query and its response

On the other hand, Next.js with its flexibility to implement server-side code al-
lows much more room to choose with how an application manage its data. It is
not vendor locked in to GraphQL by default like Gatsby and results in huge gain
of resilience. This also makes your application scale better, since with Gatsby if
one’s application requires huge amount of data, its core philosophy is static
pages so there will be no extensions at runtime, leading to build time will be sig-
nificantly longer with large amount of data.

In addition, Gatsby offers to its developers a very diverse ecosystem of plugins.
Plugins are premade Node.js packages that allow developers to attach the al-
ready made functionality of the plugin into one’s application. This in turns saves
a lot of complexity and allows developers to prototype and build applications
much quicker. This is not possible with Next.js application unfortunately, how-
ever this is an acceptable trade-off for Next.js when it allows much more flexibil-
ity and scalability with solutions available through either building your app in a

 31

server-side rendering way, in a static generation way or even a hybrid approach
that combine both named incremental static regeneration.

Moreover, the company behind Next.js framework, Vercel, provides one of the
best Jamstack platform with seamless deployment pipeline as its core philoso-
phy. The most impressive feature that Vercel can provide to its users was the
one-click domain assigning. Everything development operation related is as
simple as a single click. It utilizes the git workflow to track deployment opera-
tions and handled under the hood all the complicated deployment processes.
Beside the super simple deployment pipeline, Vercel also offers analytics and
user-friendly statistics so developers can focus on implementing and optimizing
appropriate parts of their application. Technically considering, serverless func-
tions are not parts of Next.js but something Vercel provides to users inde-
pendently. It can be however combined into Next.js as well where users can ex-
periment additional functionalities with their application, ranging from handling
data logic, user authentication, database queries to form submission, custom
slack command and more. [9]

4.2.3 Headless CMS

With Jamstack methodology, there is an innovative trending way to build an ap-
plication that deliver improved development, maintenance and operational ef-
fectiveness. Jamstack also enables shortening the distance in functionality be-
tween a dynamic application and a static website, while keeping the key ad-
vantages of the static unscathed. And one of the key important factor in ena-
bling the dynamic in Jamstack application is Headless CMS.

 32

Figure 13. Operational flow of content through a traditional CMS. Retrieve
from https://bejamas.io/blog/headless-cms/

Traditional CMS like Wordpress is bundled together with the entire stack into a
single web application. It is then hosted and served together with the application
whenever a page request is made. Headless CMS, instead, decouples the con-
tent layer from the presentation layer and offer them through API-driven ser-
vices.

Figure 14. Operational flow of content with Headless CMS approach. Re-
trieve from https://bejamas.io/blog/headless-cms/

A headless CMS allows the content management features separate from the
application’s front-end and enabling content delivery through many channels
beyond just pure website and apps. A headless CMS can not function on its
own. It has to be built together with a site or an experience, and then takes ad-
vantages of the APIs it offers to developers to plug the content in the product.

When making changes to the application, traditional CMS must often be reim-
plemented completely to suit a specific part of the application. Compared to
headless CMS where the content is completely decoupled from the application
itself, allowing developers to make change independently to the application
without affecting the content. This is huge in saving time and resources when
developers do not have to deal with back-end infrastructure when they want to
tweak some parts in the CMS.

https://bejamas.io/blog/headless-cms/#introduction
https://bejamas.io/blog/headless-cms/#introduction

 33

Moreover, traditional CMS with its various plugins often have malicious code
and bugs and the developers often must maintain those themselves if they de-
cided to incorporate part of the plugins to the application. Meanwhile headless
CMS is distributed as Software as a Service (SaaS), and since everything is de-
livered as external package with no maintenance required, security is also deliv-
ered as SaaS. Headless CMS also gives developer full authority on the style
and theme of the content they are delivering in the application, not being limited
on themes and templates like traditional CMS.

The most important aspect of using Headless CMS is its flexibility to deliver
content regardless of the presentation layer. It could either be a static website, a
mobile or dynamic web application, every content is delivered through APIs, not
bound to a specific implementation of the headless CMSs themselves.

5 Implementation

5.1 Introduction of SY Store, a local fashion store based in Vietnam

SY Store is a fashion store based in Ho Chi Minh city, Vietnam, where its main
product offered to the customers is custom-tailored clothing. It was founded in
2012 originally as an online ecommerce shop selling clothes through channels
like Facebook and Instagram, and its own custom Wordpress site. Key chal-
lenges with selling products through these channels are the manual labour ac-
tivities whenever there is a new collection come into sale. The managers of the
store must manually update every existing product by deleting the old ones and
upload new pictures and details for the new product. This could prove very la-
bour intensive, especially through channels like Facebook and Instagram where
the main method was only to upload new pictures or albums for every new
product collection. And for its custom Wordpress site, the plugins used to man-
age the products are outdated since the managers stop hiring an external de-
veloper to maintain the site. In order to solve theses challenges, the owners of
the store are looking for a new way to build out a new website where it can be
easily maintained through a custom content portal. This can be proven a suita-
ble case study for Jamstack approach where content can be managed through
headless CMS with one end is built as an editor for the managers, the other end
is integrated APIs with the webstore application. In addition, presentation layer
of the webstore can be developed independently from the content management
side, allow the owners to manage the data without affecting the development of
the site itself.

After taking into account key considerations, SY Store decides to quickly build
out a prototype of the store with the applied Jamstack principles. Core technolo-
gies of Jamstack that the site wanted to pursuit was Next.js as the full-stack
framework, where data fetching can be managed through Next.js’s custom data
hooks and managing data from the end-user’s side can be done via

 34

BigCommerce’s user interface. In addition, Next.js with its hybrid server-side
rendering and static site generation capabilities allow good SEO for an e-com-
merce webstore. The prototype of the webstore can be quickly built up thanks to
Next.js’s starter kit name Next.js Commerce, where the foundation layer for a
modern webstore is already implemented. The developers only need to study
the architecture of the Next.js Commerce web application and based on that de-
velop their own webstore with existing highly-optimized functionalities that the
starter kit already provided.

5.2 Applying Jamstack to build a webstore

5.2.1 Presentation Layer with Next.js Commerce

Figure 15. The homepage of webstore prototype

Upon navigating to SY Store URL https://systore.vercel.app/, users are wel-
comed to the homepage of the webstore as shown in figure 15. The page fea-
tures some basic functionalities of a webstore such as Add to Cart, Favourite
Product, Search Product, Filtering Product by Type, User Authentication. All UI
assets of the webstore are handled in the folder “pages” and “components”,
shown in figure 16.

https://systore.vercel.app/

 35

Figure 16. Directory structure of the SY Store prototype, powered by Next.js
Commerce

Each component in “pages” directory corresponds to a unique path with the
name of the component. For communicating with serverless functions, scripting

 36

files within the “pages/api” folder will be the source of truth. For data handling,
each Provider in the “framework” folder will be the interactive gate, shown in fig-
ure 17.

Figure 17. Each folder in the directory “framework” is a Provider

The Provider here can be interpreted as the chosen Headless CMS to handle
all data exchange operations of the webstore. At the time of writing this paper,
Next.js Commerce offer two examples of implementing such Provider, with
BigCommerce and Shopify. In addition, if the developers want to implement
custom provider, it is also possible by extending the “feature/commerce” folder,

 37

where all the base types, helpers and functions are already implemented. As
such, provider is not dependent on the UI layer of the application themselves
and can be extracted into external package if needed for reuse purposes.

Let assess how the data is being fetched when user navigates to the home
page, via the index component in “pages” folder.

As the name of the function “getStaticProps” imply, the page is generated stati-
cally, with data fetching is operated at build time via the “getStaticProps” func-
tion. Methods like “getAllProduct”, “getSiteInfo” or “getAllPages” are extracted
from the Provider mentioned above, in this case the chosen Provider is
BigCommerce, which is enabled by a custom config file in the “framework”
folder. These methods are where the data fetching happens and combines with
the flexibility of the “getStaticProps” function, our Home page can access data

 38

with ease through the props and render them dynamically as shown in the be-
low code.

 39

As for other pages, the same strategy is applied where data fetching happens in
the “getStaticProps” function and the page component extracts and utilizes data
through the props they receive.

In addition, let assess the code where data fetching is handled in the BigCom-
merce Provider through scripting files in the “framework/bigcommerce” direc-
tory, for example “get-all-products” hook.

Due to BigCommerce API is written in GraphQL, the interactive code here that
is used to communicate with BigCommerce must include GraphQL Query Lan-
guage. The query has multiple dynamic variables, all to show that code written

 40

to handle data in Next.js can be flexible with the way it is used to control data
exchange operations.

In the exported getAllProducts function, the query and its dynamic variables are
being called in a custom “config.fetch()” method, where it is written to handle
GraphQL queries. The result return from the method was the data we are ex-
pecting to operate with. The shape of the data can be complicated, that is why
the next several steps is to filter out and map the returned data to the correct
“product” format that the function is expecting to return in the final step. Thus
through this custom hook to handle data fetching, it proves that data operations

 41

can be handled with ease and customized to one’s satisfaction with Next.js ap-
plication’s structure.

Moreover, as Next.js pre-rendering or statically rendering all pages by default,
better performance and SEO are guaranteed and are often the expected speci-
fications for ecommerce applications. These pages can be cached by CDN as
well with no extra configuration to ensure better performance, thus embrace the
Jamstack philosophy by taking advantages of CDN to the best instance.

5.2.2 Content Management with BigCommerce’s User Interface

In this section, we will inspect how the owners of SY Store or data editors can
work with the content without any development knowledge about the presenta-
tion layer of the webstore. This is possible thanks to the BigCommerce CMS al-
low on the one hand developers accessing to data with ease through their APIs,
on the other hand allow end-users to manage content through their full-fledge
user interface.

Figure 18. User Interface of BigCommerce CMS

Upon logging in the BigCommerce Editor Portal, users are greeted with the
homepage and the left navigation pane where multiple content integrated fea-
tures are accessible, demonstrated in figure 18. If the users want to update
Products that are shown in the webstore, it can be done via the Products tab
where all the existing products are displayed in the UI, shown in figure 19.

 42

Figure 19. Product view in the BigCommerce CMS UI.

Through this view, multiple features relating to update or adding or deleting
Product are supported. Content editors can click on each Product and update
them with thorough details, ranging from pictures, categories, pricing, product
description to product type, product code.

 43

Figure 20. Product details view in the BigCommerce CMS UI

Beside managing content related to Product, editors can also access to cus-
tomer’s data through the Customer tab on the left navigation pane, shown in fig-
ure 21. From this view, editors can manage all the relevant information about
customer, from their username, email, phone number to store credits, even
changing the customer’s password is possible with this feature.

 44

Figure 21. Customer view in the BigCommerce CMS UI

Thus, with BigCommerce CMS UI, data editors or the owners of SY Store can
access and manage their data and content with ease. As they update the infor-
mation on the CMS UI, relevant changes will be available immediately on the
presentation layer or the store front of the webstore through the APIs. This in
turns give developers a lot of power to quickly iterate out awesome user experi-
ences without worrying messing up the data and store owners can confidently
manage their content and not affecting the development progress of the web-
store.

6 Conclusion

To summarize, many technical details are discussed and analysed in this paper,
ranging from the origins of JavaScript and how it matures to become an im-
portant part of developing Single Page Applications, to the various tooling that
the JavaScript ecosystem offer to its developers. In addition, various methods to
produce a modern Single Page Application are also examined to distinguish the
pros and cons of each method, and what is the most suitable way to build out
the application depending on the requirements. Moreover, a rising new architec-
ture are also discussed in the paper, namely Jamstack, where it offers many ad-
vantages over the traditional way to build out web application. It revolutionizes
the front-end architecture and utilizes the power of CDN and its caching capabil-
ity to provide fast and secure web application. Finally, the practical implementa-
tion of all the analysed technical details is examined and satisfy all the require-
ments for an ecommerce prototype that the owners of SY Store is looking for.
Next.js is the framework being used to develop the prototype, and BigCom-
merce is the chosen headless CMS to control data flow and operations. Due to
the scope of the thesis, only basic functionalities are implemented in the proto-
type, however the codebase is extended through the Next.js Commerce starter
kit, allow for future development to be easily accomplished.

 45

Thus, with the Jamstack methodology, and JavaScript becomes more and more
developed, future of Single Page Applications is being more relevant than ever.
With Jamstack advocates for simplifying the stack used to develop web applica-
tions, fast, light and secure website will become the norm when it comes to cre-
ating a modern JavaScript SPA. And with that is the rising API economy, where
all the complex services are already implemented by third party developers,
leading to the owners of Jamstack application can focus on delivering the best
user experiences there are, without scarifying the cost of maintaining the exter-
nal complicated services in their application.

7 References

1. JavaScript for impatient programmers (ES2020 edition) [online] https://ex-
ploringjs.com/impatient-js/toc.html [Access 1st March 2021]

2. How JavaScript was created [online] https://bren-
daneich.com/2008/04/popularity [Access 1st March 2021]

3. Interview with Brendan Eich, “A-Z programming languages: JavaScript”
[online] https://www2.computerworld.com.au/article/255293/a-z_program-
ming_languages_javascript/ [Access 1st March 2021]

4. Paul Krill, “JavaScript Creator Ponders Past, Future,” InfoWorld, June 23,
2008, [online] http://bit.ly/1lKlpXO; Brendan Eich, “A Brief History of JavaScript,”
July 21, 2010, [online] http://bit.ly/1lKkI0M. [Access 6th March 2021]

5. A complete guide to JavaScript tooling [online] https://ageek.dev/javas-
cript-tooling-overview [Access 6th March 2021]

6. Babel.js [online] https://babeljs.io/docs/en/index.html [Access 14th March
2021]

7. Rendering on the Web [online] https://developers.google.com/web/up-
dates/2019/02/rendering-on-the-web [Access 18th March 2021]

8. Mathias Biilmann & Phil Hawksworth, “Modern Web Development on the
JAMstack”, O’Reilly Media, Inc.

9. Vercel Serverless Functions [online] https://vercel.com/docs/serverless-
functions/introduction [Access 14th April 2021]

10. Next.js Commerce [online] https://nextjs.org/commerce [Access 19th
April 2021]

https://exploringjs.com/impatient-js/toc.html
https://exploringjs.com/impatient-js/toc.html
https://brendaneich.com/2008/04/popularity
https://brendaneich.com/2008/04/popularity
https://www2.computerworld.com.au/article/255293/a-z_programming_languages_javascript/
https://www2.computerworld.com.au/article/255293/a-z_programming_languages_javascript/
http://bit.ly/1lKlpXO
http://bit.ly/1lKkI0M
https://ageek.dev/javascript-tooling-overview
https://ageek.dev/javascript-tooling-overview
https://babeljs.io/docs/en/index.html
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://developers.google.com/web/updates/2019/02/rendering-on-the-web
https://vercel.com/docs/serverless-functions/introduction
https://vercel.com/docs/serverless-functions/introduction
https://nextjs.org/commerce

 46

