

Hau Tran

Developing a social platform based
on MERN stack

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

1 March 2021

Abstract

Author: Hau Tran

Title: Developing a social platform based on MERN stack

Number of Pages: 41 pages + 2 appendices

Date: 1 March 2021

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Software Engineering

Instructors: Janne Salonen (Head of Degree Program)

In the past, web development was mostly based on the LAMP stack (Linux, Apache,
MySQL, PHP or Perl) and Java-based applications (Java EE, Spring). However,
those stacks comprise of various programming languages which can be a burden for
a single developer to comprehend. With the advances in web technologies during the
last few years, a developer can participate in both front-end and back-end processes
of a web application.

The main goal of this bachelor’s thesis was to study the basic components of the
highly popular MERN stack and build a social platform application based on it. The
MERN stack, short for MongoDB, Express.js, React.js and Node.js eases the
developers with the idea of unifying web development under a single programming
language: JavaScript.

After months of doing research, the application was successfully built and fully
functional. The application has sufficient features and can either be used as a
platform to connect people or a service to manage employees for a real company.

Keywords: MongoDB, Express, Node, React, JavaScript.

Contents

List of Abbreviations

1 Introduction 1

2 Introduction to JavaScript 2

2.1 History of JavaScript 2

2.2 What is JavaScript used for? 3

2.3 Modern JavaScript 3

2.3.1 Creating variables using let 4

2.3.2 Creating variables using const 4

2.3.3 Arrow function 5

3 Explore the MERN stack 5

3.1 Node.js 6

3.1.1 Background of Node.js 6

3.1.2 Non-Blocking programming in Node.js. 8

3.1.3 Node package manager (NPM) 10

3.1.4 Applications of Node.js 11

3.2 Express.js 11

3.2.1 Introduction to Express.js 11

3.2.2 Structure of an Express.js application 12

3.2.3 Understanding middleware 13

3.3 MongoDB 14

3.3.1 Introduction to MongoDB 14

3.3.2 Pros and Cons of MongoDB 14

3.4 React.js 15

3.4.1 Introduction to React.js 15

3.4.2 Some concepts of React.js 17

4 Implementation of the project 19

4.1 Back-end creation 20

4.1.1 Server creation 20

4.1.2 Database creation 21

4.1.3 Authentication and Authorization process 25

4.1.4 Controllers and Routes 28

4.2 Front-end creation 28

4.2.1 Setting up a React.js application 28

4.2.2 Setting up route in React.js app 31

4.2.3 Connection between the front-end and back-end 33

4.2.4 Fetching data in React.js 33

4.3 Testing the application 35

5 Conclusion 38

References 39

Appendices

Appendix 1: Creation of a Profile component Appendix 1 1(4)

Appendix 2: Creation of a Post component Appendix 2 1(5)

List of Abbreviations

 API Application Programming Interface

NPM Node Package Module

MVC Model-View-Controller

HTTP Hypertext Transfer Protocol

NoSQL Non- Structured Query Language

JSON JavaScript Object Notation

BSON Binary JSON

RDBMS Relational Database Management System

HTML Hypertext Markup Language

MVVM Model-View-ViewModel

JSX JavaScript XML

SPA Single Page Application

URL Uniform Resource Locator

UI User Interface

1

1 Introduction

Nowadays, the demand for full-stack developers has rapidly increased than ever

before. According to a survey taken by Indeed, the highest demand also comes

with an impressive average salary of $110,770 in the US. [1] The term full-stack

developer refers to a person who can technically work on both front-end and

back-end development of a dynamic website or web-based applications.

In the past, web development was mainly based on the LAMP stack (Linux,

Apache, MySQL, PHP or Perl) and Java (Java EE, Spring), which consists of

various programming languages. With the capabilities to work on both the client-

side and server-side, JavaScript eases web development with the MERN stack's

emergence. The stack comprises four primary technologies: MongoDB,

Express.js, React.js, and Node.js. In this bachelor's thesis, the main goal was to

study each component's nature in the stack and create a social platform that can

connect people.

The thesis will primarily split into two main parts. The theoretical part focuses on

giving a deep understanding of each component in the stack and related

technologies to carry out the final project. Later it will dive into practical

implementation of the social platform.

The outcome is a platform that has sufficient features to demonstrate the

connections of each of the components in the MERN stack. Users can sign up,

sign in and sign out. After signing in, users can create a post with upload photo

functionality. Moreover, users can also like and comment on other user's posts

and reset the password. Due to the limited scope of this thesis, a notification

system was not implemented. The knowledge acquired from this thesis can be

applied to build various kinds of applications.

2

2 Introduction to JavaScript

2.1 History of JavaScript

Brandan Eich, an employee of Netscape created JavaScript in September 1995.

In 1996, JavaScript was officially named ECMAScript, which is a standard set by

European Computer Manufacturer associations (ECMA). ECMAScript 2 was

released in 1998, and ECMAScript 3 continued in 1999. [2] Since then, JavaScript

has been steadily evolving, with a record of 95% of websites using JavaScript as

of March 2021. [3]

Figure 1. Usage of client-side programming languages for websites, 28 Mar
2021, W3Techs.com. [3]

3

2.2 What is JavaScript used for?

JavaScript is a lightweight, interpreted, cross-platform scripting language. Back

in the day, JavaScript was only used in websites and run by the browsers to add

effects or interactions to a website's front end. However, as with the existence of

Node.js running by V8 engine since 2009, JavaScript can also be used to run on

the server.

• Client-side JavaScript: An extension of core JavaScript language to

control the browser and the DOM. It can also validate input, manipulate

UI elements or perform some calculations without refreshing the page

frequently.

• Server-side JavaScript: An extension of core JavaScript language to

run on a server that can be seen as normal C#, C, Python, or any other

server-side programming language code. For example, it can connect

and modify the database or file system with back-end access. Moreover,

with server-side code, a developer can handle JavaScript requests from

the client-side. [4]

2.3 Modern JavaScript

ECMAScript 6, also known either as ES6 or ECMAScript 2015, released in 2016,

was the second major revision to JavaScript. [5] Understanding ES6 is essential

when adopting the React.js framework in any of the MERN-based projects. In

React.js, developers will be writing plain-old JavaScript along with features added

by ES6.

4

2.3.1 Creating variables using let

Using the let keyword allows developers to declare a variable with block scope.

[5]

var x = 5;

// now x = 5

{

 var x = 20;

 // now x = 20

}

// finally x = 20

Listing 1. Declaring variable using var

Using let to re-declare a variable can solve the above problem.

var x = 5;

// right now x = 5

{

 let x = 20;

 //x = 20

}

// x is still 5

Listing 2. Declaring variable using let

2.3.2 Creating variables using const

The const keyword is used to declare a variable with a constant value. [5] A

variable need to be assigned a value as soon as it is declared.

var x = 5;

// now x= 5

{

const x = 20; // x = 20

}

// x is 5

5

Listing 3. Declaring variable using const

2.3.3 Arrow function

Arrow functions make it possible to write a function in a concise way. Developers

can get rid of writing function and return keywords as well as the curly brackets.

[5]

 // ES5

var minus = function(y, z) {

 return y - z;

}

// ES6

const minus = (y, z) => y - z;

Listing 4. Difference between normal function and arrow function

3 Explore the MERN stack

MERN stands for MongoDB, Express.js, React.js and Node.js. With MongoDB as

Database, Express.js is a web server framework (integrated with Node.js),

React.js is a web client library, and Node.js is a server-side platform. It helps

developers to develop Web apps based solely on full-stack JavaScript.

MERN combines four cutting-edge technologies today, from the front-end to the

back-end development, which Facebook strongly supports, so developers do not

need to learn any other technology such as .NET, PHP, or Java. It saves

developers time and effort to learn different technologies for application

development. Due to the same JavaScript platform, the stack is supported by a

vast number of open-source packages and a dedicated community for

programmers to increase scalability and maintain software products.

6

Figure 2. A 3-tier MERN architecture [6].

As depicted in Figure 2, the MERN stack starts with the core Node.js, a server-
side technology with very high performance and fast response to all tasks,
including large and complex data.

MERN does not need to use TypeScript, just the flexible foundation of React -
the most popular and influential front-end technology today.

3.1 Node.js

3.1.1 Background of Node.js

None of us are unfamiliar with the Google Chrome web browser, and there is

nothing new that this browser can open web pages and run JavaScript on the

websites. The JavaScript code's execution is thanks to a JavaScript engine

located inside a Chrome browser called V8. V8 has proven to be a powerful

engine, written in C ++; V8 can interpret and execute JavaScript very quickly. [7]

Faced with the apparent fact about the power of V8, the idea popped into the

founders' minds to separate this V8 from Chrome and form an application capable

of executing the JavaScript code on the server-side. In 2009, Ryan Dahl created

Node.js to achieve that goal. [7]

7

It should be easy to understand when Node has the same role as JVM (Java

Virtual Machine). Like the JVM, Node.js is considered a platform, an environment

for the applications to run on. If JVM executes the byte code, Node.js executes

the JavaScript code. Programmers always use high-level languages such as

Java, Scala, Groovy, or Kotlin to write the source code on the application

programming side when working on the JVM. This source code will be compiled

into byte code. Nevertheless, Node.js itself can understand and execute

JavaScript on the Node.js platform, so the language written on the application

side can be JavaScript, or languages capable of compiling into JavaScript like

Typescript.

The birth of Node.js brought a breath of fresh air into the programming world. It

has gained popularity among developers' top server-side platform choices and is

used in major systems such as Netflix, LinkedIn, and Uber. The following is a

ranking of the most popular libraries/platforms according to a StackOverflow

survey in 2020.

8

Figure 3. Node usage in 2020 [8]

3.1.2 Non-Blocking programming in Node.js.

The Node.js platform is versatile, perhaps not because of the V8 engine or the

ability to support the JavaScript language, but in the Non-Blocking style of

programming. Operations related to Non-Blocking in Node.js are mostly related

to IO, such as reading and writing data to disk or calling Web APIs, for example.

Furthermore, the use of Non-Blocking operations makes applications written on

a Node.js platform capable of using computational resources (CPU) most

efficiently.

In the creation of the Non-Blocking mechanism, Node.js applications operate

according to the Event Loop design pattern. The illustration below explains this

design in more detail:

9

Figure 4. The Event Loop mechanism. [9]

• Event Queue: Considering as a repository to store Events (events). Event

here can be understood as a particular process in the program. Each event

contains information to classify what that event is and the accompanying

data. Because it is a queue structure, the Event Queue will operate on the

principle of First In First Out (FIFO). This ensures that the order in which

the Events are retrieved for processing is the same as the order they are

put into the Event Queue.

• Main Thread: Saying this is the Main Thread because it will be the source

and the end of the program. This main Thread is responsible for

processing computation when receiving Events from the Event Queue.

This is also the only Thread of the Node application that the programmer

has control over. That is also the reason why it is still said that a Node

application is single-threaded. Because of that, programmers will not have

a headache about concurrency problems between threads like in some

other platforms like Java.

• Node API: The unit responsible for handling IO operations. IO operations

will be handled here by the multi-threaded mechanism. Moreover, each IO

operation after completion will return the result as an event, and this event

will be put in the Event Queue.

10

With the above three components, the way a Node application behaves like

this:

• The Main Thread will run the computation processing statements

declared in the source code. Wherever IO manipulation is involved, the

Main Thread will make a Non-Blocking call to the Node API and then

continue to execute other commands without waiting for the other IO

operation to complete.

• When receiving a request from Main Thread, Node API will directly

handle IO manipulation by different Threads. Once the IO operation is

completed, the Node API will wrap the result as an Event and place it

into the Event Queue.

• Events in the Event Queue will be processed by the Main Thread one

after another. In the Main Thread, the code used to handle Events is

usually declared as callback.

The above process is repetitive, creating a cycle of events in the

application. The programming will be imposed in a way that is geared

towards event handling instead of the traditional sequential way of

thinking. [9]

3.1.3 Node package manager (NPM)

NPM (short for Node Package Manager) is used and comes together to support

each development of Node.js. [10] Most libraries are available on NPM, so it is

relatively easy to include them just by running npm install <package>

command line to download them.

NPM is being maximized and operating based on two prominent roles as follows:

• NPM is a Software Registry and is being used very extensively to publish

open-source Node.js projects. One can understand that: it is an online

platform that allows all users to publish and share several other tools

11

written in JavaScript. It has crossed over 1.3 million code packages as of

April 2020. [11]

• NPM is one of the command-line tools that can help interact with other

online platforms such as servers or web browsers. It is also a utility that

can assist with package installation, package uninstallation, version

management, and server-driven management. Also, NPM is used to

manage the dependencies needed to run the projects.

3.1.4 Applications of Node.js

• Websocket servers: Websocket is a protocol formed to support two-way

communication between the client and the server to connect and

exchange data with each other quickly and accurately. The protocol is

implemented over TCP, and they are used for web applications.

• Ad Server: Running ads and controlling views will take time. Therefore,

Node.js will be a platform that brings many benefits to customers. It is

easier for ad servers to capture information.

• Cloud Services: Cloud services on electronic devices such as phones,

iPad, etc.

• RESTful APIs.

• Real-time applications.

• Microservices: The idea of microservices is to split an extensive

application into small services and connect them.

3.2 Express.js

3.2.1 Introduction to Express.js

Express.js is released under an open-source license, has a large community of

support, and used for commercial applications. Hence, developers can

12

completely rest assured to use this framework for their projects, from small

projects to large projects.

Express.js has a ton of support packages and provides additional features for

developers to a better program. Nevertheless, it does not slow down the speed

of Node.js. The famous Node.js platform today is using Express.js as a core

function.

According to the GitHub repository, Express.js was founded by TJ Holowaychuk

and was first released on May 22, 2010, with version 0.12. In June 2014, project

management rights were acquired by StrongLoop. IBM acquired StrongLoop in

September 2015. In January 2016, Express.js was managed by the Nodejs

Foundation. [12]

3.2.2 Structure of an Express.js application

Figure 5. Structure of an Express.js app.

As illustrated in Figure 5, the project directory structure using Express.js is divided

into three parts: Routes, Views, and Public. Express.js build web applications

following the MVC (Model, View, Controller) design pattern.

• Root.

13

• app.js: contains all the logic setup for the applications to run.

• package.json: contains all the installed packages.

• routes: contains all the routing-related logic present in the application.

• views: contains the views/templates for the application.

• Public: contains static files such as images, JS codes and CSS settings

for the application.

3.2.3 Understanding middleware

Middleware is computer software that connects software components or

applications together. [13] Software of this type consists of services that allow

interaction between processes running on one or more different machines.

Middleware technology has been developed to provide interoperability, catering

to commonly used distributed architectures to support and simplify complex

distributed applications.

When working with Express.js, developers use various middleware functions with

different functionalities:

• Functions receive the request, response of 1 cycle of HTTP

request/response.

• Functions can correct requests and responses before sending them to the

next() middleware function.

• Functions can update or terminate the request/response cycle. [14]

The middleware function in Express.js often takes three parameters: the request

(req) object, the response (res) object, and the next() function. Figure 6

below illustrate a custom middleware used in the project.

14

Figure 6. A custom middleware.

3.3 MongoDB

3.3.1 Introduction to MongoDB

MongoDB was first born by MongoDB Inc. in October 2007. It was part of the

PaaS (Platform as a Service) product like Windows Azure and Google App

Engine. It was later made open source in 2009. [15]

MongoDB is a document-oriented database and a NoSQL database. Therefore,

MongoDB will often avoid the relational database's table-based structure to adapt

to all documents such as JSON, available in a very flexible schema called BSON.

[16]

3.3.2 Pros and Cons of MongoDB

The outstanding advantages of MongoDB convincing the choice of current users

are:

• Since MongoDB uses data in the JSON form, each collection has different

sizes and documents. Nevertheless, they are very flexible when it comes

to archiving.

15

• MongoDB data is usually not bound to each other; it does not support

join query like in RDBMS, so when users insert, delete or update, it will

not spend too much time to check if it satisfies the constraints like in

RDBMS or not.

• MongoDB is easy to scale. In MongoDB, the concept “cluster” refers to

clusters of nodes containing data to communicate with each other. Adding

a new node to the cluster helps users expand the system quickly.

• The unique identifier _id will always be indexed automatically, so the

speed of querying information will consistently achieve the highest

performance.

• Data query will be cached to RAM with little access to the hard drive so

the read and write speed is faster.

In addition to many outstanding advantages as above, MongoDB still does have

its drawbacks:

• It is not applicable to any transaction models that require a high degree of

accuracy due to its non-binding nature.

• There is no transaction mechanism to banking service applications.

• Data takes RAM as the centre of the action, so it requires a large amount

of RAM when operating.

• Any change to the default data is not written to the hard drive immediately,

so the chance of losing data from the cause of an unexpected power failure

is very high.

3.4 React.js

3.4.1 Introduction to React.js

React.js is a JavaScript library built by Facebook engineers, being used by many

famous companies to develop their products such as Yahoo, Airbnb, Facebook,

16

Instagram. It is better suited for large, scalable projects rather than small projects.

[17]

• Features of React.js

The React.js mindset is to build reusable components that make it easy to break

down problems and test. It helps us quickly manage and extend the system; if it

is Angular, it requires optimal structure and coding style.

React.js always keeps components stateless (as much as possible), making it

easy to manage because it is like a static HTML page. It takes inputs from the

outside and only displays it against those inputs, explaining why it is reuse and

easy for testing.

• The strengths of React.js

React.js is a performance-minded view rendering framework. Many of the

heavyweights on the MVVM (Model-View-ViewModel) framework take a long

time to display large amounts of data, such as lists. However, with React.js, that

is no longer an issue, as it just shows what changes.

One of React.js more strengths is the virtual DOM (Document Object Model) -

which is hidden inside every view and is the reason why React.js achieves good

performance. When a view requests a call, everything is included in a virtual copy

of the DOM. React.js compares the virtual DOM and the real DOM after the call

completes and makes the changes indicated in the above comparison. [18]

For example, if we are looking at a list of 20 products displayed by React.js and

change the 2nd product, only that product is re-displayed, and the remaining 19

products remain the same (no need to display reload or reload the page). React.js

used the so-called virtual DOM to increase performance by outputting a virtual

view, then checking the difference between the virtual rendering and what is in

the DOM and creating a patch.

17

3.4.2 Some concepts of React.js

• Component

React.js is built around components, not using templates like other frameworks.

The user can create a component by extending the component as follows. [19]

Figure 7. A component in React.js.

The most crucial method is render, which is triggered when the component is

ready to be rendered on the page.

In that function, the user will return a description of what the user wants React.js

to render on the page. As in the example above, the user renders an h1 tag

containing the greeting and the name.

The render function is a specific description of the UI at any given time. If the data

is changed, React.js will update the UI with the corresponding data. One can

understand that React.js will automatically call the render function to update the

UI when the data changes. [19]

• Prop

18

Props here are properties of a component; users can change the props of the

component by passing data from the outside. Props can be an object, function,

string, number, etc. [19]

Figure 8. Prop in React.js.

When a prop is passed to the component, it is immutable. That is, its data is not

changed like a "pure" function. [19]

Examples of “pure” and “not pure” function. We consider the function as below:

Figure 9. Pure function.

The function is called "pure" because it does not change its input value and

always returns the same result for the same inputs. [19]

We consider the second function as shown below:

19

Figure 10. Not pure function.

Here the above function changed its input sum value, and this makes it not a

"pure" function.

All React.js components must act as "pure" function. [19]

• State

A React.js component has two ways to get props and state information. Unlike

props, the state of a component is not passed from the outside. A component

determines its own state. To create a state for the component, we will have to

declare it in the constructor function. [20]

Figure 11. State in React.js.

4 Implementation of the project

The Social Platform implementation will be carried out into three separate steps:

back-end creation, front-end creation, and finally testing of the applicaion. Due to

the limited scope of the thesis, it is not recommended to describe all the project's

aspects in detail. However, it can be able to demonstrate all the necessary steps

to implement the MERN application successfully.

20

4.1 Back-end creation

In creating the back-end of the application, the Express.js library on top of Node.js

is used to build the server. After that, to store the data in JSON format, Mongoose

library is installed to connect to the MongoDB database. Finally, the routing-

related logic is introduced as they include the endpoints to interact with the front-

end.

4.1.1 Server creation

First and foremost, a server is needed to compile the JavaScript code on the

back-end.

npm init

Listing 5. Command to initialize a project.

The code above is used to initialize a new Node.js project. After answering

fundamental questions regarding the project's description and user's information,

a package.json file is automatically created. After the project's initialization,

instead of using the core Node.js HTTP core modules to build the server, the

Express.js framework is used to take advantage of existing npm packages:

npm install express

Listing 6. Command to create an Express.js server.

Afterward, an entry file called app.js is created. This file contains all the

middlewares and node packages.

21

Figure 12. app.js file.

The objectives of some middlewares and packages included in Figure 11 can be

explained as follow:

• mongoose helps establish a connection between MongoDB database and

the Express app.

• morgan shows the request details in the console.

• bodyParser parses the incoming request bodies under the req.body

property.

• dotenv helps loading environment variable from a .env file into

process.env.

4.1.2 Database creation

To connect the MongoDB database to the Express.js app, a node package called

Mongoose is installed. Mongoose is an Object Data Modelling tool to assist

MongoDB in creating a schema. Based on that Schema interface, models are

defined. The Schema allows users to define the fields stored in each document

and their validation methods and default values. Essentially, the schema is a

22

blueprint for constructing the database. [21] There are two schemas in the

application: user and post.

User schema

Figure 13. A user schema.

In the Social Platform app, the user schema will store all the information related

to the users. This schema has many different fields within it, each with its type

and properties, as shown in Figure 13 above. The three required fields that need

introduction include name, email, and hashed_password.

23

• name: This field stores the user's name who is using the app and will be

of String data type.

• email: This field stores the registered user's email and will also be of

String data type.

• hashed_password: This field is designed to store the user's password in

a hashed version.

The author does not store the password in plain text format but as a hashed

version. As security concerns, the plain text version will be easily stolen if hackers

perform breaching the database. Taking that into account, virtual fields and

Crypto - a Node.js module are used to encrypt the password. Virtual fields are

additional fields for a given model. Their properties can be set manually or

automatically with defined functionality. Virtual properties do not persist in the

database as they only exist logically and are not written to the document's

collection. [22] A whole process of encrypting a password is illustrated in Figure

14 below.

As shown in Figure 14, a plain password, along with a generated timestamp, has

been encrypted by the encryptPassword method and saved in the

hashed_password variable between the setter and getter methods in the virtual

fields. The actual process of encrypting a plain password occurs in lines 73-76

where the encryptPassword method takes the plain password as an argument

and does the encryption.

In the authenticate method, the function receives the plain password, hashes it

and check if it is the same as the encrypted version saved in the database to

verify the user.

24

Figure 14. Virtual fields and methods in user schema.

Post schema

Figure 15 below displays the structure of the post schema in detail. The schema

has various fields related to the post, including title, body, photo, likes, comments,

etc. One exceptional point is the appearance of a type of ObjectId and ref of

"User" in the likes, postedBy and comments field. It illustrates the

relationship between Post and User models in the database. For instance, when

a user likes a post, his/her userId will be store in the post model to reflect the

change.

25

Figure 15. A post schema.

4.1.3 Authentication and Authorization process

Authentication is the process of identifying an account entering the system as

that person and not anyone else. It is the initial step of any system with a user

element.

After determining the account's identity, the system can only answer, "Who is

that?". The next equally important step, that is, to answer the question, "What can

that person do in the system"? Hence, Authorization comes into play to define

the permissions of the current account that has just been authenticated.

26

Figure 16. Authentication and Authorization with JWT.

JSON Web Token (JWT) is a JSON standard representation of the claim(s)

transmitted between client and server. The token issuer digitally signs claims,

and the recipient of this token can then use this digital signature to prove

ownership of the claim. [23] Figure 16 above illustrates the flow of using JWT in

authentication and authorization of a service:

1) A user performs login by sending id/password or using social network

accounts on the Authentication Server.

2) The Authentication Server receives the data sent by the user for user

authentication. In case of success, the Authentication Server will create a JWT

and return it to the user via a response.

3) The user receives the JWT returned by the Authentication Server as the "key"

to execute subsequent commands against the Application Server.

4) The Application Server before executing the request called from the user will

verify JWT sent. If OK, continue to execute the called request.

27

Figure 17. Using JWT to sign in user.

The implementation of JWT in the signin controller method is depicted in Figure

17. When there is a POST request to the route ’/sigin’, the method

’signin’ is executed. First of all, email and password values are deconstructed

from the request body. Then the database searches for the user using the email

id. If the user does not exist, an error message indicates that the user does not

exist will appear. When the user is found, the database will check the password

if it is the same as the hashed version. Subsequently, a signed JWT token is

generated along with the user id, the user's role, and a JWT secret (created in

the .env variable). The token is sent back to the user in the Local Storage as a

response with user details but without the password.

28

4.1.4 Controllers and Routes

For the sake of clearness, the back-end folder will be split into three sub-folders:

controllers, models, and routes. Folder models contains the mongoose

schemas to define the models in the database. Folder routes include all the

routing-related API endpoints. The controllers folder consists of the

middleware functions to be executed when the front-end requests match the

corresponding routes.

router.get("/users", allUsers);

Listing 7. An example of post-related API.

As can be seen from Listing 5, whenever a GET request from the front-end is

sent to the back-end to the corresponding "/users" endpoint, the custom

middleware function allUsers will be executed to retrieve all the users in the

database and display them to the front-end.

4.2 Front-end creation

4.2.1 Setting up a React.js application

In the past, configuration and environment settings for new projects using React

were sophisticated. The process included setting up Babel to convert JSX into

browser-ready code and configuring Webpack to bundle all the application

assets. Realizing this is a time-consuming and tedious process, Facebook has

developed an app Node.js module named "create-react-app" to scaffold a

React.js template quickly.

29

Figure 18 below shows the first step of creating a React.js application by running

the command "npx create-react-app" with the application's name, in this

case, "react-final" in the same folder that an Express.js was created.

Figure 18. Creation of a React.js app.

After successfully creating a React.js app, a command "npm start" was run to

display the application in the user's default browser. The figure below shows how

a React.js looks like in the browser.

Figure 19. Initial look of a React.js app.

30

In the src folder, the index.js file is the entry point of the whole application.

The figure below displays the flow of how a React.js app functions. Firstly, the

index.js file imports all the necessary libraries, then it renders the root

component App.js on the interface with the ReactDom.render() method.

Figure 20. Flow of a React.js app.

31

4.2.2 Setting up route in React.js app

SPA (Single Page Application) is now considered a trend to build web apps

because of many outstanding features. When an app is created in the SPA

philosophy, the UIs will be generated on a single page, depending on the case in

which the component will be rendered.

Alternatively, users can use the URL as a condition considering which

components will be rendered. In React.js, React Router is the library built to do

this.

React Router is a library for standard URL navigation in React.js; it allows

synchronizing UI with URL. It is designed with a simple API, which in turn allows

solving problems of URLs quickly. Listing x above shows how to install React

Router library in the project.

npm install react-router-dom

Listing 8. Install React Router library

Figure 21. A look of App component.

Figure 21 above shows a look of the App component. As discussed in section

4.2.1, App is the parent component of the application. For React Router to work,

32

minor adjustments need to be made on the App component. Firstly, a component

named MainRouter was created. Then BrowserRouter will wrap and render

everything that is inside MainRouter.

Figure 22. A look of MainRouter component.

The MainRouter component, as shown in Figure 22, contains all the

components with their corresponding paths that will be rendered inside

BrowserRouter. There are three primary types of components in React Router:

• Routers, such as <BrowserRouter> and <HashRouter>.

• Route matchers, such as <Route> and <Switch>.

• Redirects, such as <Link>, <NavLink>, and <Redirect>. [24]

It can also be seen from Figure 22 that there are two kinds of the route in the

application: public and protected. For instance, users go to the path "/" on the

browser to access the home page but cannot go to the route “/user/:userId”

to see a particular user's profile page, as it is a protected route.

33

4.2.3 Connection between the front-end and back-end

The CORS (Cross-origin resource sharing) error is a browser policy that prevents

unauthorized access to resources from other domains. Besides, it also helps to

protect users from malicious websites from unauthorized access to additional

resources. [25]

If a request is called from the front-end to back-end API, an error will occur, as

shown in figure 23 below. It is because both the front-end and part-end parts of

the application are hosted on different domains.

Figure 23. An example of CORS error

To fix the error, a command “npm install cors” was run in the back-end

directory. cors is a very convenient package, providing middleware that allows

users to enable CORS with many options to customize and concise for MERN-

based application.

4.2.4 Fetching data in React.js

Fetching data in React.js is an essential task as a MERN-based application is all

about dynamic rendering. By using fetch() API, a built-in tool in most modern

browsers on the window object (window.fetch), users can get resources from

a server or an API endpoint.

34

Figure 24. Fetch API.

As shown in figure 24, a list of users from the database is retrieved by calling the

fetch() API inside the list() method. The fetch() API takes in the path to

the endpoint author wants to fetch, along with the method of "GET”. When the

request is fulfilled, it returns a promise that contains a response object. The

response is just a typical HTTP response and not the actual JSON. Finally, the

json() method is used to get the JSON body content from the response.

Figure 25. Component Lifecycle.

35

The best place to fetch data in React.js is at the componentDidMount()

lifecycle method as shown in figure 25. Using componentDidMount() will

prevent data from being uploaded until the first render is complete. It reminds

users to correctly state the data without getting an error. When the Users

component has mounted, a list of users in the app will be displayed in the browser

as shown in figure 26 below.

Figure 26. Showing all the users of the app on Users component.

4.3 Testing the application

After successfully creating the back-end, front-end, and connection between

them, it is time to test the result application. As expected, the application behaves

as a fully functional social platform.

Figure 27 below displays the app's home page, which contains all the posts by

the users. It is the only page that unregistered users can access the app excluded

the sign-up and sign-in features. Conventionally, all the app pages will have a

navigation bar at the top of the page, which helps users direct to different parts

of the app.

36

Figure 27. Initial look of homepage

To access all the app features, a visitor needs to register to the service by clicking

the tab SIGN UP, filling all the required fields as figure 28 displays.

Figure 28. Sign Up form

Subsequently, user can sign in with the provided email and password as shown

in figure 29 below.

37

Figure 29. Sign In form

After successfully login, a user can have full access to the app, including creating

post with photo upload functionality, editing his/her profile. The most interesting

feature is that user can like or comment on other user’s post as shown in figure

30.

Figure 30. A single post in detail

38

5 Conclusion

In this bachelor's thesis, MERN stack and its characteristics are studied and

applied to build an end-to-end social media web application. The paper has

outlined comprehensively the history of JavaScript, which is the core of MERN

stack, as well as the background theories, concepts, and important techniques of

each technology in the stack itself. The author has demonstrated the advantages

of those technologies and how they strongly unify to form an application with

connected backend and frontend, aided by a NoSQL database engine.

Thereupon, detailed steps to implement the social media application have been

described and thus have proven the feasibility of applying aformentioned theories

into a real-world problem. All things considered, all objectives have been

accomplished and the outcome of the project can be considered successful. The

application built during the project has fulfilled all minimum requirements of a

social platform, given the time frame of the project. The users can share their own

stories and interact with those from others through a graphical web user interface,

while benefitting from a secure authentication and authorization model. This can

become a strong foundation for a more sophisticated and refined product that is

able of connecting people or even a more professional workplace communication

system.

39

References

1. David, A.Arnott. Everyone wants full stack developers — and

these other 24 in-demand jobs [online]. National News Desk

Editor. Mar 22, 2017. Retrieved from

https://www.bizjournals.com/bizjournals/news/2017/03/22/every

one-wants-full-stack-developers-and-these.html. Accessed on

17 April 2021.

2. MDN Web Docs. A re-introduction to JavaScript. Retrieved from

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-

introduction_to_JavaScript. Accessed on 17 April 2021.

3. Web Technology Surveys. Historical trends in the usage statistics

of client-side programming languages for websites. Retrieved

from

https://w3techs.com/technologies/history_overview/client_side_l

anguage/all. Accessed on 17 April 2021.

4. MDN Web Docs. JavaScript Guide – Introduction. Retrieved from

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Guide/Introduction. Accessed on 17

April 2021.

5. w3schools.com. ECMAScript 2015 - ES6. Retrieved from

https://www.w3schools.com/js/js_es6.asp. Accessed on 17 April

2021.

6. MongoDB. MERN Stack. Retrieved from

https://www.mongodb.com/mern-

stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnm

EI6aAYlM1H2vEtQtpAwrSYSU. Accessed on 17 April 2021.

7. Node.js. About Node.js. Retrieved from

https://www.mongodb.com/mern-

stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnm

EI6aAYlM1H2vEtQtpAwrSYSU. Accessed on 17 April 2021.

https://www.bizjournals.com/bizjournals/news/2017/03/22/everyone-wants-full-stack-developers-and-these.html
https://www.bizjournals.com/bizjournals/news/2017/03/22/everyone-wants-full-stack-developers-and-these.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://w3techs.com/technologies/history_overview/client_side_language/all
https://w3techs.com/technologies/history_overview/client_side_language/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://www.w3schools.com/js/js_es6.asp
https://www.mongodb.com/mern-stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnmEI6aAYlM1H2vEtQtpAwrSYSU
https://www.mongodb.com/mern-stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnmEI6aAYlM1H2vEtQtpAwrSYSU
https://www.mongodb.com/mern-stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnmEI6aAYlM1H2vEtQtpAwrSYSU
https://www.mongodb.com/mern-stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnmEI6aAYlM1H2vEtQtpAwrSYSU
https://www.mongodb.com/mern-stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnmEI6aAYlM1H2vEtQtpAwrSYSU
https://www.mongodb.com/mern-stack?fbclid=IwAR19AW5xLR45sMUccHB1mjbZLbAq8u8ePnmEI6aAYlM1H2vEtQtpAwrSYSU

40

8. 2020 Developer Survey. Technology. Retrieved from

https://insights.stackoverflow.com/survey/2020#technology.

Accessed on 17 April 2021.

9. Coder Son Trang. Node.js. Retrieved from

https://codersontrang.wordpress.com/2017/10/09/gioi-thieu-ve-

nodejs/. Accessed on 17 April 2021.

10. w3schools.com. What is npm? Retrieved from

https://www.w3schools.com/whatis/whatis_npm.asp. Accessed

on 17 April 2021.

11. Npm Blog (Archive). Retrieved from

https://blog.npmjs.org/post/615388323067854848/so-long-and-

thanks-for-all-the-

packages.html#:~:text=In%20June%202019%2C%20the%20np

m,number%20has%20crossed%201.3%20million. Accessed on

17 April 2021.

12. Wikipedia. Express.js. Retrieved from

https://en.wikipedia.org/wiki/Express.js#:~:text=js%2C%20or%2

0simply%20Express%2C%20is,software%20under%20the%20

MIT%20License.&text=js.,many%20features%20available%20a

s%20plugins. Accessed on 17 April 2021.

13. Wikipedia. Middleware analyst. Retrieved from

https://en.wikipedia.org/wiki/Middleware_analyst. Accessed on

17 April 2021.

14. Express. Using middleware. Retrieved from

https://expressjs.com/en/guide/using-middleware.html.

Accessed on 17 April 2021.

15. Wikipedia. MongoDB. Retrieved from

https://en.wikipedia.org/wiki/MongoDB. Accessed on 17 April

2021.

16. MongoDB Manual. Introduction to MongoDB. Retrieved from

https://docs.mongodb.com/manual/introduction/. Accessed on 17

April 2021.

https://insights.stackoverflow.com/survey/2020#technology
https://codersontrang.wordpress.com/2017/10/09/gioi-thieu-ve-nodejs/
https://codersontrang.wordpress.com/2017/10/09/gioi-thieu-ve-nodejs/
https://www.w3schools.com/whatis/whatis_npm.asp
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html#:~:text=In%20June%202019%2C%20the%20npm,number%20has%20crossed%201.3%20million
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html#:~:text=In%20June%202019%2C%20the%20npm,number%20has%20crossed%201.3%20million
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html#:~:text=In%20June%202019%2C%20the%20npm,number%20has%20crossed%201.3%20million
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html#:~:text=In%20June%202019%2C%20the%20npm,number%20has%20crossed%201.3%20million
https://en.wikipedia.org/wiki/Express.js#:~:text=js%2C%20or%20simply%20Express%2C%20is,software%20under%20the%20MIT%20License.&text=js.,many%20features%20available%20as%20plugins
https://en.wikipedia.org/wiki/Express.js#:~:text=js%2C%20or%20simply%20Express%2C%20is,software%20under%20the%20MIT%20License.&text=js.,many%20features%20available%20as%20plugins
https://en.wikipedia.org/wiki/Express.js#:~:text=js%2C%20or%20simply%20Express%2C%20is,software%20under%20the%20MIT%20License.&text=js.,many%20features%20available%20as%20plugins
https://en.wikipedia.org/wiki/Express.js#:~:text=js%2C%20or%20simply%20Express%2C%20is,software%20under%20the%20MIT%20License.&text=js.,many%20features%20available%20as%20plugins
https://en.wikipedia.org/wiki/Middleware_analyst
https://expressjs.com/en/guide/using-middleware.html
https://en.wikipedia.org/wiki/MongoDB
https://docs.mongodb.com/manual/introduction/

41

17. React. Getting Started. Retrieved from

https://reactjs.org/docs/getting-started.html. Accessed on 17

April 2021.

18. React. Virtual DOM and Internals. Retrieved from

https://reactjs.org/docs/faq-internals.html. Accessed on 17 April

2021.

19. React. Components and Props. Retrieved from

https://reactjs.org/docs/components-and-props.html. Accessed

on 17 April 2021.

20. React. State and Lifecycle. Retrieved from

https://reactjs.org/docs/state-and-lifecycle.html. Accessed on 17

April 2021.

21. Mongoose. Schemas. Retrieved from

https://mongoosejs.com/docs/guide.html. Accessed on 17 April

2021.

22. Mongoose. Virtuals. Retrieved from

https://mongoosejs.com/docs/guide.html#virtuals. Accessed on

17 April 2021.

23. SoftwareSecure. Security issues in JWT authentication.

Retrieved from https://www.softwaresecured.com/security-

issues-jwt-authentication/. Accessed on 17 April 2021.

24. React training/ React Router. Retrieved from

https://reactrouter.com/web/guides/primary-components.

Accessed on 17 April 2021.

25. MDN Web Docs. Cross-Origin Resource Sharing (CORS).

Retrieved from https://developer.mozilla.org/en-

US/docs/Web/HTTP/CORS. Accessed on 17 April 2021.

https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/state-and-lifecycle.html
https://mongoosejs.com/docs/guide.html
https://mongoosejs.com/docs/guide.html#virtuals
https://www.softwaresecured.com/security-issues-jwt-authentication/
https://www.softwaresecured.com/security-issues-jwt-authentication/
https://reactrouter.com/web/guides/primary-components
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Creation of a Profile component. Appendix 1

1 (4)

import React, { Component } from "react";

import { Redirect, Link } from "react-router-dom";

import { isAuthenticated } from "../auth";

import { read } from "./userApi";

import DefaulAvatar from "../images/avatar.jpg";

import DeleteUser from "./DeleteUser";

import FollowProfile from "./FollowProfile";

import FollowList from "./FollowList";

import { postByUser } from "../post/postApi";

class Profile extends Component {

 constructor() {

 super();

 this.state = {

 user: { following: [], followers: [] },

 redirectToSignin: false,

 following: false,

 error: "",

 posts: [],

 };

 }

 //check follow

 checkFollow = (user) => {

 const jwt = isAuthenticated();

 const match = user.followers.find((follower) => {

 //one id has many other ids (followers) and vice versa

 return follower._id === jwt.user._id;

 });

 return match;

 };

 clickFollowBtn = (apiCall) => {

 const userId = isAuthenticated().user._id;

 const token = isAuthenticated().token;

 apiCall(userId, token, this.state.user._id).then((data) => {

 if (data.error) {

 this.setState({ error: data.error });

 } else {

 this.setState({ user: data, following: !this.state.following });

 }

 });

 };

 init = (userId) => {

 const token = isAuthenticated().token;

 read(userId, token).then((data) => {

Creation of a Profile component. Appendix 1

2 (4)

 if (data.error) {

 this.setState({ redirectToSignin: true });

 } else {

 let following = this.checkFollow(data);

 this.setState({ user: data, following });

 this.loadPosts(data._id);

 }

 });

 };

 loadPosts = (userId) => {

 const token = isAuthenticated().token;

 postByUser(userId, token).then((data) => {

 if (data.error) {

 console.log(data.error);

 } else {

 this.setState({ posts: data });

 }

 });

 };

 componentDidMount() {

 const userId = this.props.match.params.userId;

 this.init(userId);

 }

 UNSAFE_componentWillReceiveProps(props) {

 const userId = props.match.params.userId;

 this.init(userId);

 }

 render() {

 const { redirectToSignin, user, posts } = this.state;

 if (redirectToSignin) return <Redirect to="/signin" />;

 const photoUrl = user._id

 ? `${process.env.REACT_APP_API_URL}/user/photo/${

 user._id

 }?${new Date().getTime()}`

 : DefaulAvatar;

 return (

 <div className="container">

 <h2 className="mt-5 mb-5">Profile</h2>

 <div className="row">

 <div className="col-md-4">

 <img

Creation of a Profile component. Appendix 1

3 (4)

 style={{ height: "300px", width: "auto" }}

 className="img-thumbnail img-fluid mx-auto d-block"

 src={photoUrl}

 onError={(i) => (i.target.src = `${DefaulAvatar}`)}

 alt={user.name}

 />

 </div>

 <div className="col-md-8">

 <div className="lead mt-2">

 <p>{user.name}</p>

 <p>{user.email}</p>

 <p>{`Joined ${new Date(user.created).toDateString()}`}</p>

 </div>

 {(isAuthenticated().user &&

 isAuthenticated().user._id === user._id) ||

 isAuthenticated().user.role === "admin" ? (

 <div className="d-inline-block">

 <Link

 className="btn btn-raised btn-info mr-5"

 to={`/post/create`}

 >

 Create a post

 </Link>

 <Link

 className="btn btn-raised btn-success mr-5"

 to={`/user/edit/${user._id}`}

 >

 Edit profile

 </Link>

 <DeleteUser userId={user._id} />

 </div>

) : (

 <FollowProfile

 following={this.state.following}

 onButtonClick={this.clickFollowBtn}

 />

)}

 <div>

 {isAuthenticated().user &&

 isAuthenticated().user.role === "admin" && (

 <div class="card mt-5">

 <div className="card-body">

 <h5 className="card-title">Admin</h5>

 <p className="mb-2 text-danger">

 Edit/Delete as an Admin

 </p>

Creation of a Profile component. Appendix 1

4 (4)

 <Link

 className="btn btn-raised btn-success mr-5"

 to={`/user/edit/${user._id}`}

 >

 Edit Profile

 </Link>

 <DeleteUser userId={user._id} />

 </div>

 </div>

)}

 </div>

 </div>

 </div>

 <div className="row">

 <div className="col md-12 mt-5 mb-5">

 <hr />

 <p className="lead">{user.about}</p>

 <hr />

 <FollowList

 followers={user.followers}

 following={user.following}

 posts={posts}

 />

 </div>

 </div>

 </div>

);

 }

}

export default Profile;

.

Creation of a Post component Appendix 2

1 (5)

import React, { Component } from "react";

import { singlePost, remove, like, unlike } from "./postApi";

import DefaulPost from "../images/saigon.jpg";

import { Link, Redirect } from "react-router-dom";

import { isAuthenticated } from "../auth";

import Comment from "./Comment";

class SinglePost extends Component {

 constructor() {

 super();

 this.state = {

 post: "",

 redirectToHome: false,

 like: false,

 likes: 0,

 comments: [],

 };

 }

 componentDidMount = () => {

 const postId = this.props.match.params.postId;

 singlePost(postId).then((data) => {

 if (data.error) {

 console.log(data.error);

 } else {

 this.setState({

 post: data,

 likes: data.likes.length,

 like: this.checkLike(data.likes),

 comments: data.comments,

 });

 }

 });

 };

 updatedComments = (comments) => {

 this.setState({ comments });

 };

 checkLike = (likes) => {

 const userId = isAuthenticated().user._id;

 let match = likes.indexOf(userId) !== -1;

 return match;

 };

 likeToggle = () => {

 let callApi = this.state.like ? unlike : like;

 const userId = isAuthenticated().user._id;

Creation of a Post component Appendix 2

2 (5)

 const postId = this.state.post._id;

 const token = isAuthenticated().token;

 callApi(userId, token, postId).then((data) => {

 if (data.error) {

 console.log(data.error);

 } else {

 this.setState({

 like: !this.state.like,

 likes: data.likes.length,

 });

 }

 });

 };

 deletePost = () => {

 const postId = this.props.match.params.postId;

 const token = isAuthenticated().token;

 remove(postId, token).then((data) => {

 if (data.error) {

 console.log(data.error);

 } else {

 this.setState({ redirectToHome: true });

 }

 });

 };

 deleteConfirmation = () => {

 let answer = window.confirm("Are you sure to delete this post?");

 if (answer) {

 this.deletePost();

 }

 };

 renderPost = (post) => {

 const posterId = post.postedBy ? `/user/${post.postedBy._id}` : "";

 const posterName = post.postedBy ? post.postedBy.name : "Unknown";

 const { like, likes } = this.state;

 return (

 <div className="card-body">

 {like ? (

 <h4 className="float-left" onClick={this.likeToggle}>

 <i

 className="fas fa-heart text-danger bg-dark mr-2"

 style={{

 padding: "10px",

Creation of a Post component Appendix 2

3 (5)

 borderRadius: "50%",

 }}

 ></i>

 {likes} Like

 </h4>

) : (

 <h4 className="float-left" onClick={this.likeToggle}>

 <i

 className="fas fa-heart text-light bg-dark mr-2"

 style={{

 padding: "10px",

 borderRadius: "50%",

 }}

 ></i>

 {likes} Like

 </h4>

)}

 <img

 src={`${process.env.REACT_APP_API_URL}/post/photo/${post._id}`}

 alt={post.title}

 onError={(i) => (i.target.src = `${DefaulPost}`)}

 style={{ height: "300px", width: "auto" }}

 className="img-thumbnail img-fluid mx-auto d-block"

 />

 <p className="card-text">{post.body}</p>

 <p className="font-italic mark">

 Posted by <Link to={`${posterId}`}>{posterName} </Link>

 on {new Date(post.created).toDateString()}

 </p>

 <Link

 to={`/`}

 className="btn btn-raised btn-success btn-sm float-right"

 >

 Back to Home

 </Link>

 {isAuthenticated().user &&

 isAuthenticated().user._id === post.postedBy._id && (

 <div className="d-inline-block">

 <Link

 to={`/post/edit/${post._id}`}

 className="btn btn-raised btn-info mr-5"

 >

 Update Post

 </Link>

Creation of a Post component Appendix 2

4 (5)

 <button

 onClick={this.deleteConfirmation}

 className="btn btn-raised btn-warning"

 >

 Delete Post

 </button>

 </div>

)}

 <div>

 {isAuthenticated().user && isAuthenticated().user.role === "adm

in" && (

 <div class="card mt-5">

 <div className="card-body">

 <h5 className="card-title">Admin</h5>

 <p className="mb-2 text-

danger">Edit/Delete as an Admin</p>

 <Link

 to={`/post/edit/${post._id}`}

 className="btn btn-raised btn-info mr-5"

 >

 Update Post

 </Link>

 <button

 onClick={this.deleteConfirmation}

 className="btn btn-raised btn-warning"

 >

 Delete Post

 </button>

 </div>

 </div>

)}

 </div>

 </div>

);

 };

 render() {

 if (this.state.redirectToHome) {

 return <Redirect to="/" />;

 }

 const { post, comments } = this.state;

 return (

 <div className="container-fluid">

 <h2 className="display-2 mt-3 mb-3">{post.title}</h2>

 {!post ? (

 <div className="jumbotron text-center">

Creation of a Post component Appendix 2

5 (5)

 <h2>Loading...</h2>

 </div>

) : (

 this.renderPost(post)

)}

 <Comment

 postId={post._id}

 comments={comments.reverse()}

 updatedComments={this.updatedComments}

 />

 </div>

);

 }

}

export default SinglePost;

