

Creating Azure DevOps Pipelines for
Web Application

Eetu Koskelainen

BACHELOR’S THESIS
April 2021

ICT Engineering
Software Engineering

ABSTRACT

Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
Degree Programme in ICT Engineering
Software Engineering

KOSKELAINEN, EETU:
Creating Azure DevOps Pipelines for Web Application

Bachelor's thesis, 39 pages
April 2021

DevOps is a concept which combines practices from software development and
IT operations. The DevOps automation in web development projects is becoming
the de facto standard in the web development industry. Automation can solve
problems related to repetitive and time-consuming tasks. It can reduce the
possibility of human error, for example, in the application deployment phase.

This thesis provides directional instructions on creating automated pipelines for
basic client-server web applications using Microsoft Azure cloud computing
products and Pulumi infrastructure as code method-based cloud resource
management tool. The instructions focus on the technical perspective of setting
up pipelines for the client, server, and infrastructure sections of the application.
Instructions and solutions introduced in the thesis are based on development
experiences during the implementation phase and literature review of technical
documentation, articles, and publications.

The pipelines were successfully created for each part of the application. Pipeline
development was not completely straightforward due to constraints of the Azure
DevOps platform. Even though fully dynamical pipeline architecture was not
achieved, pipelines were developed to support all necessary features like multiple
environments, stages and parametrization.

Keywords: DevOps, web application, Azure, pipelines, automation

3

CONTENTS

1 INTRODUCTION .. 5
2 BACKGROUND ... 6
2.1 DevOps ... 6
2.2 Cloud services ... 9

3 TOOLS AND TECHNOLOGIES ... 11
3.1 Version control system (Git) .. 11
3.2 Infrastructure as code (Pulumi) ... 11
3.3 Microsoft Azure ... 12

3.3.1 Key Vault ... 12
3.3.2 App Service Plan and App Service 12
3.3.3 Managed SQL Server and Database 12

3.4 Azure DevOps ... 13
4 BUILDING EXAMPLE ENVIRONMENT AND PIPELINES 14
4.1 Prerequisites and goals ... 14
4.2 Example app and environment .. 14
4.3 Development environment and technical prerequisites 16
4.4 Manual configurations ... 17

4.4.1 Creating Azure service principal account 17
4.4.2 Creating new Pulumi project .. 18

4.5 Setting up infrastructure .. 20
4.5.1 Environment .. 20
4.5.2 Infrastructure declaration as code 21

4.6 Pipelines .. 27
4.6.1 Infrastructure ... 27
4.6.2 Server .. 32
4.6.3 Client ... 38

5 TESTING .. 39
6 CONCLUSIONS ... 40
REFERENCES .. 41

4

ABBREVIATIONS AND TERMS

Bash script A set of terminal commands executed in order.

CD/CI Continuous Delivery & Continuous Integration.

CLI Command line tool.

Regression testing Testing functionality of previously developed features.

Codebase Source code of the application.

REST API Representational state transfer application

programming interface.

SQL Structured Query Language. Used to operate relational

database systems.

NPM Javascript Package Manager. Node.js runtime

environment package manager.

JSON Javascript Object Notation. It is human-readable data

format widely used in Web Applications.

Typescript Superset of Javascript with static typing capabilities.

Typescript is transcompiled to Javascript.

5

1 INTRODUCTION

Web development can be a wild west with very few predefined processes and

guidelines. Sometimes development is done in a tight schedule, or the system

has many manual tasks to be performed during the development cycle.

Manual procedures are easy to remember and do when performed daily. But for

example, after six months of only maintenance, manual deployment without good

documentation can be challenging to accomplish on the first try. Sometimes

automation or environment configurations are lacking due to schedule or

ignorance. There is a severe risk of an error when tasks are done manually, and

that is what automation is trying to solve.

There are a lot of technical solutions and services to create automation pipelines.

Same end results can be achieved with almost every solution. All of the

technologies provide documentation how to use them individually, but

comprehensive instructions are more rarely found.

Primary goal for this thesis is to provide directional instructions on using Azure

products with Pulumi infrastructure as code tool to create automated pipelines for

basic client-server Web application. Solutions introduced in this thesis are based

on experiences from the implementation phase and literature review.

The document's first sections will present DevOps ideology, tools, technologies,

and Azure Cloud resources used in this document. Latter parts focus heavily on

the technical perspective and critical parts of the implementation. The reader is

assumed to have a basic knowledge of modern software development tools and

ideologies.

6

2 BACKGROUND

2.1 DevOps

DevOps is a set of practices meant to boost the software development cycle and

reduce the time spent between developing new features and deploying them to

production. DevOps term comes from the words Development and IT operations,

and it means combining and automating the traditional responsibilities of both

departments. (Loukides M. 2019)

In the past, development, testing, and deployment tasks were usually split

between teams or units. Different units had various kinds of goals, and in the

usual scenario, communications between the units were slow and inefficient.

When the development lifecycle is slow and production deployments are made

rarely, critical bugs and issues with the production deployments are often

unavoidable. (Kim, Humble, Debois & Willis 2016, 15-28)

The core tool of DevOps is automation, which takes care of tasks that are

repeated often. For example, necessary regression testing can be automated so

that the software tester can focus on testing the new features.

DevOps practices usually include building automated pipelines that are executed

after the developer changes the codebase. The pipelines can build, test, and

deploy the code to the testing or development environment in minutes when

traditional testing and deployment with manual processes would have taken days

or at least several hours. If any phase of the automated pipeline fails, the

developer gets immediate feedback on what task failed, and execution of the

pipeline is stopped. (Kim, Humble, Debois & Willis 2016, 15-28)

An example development cycle of a software project is shown in Figure 1. The

development cycle usually starts from the planning phase, where new features

or tasks are planned and defined by all teams together. After a successful

planning development team can start implementing planned features. The

development team uses integration tools such as automated pipelines to build

7

software and run automatic tests after merging changes to the codebase to find

possible regression or defects.

Figure 1. Example of the development cycle.

After the development phase, new features can be moved to a testing

environment where testing of new features can be done by the team responsible

for user testing. In the testing stage, issues or defects can be found, and the

feature can be returned to development or even to the planning phase.

When features are successfully tested, new release and deployment can be

made. In best case scenario any member of the development team should be

able to do the release and deployment phase.

The last three phases are mostly executed simultaneously. Developed features

are configured if needed, monitored for bugs or errors, and feedback of the

features is gathered. After full DevOps cycle, developed features can be marked

as completed.

8

For the development cycle to be efficient, each team or phase should have a

designated environment to use. All environments should be a production like with

similar data. Using separate environments for different use-cases has multiple

benefits.

If multiple teams were using the same environment for testing and development,

confusion or misunderstanding could happen. If the testing phase would be done

in a development environment, failing database migration could stop testing work

for hours or days.

An example of development flow between environments is shown in Figure 2.

Environments and flow between them can vary very a lot depending on the

product and teams developing it. Example shown in Figure 2 is from an average

size project. The development environment is used mainly by developers when

new features are developed. Testing environment is clients testing environment

that has production-like data. A staging environment is used for final testing of

the features that are going to be deployed to the production environment. The

number of environments entirely depends on the development and release

processes and project structure.

Figure 2. Multi-environment development flow example.

9

2.2 Cloud services

Cloud services enable the usage of shared computing resources remotely

through the internet for an annual fee. Many different kinds of platforms offer disk

space, databases, website hosting, remote servers, or all of them. Cloud services

provide users with almost unlimited technical resources to build applications fast

without seeing or thinking of any hardware. Cloud services enable applications to

be scaled for big audiences faster than traditional server hosting.

When cloud services arrived at the market, the main selling point was cheaper

storage and calculating power compared to the existing physical hardware.

Nowadays, businesses mainly use cloud services because of the speed and ease

of development. Most companies operating in the cloud have designated cloud

strategies to achieve fast development and secure architecture without owning

physical hardware or having a team to maintain it.

 (Daniel Kirsch & Judith Hurwitz, 2020, Chapter 1)

In cloud computing, there are usually multiple different hosting models to choose

the most suitable for the current need. Infrastructure as a Service (IaaS) is a self-

service model where the customer rents virtualized servers or storage and pays

for the time and resources used. Environment and software running on the server

are usually entirely under the control of the user. (Daniel Kirsch & Judith Hurwitz,

2020, Chapter 8). IaaS model is usually the best option when high customization

is needed, and the user is willing to maintain and update the environment

routinely.

One abstraction layer to the IaaS is Platform as a Service (PaaS) model that

offers middleware services for developers to deploy the applications to the cloud

without maintaining the server environments or updates (Daniel Kirsch & Judith

Hurwitz, 2020, Chapter 10). PaaS can offer different services from Web

Application containers to Managed Database solutions. These services usually

offer easy deployment options and configurable managed environments, making

developing applications easy. The PaaS model's downside can be missing

options for more customized applications or usually higher price points than the

IaaS.

10

The highest point of abstraction is Software as a Service (SaaS) model, which

usually offers complete products for end-users. An example of a SaaS service is

the Azure DevOps platform, covered more in chapter 3.4. Software as a Service

is a good option when the product meets the needs, and there is no need for

higher customization. SaaS usually provides reliability and is a good option for

business-critical use-cases.

The most significant and extensive Cloud Service Providers in 2021 are Amazon

Web Services, Microsoft Azure, and Google Cloud. Each of the providers has a

similar offering on essential services within IaaS, SaaS, and PaaS models.

Amazon Web Service was the first major cloud computing provider in 2008, and

it is known for the IaaS services and significant investments in the offering of

databases, machine learning, and serverless resources. In comparison, the

Microsoft Azure platform offers a grand scale of integrations between the

Microsoft product family. The platform is widely used by companies relying

heavily on other Microsoft products making service management more

straightforward. Google Cloud offers a wide variety of SaaS products such as

Google Drive, Sheets, Docs, and Meet, making its ecosystem intriguing for

medium sized companies. Google Cloud also has a similar offering of IaaS and

PaaS products as its competitors. (Dignan, 2021)

11

3 TOOLS AND TECHNOLOGIES

3.1 Version control system (Git)

In software development, there is often a team of developers working on the

same project. All developers need to make changes to the same codebase and

sometimes edit even the same files. For efficient working, there has to be a

system that helps engineers avoid conflicts and retain the codebase history. Git

version control system and GitHub platform are used in the example project

introduced in chapter 4.

Distributed version control system such as Git tries to solve these problems by

allowing each developer to work on their copy of the same codebase. Developers

can make the changes to the code locally and merge the changes to the main

codebase. The full history of changes can be tracked, and any version of the

codebase can be recovered at any time. (Github.com, 2020)

3.2 Infrastructure as code (Pulumi)

Infrastructure as code (IaC) is a practice to define the application's infrastructure

with code that can be stored in version control. The declarations code can be

thought of as a list of resources needed for the application to be deployed. Most

of the IaC tools provide a way to automatically deploy the infrastructure to the

desired cloud without any manual configurations done on the cloud platform.

(Stackify, 2019)

In the example project, the Pulumi tool is used to create the infrastructure

declarations and deploy the desired infrastructure to the Microsoft Azure Cloud

platform. Pulumi supports multiple programming languages and cloud providers.

12

3.3 Microsoft Azure

3.3.1 Key Vault

Azure Key vault is a service to store application secrets such as API tokens,

passwords, or other secret information related to the application. It provides a

centralized way to store secrets and fetch them when needed. Key vault will

eliminate the need to save secret values to the applications code because the

application can be granted access to fetch the wanted secret values from the

designated key vault. (Azure Documentation, 2020)

3.3.2 App Service Plan and App Service

Azure App Service is a PaaS application platform to host modern Web and Mobile

applications. It can run an application built with modern languages such as

Node.js, Java, or Python. The developer can select the operating system of the

App Service. App Service is a fully managed service, which means that

application developers do not need to maintain or update the application's actual

servers. (Kiriaty Y., 2017)

App Service Plan is needed to use App Services in Azure. App Service Plan

defines resource limits and pricing point of the App Services. Multiple App

Services can be included in the same App Service Plan. (Azure Documentation,

2020)

3.3.3 Managed SQL Server and Database

Azure SQL Database is a fully managed PaaS service that provides secure and

administration free SQL Server and database to store application data. The

database size can be easily scaled to meet the needs of the application.

13

Azure SQL Database is utilizing structured query language syntax which is

commonly used on relational databases. Like all different SQL implementations,

Azure SQL Database is based on the standard SQL syntax and has its own

features. (Azure Documentation, 2021)

3.4 Azure DevOps

Azure DevOps is a SaaS product by Microsoft used to manage DevOps

environments, environment variables, and automated pipelines. The platform

also offers other features such as version control, agile tools, and test plans but

these features are not covered in this document.

Azure DevOps offers tools to create automated pipelines to build, test and deploy

applications. Automated pipelines can be created using YAML configuration

language or with a user interface. Pipelines created with the user interface are

called classic pipelines. Same functionalities can be achieved using either one,

but pipelines configured with YAML are stored in version control and are that way

more easily editable.

Applications are configured with environment variables. In Azure Pipelines,

environment variables are stored in variable groups that can be accessed in the

portal's Library section. Variables groups can be used in pipelines to configure

the application. Variables can be imported from the Azure Key Vault or added

manually from the portal.

Projects usually have multiple environments such as development, testing, and

production. In Azure Pipelines, environments are used to track deployments

made to the current environment and to create checks or approval rules that must

be met before deployment can be made.

14

4 BUILDING EXAMPLE ENVIRONMENT AND PIPELINES

4.1 Prerequisites and goals

In this section, proof-of-concept implementation of DevOps environment for a

small-scale web application project will be presented with directional instructions.

Understanding all terms and conventions, readers should have the basic

knowledge of the web applications, command-line usage, and tools used.

This proof-of-concept implementation's primary goal is to have automated

pipelines that are triggered by version control changes. When the developer

creates a new pull request or commits to the development or master branch, the

build and test phases of pipelines will be run automatically. If the pipeline fails,

the run will be stopped, and no further steps will be executed. If the pipeline

succeeds, it requires approval from the user to deploy the current build to the

desired environment.

4.2 Example app and environment

Pipelines or DevOps environments cannot be set without an application to build,

test, and deploy. An example application used for this proof of concept will have

a typical modern web application structure.

An example application is a straightforward counter which shows the current

count and time of the latest increase. The application's user interface is shown in

Picture 1. It has a button labeled “Increase” for the user to increase the counter

number and "Fetch" labeled button to fetch the latest counter number and time of

the action. Counter increase actions will be persisted in the database. As

described in Figure 3, example application will consist of client web app, REST

API server, key vault, and SQL database.

15

Picture 1. Web application example user interface.

Client web application is created with React which is a popular Javascript library

to build user interfaces (React Documentation, 2021). Application sends and

fetches data from the REST API Server. Server-side is Node.js application with

REST API that will provide endpoints for clients to fetch and persist data to Azure

SQL Database. Both App Services will be under the same Linux App Service

Plan. All secrets, such as database connection string, are stored in the Azure Key

Vault, where only the server will have access. Pulumi infrastructure as a code

tool is used to manage the Azure components.

Figure 3. Architecture diagram of the example application.

16

The codebase of the whole system will be separated into three repositories in

Github. Using separate repositories for client, server, and infrastructure code will

be the best option for this proof of concept because each repository will have its

own pipeline. Using a mono repository for all services can lead to more complex

pipeline configurations.

4.3 Development environment and technical prerequisites

This proof-of-concept project is created using the OS X operating system on

Macbook Pro, and all the command line tools or commands are run on OS X

Terminal. All commands and tools used should have equivalents on Windows

and Linux but are not presented in this document. The code editor used is Visual

Studio Code, and the database tool is Azure Data Studio. Both of these tools are

also available on Windows and Linux.

Before setting up the pipelines, services and tools must be taken into use. This

example will assume that the executor has

• Microsoft Azure account with a trial period or pay-as-you-go subscription

• Pulumi account

• Github account

• Azure and Pulumi command-line tools installed

• two repositories with existing client and server apps and one empty

repository for infrastructure

17

4.4 Manual configurations

Before project infrastructure can be implemented, specific manual steps must be

done. That includes configuring services for use with pipelines and installing all

the necessary development tools.

4.4.1 Creating Azure service principal account

Pulumi tool needs to access Azure to control and create resources. Azure service

principal account must be created to grant Pulumi access to the desired Azure

subscription. Pulumi could be configured with Azure account, but that is not

recommended (Pulumi documentation, 2021).

Azure service principal accounts can be created via Azure CLI or Azure Portal.

The Azure CLI command shown on the first line of Code 1 can be used to

generate it.

az ad sp create-for-rbac --name serviceAccountName
{
 "appId": "appId-123456",
 "displayName": "serviceAccountName",
 "name": "http://serviceAccountName",
 "password": "password-123456",
 "tenant": "tenantId123456"
}

Code 1. Azure service principal creation command and output.

After running the command successfully, the service principal information should

be printed to the terminal as shown in Code 1 starting from the second line. Azure

Pipelines Github extension must be installed on all of the three repositories.

Extension allows Azure pipelines to use the repositories as sources.

18

4.4.2 Creating new Pulumi project

In this example, Typescript is used as an infrastructure declaration language for

Pulumi. Pulumi also supports other languages, but Typescript was chosen based

on familiarity and good typing capabilities.

New Pulumi project can be created with the Pulumi CLI. Before the actual

creation command, empty GitHub repository was cloned. All following code in this

chapter is executed in the repository folder.

After cloning the repository, a new Pulumi project can be created with the CLI

command shown in Code 2 below (Pulumi documentation, 2021).

pulumi new azure-typescript -n "azure-thesis-infrastructure" -d
"Example Pulumi project for thesis" -s "dev"

Code 2. Command for creating new Pulumi project.

In the command shown in Code 2, parameters are

• -n which is the name of the project

• -d is the description of the project

• -s is Pulumi stack name of the current project

After running the command, it will prompt the type of environment defaulted to

public and the location selected for the Azure subscription. The location value of

the Pulumi project and Azure subscription must be same.

When the command finishes execution new Pulumi project and stack have been

created. New files and folders have been created, such as

• node_modules folder

• tsconfig.json

• package.json

• package-lock.json

• Pulumi.yaml

19

• index.ts

Most importantly, Pulumi.yaml file contains configurations regarding the project,

and the index.ts file contains the infrastructure declarations. Other files and

folders are related to Node.js environment and will not be covered in this

document.

20

4.5 Setting up infrastructure

4.5.1 Environment

Before starting the development of the infrastructure with Pulumi, environment

variables need to be set for Pulumi to access Azure subscription. Environment

variables can be set with a .env file, for example.

Pulumi commands can be run locally without environment variables by logging

into Azure and Pulumi command-line tools. However, using environment

variables locally can help to make sure that the development environment is

similar to the automated pipeline. Pipelines must use environment variables for

accessing Azure and Pulumi.

Variables that need to be set to the .env file are

• Client id

• Client secret

• Tenant id

• Subscription id

• Pulumi access token

Three firstly mentioned can be obtained from the reply of the service principal

account creation command shown in Code 1. Pulumi access token can be found

from Pulumi website under account settings. Subscription id can be fetched with

command shown in the first line of Code 3. The command should print out all of

the subscriptions associated with the Azure account shown in Code 3.

az account list --output table

Name CloudName SubscriptionId State IsDefault

---------- ----------- ------------------------------------ ------- -----------

Free Trial AzureCloud 1234567-1234-1234-1234-1234567891011 Enabled True
Code 3. Azure subscription id fetching command with example output.

21

Environment variables are set in the .env file. Inconveniently, the naming of the

variables is not the same as in Azure. The mapping of the variables is shown in

Code 4.

ARM_CLIENT_ID="appId"
ARM_CLIENT_SECRET="password"
ARM_TENANT_ID="tenant"
ARM_SUBSCRIPTION_ID="subscriptionId"
PULUMI_ACCESS_TOKEN="pulumiAccessToken"

Code 4. Example content of the .env file.

Variables can be set to current terminal session with the command shown in

Code 5.

set -o allexport; source .env; set +o allexport

Code 5. Command to set variables listed in .env files to the current terminal
session.

4.5.2 Infrastructure declaration as code

Infrastructure is declared with Typescript code in the index.ts file located in the

root of the infrastructure repository. All resources of the project except some

secrets in the Azure Keyvault are declared with code.

Firstly, needed Pulumi libraries are imported in the first three lines of Code 6.

Pulumi library is needed for base functionalities, Azure library is needed to create

and configure Azure resources, and the random library is used to create

randomized tokens.

In the Code 6 prefix for the resources is defined by the first ten characters of the

stack name. This prefix will ease identifying the environment of the resource

(Microsoft documentation, 2020). In small-sized projects like this, naming

conventions for resources are not critical. More significant infrastructures need

naming conventions for the team to work with the resources efficiently. In this

example, almost all resources are named with the same global name.

22

import * as pulumi from "@pulumi/pulumi";
import * as azure from "@pulumi/azure";
import * as random from "@pulumi/random";

// use first 10 characters of the stack name as prefix for resource names
e.g. "dev"
const prefix = pulumi.getStack().substring(0, 9);

// Global name for the services
const globalName = `${prefix}-azure-thesis`;

// Get azure config
const clientConfig = azure.core.getClientConfig({ async: true });
const tenantId = clientConfig.then((config) => config.tenantId);
const currentPrincipal = clientConfig.then((config) => config.objectId);

Code 6. First configurations in the infrastructure declaration file (index.ts).

The global name for the infrastructure is defined with the prefix and descriptive

and unique name of the project. In the last section of Code 6, Tenant id and

Object id are fetched from the used Azure subscription.

Before any actual resources can be declared, the resource group must be

defined. The resource group will contain all resources of the environment. In the

first section of Code 7, a resource group is created with the global name declared

earlier, and the name is extracted from the object to be used in further

declarations.

Variable globalName is used twice in Resource Group creation because

resources have logical and physical names. The first argument in the

ResourceGroup object is a logical name, and the name provided in the

configuration object is physical. The logical name is used in the Pulumi

abstraction layer, and the physical name is the Azure resource's real name. If

physical name is not provided, Pulumi will automatically create it using the logical

name and adding random sequence of numbers to the end to make it unique.

This example name is already unique across the environments because of the

environment identifier used in global name (Code 7).

In the second part of the Code 7, Key Vault is created. Standard Key Vault version

is selected by setting skuName to “standard”. Access policy to the Key Vault for

23

the current Service Principal must be granted for it to be able to modify or delete

the resource (Pulumi, 2020).

// Create an Azure Resource Group
const resourceGroup = new azure.core.ResourceGroup(globalName, {
 name: globalName,
 location: "NorthEurope",
});
const resourceGroupName = resourceGroup.name;

// Create a keyvalt for saving secrets
const keyVault = new azure.keyvault.KeyVault(globalName, {
 name: globalName,
 resourceGroupName,
 skuName: "standard",
 tenantId,
 accessPolicies: [
 {
 tenantId,
 objectId: currentPrincipal,
 secretPermissions: ["delete", "get", "list", "set"],
 },
],
});

Code 7. Declarations for the Resource Group and Key Vault.

SQL Server, Database, and admin user are declared in Code 8. The admin

password is created using a random password generator. The SQL Server

resource requires admin username and password as parameters. Free tier

versions of the Server and database are created. Admin credentials for the SQL

Server are stored to the Key Vault in the last section of Code 8.

24

// Create admin password with random generator
const adminPassword = new random.RandomPassword("password", {
 length: 24,
 special: true,
}).result;
const adminUsername = "sqladmin";

// Create SQL Server
const sqlServer = new azure.sql.SqlServer(globalName, {
 name: globalName,
 resourceGroupName,
 administratorLogin: adminUsername,
 administratorLoginPassword: adminPassword,
 version: "12.0",
});

// Create SQL Database for the server
const db = new azure.sql.Database(globalName, {
 name: globalName,
 resourceGroupName,
 serverName: sqlServer.name,
 edition: "Free",
});

// Add new secrets for sql server admin
const adminUsernameSecret = new azure.keyvault.Secret("sqlAdminUsername", {
 name: "sqlAdminUsername",
 keyVaultId: keyVault.id,
 value: adminUsername,
});
const adminPasswordSecret = new azure.keyvault.Secret("sqlAdminPassword", {
 name: "sqlAdminPassword",
 keyVaultId: keyVault.id,
 value: adminPassword,
});

Code 8. Resources created related to SQL Database.

App Service Plan for client and server App Services is declared in the first section

of Code 9. It is created with the global name and Linux as an operating system.

In the second section, client App Service is declared.

25

// App Service Plan for the app services
const appServicePlan = new azure.appservice.Plan(globalName, {
 name: globalName,
 resourceGroupName,
 kind: "Linux",
 reserved: true,
 location: "NorthEurope",
 sku: {
 tier: "Free",
 size: "F1",
 },
});
const appServicePlanId = appServicePlan.id;

const clientAppService = new azure.appservice.AppService(
 `${globalName}-client`,
 {
 name: `${globalName}-client`,
 appServicePlanId,
 resourceGroupName,
 }
);

Code 9. Declaration of the App Service Plan and Client App Service.

The final part of the infrastructure declaration file is shown in Code 10. Server

App Service is declared similarly to the client App Service. The server application

needs to use the Key Vault and have an Access Policy for it. It is created in the

second section of Code 10. The server's identity must be set to “SystemAssigned”

so that the Access Policy can be created. Azure creates an identity for the App

Service automatically, and it can be referenced when creating the Access Policy

to the Key Vault.

In the end of Code 10, an empty object is exported. Pulumi requires an object to

be exported from the declaration file. The object could contain information related

to the infrastructure, for example, resource names. Exported variables are not

needed in this case, and an empty object is exported.

26

const serverAppService = new azure.appservice.AppService(
 `${globalName}-server`,
 {
 name: `${globalName}-server`,
 appServicePlanId,
 resourceGroupName,
 identity: {
 type: "SystemAssigned", // Must be on so that app service can have
system assigned access to keyvault etc.
 },
 }
);

// Access policy for server to access keyvault
const ServerKeyvaultAccessPolicy = new azure.keyvault.AccessPolicy(
 `${globalName}-server`,
 {
 keyVaultId: keyVault.id,
 objectId: serverAppService.identity.principalId,
 tenantId: serverAppService.identity.tenantId,
 secretPermissions: ["get"],
 }
);

export {};

Code 10. Declaration of the server App Service and Key Vault Access Policy for
it.

27

4.6 Pipelines

In Azure Pipelines configuration, stages are the main sections of the pipelines. A

stage is an unlimited group of jobs that are executed in the desired order. One

job can include multiple tasks such as bash scripts, npm commands, or Azure

extension executions. The advantage of Azure Pipelines is a great number of

pipeline task extensions, for example, Azure Web App Deployment and good

integration with the Azure environment.

Azure pipelines are often configured with .yaml files located in the root of the

repository. Each of the pipelines must have its own configuration file, which

defines the pipeline structure.

4.6.1 Infrastructure

The purpose of the infrastructure pipeline is to automatically preview

infrastructure changes in the pull request and make the deployment automatic

and reliable. The stages of the infrastructure pipeline are shown in Figure 4.

Figure 4. Stages of the application infrastructure pipeline.

The infrastructure pipeline is separated into three stages. The first executed stage

is the environment stage, which sets the pipeline environment variables based

on the branch name. Environment variables define the used Pulumi Stack and

the Azure environment where the infrastructure is previewed and deployed.

The Preview stage is executed if the environment was set successfully. As a first

job in the Preview stage, all necessary dependencies related to Pulumi and setup

are installed. After a successful dependency installation, infrastructure is

previewed. The infrastructure preview will compare the existing infrastructure to

28

the one defined in the current branch. The preview will show the changes that will

be made to the infrastructure. If the infrastructure code has errors, the preview

stage will fail, and pipeline execution will be stopped.

If the preview stage is executed without errors, the pipeline will prompt user

permission to continue to the deployment stage. In the deployment stage,

dependencies must be installed again because stages use different execution

environments. After the dependencies are installed, infrastructure is deployed to

the desired environment.

Pipeline for infrastructure repository is configured in azure-pipelines.yaml file

located in the root directory. The first lines of the configuration file shown in Code

11 define when the pipeline execution should be triggered. In this example,

develop branch is the main trigger, but all pull requests trigger the pipeline.

trigger:
 - develop

pr:
 branches:
 include:
 - "*"

Code 11. Pipeline trigger configuration.

The first stage of the pipeline is presented in Code 12. It includes a bash script

that determines the environment to be used in the rest of the pipeline. Every

pipeline has system variables that are related to the repository or the pipeline

itself. Variables used to determine the environment are called

Build.SourceBranchName and System.PullRequest.TargetBranch. First

mentioned holds information of the source branch, which is the branch that

triggered the current execution. If the pipeline is run for a pull request, the lastly

mentioned system variable contains the target branch name.

29

stages:

 - stage: setEnvironment

 displayName: Set environment

 jobs:

 - job: setEnv

 displayName: Set environment

 steps:

 - script: |

 if [["$(Build.SourceBranchName)" == "develop" ||

"$(System.PullRequest.TargetBranch)" == "develop"]]

 then

 echo "##vso[task.setvariable variable=STACK;isOutput=true]dev"

 fi

 name: setEnv
Code 12. First stage of the pipeline which sets environment variables.

Based on the branch name, ENVIRONMENT and STACK environment variables

are set to desired environment values. In the bash script, pipeline variables can

be set by echoing the command shown in Code 13.

##vso[task.setvariable variable=VARIABLE_NAME;isOutput=true]VARIABLE_VALUE.

Code 13. Command to set pipeline variable.

The second stage shown in Code 14 is used to make sure the infrastructure code

does not have any errors and to preview the changes to be made before applying

them to the current infrastructure. STACK variable set in the previous stage is

used in the Pulumi@1 task. Variable group named common is added to provide

the Azure and Pulumi access tokens.

30

- stage: preview

 displayName: Preview infra

 variables:

 - group: common

 - name: STACK

 value: $[stageDependencies.setEnvironment.setEnv.outputs['setEnv.STACK']]

 jobs:

 - job: previewInfra

 displayName: Preview infra (pulumi)

 steps:

 - task: Npm@1

 displayName: Pulumi npm install

 inputs:

 command: install

 - task: Pulumi@1

 displayName: Pulumi infra preview

 inputs:

 azureSubscription: "Azure thesis resource manager"

 command: "preview"

 stack: $(STACK)

Code 14. Preview stage of the infrastructure pipeline.

The preview stage's first task is dependency installation, where all libraries are

installed to the pipeline workspace. After successful installation, Pulumi Azure

Extension is used to run the preview command with the stack defined by the

environment variable.

The last stage of the pipeline is deployment where infrastructure changes are

deployed to the real environment. In the example shown in Code 15 deployment

stage is executed only if the source branch name equals “develop”. This

conditional statement makes sure that changes from the pull requests will not be

deployed to the real environment. Deployment depends on the success of the

preview stage.

- stage: "deployDev"
 displayName: "Deploy to dev"
 dependsOn: preview
 condition: and(succeeded(),
eq(variables['Build.SourceBranchName'], 'develop'))
 jobs:
 - template: "azure-pipelines.deploy.yaml"
 parameters:
 commonVariablesGroup: "common"
 environment: "infra-dev"
 stack: "dev"

Code 15. Deployment stage of the infrastructure pipeline.

31

The deployment stage uses a template file, which can be thought of as a function

in programming. Template executes steps based on the parameters it receives.

The template is defined in a file named azure-pipelines.deploy.yaml. It receives

common variables group, deployment environment, and stack name as

parameters.

Deployment template file content is shown in Code 16. Template file parameters

are passed to the deployment job, which will deploy the infrastructure. Tasks run

in the job are almost identical to the preview stage apart from the Pulumi

command that is up instead of preview. Command “up” will apply the changes to

the current infrastructure.

parameters:
 - name: commonVariablesGroup
 type: string
 - name: environment
 type: string
 - name: stack
 type: string
jobs:
 - deployment: deployInfra
 displayName: "Deploy infra"
 variables:
 - group: ${{ parameters.commonVariablesGroup }}
 environment: ${{ parameters.environment }}
 strategy:
 runOnce:
 deploy:
 steps:
 - task: Npm@1
 displayName: Pulumi npm install
 inputs:
 command: install
 - task: Pulumi@1
 displayName: Pulumi up
 inputs:
 azureSubscription: "Azure thesis resource manager"
 command: "up"
 args: --yes
 stack: ${{ parameters.stack }}

Code 16. Infrastructure pipeline deployment template file.

Full source code for the infrastructure pipeline configuration can be found in

GitHub repository azure-thesis-infra. https://github.com/EetuK/azure-thesis-infra.

32

4.6.2 Server

The server pipeline has two stages, which are the build and test stage and

deployment stage, as shown in Figure 5. The build and test stage is started with

installing dependencies needed for the build itself and testing. After dependency

installation, automatic tests are executed. If tests are failed, the execution of the

pipeline will stop.

Figure 5. Stages of the server pipeline.

Build job will be started after successful test results. Build job builds the server's

production version, and after a successful build, all dependencies related to the

testing or building phases are removed. The build is archived in ZIP format, and

it is published as a pipeline artifact. The deployment stage cannot access the

resources created in the build and test stage, so the build artifact must be

published to the pipeline's global space so that the deployment stage can access

it.

In the deployment stage, environment variables and settings are configured to

the app service where the server is deployed. After successful configuration, the

build artifact is deployed to the app service, and execution of the pipeline is

finished.

33

The server pipeline configuration file starts by defining pipeline triggers identically

to the Code 11 explained in the Infrastructure chapter 4.6.1. In the current

configuration, automatic execution of the pipeline is triggered when changes are

made to the develop branch or pull request is created. The definition of the first

stage is shown in Code 17. Stages are defined as list and are executed in the

listed order by default.

34

stages:

 - stage: build

 displayName: Build

 jobs:

 - job: buildServer

 displayName: Build Server

 cancelTimeoutInMinutes: 15

 steps:

 - task: Npm@1

 displayName: "npm ci"

 inputs:

 command: "custom"

 customCommand: "ci"

 - task: Npm@1

 displayName: "npm run test"

 inputs:

 command: "custom"

 customCommand: "run test"

 - task: Npm@1

 displayName: "npm run build"

 inputs:

 command: "custom"

 customCommand: "run build"

 - task: Npm@1

 displayName: "npm prune production"

 inputs:

 command: "custom"

 customCommand: "prune --production"

 - task: ArchiveFiles@2

 inputs:

 rootFolderOrFile: "$(System.DefaultWorkingDirectory)"

 includeRootFolder: false

 archiveType: "zip"

 archiveFile: "$(Build.ArtifactStagingDirectory)/$(Build.BuildId).zip"

 replaceExistingArchive: true

 - task: PublishPipelineArtifact@1

 inputs:

 targetPath: "$(Build.ArtifactStagingDirectory)/$(Build.BuildId).zip"

 artifact: "server-$(Build.BuildId)"

 publishLocation: "pipeline"

 azureSubscription: "Azure thesis resource manager"

 command: "up"

 args: --yes

 stack: ${{ parameters.stack }}

Code 17. Build stage of the server pipeline.

The build stage includes one job, which includes all tasks needed. The three

tasks install dependencies, run tests and build the production version of the

server. The fourth task removes dependencies that are used for testing and are

not needed for the actual server functionalities. After building server, files are

published to the pipeline as a ZIP artifact. Timeout for the server building job is

35

configured to be 15 minutes for this project. Value of the timeout depends on the

size of the project and how long the job takes in normal conditions.

The deployment stage is shown in Code 18. The first phase of the deployment

stage uses Azure pipelines extension AzureAppServiceSetting@1, which alters

App Service configurations. The extension needs Azure subscription name, app

name, resource group name and desired app settings as parameters. App

settings are set as JSON array of objects which include environment variable

name and value. Environment variables are provided by variable group named

server-dev.

36

- stage: deploy

 displayName: Deploy

 dependsOn: build

 jobs:

 - deployment: deployServer

 displayName: Deploy server

 environment: server-dev

 variables:

 - group: server-dev

 strategy:

 runOnce:

 deploy:

 steps:

 - task: AzureAppServiceSettings@1

 displayName: Azure App Service Settings

 inputs:

 azureSubscription: "Azure thesis resource manager"

 appName: "dev-azure-thesis-server"

 resourceGroupName: "dev-azure-thesis"

 appSettings: |

 [

 {

 "name": "DB_USER",

 "value": "$(DB-USER)",

 "slotSetting": false

 },

 {

 "name": "DB_PASSWORD",

 "value": "$(DB-PASSWORD)",

 "slotSetting": false

 },

 {

 "name": "DB_SERVER",

 "value": "$(DB-SERVER)",

 "slotSetting": false

 },

 {

 "name": "DB_NAME",

 "value": "$(DB-NAME)",

 "slotSetting": false

 },

 {

 "name": "PORT",

 "value": "8080",

 "slotSettings": false

 }

]

 - task: AzureRmWebAppDeployment@4

 inputs:

 ConnectionType: "AzureRM"

 azureSubscription: "Azure thesis resource manager"

 appType: "webAppLinux"

 WebAppName: "dev-azure-thesis-server"

 packageForLinux: "$(Pipeline.Workspace)/server-

$(Build.BuildId)/*.zip"

 RuntimeStack: "NODE|12-lts"

 StartupCommand: "npm start"

Code 18. Deployment stage of the server pipeline.

37

The second task in the stage uses AzureRmWebAppDeployment@4 extension,

which is used to deploy the build artifact to App Service. Inputs for the task are

• connectionType which defines the type of authorization used to connect to

the web app. Value "AzureRM" means Azure Resource Manager service

connection.

• azureSubscription is the name of the service connection to the Azure

subscription created in the Azure Pipelines portal.

• appType which defines the type and operating system of the web app.

• WebAppName contains the exact name of the App Service resource in the

Azure.

• packageForLinux which contains the path to the artifact to be deployed.

• RuntimeStack which defines the environment where the web app is

executed.

• StartUpCommand which defines the command to start the web app.

The task deploys the ZIP artifact to the App Service, extracts it, and runs the

startup command. Full source code for the server pipeline configuration can be

found in GitHub repository azure-thesis-server. https://github.com/EetuK/azure-

thesis-server.

38

4.6.3 Client

The client pipeline structure is almost exactly like the server pipeline, and all jobs

with similar naming have the same functionality as the server pipeline in chapter

4.6.2. From Figure 6 can be seen that the building process differs from the server

pipeline only by dependency removal job. The client build command will

automatically include only necessary dependencies to the build.

Figure 6. Stages of the client pipeline.

The client code will not be explained to avoid repetition because of the similarities

between client and server pipeline setup. Full source code for the client pipeline

configuration can be found in GitHub repository azure-thesis-client.

https://github.com/EetuK/azure-thesis-client.

39

5 TESTING

Before the pipelines can be taken into use, functionality must be tested end-to-

end. Testing the pipelines is performed by creating scenarios where pipeline

should produce the expected outcome. All testing scenarios and results are

shown is the Table 1.

The testing scenarios are the most usual circumstances developer will face when

using automated pipelines as part of the daily work. All possible scenarios cannot

be tested because of limited time and capabilities of the platform. The most

important functionality with the pipelines is that execution will be stopped when

any unexpected error occurs. All scenarios in Table 1 produced expected

outcomes and were successfully passed.

Table 1. Pipelines testing scenarios and results.

Testing scenario Expected result Pipeline Passed
Change (commit) is made

to the develop branch.

Pipeline is triggered

automatically. All stages

are executed

successfully.

Client Yes

Server Yes

Infrastructure Yes

Pull Request is made with

develop as target branch.

Pipeline is triggered

automatically. Building
stage is executed.

Client Yes

Server Yes

Pull Request is made with

develop as target branch.

Pipeline is triggered

automatically. Set

environment and

preview stages are

executed.

Infrastructure Yes

Erroneous change

(commit) or pull request is

made that results as
failure in the automatic

tests or preview.

Pipeline execution is

stopped after testing or

preview phase raises
error.

Client Yes

Server Yes

Infrastructure Yes

40

6 CONCLUSIONS

This study aimed to create and document the creation process of DevOps

environments and automated CI/CD pipelines for Web application with client and

server structure -components with separate infrastructure repository. The goal

was achieved, and directional documentation was successfully created. All three

repositories have designated multi-environment pipelines that can be

parameterized for each environment. Almost all of the often-repeated tasks were

automatized, but most of the one-time tasks related to project creation must still

be done manually because automation will not pay the effort.

However, the implementation process was not straight forward all the time. The

documentation provided for YAML-pipelines was often causing confusion with the

discrepancy. YAML configuration in Azure Pipelines is a fairly new feature, and it

lacks some features that could be beneficial with more complicated pipelines.

Setting pipeline environment variables by the branch is possible already, but its

implementation is inconvenient. Trying to implement a fully dynamic pipeline

configured with multiple branches can be tricky and time-consuming. The easier

way is to abstract, for example, the deployment to the template file and configure

separate stages for each environment. More general good practices are needed

because there are only separate guidelines available for each technology at the

moment.

Due to the limited timeframe and resources used creating this document, there

are some areas of improvement for the future. Documentation of the setup phase

of the pipelines and repositories could be more extensive and precise. Azure

Pipelines platform and its features could have also been introduced more widely

to make documentation more comprehensive.

41

REFERENCES

Azure Documentation. 2020. Azure Key Vault Overview - Azure Key Vault.
Accessed 24.1.2021. https://docs.microsoft.com/en-us/azure/key-
vault/general/overview

Azure Documentation. 2020. App Service plans - Azure App Service. Accessed
24.1.2021. https://docs.microsoft.com/en-us/azure/app-service/overview-
hosting-plans

Azure Documentation. 2020. Managed identities for Azure resources. Accessed
6.1.2021. https://docs.microsoft.com/en-us/azure/active-directory/managed-
identities-azure-resources/overview

Azure Documentation. 2020. Azure App Service Settings task - Azure Pipelines.
Accessed 2.1.2021. https://docs.microsoft.com/en-
us/azure/devops/pipelines/tasks/deploy/azure-app-service-
settings?view=azure-devops

Azure Documentation. 2020. What is Azure SQL Database? Accessed
14.4.2021. https://docs.microsoft.com/en-us/azure/azure-sql/database/sql-
database-paas-overview

Dignan, L. 2021 Top cloud providers in 2021: AWS, Microsoft Azure, and
Google Cloud, hybrid, SaaS players. Accessed 1.2.2021.
https://www.zdnet.com/article/the-top-cloud-providers-of-2021-aws-microsoft-
azure-google-cloud-hybrid-saas/

Github.com. 2020. Git Handbook · GitHub Guides. Accessed 24.1.2021.
https://guides.github.com/introduction/git-handbook/

Karhunen, J. 2020. Azure App Service - “503 Service Unavailable.” Accessed
2.1.2021. https://janik6n.net/azure-app-service-503-service-unavailable

Kim G., Humble J., Debois P. & Willis J. 2016. The DevOps Handbook: How to
Create World-Class Agility, Reliability, and Security in Technology
Organizations. Portland: IT Revolution Press, LLC

Kirsch, D. & Hurwitz J., 2020. Cloud Computing for Dummies. John Wiley &
Sons, Inc., Hoboken, New Jersey.

Loukies, M. 2019. What is DevOps? Accessed 24.1.2021.
https://learning.oreilly.com/library/view/what-is-
devops/9781449340346/ch01.html

Loukides, M. 2014. Revisiting What is DevOps. Accessed
24.1.2021.http://radar.oreilly.com/2014/06/revisiting-what-is-devops.html

Microsoft Documentation. 2020. Define your naming convention - Cloud
Adoption Framework. Accessed 6.1.2021. https://docs.microsoft.com/en-

42

us/azure/cloud-adoption-framework/ready/azure-best-practices/resource-
naming

Pulumi. 2021. Create a New Project | Azure. Accessed 2.1.2021.
https://www.pulumi.com/docs/get-started/azure/create-project/

Pulumi. 2021. Azure Setup. Accessed 3.1.2021.
https://www.pulumi.com/docs/intro/cloud-providers/azure/setup/.

Pulumi. 2019. Infrastructure as Code Resource Naming. Accessed 6.1.2021.
https://www.pulumi.com/blog/infrastructure-as-code-resource-naming/

Pulumi. 2019. 7 Ways to Deal with Application Secrets in Azure. Accessed
6.1.2021. https://www.pulumi.com/blog/7-ways-to-deal-with-application-secrets-
in-azure

React documentation. 2021. Getting started. Accessed 13.2.2021.
https://reactjs.org/

Stackify. 2019. What Is Infrastructure as Code? How It Works, Best Practices,
Tutorials. Accessed 24.1.2021. https://stackify.com/what-is-infrastructure-as-
code-how-it-works-best-practices-tutorials/

Yochay, K. 2017. Azure - Inside the Azure App Service Architecture. Accessed
24.1.2021. https://docs.microsoft.com/en-us/archive/msdn-
magazine/2017/february/azure-inside-the-azure-app-service-architecture

