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1 INTRODUCTION
In today’s rapidly changing and competitive environment, organizations are looking for

ways to be more flexible and efficient when comes to building products and services.

Business leaders realize that the pace of competition is increasing, so they need to find

ways to respond to change and deliver value faster to their customers. In response to

these challenging environments, organizations are adopting Agile project management

methodology to keep pace with customer demand and to develop efficient high-quality

product faster (Figure 1). Agile is becoming a popular project management approach

because of its emphasis on efficiency and quality (Ramin et al. 2020).

Figure 1. Agile Scrum Framework (Wikipedia 2020)

In the Information Technology (IT) sector alone, Gartner (2019) reported that around

87% of organizations are using Agile for all or some of their application development

work. Agile is defined as a development approach that delivers software in increments

by following the principles of the Agile Manifesto. The Agile Manifesto (Beck et al.

2001) was put together in 2001 by a group of experts who were looking for better ways to

deliver the software (SW). Agile methodology consists of few frameworks: Kanban, eX-

treme Programming (XP), Lean, Scrum, etc., but the most common one is Scrum (Andrei

et al. 2019). It is a lightweight process framework for Agile development. Agile Scrum

methodology has now become a de-facto standard in the Information Technology (IT) in-

dustry (ScrumAlliance 2018). Agile Scrum (Vargas et al. 2018) deal with the estimate and
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schedule of project planning, by answering questions like, how big is the effort? when it

will be done? and when it will delivered? These questions circle around during life cycle

of a project, but due to the iterative nature of Scrum, these questions are raised often, and

team adapt to change.

In Agile Scrum, a project is first decomposed into smaller requirements to understand

the bigger picture of architecture, user experience (UX), quality assurance (QA), devel-

opment and deployment. This helps to understand the risk, duration, schedule and cost

of a project. The smaller steps are taken to achieve the big picture. In agile, this work is

done by using a series of repeated cycles (sprint) which is a short timebox iteration (ideal

duration of sprint is 2-4 weeks). Project is sub-divided into small sub-projects which is

represented by sprints. In each sprint, a potentially shippable product increment is de-

livered, which consists of design, implementation, testing and deployment stages. Thus,

in every sprint new features represented by user-stories are added to the product, which

results in the gradual project growth. The user-story selected in each sprint is based on

business priority to make sure that most important user-stories are developed first.

As the user-stories are being tested and validated by the scrum team at the end of each

sprint, they are likewise accepted by the customer. There is a high chance that end product

is very close to user need. Scrum keeps a short customers feedback loop. At the end of

each sprint, customer’s feedback is collected which helps to keep the product, customer

centric.

Determining effort estimate using story-point is a common practice in Agile Scrum.

Story-point is a relative measure of the size of a user-story. Story-point is purely an

estimate of time that will take to finish a user-story with quality product. For example, a

user-story with 10 story-point is twice as big, risky and complex as a user-story estimated

as five story-point.

Assuming a project’s requirement is sub-divided into 20 user-stories in total. The project

team, after careful analysis, estimates that it will take 4 sprints to deliver the project. The

team will work on 4 user-stories on each sprint and after the 5th sprint, a finish product

will be delivered to the customer. If the sprint duration is 2 weeks, it will roughly take 10
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weeks (2.5 months) to finish the project.

Before starting each sprint, the project team meet to plan the work for the sprint and set

its scope and objective, this meeting is called sprint planning meeting. The main char-

acteristic of sprint planning meeting is to understand the user-stories well and estimate

it precisely. So that user-stories which are actually planned for the current sprint can be

finished within a desired sprint duration. The importance of sprint planning and estima-

tion of a user-story is due to the fact that, effort estimate is concluded from the collective

wisdom of the team. The planning poker is an effort estimation technique used in Agile

Scrum. It combines expert opinion, analogy and dis-aggregation into an enjoyable ap-

proach, which results in a quick and reliable estimate. The Planning poker works because

it brings together multiple expert opinion from cross-functional team members.

It is also a fact that, even after careful planning, projects do get delayed in Agile Scrum.

Sometimes it is difficult to hold on to the original plan, as scope of the sprint changes

due to additional unplanned work, unexpected bugs to be fixed from previous sprint or

complexity of the work which was under estimated. These are few of the most common

causes of sprint delays which the project team tries to optimise by rescheduling the sprint.

The team in this scenario reduces the sprint scope to complete the work as sprint is time-

boxed and tries to focus on high priority and high value tasks. This practice makes the

sprint successful but impacts the overall duration of the project, as now it requires addi-

tional sprints to finish the work, which causes delays in projects. For example, If a team

takes twice of the sprints originally planned to finish the work, the project delivery would

be in 5 months not in 2.5, a 100% delay in the schedule. The underlying cause of project

delay and cost overrun are mainly for two reasons: underestimating the complexity and

overestimating the development team’s productivity (McKinsey & Company 2017).

A research conducted by McKinsey & Company (Bloch et al. 2012) in collaboration with

University of Oxford suggested that on average, large IT projects run 45% over budget

and 7% over time while delivering 56% less value than predicted. Other study (McKinsey

& Company 2017) indicated that, while analyzing more than 1,100 software projects, it

was found that only 30% met their original delivery deadline, with an average overrun

10



of around 25%. Delay in launching or delivering project means lost sales, advantage

for competitor to get ahead, and potential long lasting damage to reputation and a very

unhappy customer.

1.1 Motivation and Aim of the Study
IT projects are inherently unpredictable and complex due to their design and features.

When embarking on journey to design complex products, organizations have often little

idea how long the project will take, what the cost will be, and when would be the de-

livery to their customers. Initial project plans are based on intuition, analogy or a guess

work.

The motivation of this thesis is to help organisations to be effective and precise in project

planning when comes to effort estimation. Machine learning can play an important role

in planning and estimating the project schedule. In Agile-Scrum, project teams lever-

aging the data from past sprints or projects to estimate the upcoming sprint, the effort

estimates from team is often incorrect due to intuition, inexperience, over confidence or

not understanding the complexity. This gives a perfect reason to apply machine learning

approach in agile project planning. A machine learning model can be trained to learn the

past historic data and use that knowledge to predict the upcoming sprints. It is important

to understand that the data used in the stated scenario must have correct label which is

the effort estimate, and it must be the real effort. If project is new and organisations don’t

have any similar data from other projects, open source data can be used provided that

domain (mobile app, html, web services, etc.) is similar.

The aim of this thesis is to propose possible machine learning models to predict effort esti-

mate based on current or past project data to predict the realistic project delivery schedule.

This could help organizations build plans which they can stick to and have shorter lead

time and better cost discipline. Estimating the project’s effort correctly will potentially

improve organization revenue.

In recent years, many research have been done in Agile Scrum on planning and effort esti-

mation domain. This thesis is inspired by the latest research in this area and try to explore
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new trends. Machine learning research in project management and product design has

come a long way. This research will investigate how Agile Scrum team can improve ef-

fort estimate during sprint planning by using machine learning techniques. The automated

process of machine learning model can provide user-stories estimates based on past sprint

data. The aim is to equip organizations with a tool, that can be used in their early project

planning and during product development phase to provide realistic schedule.

This thesis will be dealing with supervised learning method, because the data is labelled.

Its a multi class text classification problem, where text from the user-stories is used as

input feature [X] and model has to predict value [y], which an integer value referring to

the effort estimate of a user-story.

The research questions of the thesis are:

1. How to use current project data in estimating the project duration?

2. What machine learning techniques are most suitable for effort estimation in Agile

Scrum projects?

The aim of this study is to answer these research questions and to set a path for future

studies and applications. The thesis will conclude after analysing the existing work in this

domain, and then experimenting with existing and new ideas to produce novel results.

The other motivation of this research is to utilize the learning outcomes by making it

available as a new feature in Yodiz Agile Project Management tool (www.yodiz.com) for

predicting effort estimate in Agile Scrum projects.

1.2 Definitions
This section covers all the definitions, terminologies and concepts used in this thesis.

Agile Scrum is a simple framework and it is easy to implement. The core of Agile Scrum

framework is composed of three roles: i) Product Owner (PO), ii) Scrum Master (SM),

iii) The Scrum Team (ST), two artifacts: i) Product Backlog (PB), i) User-Story (U-S),

and three ceremonies: i) Daily Scrum, ii) Sprint Planning, iii) Sprint Demo
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Product Owner: Primary duty of the PO is to make sure all team members are pursuing

a common vision for the project. To set priority for the work, so that team knows the

project priority. PO is also responsible for the return on investment on project.

Scrum Master: Main task of Scrum Master (SM) is to facilitate the work without having

any authority to set project priority. Main task of SM is to remove impediments faced by

the team and to protect the team from external influence and distraction so that team can

focus on work prioritized by PO.

Scrum Team: Agile Scrum team is a self-organized team, comprises of members from

multiple domains (architect, UI/UX, development, QA, etc.). Scrum team works au-

tonomously and without much supervision. The scrum team is self-organized team whose

main task is to achieve the goal set by PO in the most efficient way possible.

Customer: The customer is the one who funds or buy the product. If SW build for inter-

nal use, customer is usually from another group or division.

Product Backlog: it’s a list of items relating to a product in priority order. The items

can be a new feature, change request of existing feature, bugs and non-functional require-

ments. The items in backlog are always kept up to date and with right priority order.

User-Story: Is a short, simple description of feature of product.

Daily Scrum: It is a 15 min daily stand-up meeting, before team starts the day. This

meeting is to synchronize team members about each other’s work. Each team member

answer three questions Q1: What I did yesterday? Q2: what is the plan for today? and

Q3: What problems I am facing?

Sprint planning: Is an important ceremony to plan the upcoming sprint. SM facilitates

the meeting and the team makes sure that they understand the requirement well, ask any

question from PO to clear the doubts and estimates the effort of each user-story using

planning poker.

Sprint Demo: The Sprint demo is a ceremony held at the end of each sprint, where team

demo the work done during the sprint to customer/stakeholder. PO, together with cus-

tomer accepts or rejects the user-stories. Sprint demo concept is to get feedback from the

customer on work which is done so far on product before moving on to new features.

Planning Poker: In the planning poker, each team member is given a deck of cards of

Fibonacci series. After a user-story is explained and discussed, each team member selects

13



and shows the card representing his or her estimates. All cards should be shown at the

same time by all team members. This step is repeated until agreement on the estimate is

reached.

Story Point: Story point is a unit of measure for expressing the overall size of the user-

story. Numbers used for story-points are from Fibonacci series, commonly used are 1, 2,

3, 5 & 8. These numbers associate with the size of a user-story.

1.3 Data and Methods
The data used in this thesis are from open source projects. These are user-stories of

functional and non-functional requirements. All the user-stories have title, description

and commit-logs. The attributes of user-stories are describe in Table 2. All the user-

stories have story-point which is the label. Figure 3 shows the data in Pandas (Table 6)

data-frame, the three columns represent the title, description and story-point in data-

frame.

The story-point in the dataset is the real effort, estimated by the team regarding a user-

story, so they are the actual duration in which a user-story was completed in a sprint. The

Figure 4 shows user-stories count in dataset and their story-points. The Figure 2 shows

the user-story view from Agile-Scrum tool (www.yodiz.com).

The dataset used in this thesis comprises of data used in earlier similar studies (?Porru

et al. 2016) respective git repository (Choetkiertikul 2017), additionally some more data

collected from other public git repository (RandulaKoralage 2020). The data used in this

thesis is from 25 different projects which was fetched from 3 stated sources. The format

of the data is csv or excel format. The length of the text in user-stories is important, as

longer the text, larger the requirement could be. Figure 5 shows the word count in user

stories
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Figure 2. User-Story view from Agile-Scrum tool (Yodiz 2018)

Figure 3. User-story’s title, description and story-point in corpus
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Figure 4. User-stories and story-points.

Table 2. Attributes in User-stories

User-Story
Attribute

Explanation Data Type

Title 1-3 line of text describing the title String
Description Describing requirement or en-

hancement in detail
String

Commit-Logs SW code commit String
Story-Point Fibonacci series [0,1,2,3,5,8,..],

which describes the effort estimate
of work

Integer
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Figure 5. User-story length in words

1.4 Structure of the Thesis
This thesis is divided into four chapters. The chapter two presents, new concepts, current

research and related work in this area. Chapter three will cover the methods, techniques

and algorithms used to solve the problem. In chapter four, results of the experiments will

be presented. Finally, chapter five provides the discussion and conclusion of the results

along with closing remarks and future work.
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2 RELATED WORK

2.1 TF-idf for text classification
In the study made by Porru et al. (2016), the authors proposed the Term Frequency - in-

verse document frequency (TF-idf) based model for estimating the story-point in Agile

Scrum project for issue reports. The evaluation was done on one industrial and eight

open source projects. The authors used attributes from issue reports like "Title", "Sum-

mary" and "Description". TF-idf is used to create a vector representation by converting

each issue report as a row in matrix, where each word in a issue report is represented

as wight in the matrix. On the TF-idf vector following models were used: Support Vec-

tor Machine (SVM), k-Nearest Neighbor (k-NN), Decision Tree (DT), and Naive Bayes

(NB). The authors claim that the reason for choosing SVM, k-NN and DT is because,

they are generally well suited for text classification applications. Model evaluation was

done using Mean Magnitude of Relative Error (MMRE) and the accuracy. The 10-fold

cross-validation was used to avoid over-fitting.

Scott & Pfahl (2018) further extended Porru et al’s study by investigating if more features

can be utilized along with TF-idf feature. They claimed to use extra feature on top of

Porru’s work and called it developers’ features. Scott & Pfahl described the developers’

features as the contribution and achievement of developer (development team member)

towards the completion of project. Results from their study showed that the model based

on developers’ features outperformed the model with text only features (Porru’s work).

They also used the same method for evaluation as used by Porru et al. (2016) but used

only SVM model, as it was proven well in Porru’s study.

2.2 LSTM and RHN for predicting story-points
Choetkiertikul et al. (2019) stated that deep learning neural network is very effective in

predicting story-points for user-stories. The authors proposed the predicting model by

combining two deep learning architecture: long short-term memory (LSTM) and recur-

rent highway network (RHN). Data from 16 open source projects was used, which in-

cluded around 25000 user stories.
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LSTM (Hochreiter & Schmidhuber 1997) which is a special variant of RNN was used

in this work. It has advantage over RNN because it stores accumulated information over

time and works well on sequential data. LSTM is an ideal choice according to the author,

due to its short-term memory cell, a vector that stores accumulate information over time.

The information stored in the memory is refreshed at each time step, by accepting and

refreshing new input and partially forgetting old and irrelevant information.

LSTM uses the forget gate [ f t] to control how much information from the previous context

[ct1] from the memory cell should be removed. The previous output state [ht1] based on

forget gate and current state, produce output value [0] or [1] where [1] indicates that all

the past memory is preserved while [0] means completely forget everything. The [it] gate

control which new information will be stored in memory.

In this approach, LSTM was using word-embedding as an input layer, which is a low

dimension vector space, size of vector is the vocabulary size in corpus. This model also

unitizing pre-trained model which was trained using project data without labels. After

LSTM is trained, author used Random Forest (RF), Support Vector Machine (SVM), Au-

tomatically Transformed Linear Model (ATLM) and Linear Regression (LR) to validate

the network. Results show that LR performed better, followed by SVM. Authors further

continued by adding one additional layer as Recurrent Highway Network (RHN) on top

of LSTM. RHN is a improved version of feed-forward neural network to achieve deep

representation of model by enabling learning in very deep networks with hundreds of lay-

ers (Srivastava et al. 2015), which traditional neural network can not achieve (Pham et al.

2016). That was the main motivation to use RHN behind this approach as mentioned by

the author.

Results showed that the use of recurrent networks highway (RNH) on top of LSTM did

not improve the performance of the model significantly when compared with the LSTM

alone.
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2.3 BERT for text classification
In another research aiming for text classification, González-Carvajal & Garrido-Merchán

(2020) compared the Bidirectional Encoder Representations from Transformers (BERT)

(Devlin et al. 2019) against the traditional machine learning approach the TF-idf (Porru

et al. 2016, Scott & Pfahl 2018). The authors described that BERT model has arisen to

popularity in recent year as start-of-the-art machine learning model which is able to cope

with the multiple NLP task, specially the text classification.

Authors started with following hypothesis: i) how BERT perform on different sizes of

data? ii) how BERT handle different languages (English, Chinese, etc.)? iii) and how

BERT performs on data from different domains?. To test these hypothesis, different kind

of data sets were used. There were four data sets: i) IMDB movie reviews, ii) RealOrNot

tweets written in English, iii) Portuguese news dataset (the classified advertisement in

seven different classes) iv) Chinese hotel reviews for sentimental analysis. After perform-

ing four different NLP scenarios on the data sets, Gonzalez’s study claimed that BERT

has outperformed the traditional NL approach the TF-idf, adding empirical evidence of

its superiority over classical methodologies.

2.4 Hierarchical Attention Networks (HAN) for Document

Classification
In the study, Yang et al. (2016) proposed the Hierarchical Attention Network (HAN) for

document classification. Hierarchical structure mirrors the structure of a document, as

document has three level of hierarchy (words-sentence-document): document has words,

these words combine together to create sentence, and sentences create a document. HAN

architecture consist of several parts i) word sequence encoder ii) word level attention layer

iii) sentence encoder iv) and, a sentence-level attention layer.

This study tested the hypothesis that how to incorporate the knowledge of document

structure in the model architecture for better representation of document. The authors

described that not all parts of a document are equally relevant or important. Determin-

ing the sections that are relevant, involves modeling the interactions of the words, not
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just their presence in isolation. Primary contribution of this research was a new neural

architecture, the Hierarchical Attention Network (HAN).

Since a document has hierarchical structure as mentioned earlier, the authors constructed a

document representation by first building representations of sentences and then aggregat-

ing those into a document representation. The model proposed in this research included

two level of attention mechanisms, one at word level and one at the sentence level. This

let the model to pay more or less attention to individual words and sentence when con-

structing the presentation of the document.

To test the hypothesis, the HAN architecture was tested against other baseline methods

like SVM, LSTM, word/character based CNN and with several baseline methods. These

baseline methods and results are reported in (Zhang et al. 2016, Tang et al. 2015). Ex-

perimental results demonstrated that the HAN model preformed significantly better than

previous methods.
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3 RESEARCH METHODOLOGY
This chapter describes the methods and algorithms used in this thesis. Different NLP

approaches were analyzed to solve the story-points estimation problem in agile projects.

The goal of this chapter is to provide comparisons, advantages and dis-advantages among

the different approaches used. This thesis will be using following approaches: TF-idf,

fastText, Neural Network RNN, bi-LSTM and distilBERT.

3.1 Data
This section will discuss in detail the data cleaning process and the steps used to prepare

the data for the prediction models.

3.1.1 Data cleanup

Data cleansing steps are important aspects in machine learning specially when dealing

with text data. Special characters, null values and other values can seriously affect the

model performance. So first step was to analyze the data and prepare it for predictive

modelling. By analyzing the data, it was realized that there were a number of items in the

data which needed to be removed. These items consisted of NaN values, special charac-

ters, stop-words, single characters, numbers, URLs, HTML and JSON tags, punctuation,

etc. After cleaning all of these items, data was converted to lower cases. "Title" and

"Description" of user-stories were combine together (Figure 6), to have a single input as

feature [X].

Other observation regarding dataset was that, it has story-points from 1-100 scale, its due

to the reason that sometimes team just put any large number in the beginning regarding

the effort estimations. Story-points in the data are grouped along the values 1, 2, 3, 5

& 8. These effort estimate represents the classes in our data, which the model needs to

predict. Table 3 shows the user-stories and the word count. Figure 7 shows percentage of

user-story size based on word count.

22



Figure 6. Joining title and description of User-stories into one column

Table 3. Number of words in user stories

Total Words in User-Story User-Story size No. of User-Stories
10-30 XS 38883
31-60 S 27493

61-100 M 8677
101-300 L 8677
301-600 XL 1032

601 and > XXL 594

Figure 7. User-stories with regards to number of words in dataset.
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3.1.2 Splitting the Dataset

Finally, dataset is split randomly with the ratio of 70% training set and 30% test set (Ta-

ble 4). There are five target classes. Training dataset is used for model training and test

dataset is used for model validation.

Table 4. Dataset split and target classes

Target Class Total data Train data Test data
5 classes(1,2,3,5,8) 90,000 85000 15000

3.2 Methods

3.2.1 TF-idf

Term Frequency - inverse document frequency (TF-idf) is a very common algorithm to

transform text into a meaningful representation of numbers in form of a vector. This

vector representation is then used to fit machine learning algorithm for prediction. TF-idf

is a proven classical approach in NLP for text classification. This thesis applied a method

proposed by Porru et al. (2016), the goal is to predict the story-point using the “Title” and

“Description” provided in text format. TF-idf is a simple way to calculate the ‘score’ or a

‘weight’ of the words in a document relative to a corpus. This will give each word based

on its occurrence a weighting factors which is represented as wight and a score within

a corpus. The application of TF-idf varies from spam filtering, sentiment analysis, key

word search, recommendation systems, etc. TF-idf comprises of two components: TF

and idf. TF (Term Frequency) represents the number of times a term/word appear in all

the document in a given corpus. So higher the occurrence of a word in a document within

corpus, higher the TF score would be.

T F =

(
Number of repetitions of word in a document

Total number of words in a document

)
(1)

The second part of TF-idf is idf (Inverse document frequency), it is a logarithmic inverse

fraction coefficient. This value decrease if frequency of a word in a corpus increases.

It is calculated by diving the total number of documents by the number of documents

24



containing the term and then taking the logarithmic of that value.

id f = log
(

Number of documents
Number of documents containing the word

)
(2)

idf(t,D) = log
|D|

1+ |{d ∈ D : t ∈ d}|
(3)

w(t,d) = t f (t,d)× id f (t,D) (4)

number of documents where the term t t appears

In Eq. 3 the |D| is described as the total number of document, the [t] is the term which

appear in the document [d]. Eq. 4 provides the score of each word in corpus, if the

frequency of occurrence of a term is too high, it will be minimize or become zero by

calculating the inverse frequency of the term, that is the reason denominator is adjusted

to plus one in Eq. 4.

TfidfVectorizer (Pedregosa et al. 2011) will be used to process the raw text to a matrix

of TF-idf features. Different n-gram values will be used to build the TF-idf matrix. In

the matrix each row represents a user-story in corpus and each value in a row of a matrix

represents the score of the word in a user-story.

To use TF-idf matrix for predicting the story-point in user-stories, two prominent machine

learning models were chosen, which produced good results in stated study.

a) Support Vector Machine

Support Vector Machine (SVM) is very successful in statistical learning theory. SVM

(Joachims 1998) represents data in high or infinite dimensional space. It learn the hyper-

plane that can separate the data points. The learned hyperplane is used to predict an output

of the new (unknown) point. SVM is very effective in text classification data, specially

when data is very high dimensional. The number of dimensions is higher then number of

samples, meaning highly sparse data.
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b) Logistic Regression

Logistic regression (Menard 2002) is a regression model, where the dependent variable

is categorical which allow it to be used in classification also. Its a generalise logistic

regression to multi class problem. Multi-nominal Logistic Regression predicts the prob-

abilities of the various outcomes of categorically distributed dependent variable using a

combination of independent variables of any class.

3.2.2 fastText

The fastText (Bojanowski et al. 2017) is a machine learning library for “text classifi-

cation” and “word representation”. The fastText library was released by Facebook AI

Research (FAIR) in late 2019. It helps to create a vector representation of word in both

supervised and unsupervised learning method. High level architecture if fastText is shown

in Figure 8. This method provides both CBoW & Skip-gram (Mikolov et al. 2013) word

embedding and support both word and character n-gram tokens as input to the model.

The main advantages of fastText is speed and competitive performance. fastText exploits

subword information to construct word embeddings. Word representations is created by

first learning character n-grams representations and then summing them up to get the

word representation. Bojanowski et al. (2017), argued that popular models, that learn

Figure 8. fastText architecture (Joulin et al. 2016)

word representations ignore the morphology of words. As in French or Spanish, most

verbs have more then forty inflected forms, Finnish language for e.g has fifteen cases
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for nouns, which makes its difficult to learn good word representation, fastText proposed

vector representation for morphologically rich languages by using character level infor-

mation.

Internals of fastText

1. Labelled data with text provided for classification to fastText.

2. In fastText CBoW or skip-gram can be chosen for creating token, which can be

further used to create matrix for learning embedding.

3. fastText is internally a shallow neural network where the embedding layer (CBoW

or skip-Gram) is fed to the hidden layer, which act as a lookup layer for each word

embeddings.

4. Text representation as a hidden state that can be shared among features and classes.

5. The embedding layer of text representation is fed to the classifier (multi-nominal

logistic regression)

6. Then the softmax is applied to the outer layer to compute the probability distribution

over the predefined classes.

Two of the different approaches of fastText as proposed by Joulin et al. (2016) will

be applied in this thesis: fastText with Hyper parameter and fastText with Pre-trained

model.

i. fastText with Hyper parameters

First approach is to tune parameters values provided by fastText, the default parameter

values of fastText performs well, but to optimising the model performance, additional

values and parameters are used as shown in Table 5. Following parameters will be used

for tuning the values: i) learning rate (lr), ii) N-gram, iii) number of epochs, iv) window

size (size of the context window) and v) loss. These stated parameter values are initialize

in fastText by looping through different parameter values. There are total of 324 (lr×
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3× ngram× 4× epoch× 3×ws× 3× loss× 3) iterations each provided with different

accuracy based on parameter and values used, then the high performing parameter values

are picked on which the model performs best.

Table 5. fastText parameter and values

Parameters name Values
lr (learning rate) 0.05, 0.1, 0.2
n-gram (word) 1, 2, 3, 5
epoch (number of epochs) 5, 10, 15
ws (window size) 5, 10 , 15
loss ns, hs, softmax

ii. fastText with Pre-trained model

Second approach is to use pre-trained model, the pre-trained model is trained using project’s

data without labels. Data used for training the model is not used in either train or vali-

dation process. There is also a possibility to use pre-trained model trained on wikipedia

data or google’s pre-trained model on books. But since model trained on domain specific

data generally performs better, that is the reason to train own model using fastText. The

advantage of having pre-trained model is to reduce the training time and have a better

quality vector. That is why we build pre-train the model with domain specific data with

fastText and used it as input.

3.2.3 Neural Network

Neural networks are widely used in building language models like finding POS tagging,

language translation, word similarities, auto correction and suggestion, text generation,

etc. Neural network/Deep learning approach is also getting very popular in solving text

classification problem like sentimental analysis, email spam detection, question answer-

ing, news categorization, etc. Neural network is the other approach that will be utilized in

this thesis.

In this work three types of neural network will be analysed:

• RNN

• LSTM
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• BERT

3.2.4 RNN

Recurrent Neural Network (RNN) (Goodfellow et al. 2016) is a special type of neural

network suitable for processing sequential data. It sees text as a sequence of words and

memorise the sequence for text at each time step for classification. Figure 9 shows high

level architecture of the model. The main characteristic of RNN is to memorize the pre-

vious stage, that is the reason it can predict the future stage based on past memory.

Figure 9. RNN architecture (Olah 2015)

Figure 10. RNN 3 steps overview (Kim 2017)

This thesis applied similar technique as proposed by Iyyer et al. (2015). Deep Averaging

Network (DAN), is the continuous bag-of-words (CBoW) or neural bag of words repre-

sentation, computes a sum or mean of word embeddings over a document, as shown in Eq

5.

CBoW(D) =
1
L

L

∑
i=1

embedding(wi) (5)

Figure 10 illustrates input vector X = {x(1), ...,x(t)}, hidden state at h(t−1)(previous state),

current state h(t) and the cell output y(t). As described by the author, DAN is deep un-

ordered model that can obtain near state-of-the-art accuracy on a variety of sentence

29



and document level tasks with just minutes of training time on an average laptop com-

puter.

DAN works in three simple steps (shown in Figure 11)

1. Take the vector average of the embeddings associated with an input sequence of tokens

2. Pass the average through one or hidden layers

3. Perform (linear) classification on the fully connect layer.

Figure 11. DAN model overview (Iyyer et al. 2015)

Pytorch model training steps

1. The model is trained with 100 epochs.

2. After corpus is encoded as integers from which embedding layer was created.

3. On top of embedding layer fully connected linear layer was added. Its input size is

same as the output from embedded layer. The output size is the size as number of

classes, in our case its 5.

4. Torchtext is used, it is a Pytorch (Paszke et al. 2019) helper function to prepare

training and validation data set.
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5. BucketIterator, another Pytorch helper function used to group sentences in similar

length size, this function take care of creating training and validation data to small

batches, batch size 16 is used when preparing data. Then model and batches are

placed on to GPU, as Pytorch supports GPU.

6. CrossEntropyLoss is used as loss function and Adam optimizer for tuning the learn-

ing rate during training.

7. Model start training by initializing it which also initialize the dropout layer.

8. Training the model is started by iterating through the batches for each batch, score

and gradient computed with respect to the loss, parameters of the model updated by

initializing backward propagation at each step.

9. At each training epoch, model loss and accuracy on the validation set was com-

puted.

3.2.5 LSTM

The next choice of neural network model is Long Short Term Memory (LSTM), as shown

in Figure 12. LSTM works well to capture the long term dependencies. It introduces a

memory cell to remember values over arbitrary time. Input, output and forget gate regulate

well, the flow of information in and out of the cell. Bi-directional LSTM (bi-LSTM) is

used in this study, in bi-LSTM forward and backward hidden layers are concatenate and

apply drop out.

Parameter used in bi-LSTM

Input dimension: size of vocabulary of corpus

Embedding dimension: size of embedding dimension is 100

Hidden dimension: size of embedding dimension is 256

Output dimension: Output dimension is same as number of classes, which is 5.

Number of layers: 2
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Figure 12. LSTM architecture (Olah 2015)

3.2.6 BERT

This thesis will be using DistilBERT by Sanh et al. (2020), which is a lighter, smaller

and faster version of BERT (Devlin et al. 2019), as shown in Figure 13. DistilBERT is

pre-trained model used in this work and is provided by HuggingFace, which is a library

of Transformers (Wolf et al. 2019)

DistlBERT model is used by interface class DistilBertForSequenceClassification (Wolf

et al. 2020) by HuggingFace, which provide model for text classification. DistilBertTok-

enizer is used for tokanization.

Training the DistilBERT model is similar as LSTM (Section 3.2.5) and RNN (Section

3.2.4) as it can be access via Pytorch API.
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Figure 13. BERT overview of text classification (Devlin et al. 2019)

3.2.7 Limitations

The methods proposed in this study are limited to the Information Technology (IT) project

domains namely, mobile application development, web application development, soft-

ware development, etc. It is assumed that Agile-Scrum methodology is used in managing

those stated projects. Since, story-point is the empirical estimation method in Agile-

Scrum, it is mandatory that story-point reflects the duration of user-story and scrum team

must have followed scrum principles (Yodiz 2019) to estimate the effort estimate of user-

stories. The production level implementation is out of scope of this thesis.

3.2.8 Research Design

The libraries and other systems that are used in this thesis listed in Table 6. The data

analysis was performed on Google Colab (Google Colab notebook), as it provides free

GPU support for Jupyter notebook environment in the cloud. The model training and

validation is done using CSC (CSC – IT Center for Science).
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Table 6. List of libraries and tools used

Name Purpose Version
fastText library for word representa-

tions and sentence classifica-
tion

0.9.2

HuggingFace Open source Transformers li-
brary

3.5.0

matplotlib (2019) plot graphs 3.0.3
numpy (2019) mathematical computing 1.16.2
pandas (2019) data analytics 0.24.2
PyTorch Deep learning research plat-

form
1.7.0

scikit-learn (2019) machine learning library 0.20.3
Google Colab free GPU supported Jupyter

notebook environment
n/a

www.csc.fi Distributed computing n/a
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4 RESULTS
This chapter describe and analyse the results of this study and also compare them with

each other.

In order to validate the results, the data is visualized by using confusion matrix, precision

and accuracy from the models.

4.1 Result of TF-idf
This Section describes the result of TF-idf from two different models, the method is de-

scribed in Section 3.2.1. The results of Support Vector Machine (SVM) (Joachims 1998)

and Logistic Regression (LR) (Menard 2002) will be analyzed and compared. Table 7

shows the train and test accuracy of LR and SVM models.

Analysing the precision and recall (shown in Figure 14), all classes have very stable and

equal threshold of accuracy except the class "1", it could be the reason that data for class

1 is in-balance then others or the class threshold boundary from class "1" or other classes

are not clearly classify be SVM. For all classes precision and recall values very consistent,

class "2", "5" and "8" have precision of 79% while class precision is slightly less. The

average accuracy of the SVM model is 77%.

As described by Joachims (1998), SVM is very well suited for text categorization. SVM

consistently achieve good performance on text categorization task. Furthermore, SVM do

not require any parameter tuning, since it can find good parameter setting automatically,

all this makes SVM a very promising and easy to use method for text classifier. LR on

other hand doesn’t perform so well comparing to the SVM. Confusion matrix (normalized

and non-normalized) of SVM validation accuracy show in Figure 15 & 16

Table 7. TF-idf results(SVM, LR)

Model Name(TF-idf+3-Gram) Train Accuracy Test Accuracy
Support Vector Machine(SVM) 96.8% 77.4%
Logistic Regression 83.8% 72.1%
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Figure 14. FI-Score of SVM model with TF-idf

Figure 15. SVM model validation accuracy confusion matrix
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Figure 16. SVM model validation accuracy confusion matrix

4.2 Result of fastText
This Section describes the result of fastText with two different approaches, these ap-

proaches are described in Section 3.2.2. The results of two approaches i) fastText ap-

proach with parameter selection and ii) fastText with pre-trained model will be analyzed

and compared.

Approach i) fastText Result with hyper-parameter values

Dataset was split as mentioned in Section 3.1.2. In first approach the model was trained

with different parameter values to identify the best values on which model performed

well. Table 8 shows the parameter values and best performing values. The training and

test accuracy (shown in Table 9) with this method was 96.54% and 85.92 %.

Table 8. fastText best performing parameters

Parameters name Values Applied Best Performing Values
lr (learning rate) (0.05, 0.1, 0.2) 0.2
N-gram (word) (1, 2, 3, 5) 3
epoc (number of epochs) (5, 10, 15) 5
ws (window size) (5, 10 , 15) 10
loss (ns, hs, softmax) softmax

The Figure 17 shows the confusion matrix of fastText test accuracy.
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Figure 17. fastText test accuracy - parameter approach

Table 9. fastText training and test accuracy - parameter approach

Model name Train accuracy Test accuracy
fastText 96.54% 85.92%

Approach ii) Result from fastText pre-trained model approach.

fastText model was using 5-cross-validation for training the data. The data is divided in

five folds and on each fold mean accuracy was calculated on validation set. Figure 18

shows the validation accuracy of all 5 folds. Table 10 shows the 98.32% train and 87.4%

test mean accuracy of this approach.

pre-trained model was used in this approach. It help the accuracy, as model learn faster

and better. This thesis is applying similar technique proposed by Joulin et al. (2016) and

the result obtained in this thesis is aligned with the results from Joulin et al. (2016). The

author quoted "fastText is often on par with deep learning classifiers in terms of accuracy,

and many orders of magnitude faster for training and evaluation". Also author mentioned

that, they were able to achieve approximate 1% higher accuracy in their study when using

pre-trained model. In this thesis, using the pre-trained model approach, the accuracy is

increased by 1.48% higher, comparing to the model which does not use pre-trained model

(hyper-parameter approach i). Which shows that the result achieved is similar to the fore

mentioned study.
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Table 10. fastText pre-trained model- accuracy result

Model name Train mean accuracy Test mean accuracy
fastText 98.32% 87.4%

Figure 18. fastText (CV-5) Test accuracy- with pre-trained model
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4.3 Result of RNN
This Section describes the result of RNN, the method is described in Section 3.2.4. The

technique followed is similar as proposed by Iyyer et al. (2015). Its a DAN network,

which is a special variant of RNN, 100 epochs is used to train the network, training ac-

curacy, validation accuracy and loss is calculated after each 5 epoch and mean accuracy

is calculated after all the epochs. Training mean accuracy 84.18% and validation mean

accuracy 69.75% shows in Table 11.

Training the network was fast, but it doesn’t produce as good result as fastText or TF-

idf approach. After 50 epochs the validation loss doesn’t decrease much. Training loss

shows a good decrease, but not significantly in validation. Figure 19 shows the training

and validation accuracy, Figure 20 show training and validation loss.

Table 11. RNN training and validation accuracy results

Model name Training accuracy mean Validation accuracy mean
DAN 84.178% 69.75%

Figure 19. RNN validation and training accuracy of 100 epochs
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Figure 20. RNN validation and training loss of 100 epochs

4.4 Result of LSTM
This Section describes the result of LSTM, as shown in Table 12, the method is described

in Sections 3.2.5 & 2.2. The technique followed in this thesis is similar to proposed

by Choetkiertikul et al. (2019), but not exactly the same, the main difference is, in this

thesis bi-LSTM is used which is a special variant of LSTM, the method is described in

Section 3.2.2. Other difference is, in this thesis is, no additional RHN layer is added

on top of bi-LSTM. The concept is similar to extent that LSTM is used for text classifi-

cation. bi-LSTM perform significantly well with training mean accuracy of 93.1% and

validation mean accuracy of 83.2% but still lack behind the fastText pre-trained model

(Section 3.2.2) approach. The bi-LSTM is trained using similar method described in

RNN (Section 4.3). Training loss shows a good decrease but not significantly in valida-

tion set. Figure 21 shows the training and validation accuracy, Figure 22 show training

and validation loss.

Table 12. LSTM training and validation accuracy results

Model name Training mean accuracy Validation mean accuracy
bi-LSTM 93.1% 83.2%
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Figure 21. bi-LSTM training and validation accuracy of 100 epochs

Figure 22. bi-LSTM training and validation loss of 100 epochs
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4.5 Result of BERT
This Section describes the result of BERT, the method is described in Section 3.2.6. The

technique followed in this thesis is similar to proposed by (Sanh et al. 2020, Wolf et al.

2019). BERT model has been creating tremendous popularity. But it doesn’t produce

good result in this study. Table 13 shows the validation accuracy results. In fact it is

one of the least performing model in our methods. distilBERT perform worst than TF-idf

approach. There could be two explanation, lighter variant of BERT which this study is

using. Another explanation is that in NLP problem relating to text classification it depend

on domain of the dataset in investigation. BERT has proven excellent result for different

kind of NLP problem, like generic email spam detection, sentiment analysis in public

domain, etc. The study showed that distilBERT is not suitable for the dataset used in this

study. The validation accuracy of distilBert model was 70.7%

Training loss shows a good decrease but not as significantly in validation. Figure 23

shows the training and validation accuracy, Figure 24 shows training and validation loss.

Table 13. BERT validation accuracy result

Model name Validation accuracy mean
BERT 70.7%
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Figure 23. DistilBERT validation accuracy of 100 epochs

Figure 24. DistilBERT training and validation loss
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4.6 Result Comparison
Here are the results (Table 14) from all the techniques used in this thesis: TF-idf, fastText,

RNN, bi-LSTM and BERT.

Table 14. Consolidated results view of all the models

Techniques Validation Acc. %
fastText with pre-trained model 87.4%
fastText without pre-trained model 85.92%
bi-LSTM+word embedding 83.2%
TF-idf+SVM+3-gram 77.4%
TF-idf+LR+3-gram 72.1%
DistilBERT 70.7%
DAN+word embedding 69.7%

Finally, when looking at the results of all the methods, its evident that the fastText (pre-

trained model approach) performs best with 87.4% accuracy, followed by second ap-

proach of fastText with accuracy of 85.92%. So we can clearly say that both approaches

of fastText performed best in our study and is the state-of-the-art. Furthermore, in neural

network domain, bi-LSTM was the top performing model with 83.2% accuracy. 4th in our

list is the TF-idf+SVM model with the accuracy of 77.4% followed by TF-idf+LR model

with accuracy of 72.1%. The two models which were at the bottom of list are distilBERT

with accuracy of 70.7% and list one DAN with accuracy of 69.7%
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5 DISCUSSION
In this thesis, we try to solve the problem faced by Agile project teams to correctly predict

effort estimate of user-stories. The aim of this thesis was to provide a machine learning

model which can predict the effort estimate to facilitate the team in planning phase.

To solve this multi-classification problem, we tried different approaches, our ambition

was to test the classical approach (TF-idf) and compare it against more recent and advance

approaches available today like fastText, RNN, bi-LSTM and BERT.

Our first approach was TF-idf, we use SVM and LR. SVM is simple model which works

well with text classification, it was very easy to implement but slow in performance be-

cause of high parameters and sparsity in matrix. But overall performance was very good,

it was much better then some of the advance neural network (DAN and BERT). The rea-

son that TF-idf technique work so well in text classification is because of n-gram approach

which is empowered by SVM model which provide the best combinations from all dif-

ferent domains. TF-idf is good in providing term scoring of words in corpus, and using

n-gram (n-item long arrays of words of skip-gram) approach, increase the chances to iden-

tify the words belong to a certain class, because presence of certain words can strongly

indicate the class of a user-story. The ideal value of n-gram in this kind of approach is 2-3

n-gram, the higher value then 3-gram leads to very sparse vector, because the occurrence

of word increase due to higher n-gram value, this leads to lower score of potential word

due to the characteristic of TF-idf, as higher occurrence of words penalized in TF-idf,

hence decreases the performance.

Our second approach was fastText, it is relatively new approach and gain much popularity

due to this performance and accuracy. Its performance was among the best in all the model

analyzed. This model make it to the most suitable choice as it offer performance, speed

and is easy to implement. The only drawback was it doesn’t support GPU yet.

Our third choice was DAN, which is a simple variant of RNN which make it suitable

for text classification. DAN is utilizing Bag of Words (BoW) approach as embedding

layer, one possible reason for its poor performance could be due to Bag of Words (BoW)
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technique, as in BoW the sequence of sentence is lost, its focus is on counts of word, its a

order-less document representation.

Our fourth method was bi-LSTM, this neural network performs really well, the second

best after the fastText. LSTM is good in sequence problem due to its internal gating

mechanism that can handle the information well. Our last model to analyse was distil-

BERT. It does not perform well as compared to other models, it falls second last in the list

when comparing the performance and accuracy of other models.

To compare our results with the studies we used as a benchmark, we can summarize that in

TF-idf (Section 3.2.1) approach we were able to achieve better accuracy (18.4% improve-

ment) with SVM then to that of Porru et al. (2016). Similarly our LSTM (Section 3.2.5)

result with the approach from Choetkiertikul et al. (2019) showed improved accuracy by

almost 24% while comparing it with fore mentioned study.

Moreover, we also identified a novel approach by using fastText (Section 3.2.2) method

to predict the duration of user-stories in Agile-Scrum. This state-of-the-art approach

produced accuracy of around 87.4% and has not not been reported before in this con-

text.

5.1 Conclusion
To conclude, the fastText prove to be much powerful text classification library, it is much

easier to use and provide much better result then other approaches. The classical approach

(TF-idf) is faster but still lacking behind in accuracy and speed. On other hand, Neural

networks (LSTM) was harder to train as it required longer training time and GPU power,

but still offered reasonably good performance when comparing to other approaches.

The fastText with pre-trained model is state-of-the art in our model list by providing the

best solution to this problem, its excel is all level of performance, speed and simple to

implement.

To summarize, in problems relating to NLP, the most important factor is the dataset itself,

depending on the data domain and characteristic of data it is hard to tell which approach
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works well. As some model or technique may work really well with one type of data, but

may not work on data with same type but different domain. In NLP domain, the context

of words and semantics of document plays an important role. As morphology of word

is different in languages and domain it belong to. Similarly, the approaches used in this

thesis may or may not work in other user-stories, if they belong to different domains for

e.g health, social science or marketing.

With this study we can conclude that document presentation and word embedding plays

an import role in NLP problems, the clear explanation is fastText works due to use of

skipgram mechanism and LSTM works over DAN because of handling the information

effectively due to it excellent gating mechanism.

5.2 Future work
The future work will be to investigate other models in detail. Also it will be good to further

study fastText and try to improve the accuracy even higher. One interesting angle would

be to productise this feature and made it available with Yodiz Agile Project Management

tool (www.yodiz.com) as an additional feature.
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