

IoT authorization with web application

Bachelor’s thesis

Degree Program in Automation Engineering

Spring 2021

Nam Huynh

ABSTRACT

Automation and Electrical Engineering,

Valkeakoski

Author Nam Huynh Year 2021

Subject IoT authorization with web application

Supervisor(s) Juhani Henttonen

ABSTRACT

Today, there are many devices which are connected to the internet in
buildings, homes or public places. People cannot deny the convenience
provided by IOT. However, lots of risks also come along as security,
effectiveness.

This project is about building a web platform that helps the administration
by allowing or prohibiting users from controlling connected devices. With
Amazon Web Services including IoT, authorization, server; the website can
guarantee a high level of security.

Keywords Amazon Web Services, IoT authorization, MQTT protocol, AWS IoT.

Pages 30 pages including references 02 pages and appendices 01 page.

CONTENTS

1 INTRODUCTION.. 1

2 IOT AUTHORIZATION AND WHY AWS IOT ... 2

 From devices to IoT gateway .. 2
 User authorization ... 2
 Why AWS ... 3

3 OVERVIEW OF IOT AND MQTT PROTOCOL ... 3

 Overview of IoT network ... 3
 MQTT protocol .. 4
 Device shadow MQTT topics ... 5

4 DESIGN SYSTEM ... 9

 Common way... 9
 With Administration in between ... 11
 Manage devices in Hamk buildings ... 11
 How system works .. 12
 AWS Amplify and Google Authentication plugin .. 14
 Domain name and server .. 15

5 SECURITY .. 16

 Thing (Raspberry Pi) .. 16
 Normal users ... 16
 SSL certificate .. 17

6 IMPLEMENTATION ... 18

 Devices .. 18
 Setup AWS IoT ... 18
 Setup Raspberry Pi .. 19
 Server-side code .. 20
 Setup front-end code .. 21
 Working flows of application .. 22

7 CONCLUSION ... 26

REFERENCES .. 28

APPENDICES .. 30

1

1 INTRODUCTION

Nowadays, IoT becomes more and more popular because of its significance
and productive efficiency on human activities. When all the devices share
connected to the network, communication and connection between
devices become very easy. They can be controlled and managed. Although
IoT is currently applied mostly in the industries like agriculture, smart
cities, logistics, …, there are still a lot of rooms for the advantages of IOT in
daily lives. For example, in public places like university buildings, devices
should be applied with IoT so that lecturers, students can control devices
or be notified about device’s status on their smartphones. There are many
benefits if IoT is applied such as saving energy, receiving notification
immediately when something wrong happened like temperature is too
high or booking room, … However, security and management are huge
troubles that makes IoT not be applied in public places. If everybody has
the right to access the IoT network, it would be complicated to manage
users and the system could be hacked by non-identified people.

To solve the situation, I build this project by myself for users to log in to
the IoT network easily by their Google accounts and be managed by admin
at the same time. Basically, between users and the IoT network there will
be another layer called “admin”. Admin position has the role to control
everything including devices and normal users. Therefore, this project is
for 2 types of users: admin (e.g. IoT manager) and normal users (e.g.
lecturers, students). Admin has access to all devices and is able to allow or
prevent normal users from accessing the IoT network. This is why the
thesis is called “IoT Authorization”, basically the only way that normal
users can access the network is to be authorized by admin.

The project was built like a web app so people can interact with the app
on their phones or computers. To build the app, there are some
technologies which are researched and used. All the frameworks,
programming languages and technologies used are Reactjs (front-end
library), Nodejs (back-end Javascript runtime), MongoDb (non-SQL
database), AWS (for services like IoT, hosting server, domain name
register). To run and experiment this project in real time, a Raspberry Pi
and 3 LEDs were used for the simulation.

In this document, research and implementation of the system will be
described. There are 4 main points that will be dealt with as follows:

1. Understand the general picture of IoT and MQTT protocol
2. How to design the system from front-end to back-end and

everything in between
3. Security of the network
4. Steps of implementing everything from software to hardware

2

2 IOT AUTHORIZATION AND WHY AWS IOT

 From devices to IoT gateway

Smart devices continuously communicate with each other and with the
cloud using different types of wireless communication protocols. While
creating an adaptive IoT application, the communication process can also
expose IoT security flaws and open channels for malicious agents and
unintentional data leaks. To protect users, devices, and businesses, IoT
devices must be secure and protected. The foundation of IoT security lies
in controlling, managing, and establishing connections between devices.
Correct protection helps keep data private, limits access to cloud devices
and resources, provides secure methods of connecting to the cloud, and
checks device usage. An IoT security strategy minimizes vulnerabilities
through policies such as device identity management, encryption, and
access control.

Security vulnerabilities are weaknesses that can be exploited to
compromise the integrity or availability of IoT applications. IoT devices are
inherently vulnerable. The IoT group is comprised of devices with diverse
functions, long-standing, and geographically distributed. These
characteristics, along with the growing number of devices, raise questions
about how to address the security risks posed by IoT devices.

Each IoT machine needs a unique identity when connected to a gateway
or central server to prevent malicious actors from gaining control of the
system. This is done by associating the identity with a unique,
cryptographic key. The X.509 certificate authenticates between AWS IoT
system and client connection. The X.509 certificate provides a range of
advantages over other methods of identification and authentication. Since
the private key never leaves the system, X.509 certificate offers great client
security over the systems. (What is an X.509 certificate?)

 User authorization

User authorization and authentication framework, Open Authorization
(OAuth) has become a popular and convenient way to securely access IoT
devices. Users can log in to access their IoT devices using third-party
accounts such as Amazon, Google or Facebook. Essentially OAuth allows
users to securely authorize access to their data without having to enter a
shared username and password with another third party. (Understand IoT
Authentication and Authorization with “OAuth 2.0”)

OAuth 2 uses authorization and token-based authentication. Users are
redirected to the proxy server when they log in to the application. With
AWS Amplify, developer can integrate OAuth 2 to the front end with built-
in components like sign up, log in, ... AWS Amplify is a set of tools and

3

services that can be used concurrently or individually to help front-end
web developers build fully powered, scalable, stackable applications,
issued by AWS.

Amplify supports popular web frameworks including React (which will be
used in this project), Angular, Vue. Amplify helps set up protected
authentication streams easily and provides connectivity with AWS IoT so
that users can easily control devices from the web app.

 Why AWS

On the market, there are multiple of IoT service providers with different
pros and cons. Three most popular IoT platforms now are Google Cloud,
AWS and Microsoft Azure. AWS stands out due to its diverse services,
besides that AWS provides services for all layers of security, including
preventive security mechanisms, such as encryption and access control to
device data, along with a service for continuous monitoring and
configuration checking. AWS IoT is built on a proven, secure, and scalable
cloud infrastructure that scales with billions of devices and trillions of
messages. AWS IoT integrates other AWS services to developers can build
a complete solution. (Top IoT Development Platform & Tools with
Comparison)

AWS IoT Core is one of the most important service within AWS IoT. AWS
IoT Core allows to connect IoT devices to the AWS cloud without
provisioning or managing servers. AWS IoT Core can support reliably and
securely process and deliver messages to AWS endpoints and to other
devices. With AWS IoT Core, apps will have the ability to monitor and
communicate with all of the devices, at all times, even when they're not
connected.

AWS IoT Core also makes it easy to use AWS and Amazon services. Also, it
will collect, process, analyse and manipulate the data generated by the
connected devices without having to manage any infrastructure. AWS
Amplify is also one of the reasons to choose using AWS for web app. With
ready-to-use OAuth 2.0 and ecosystem powered by AWS, users can access
to real-time device data from browser.

3 OVERVIEW OF IOT AND MQTT PROTOCOL

 Overview of IoT network

For a very long time, the Internet of Things (IoT) has not been around. Since
the early 1800s, however, there have been visions of machines interacting
with one another. Since the telegraph was established in the 1830s and
1840s, computers have been providing direct communication. As a term,

4

the Internet of Things was not publicly listed until 1999 by Kevin Ashton,
the Executive Director if Auto-ID Labs at MIT. (A Brief History of the
Internet of Things)

The network of IoT generally consists of connected devices, cloud services
and apps.

Figure 1 Overview of IoT network (How AWS IoT works - The IoT universe)

End users can access to IoT devices and the features provided by the cloud
services through apps (desktop app, phone app or web app). In this thesis,
a web app is built to demonstrate how to control connected devices.

Cloud services provide large-scale, distributed data storage and processing
services connected to the Internet (AWS IoT core Developer guide – p. 4).
AWS IoT is an example for the cloud service which is specific for IoT
connection and management. AWS IoT supports MQTT, the main protocol
applied for IoT.

 MQTT protocol

In 1999, Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom, now Cirrus
Link) invented the MQTT protocol. To communicate with oil pipelines via
satellite, they required a protocol for minimal battery loss and bandwidth.
They specified some requirements for the protocol:

• Simple implementation

• Quality of Service data delivery

• Lightweight and bandwidth efficient

• Data agnostic

5

• Continuous session awareness

These priorities are also at the center of MQTT. However, the primary
focus of the protocol has shifted from proprietary embedded systems to
open IoT use cases.

“MQ” refers to the MQ Series, a product which IBM has built to support of
MQ telemetry. In 1999, when Andy and Arlen developed their protocol,
they named it after the IBM product, “MQ Telemetry Transport”. IBM used
the protocol internally for the next ten years before they launched MQTT
3.1 in 2010 as a free version. (Introducing MQTT protocol)

MQTT (Message Queuing Telemetry Transport) is a publish/subscribe
delivery protocol used for IOT devices with low bandwidths, a high
reliability and the ability to be used in unstable networks.

In a system using the MQTT protocol, many station nodes (called MQTT
clients – referred to as the clients) connect to an MQTT server (called
broker). Each client will subscribe to several channels (topic). This sign up
process is called “subscribe”. Each client will receive data when any other
station sends data and the registered channel. When a client sends data to
that channel, it is called “publish” (MQTT definition - https://mqtt.org/).

Example of demonstrating in AWS IoT console with MQTT:

Figure 2 AWS IoT Console with MQTT

In the example, a JSON format message is sent to topic “topic_1” and
subscriber will receive the content of the message immediately.

 Device shadow MQTT topics

Device shadow is basically a "JSON State Document", which simply means
device shadow is like an intermediary database used to store the status of
devices represented by “things”, in JSON string format and architecture,

6

rules have been built by AWS. User can interact with the device shadow
using the MQTT.

The data stored in device shadow represents the state of the device, AWS
IoT divided into two types of states to store: the “reported” state of the
device and the “desired” state of the device.

The reported state of the device is the current state of the physical device
that device shadow is describing, stored in the reported field of the JSON
string. Therefore, only physical devices query the reported field and other
applications will rely on the values in this field to retrieve the device's
status in real time without fear of conflicts or confusion.

Desired status of device is the state that other applications want to send
to the device, for example data from remote control applications by
phone, website, virtual assistant, etc. This type of data will be stored
separately in the desired field of the JSON string. The physical device will
rely on the value in this field to change to a new state and then update the
reported field (AWS IoT core Developer guide – p. 499).

Both reported and desired fields will be inside the state field. So, in
general, the data in device shadow will have the following JSON string
format:

Figure 3 Desired and reported state (AWS IoT Device Shadow service documents – Delta state)

Any topic starts with “$” sign is reserved by AWS IoT. Below is the table of
shadow topics that are reserved by AWS IoT to allow client to get, update
or delete device state information.

7

Topic Client operations
allowed

Description

Prefix/delete Publish/Subscribe To delete shadow
Prefix/delete/accepted Subscribe When a shadow is

deleted, a message will
be sent to this topic

Prefix/delete/rejected Subscribe When a delete shadow
request is rejected, a
message will be sent to
this topic

Prefix/get Publish/Subscribe Publish an empty
message to this topic to
get a shadow

Prefix/get/accepted Subscribe When a request for a
shadow is made
successfully, a message
will be sent to this topic

Prefix/get/rejected Subscribe When a request for a
shadow is rejected, a
message will be sent to
this topic

Prefix/update Publish/Subscribe To update shadow
Prefix/update/accepted Subscribe When an update is

made successfully, a
message will be sent to
this topic

Prefix/update/rejected Subscribe When an update is
rejected, a message
will be sent to this topic

Prefix/update/delta Subscribe When the reported and
desired sections are
different, a message
with that different
content will be sent to
this topic

Prefix/update/documents Subscribe When an update is
made successful, a
state document will be
sent to this topic

Figure 4 Shadow topics (AWS IoT MQTT reserved topics – Shadow topics)

Prefix = $aws/things/thingName/shadow

In AWS IoT, a thing means a device connected to the service. For the
demonstration, a thing called “led” was created. Firstly, sending a message
to $aws/things/led/shadow/update with the following JSON content:

8

{
 "state": {
 "reported": {
 "color": "red",
 "power": "off"
 }
 }

}

Two messages from AWS IoT service will be sent to
$aws/things/led/shadow/update/accepted and
$aws/things/led/shadow/update/documents to report that current
device’s state is: color is red and power is off.

Next, sending a new message to $aws/things/led/shadow/update:
{

 "state": {

 "desired": {
 "color": "yellow"

 }

 }
}

The color is desired from red to yellow, therefore there will be a message
sent to topic $aws/things/led/shadow/update/delta from AWS IoT:

{

 "version": 22,
 "timestamp": 1601707724,
 "state": {

 "color": "yellow"
 },
 "metadata": {

 "color": {
 "timestamp": 1601707724
 }
 }

}

The delta shadow only receives the different information between
reported state and desired state. Things can depend on this topic to update
required states. After updating, thing need to send a message to
$aws/things/led/shadow/update:

9

{
 "state": {
 "reported": {
 "color": "yellow"
 },
 "desired": null
 }

}

This message will report the new color and update the desired state to null
since color is updated successfully.

In addition to the state, device shadow can also contain fields such as
metadata, timestamp, version, ... to show specific information about the
time, version, ... of device shadow, helping manage and verify easier. These
fields will be automatically managed by AWS, user’s main task is to focus
on designing the system and the state field (including reported and
desired).

4 DESIGN SYSTEM

 Common way

Nowadays, IoT is applied a lot in different fields such as agriculture, smart
city, manufacturing industry, … People who maintain, operate the IoT
system in these fields are engineers or managers. Normal workers (famers
in this example) are not able to enter the network because of security,
costs, … This system is 1-layer system (engineers/managers). Below is the
example of a farm with IoT applied.

10

Figure 5 General IoT system of a farm

On a farm applied IoT technology, there are many different kinds of
sensors, controllers, … which are connected to the IoT system managed by
engineers. Farmers are the ones who work directly on the farm so they
need to have access to the network in order to monitor and give decision
on time. There are two ways:

• Farmers have the admin rights, meaning they have their own
account which has the same rights as admin. This way takes risk at
giving too many accesses to the system.

• Second way is if farmer want to make a decision they will contact
to managers / engineers. The disadvantage is time consuming; late
decision may lead to bad consequence.

With authorized IoT, after farmers log in the application with their Google
account, they can request to have access to the system and admin will be
able to approve or deny. This means admins will be in between farmers
and the network, so if there are any problems with the account or the
system, admins can immediately suspend the farmer account.

11

 With Administration in between

In public places, IoT authorization play an even more important role. For
example, in university building, if IoT is applied to the devices in the
building, not only professors or lecturers can control devices but students
also should be able to access the system with limited rights. This is a 2-
layer system (Admins -> users). Below is a diagram example of an IoT
system applied in the university building.

Figure 6 IoT system in a University building

With this 2-layer system, students can have limited rights like turning the
lights on or off. At the same time admin can suspend the users’ account
because they are in the middle of the layer.

 Manage devices in Hamk buildings

For the project, a system of buildings and connected devices was built to
manage easier.

12

Figure 7 Buildings manager

In a building there are rooms, in each room there are devices with unique
id.

There are two kinds of users: admins (e.g. professor, teacher, facility
maintainer) and normal users (e.g. students).

Role Role description

Admin • Add/edit/delete building

• Add/edit/delete room

• Add/edit/delete device

• Control devices

• Accept/reject user from
controlling devices

Users • Request admin to control
devices

• Able to control devices if
admin accepted

Figure 8 Admin and users' role description

After logging in with Google account, normal users will send a request to
control devices, admin will know who is requesting by their email address.
Admin has the right to accept or decline the request. If the request is
accepted, users can control devices.

During the time while user has the permission to control devices, admin
can still decline the user’s permission anytime. In case user get rejected
from admin, he/she can request again.

 How system works

To connect things to AWS IoT, a Raspberry Pi is chosen. This diagram shows
how the system works together:

13

Figure 9 How system connects

For website front-end, Reactjs is chosen. This framework for a client-side
web page is a suitable choice to help the user to interact with devices.
For server (back-end), Nodejs and Mongo Database are used. As an
asynchronous event-driven JavaScript runtime, Nodejs is designed to
build scalable network application. Mongo Database stores data in
flexible, JSON-like documents. Below is the diagram which presents the
frameworks and technologies chosen for the project:

14

Figure 10 Frameworks and technologies chosen

In the picture, AWS Amplify displays the connection between web front-
end Reactjs and AWS IoT.

 AWS Amplify and Google Authentication plugin

The AWS Amplify Authentication modules support APIs to developers who
want to construct apps with real-world production-ready user
authentication. The Amplify system uses Amazon Cognito as the key
authentication provider. Amazon Cognito is a robust directory service for
users that manages user registration, authentication, recovery of accounts
and other activities.

Amplify interfaces with Cognito to store user data provided by third-party
authorization such as Apple, Google, Facebook as well as identity provider
and OpenId Connect.

Amplify makes it easy to authenticate users, securely store data and user
metadata, authorize selective access to data, analyse application metrics
and execute server-side code. (Nader Dabit - The complete guide to user
authentication with the Amplify Framework)

15

For the thesis’s purpose, AWS Amplify Authorization with Google is applied
to the application.

Figure 11 Authentication with Google

After user logins with Google account, AWS amplify will return JWT (JSON
Web Token). User uses this token to verify and access to IoT service. (AWS
Amplify Authentication Concept)

 Domain name and server

To run the project in real life, a domain name was registered on Amazon
Route 53: https://hamkiot.nam-huynh.com/. And server is running on
Amazon Elastic Compute Cloud (AWS EC2).

Amazon Route 53 is a cloud-based, highly scalable, Domain Name System
(DNS) web service. This service is designed to provide developers and
businesses with an extremely reliable and cost-effective way of routing
end users to Internet applications by converting names like
www.example.com to a numeric IP address like 192.0.2.1 that computers
use to connect to each other. Amazon Route 53 also fully complies with
IPv6. (Amazon Route 53 Developer Guide, p. 2)

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides secure and flexible computing power in the cloud. This service is
designed to make it easier for developers to use cloud computing at the
web scale.

https://hamkiot.nam-huynh.com/

16

Amazon EC2's simple web service interface allows user to gain and
configure capacity with minimal collisions. This service gives full control of
computing resources and helps running on Amazon's proven computing
environment. Amazon EC2 reduces the time it takes to retrieve and start
new server versions to minutes, allowing user to quickly increase or
decrease the capacity scale according to changes in computing
requirements. Amazon EC2 changes the economics of computing by
allowing user to pay for only the energy user actually use. Amazon EC2
provides developers with many tools to build applications that are more
resistant to bugs and do not let them fall into common error situations.
(AWS EC2 User’s Guide – What is Amazon EC2?)

5 SECURITY

 Thing (Raspberry Pi)

When creating a thing on AWS IoT console, a certificate, a public key and
a private key will be created for the client to download. The public key and
private key can only be retrieved one time. Things with these certificate
and keys will be controlled by client.

The Raspberry Pi is imported with these credentials, make it to be
controlled securely by the right client.

 Normal users

Normal users can control things with the acceptance from admin. Every
user after logging in will have a Cognito Identity Id (a unique Id from AWS)
which will be sent to admin if the user requests to control devices. If admin
accepts, the Id will be attached to the predefined policy (a policy allows
some abilities such as controlling only certain things, getting data from
devices without controlling them). For this specific project, the policy will
allow user with full control to every device. Below is the flow chart that
demonstrates the flow of requesting from user:

17

Figure 12 Request from user

 SSL certificate

After running the Nodejs server on AWS EC2, front-end web browser
transfers data with server via HTTP (Hypertext Transfer Protocol). For the
security, SSL certificate need to be obtained and applied so that data
transferred via HTTPS.

SSL stands for Secure Socket Layer is a protocol that allows to
communicate securely over the network.

18

The connection between a web browser to any point on the Internet goes
through many independent systems without any protection for the
information on the line. No one, either the user or the web server, has any
control over the path of the data or can control whether someone enters
information on the link.
To protect confidential information on the Internet or any TCP / IP
network, SSL has combined the following factors to establish a secure
transaction:

- Authentication: ensure the authenticity of the page on the other end of
the connection. Also, web pages need to check the authenticity of the user.
- Encryption: ensures information cannot be accessed by third parties. To
eliminate eavesdropping on sensitive information when it is transmitted
over the Internet, the data must be encrypted so that it cannot be read by
anyone other than the sender and receiver.
- Data integrity: ensuring information is not misleading and it must
accurately represent the original information sent. (What is an SSL
certificate?)

6 IMPLEMENTATION

 Devices

For the thesis’s demo, there are some devices needed:

• Raspberry Pi

• 3 LEDs (red, blue, yellow)

• 3 resistors

• Electrical wires

These devices will reflect how things (LEDs) connect to AWS IOT and be
controlled in real time.

 Setup AWS IoT

Creating a thing on AWS IoT, user will be able to download a certificate, a
public key, a private key and root CA (certificate authority). These
certificates and keys will be needed later for the Raspberry Pi.

19

Figure 13 Certificates and keys from AWS

Also attaching a policy to the certificate, this means thing (Raspberry Pi)
with this certificate will be allowed to do some defined tasks. (Connect
Raspberry Pi to AWS IoT service)

 Setup Raspberry Pi

Connect 3 LEDs to the Raspberry Pi and create 3 programs for each LED to
connect to AWS IoT. In each program, declaring the certificates and keys
from AWS IoT to be able to connect with AWS IoT service.

For controlling the LED, use the following topics:

Topic Operation Description

$aws/things/thingId/shadow/update/delta Subscribe Get the
desired
different
data to
update LED

$aws/things/thingId/shadow/update Publish Publish
reported
data after
updating
the LED

Figure 14 Shadow topics for Raspberry Pi

20

 Server-side code

For the server, a set of RESTful APIs were created. RESTful API is a standard
used in designing API for web applications to facilitate the management of
resources. It focuses on system resources (text files, images, audio, video
or dynamic data, …), including resource states that are formatted and
transmitted over HTTP.

The APIs in server are mainly for creating, updating and deleting buildings,
rooms and devices. Some APIs are for saving new users to database,
creating requests.

Figure 15 Rest API (Rest APIs: Definition, Working, Benefits, and Design Principals)

Moreover, server has a function of checking the thing is connected or

disconnected to AWS IoT service. AWS IoT publishes a message to the

following topic if:

- $aws/events/presence/connected/thingId: the thing is connected
- $aws/events/presence/disconnected/thingId: the thing is

disconnected

After receiving a message in any one of two cases, server will publish a
message to $aws/things/thingId/shadow/update with the following
format:

{

 "state": {

 "reported": {
 connected: true/false (true if device connected and vice versa)

 }

 }
}

21

 Setup front-end code

AWS Amplify will be applied to front-end so that user can log in with
Google account. Besides that, front-end in web browser also subscribe and
publish to some AWS IoT topics.

On the web page, the following data will be shown on the device:

Information Controller State Time Current State

Value Admin/us
er email

ON/OFF
(for
digital
device)

Time at the
latest that the
device state was
updated

Connected/dis
connected/sta
te

Level (for
analog
device)

Figure 16 Devices data shown from webpage

To be able to receive updated status and report new states of the devices,
front end needs to publish and subscribe the following AWS IoT shadow
topics:

Topic Operation Description
$aws/things/thingId/shadow/u
pdate

Publish Publish the new states
of the device and user
email address of the
controller

$aws/things/thingId/shadow/u
pdate/documents

Subscribe Subscribe to new states
of device

$aws/things/thingId/shadow/u
pdate/get/accepted

Subscribe Get states of the
devices after logging in

$aws/things/thingId/shadow/u
pdate/get

Publish Publish an empty
message to this topic to
receive message from
$aws/things/thingId/sh

22

adow/update/get/acce
pted

Figure 17 Shadow topics for front-end

Multiple users can publish and subscribe to shadow topics concurrently.

Figure 18 Multiple users control concurrently

 Working flows of application

Step 1/ Go to https://hamkiot.nam-huynh.com/. Admin logs in by Google
account. AWS Amplify will send a unique Cognito Username (e.g.
Google_109485232010340394385023). Saving this Cognito Username in
database so next time server can confirm the admin.

Step 2/ Creating a building, in the building creating a room and, in the
room, creating devices. For the project, creating 3 digital devices for 3 LEDs
(red, blue, yellow). After creating, Mongo Database will automatically send
back 3 unique ids for each LED.

Figure 19 Unique Ids sent back from MongoDb

Step 3/ Log in as a normal user and request to control devices. Database
will save the following information of user:

https://hamkiot.nam-huynh.com/

23

Field Type Description

isAccepted Boolean True if admin accepted

isRequesting Boolean True if user requested
to control devices

cognitoUsername String This data is from AWS
service to check if the
client is admin or
normal user

Email String “Name” of the user,
showing the list of
users to admin and
who controlled the
device

cognitoIdentityId String This data is from AWS
service to
attach/detach user
from the controlling-
device list

Figure 20 Information saved in database after user requested

Step 4/ If admin accepted, server will attach the “cognitoIdentityId” to the
predefined policy to allow user to control device and set “isAccecpted” to
true and “isRequesting” to false. Front end web page will show the
interface for user to interact with the devices.

Step 5/ After logging in, an empty message will be sent to
$aws/things/blueLEDId/shadow/get so that user can get the current state
of the device from topic $aws/things/blueLEDId/shadow/get/accepted:

24

{

 "state": {

 "reported": {
 "connected": true,

 "state": "OFF",

 "controller": "admin"
 }

 },

 "metadata": {
 "reported": {

 "connected": {

 "timestamp": 1601876017
 },

 "state": {

 "timestamp": 1601882830
 },

 "controller": {

 "timestamp": 1601882091
 }

 }
 },

 "version": 790,
 "timestamp": 1601884777
}

Reactjs will update the interface according to the information from
reported message. In this message, the blue LED is connected and
currently turned off by admin from timestamp 1601882830.

Step 6/ Turn the Blue LED on from the web page interface. A message will
be sent to $aws/things/blueLEDId/shadow/update:

{

 state: {

 desired: {
 state: "ON",

 controller: "user1@gmail.com"

 }
}

Step 7/ Raspberry Pi is now subscribing to topic
$aws/things/blueLEDId/shadow/update/delta and it receives the
message:

25

{
 "version": 787,
 "timestamp": 1601882091,
 "state": {
 "state": "ON",

 "controller": "user1@gmail.com"
 },

 "metadata": {
 "state": {
 "timestamp": 1601882091
 },
 "controller": {
 "timestamp": 1601882091
 }

 }
}

The Raspberry Pi will look at this message and update the blue LED by the
state in the message. If the blue LED was turned on successfully, the
Raspberry Pi will send a message to
$aws/things/blueLEDId/shadow/update:

{
 "state": {
 "reported": {
 "state": "ON"
 },
 "desired": NULL
 }

}

This message notifies that the blue LED was updated successfully.
Currently its state is ON and no desired state from users. All the users and
admin are subscribing to topic
$aws/things/blueLEDId/shadow/update/documents will receive the
message:

26

{
 "current": {

 "state": {
 "reported": {

 "connected": true,

 "state": "ON",
 "controller": "admin"

 }

 },
 "metadata": {

 "reported": {

 "connected": {
 "timestamp": 1601876017

 },

 "state": {
 "timestamp": 1601882830

 },

 "controller": {
 "timestamp": 1601882091

 }
 }

 },

 "version": 790
 },

 "timestamp": 1601882830

}

The message shows information of the device’s current state and Reactjs
will update this information to users and admin on the web page interface.

Step 8/ If admin wants to remove the user out of the control-device list,
server will detach user from the policy and set “isAccepted” field in the
database to false. Reactjs will also change the interface so that user is not
able to interact with the devices.

7 CONCLUSION

The main purpose of this project is that a user can control the device easily
only by being through Google authentication and admin authorization,
which was achieved by combining ReactJs in the frontend, NodeJs in the
backend and AWS services in between.

Moreover, there are still lots of functions that can be developed and
applied, for example, alert user if temperature is too high/low, set timer
for the devices or devices can only be controlled by users who reserve

27

them. Conclusively, by applying technologies smartly and securely, life and
work will become easier and more productive.

28

REFERENCES

What is an X.509 certificate? https://www.ssl.com/faqs/what-is-an-x-509-certificate/

Understand IoT Authentication and Authorization with “OAuth 2.0”

https://prodea.com/2017/07/13/understand-iot-authentication-authorization-need-know-

oauth-2-0/

Top IoT Development Platform & Tools with Comparison

https://www.intuz.com/blog/top-iot-development-platforms-and-tools

Design and development of IoT-based latency-optimized augmented reality framework

in home automation and telemetry for smart life style (Proposed system architecture)

https://link.springer.com/epdf/10.1007/s40860-020-00106-

1?sharing_token=t1JK1IUPAhlS1PxT9EkuS_e4RwlQNchNByi7wbcMAY5G9dP2lMA

9JAGvRNXXF-

K0kLBiJluZ_QBObpd7jBGUHnv97E3oeS3mPGiCIsLj7K79h30_7WjKZKI5PwwgiaIy

B1aq2ZPx1ZcecNSKXEVwWe1y1-H8s3IgTMcLI5qTI24%3D

Nader Dabit - The complete guide to user authentication with the Amplify Framework

https://dev.to/dabit3/the-complete-guide-to-user-authentication-with-the-amplify-

framework-2inh

A Brief History of the Internet of Things https://www.dataversity.net/brief-history-

internet-things

Introducing MQTT protocol https://www.hivemq.com/blog/mqtt-essentials-part-1-

introducing-mqtt/

AWS EC2 User’s Guide https://docs.aws.amazon.com/AWSEC2/latest/UserGui

de/concepts.html

MQTT definition http://mqtt.org

AWS Amplify Authentication Concept

https://docs.amplify.aws/lib/auth/overview/q/platform/js#social-provider-federation

Connect Raspberry Pi to AWS IoT service

https://docs.aws.amazon.com/iot/latest/developerguide/connecting-to-existing-

device.html

How AWS IoT works

https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html

https://www.ssl.com/faqs/what-is-an-x-509-certificate/
https://prodea.com/2017/07/13/understand-iot-authentication-authorization-need-know-oauth-2-0/
https://prodea.com/2017/07/13/understand-iot-authentication-authorization-need-know-oauth-2-0/
https://www.intuz.com/blog/top-iot-development-platforms-and-tools
https://link.springer.com/epdf/10.1007/s40860-020-00106-1?sharing_token=t1JK1IUPAhlS1PxT9EkuS_e4RwlQNchNByi7wbcMAY5G9dP2lMA9JAGvRNXXF-K0kLBiJluZ_QBObpd7jBGUHnv97E3oeS3mPGiCIsLj7K79h30_7WjKZKI5PwwgiaIyB1aq2ZPx1ZcecNSKXEVwWe1y1-H8s3IgTMcLI5qTI24%3D
https://link.springer.com/epdf/10.1007/s40860-020-00106-1?sharing_token=t1JK1IUPAhlS1PxT9EkuS_e4RwlQNchNByi7wbcMAY5G9dP2lMA9JAGvRNXXF-K0kLBiJluZ_QBObpd7jBGUHnv97E3oeS3mPGiCIsLj7K79h30_7WjKZKI5PwwgiaIyB1aq2ZPx1ZcecNSKXEVwWe1y1-H8s3IgTMcLI5qTI24%3D
https://link.springer.com/epdf/10.1007/s40860-020-00106-1?sharing_token=t1JK1IUPAhlS1PxT9EkuS_e4RwlQNchNByi7wbcMAY5G9dP2lMA9JAGvRNXXF-K0kLBiJluZ_QBObpd7jBGUHnv97E3oeS3mPGiCIsLj7K79h30_7WjKZKI5PwwgiaIyB1aq2ZPx1ZcecNSKXEVwWe1y1-H8s3IgTMcLI5qTI24%3D
https://link.springer.com/epdf/10.1007/s40860-020-00106-1?sharing_token=t1JK1IUPAhlS1PxT9EkuS_e4RwlQNchNByi7wbcMAY5G9dP2lMA9JAGvRNXXF-K0kLBiJluZ_QBObpd7jBGUHnv97E3oeS3mPGiCIsLj7K79h30_7WjKZKI5PwwgiaIyB1aq2ZPx1ZcecNSKXEVwWe1y1-H8s3IgTMcLI5qTI24%3D
https://link.springer.com/epdf/10.1007/s40860-020-00106-1?sharing_token=t1JK1IUPAhlS1PxT9EkuS_e4RwlQNchNByi7wbcMAY5G9dP2lMA9JAGvRNXXF-K0kLBiJluZ_QBObpd7jBGUHnv97E3oeS3mPGiCIsLj7K79h30_7WjKZKI5PwwgiaIyB1aq2ZPx1ZcecNSKXEVwWe1y1-H8s3IgTMcLI5qTI24%3D
https://dev.to/dabit3/the-complete-guide-to-user-authentication-with-the-amplify-framework-2inh
https://dev.to/dabit3/the-complete-guide-to-user-authentication-with-the-amplify-framework-2inh
https://www.dataversity.net/brief-history-internet-things
https://www.dataversity.net/brief-history-internet-things
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://docs.aws.amazon.com/AWSEC2/latest/UserGui%20de/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGui%20de/concepts.html
http://mqtt.org/
https://docs.amplify.aws/lib/auth/overview/q/platform/js#social-provider-federation
https://docs.aws.amazon.com/iot/latest/developerguide/connecting-to-existing-device.html
https://docs.aws.amazon.com/iot/latest/developerguide/connecting-to-existing-device.html
https://docs.aws.amazon.com/iot/latest/developerguide/aws-iot-how-it-works.html

29

AWS IoT MQTT reserved topics

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html

Rest APIs: Definition, Working, Benefits, and Design Principals

https://www.astera.com/type/blog/rest-api-definition/

AWS IoT Device Shadow service documents

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-document.html

Amazon Route 53 Developer Guide

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route53-dg.pdf#Welcome

What is an SSL certificate? https://www.cloudflare.com/learning/ssl/what-is-an-ssl-

certificate/

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html
https://www.astera.com/type/blog/rest-api-definition/
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-document.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/route53-dg.pdf#Welcome
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/

30

APPENDICES

Appendix 1. Back-end code Github link https://github.com/namhuynh96/v2-iot-ts-

backend

Appendix 2. Front-end code Github link https://github.com/namhuynh96/v2-iot-ts-

frontend

https://github.com/namhuynh96/v2-iot-ts-backend
https://github.com/namhuynh96/v2-iot-ts-backend
https://github.com/namhuynh96/v2-iot-ts-frontend
https://github.com/namhuynh96/v2-iot-ts-frontend

	1 Introduction
	2 IoT authorization and why AWS IOT
	2.1 From devices to IoT gateway
	2.2 User authorization
	2.3 Why AWS

	3 Overview of iot and mqtt protocol
	3.1 Overview of IoT network
	3.2 MQTT protocol
	3.3 Device shadow MQTT topics

	4 Design system
	4.1 Common way
	4.2 With Administration in between
	4.3 Manage devices in Hamk buildings
	4.4 How system works
	4.5 AWS Amplify and Google Authentication plugin
	4.6 Domain name and server

	5 Security
	5.1 Thing (Raspberry Pi)
	5.2 Normal users
	5.3 SSL certificate

	6 implementation
	6.1 Devices
	6.2 Setup AWS IoT
	6.3 Setup Raspberry Pi
	6.4 Server-side code
	6.5 Setup front-end code
	6.6 Working flows of application

	7 Conclusion
	References
	Appendices

