

Sicheng Che

DEVELOPING A SECOND-HAND

ONLINE SHOPPING APPLICATION

WITH JAVA AND ANDROID

Technology and Communication
2021

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who have helped me to turn these

ideas into something concrete.

I also would like to express my special thanks to my supervisor, Dr. Ghordrat

Moghadampour, who gave me the golden opportunity to develop this wonderful

project on this topic, which also gave me brilliant suggestions and I came to

know about so many new things. I am also thankful to the teachers at VAMK.

Any attempt at any level cannot be satisfactorily completed without the support

and guidance of my parents and friends. They gave me a lot of encouragement to

keep me going and finish the project.

I would like to thank the community on Stack Overflow, GitHub, CSDN and

other platforms and website. I spent a lot of time on these resource learning plat-

forms to complete this project.

Sincerely,

Vaasa, March 15, 2021

Che Sicheng

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Che Sicheng
Title Second-hand Online Shopping Application
Year 2021
Language English
Pages 81
Name of Supervisor Dr. Ghordrat Moghadampour
With the popularity of mobile phone, great changes have taken place in the way
people access and save information. Mobile phones are inseparable parts of our
lives and play a very important role in our lives. Meanwhile, with the improve-
ment of people’s lives, more and more second-hand items are ignored and can-
not be reused well.

The motivation of the thesis was to design and develop an online second-hand
shopping application, to provide a platform for people to deal with second-
hand goods.

This second-hand online trading application was implemented to be used with
Java and Android technology. The application consists of two parts, the client,
and the server. The client is based on the Android platform and mainly includes
registration, login, buy and sell own second-hand commodity, check orders, and
other functions. The server is a web application and mainly includes user man-
agement, goods category management, second-hand commodity management
and order tracking.

The program was tested on an Android mobile phone and different browsers
with Google Chrome and Firefox.

Keywords Second-hand trading application, Android, Eclipse

CONTENTS

CONTENTS ... 4

1 INTRODUCTION ... 12

1.1 BACKGROUND ... 12

1.2 OBJECTIVES .. 12

2 RELEVANT TECHNOLOGIES ... 13

2.1 ANDROID TECHNOLOGY ... 13

2.1.1 Basics of Android Platform ... 13
2.1.2 Android UI Introduction .. 14
2.1.3 Data Interaction between Android and Web Server .. 15

2.2 MVC PATTERN ... 16

2.3 JFINAL FRAMEWORK .. 17

2.3.1 MVC in JFinal ... 18
2.3.2 ActiveRecord in JFinal .. 20

2.4 REST API ... 20

2.5 JSON .. 20

2.6 DEVELOPMENT TOOLS .. 21

2.6.1 Eclipse .. 21
2.6.2 Android Studio ... 22

3 APPLICATION DESCRIPTION .. 23

3.1 GENERAL DESCRIPTION .. 23

3.2 QUALITY FUNCTION DEPLOYMENT ... 23

3.2.1 Must-have requirements .. 23
3.2.2 Should-have Requirements .. 24
3.2.3 Nice-to-have Requirements ... 25

3.3 USE CASE DIAGRAM ... 25

3.3.1 User Use Case Diagram ... 25
3.3.2 Administrator Use Case Diagram .. 26

3.4 CLASS DIAGRAM ... 31

3.5 SEQUENCE DIAGRAM .. 32

4 SYSTEM DESIGN .. 39

4.1 SYSTEM ARCHITECTURE DESIGN .. 39

4.2 DATABASE DESIGN ... 40

4.3 GRAPHICAL USER INTERFACE (GUI) DESIGN ... 42

4.3.1 Web UI Design .. 42
4.3.2 Android UI Design ... 45

5 IMPLEMENTATION ... 54

5.1 DATABASE CONNECTION IMPLEMENTATION ... 54

5.2 SERVER-SIDE IMPLEMENTATION ... 56

5.2.1 User Management .. 56
5.2.2 Category Management ... 57
5.2.3 Commodity Management .. 57
5.2.4 Order Management .. 58

5.3 CLIENT-SIDE IMPLEMENTATION .. 58

5.3.1 Login .. 58
5.3.2 Registration .. 60
5.3.3 Add Commodity Shopping Cart and Purchase .. 61
5.3.4 Calling Facebook ... 63
5.3.5 Rating and Give Comments ... 63
5.3.6 Sell Commodity ... 65

6 TESTING ... 67

6.1 WEB APPLICATION TESTING .. 67
6.1.1 Administrator Login .. 67
6.1.2 User Management .. 68
6.1.3 Category Management ... 69
6.1.4 Commodity Management .. 70
6.1.5 Order Tracking ... 71

6.2 ANDROID APPLICATION TESTING .. 72

6.2.1 New User Registration ... 72
6.2.2 Forget Password ... 73
6.2.3 User Login ... 73
6.2.4 Add to Shopping Cart .. 74
6.2.5 Add to Watchlist .. 75
6.2.6 Launch Facebook ... 75
6.2.7 Comments .. 76
6.2.8 Sell Commodity ... 77
6.2.9 Reset Password .. 78

7 CONCLUSIONS ... 79

7.1 FUTURE WORK .. 79

REFERENCES .. 80

 7

LIST OF FIGURS AND TABLES

Figure 1. Android architecture diagram 13

Figure 2. Android UI architecture diagram 14

Figure 3. Android UI Display 15

Figure 4. Data Interaction Between Android and Web Server 16

Figure 5. JFinal Framework 18

Figure 6. MVC in JFinal 19

Figure 7. User Use Case Diagram 26

Figure 8. Administrator Use Case Diagram 27

Figure 9. Class Diagram 1 31

Figure 10. Class Diagram 2 32

Figure 11. Administrator Login Sequence Diagram 32

Figure 12. Administrator Modifies Users Sequence Diagram 33

Figure 13. Administrator Modifies Category Sequence Diagram 33

Figure 14. Administrator Modifies Commodity Sequence Diagram 34

Figure 15. Administrator Modifies Order Sequence Diagram 34

Figure 16. User Registration Sequence Diagram 35

Figure 17. User Login Sequence Diagram 35

Figure 18. User Retrieve Password Sequence Diagram 36

Figure 19. Collect Commodity to Watchlist Sequence Diagram 36

Figure 20. User Add and Checkout Shopping Cart Sequence Diagram 37

Figure 21. User Buy Commodity Sequence Diagram 37

Figure 22. Sell Commodity Sequence Diagram 38

Figure 23. System Architecture Diagram 39

Figure 24. Database ER Diagram 42

Figure 25. Login Page 43

Figure 26. Management System Homepage 43

 8

Figure 27. Left-Vertical Navigation 44

Figure 28. User Management Section 44

Figure 29. Category Management Section 44

Figure 30. Commodity Management Section 45

Figure 31. Order Tracking Section 45

Figure 32. Launcher Icon 45

Figure 33. Login Layout and Design 46

Figure 34. Sign In Layout And Design 46

Figure 35. Forget Password Layout and Design 47

Figure 36. Main page and design 48

Figure 37. Launch Facebook 48

Figure 38. Profile Layout Design 49

Figure 39. Shopping Cart Layout and Design 49

Figure 40. Buy Layout and Design 50

Figure 41. Watchlist Layout and Design 50

Figure 42. My Order Layout and Design 51

Figure 43. Rating and Give Comment layout 52

Figure 44. Sell Commodity layout 52

Figure 45. Reset Password Layout and Design 53

Figure 46. Administrator Login Successfully 67

Figure 47. Administrator Modifying User Successfully 68

Figure 48. Administrator Modifying User on Android Testing 68

Figure 49. Administrator Modifying Category Successfully 69

Figure 50. Administrator Modifying Category on Android Testing 69

Figure 51. Administrator Modifying Commodity Successfully 70

Figure 52. Administrator Modifying Commodity on Android Testing 70

Figure 53. Administrator Modifying Order Successfully 71

 9

Figure 54. Modifying Order on Android Testing 71

Figure 55. Successfully Login Android App 72

Figure 56. Update in User Management 72

Figure 57. Retrieve the Password 73

Figure 58. Error Message Display Successfully 74

Figure 59. Successfully Add, Delete and Pay in Shopping Cart 74

Figure 60. Successfully Add and Remove Commodity to/from Watchlist 75

Figure 61. Launch Facebook 76

Figure 62. Comment Successfully 76

Figure 63. Upload Commodity Successfully 77

Figure 64. Upload Commodity Successfully in Commodity Management 77

Figure 65. Successfully Login After Resetting Password 78

Figure 66. Reset the Password Successfully in User Management 78

Table 1. User Management Module Analysis 27

Table 2. Commodity Management Module Analysis 28

Table 3. Category Management Module Analysis 29

Table 4. Order Management Module Analysis 30

 10

LIST OF CODE SNIPPETS

Code Snippet 1. Get Request Method 54

Code Snippet 2. POST Request Method 55

Code Snippet 3. Parsing and conversion of JSON data 55

Code Snippet 4. Local Database Connection 55

Code Snippet 5. Delete user by Administrator 56

Code Snippet 6. Edit user by Administrator 56

Code Snippet 7. Add new category by Administrator 57

Code Snippet 8. Delete commodity by Administrator 58

Code Snippet 9. Changes the order status by Administrator 58

Code Snippet 10. Identify the Login User 59

Code Snippet 11. Login button 59

Code Snippet 12. Register A New User 60

Code Snippet 13. Add or collect commodity to Shopping Cart or Watchlist
 62

Code Snippet 14. Get SharePreference Object 62

Code Snippet 15. Read Data from SharePreference 62

Code Snippet 16. Calling Facebook 63

Code Snippet 17. Rate the Received Order 63

Code Snippet 18. Give Comments 64

Code Snippet 19. Sell Second-hand Commodity 66

 11

 LIST OF ABBREVIATIONS

ADT Android Development Tool

API Application Programming Interface

APK Android Application Package

App Application Program

AVD Android Virtual Device

B/S Browser/Server

CSS Cascading Style Sheets

Config Configuration

DB Database

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

JDK Java Development Kit

JSON JavaScript Object Notation

JSP Java Server Pages

MVC Model-View-Controller

ORM Object Relational Mapping

SDK Software Development Kit

SQL Structured Query Language

SMS Short Message Service

UI User Interface

URL Uniform Resource Locator

WIFI Wireless Fidelity

XML Extensible Markup Language

 12

1 INTRODUCTION

1.1 Background

With improvement of life quality, more and more second-hand items are piled up

at homes or offices and cannot be better reused. A platform needs to be designed

and developed so that people can manage unused items by publishing information

about the items they want to sell. At the same time, every registered user also can

browse and search to buy what they need.

At present, second-hand online shopping applications for second-hand items based

on the Android platform are still immature in the current software market, and most

second-hand shopping applications are still traditional web applications. Therefore,

it will be an innovation to design and develop a second-hand online shopping mo-

bile phone application based on the Android platform. Due to the widespread use

of mobile devices, the application will enable people to easily access required com-

modity information and perform convenient operations. When the Web application

is not available, the mobile application can also help in outdoor areas.

1.2 Objectives

The project, a second-hand online shopping system, is designed and developed

based on Java and Android platforms. It is convenient for users to view second-

hand commodity, search for commodity by category, and buy and sell own second-

hand commodity. The most effective way to use the application is to install the

application on the user’s mobile device.

Another part of this project is the back-end management system, which can manage

user, second-hand commodity and order information.

 13

2 RELEVANT TECHNOLOGIES

2.1 Android Technology

2.1.1 Basics of Android Platform

Android is a very widely used smartphone operating system and software platform,

mostly used on handy mobile devices. Android is structured in a layered framework,

with four layers from the top to the bottom, namely the Applications layer, the Ap-

plications Framework, Libraries and Android Runtime, and the Linux Kernel. The

Applications layer contains a variety of applications written in Java that interact

directly with the user, such as SMS messaging clients, image galleries and web

browsers. The application framework layer provides APIs for developers to develop

in the application layer, enabling developers to develop applications quickly and

efficiently. The system runtime library is what Android runs constitutes, specifi-

cally for the various components in the Android system. Android is based on the

Linux operating system kernel and implements hardware device drivers, process

and memory management, network protocol stacks, power management and wire-

less communication at the Linux kernel layer. The system is developed on the ap-

plication layer of Android. The application involves the four main components of

the application framework layer, Intent and Intent Filter and other related technol-

ogies, as well as the design of the user interface using Android's five main layouts.

The Android system architecture diagram is shown in Figure 1. /1/

Figure 1. Android architecture diagram

 14

2.1.2 Android UI Introduction

The Android UI provides its framework, with its main components being the home

screen, navigation, and notifications. The application needs to ensure that they form

an integral whole, which can be seen in detail in Figure 2.

Figure 2. Android UI architecture diagram

1) Home Screen

It can be customized with application shortcuts, folders, and some small

widgets. Switching between home screen panels is mainly done by swiping

left and right. The most critical personal shortcuts are kept in the bottom fa-

vorites. The entire collection of applications and widgets is accessed by

touching the All applications button in the center of the favorites. This is

shown in Figure 3..

2) All-applications

The All Applications page provides a specific view of all installed applica-

tions and window components, as shown in Figure 3.

3) Switching

One of the main ways of switching between applications is through screen

switching. This guides the user between the relevant tasks. The navigation bar

on the right-hand side reveals which applications the user is interacting with.

At the bottom, the most recent application is available to the user. Switching

to the application takes place by touching it. Removing items is done by

swiping to the left or right. This is shown in Figure 3. /2/

 15

Figure 3. Android UI Display

2.1.3 Data Interaction between Android and Web Server

The main ways of distributing applications in Android are firstly, as a client appli-

cation, which relies on the Android SDK to complete the development and is in-

stalled on the user's device with the .apk suffix; secondly, as a web application,

which is developed using web standards and accessed via a web browser without

installing anything. /3/

Several factors influence the final decision on the application approach, but the

ability to support viewport attributes and such further simplifies web application

development. In addition to this, it is possible to determine the appropriate size of

the web application according to the screen size, provide images and different styles

according to the screen resolution. /3/

In this case, the introduction of screen considerations can make web application

development even less difficult. This is because the screens of all Android types

can help to design the web pages well.

It is one of the features of the system that it is not necessary to design the application

on the client side as well as the web side. It is possible to use both aspects together

to develop the relevant client and to add web pages to the application. The diagram

 16

below visualizes how web pages can be accessed from a web browser or an Android

application. This is shown in Figure 4.

Figure 4. Data Interaction Between Android and Web Server

At the same time, it is not necessary to develop a separate Android application to

reflect the website, so the design can be achieved in the following way. It is only

necessary to define the appropriate interface to connect the interface to the Android

application, and the API can be called via the interface JavaScript, because in this

application it is possible to add interface content to the Android application via

WebView and to add JavaScript to the Android API application. Additional features

in the WebKit framework further enhance Android's support for screen density.

This feature allows web pages to specify viewport attributes and modify image at-

tributes and styles. Because these features are part of the Android WebKit frame-

work, the Android browser (the default web browser provided by the platform) and

WebView support the same viewport and screen resolution properties. /3/

2.2 MVC Pattern

MVC, short for View-Controller-Model, was created in the 1980s and is a widely

used software design pattern today. It separates the input, output, and deal of an

application, each being responsible for its own responsibilities.

The following is an introduction to the view, control and model layers of MVC：

 17

1) View

View layer is the presentation of the web system and is the interface that con-

nects the user to the system. The view can send requests to the model layer to

query data or accept update data events passed from the model layer, thus syn-

chronizing the user interface with the database updates, but the view layer can-

not directly change the data in the model layer. After the view layer passes the

request to the controller, the view does not need to care about the function calls

that follow. But when the model layer is modified, the view layer responds to

the model layer's changes.

2) Controller

The controller is responsible for receiving requests from the user, connecting

the model and view layers, and bringing all three together to fulfil the user's

request. When the user sends a request, the controller accepts the request but

does not process the data. The controller is mainly responsible for receiving the

request, calling the corresponding function module according to the request and

finally calling the corresponding view to display the interface. /4/

3) Model

The model is the core component of the pattern. It is the dynamic data structure

of the application, independent of the user interface, and it directly manages

the data, logic, and rules of the application. /5/ Data requests from the view

layer are ultimately processed by the model layer, which in turn returns the data

to the view layer, thereby updating the view layer and displaying the result data.

2.3 JFinal Framework

JFinal is an agile development based on the Java language WEB + ORM framework,

its main design goal is rapid development, less code, simple and easy to learn, pow-

erful, easy to extend and Restful. /6/

The framework consists of five main parts: Handler, Interceptor, Controller, Render

and Plugin. Figure 5 shows the basic architecture of JFinal.

 18

Figure 5. JFinal Framework

The main features of JFinal are as follows /6/:

� MVC architecture, ingenious design, simple to use.

� Convention over configuration, zero configuration, no XML

� Original DB and Record model pattern, making database development ulti-

mate fast.

� Reloading modified Java files automatically, with no need to restart web

server during development process.

� Plugin architecture with string scalability

� Complete functionality with most features of struts2

2.3.1 MVC in JFinal

The MVC layers in JFinal are described next.

1) View

Support for normal jsp, html, but also velocity, CommonTemplate,

freemarker, Smarty4j templates and other specialist display methods. These

include, for example, jfreechart, JasperReport, and iReport.

2) Controller

All requests are intercepted by the JFinalFilter and the Handler is called.

The Handler receives all requests, including static requests, such as lo-

calhost/css/style.css or localhost/img/logo.jpg, and the Handler can change

the resource to which the request is directed parameter, such as the String

 19

target parameter. If the request is dynamic, it is handed over to the Ac-

tionHandler. Once in the ActionHandler, it will first get the Action object

corresponding to the specific action based on the target parameters of the

request mapped from the cached ActionMapping, which encapsulates the

method name, the interceptor on the method. The controller and Interceptor

where the method is located only intercepts requests for the action. The Ac-

tionInvocation is then composed based on the Action and the Controller in-

stance and is then processed through the invoke in ActionInvocation.

This is an obvious implementation of the Command pattern. When the in-

terceptor is called, the current controller's method corresponding to the re-

quest is invoked. Finally, render is responsible for rendering the correspond-

ing page based on the current data, assembling the data into the required

data format, then jumping to the specified page.

3) Model

JFinal model mainly completes data addition, modification, deletion, and

query, like the Rails framework for database operations, mainly using a

combination of DB and ActiveRecord for database operations. The main use

of object-relational mapping ideas, through the reflexive operation of data

tables, to complete the mapping of data table columns and class attributes,

and support a variety of different types of database, different databases to

generate different SQL statements. Such operations greatly simplify the da-

tabase operations to improve the efficiency of system development.

Figure 6. MVC in JFinal

 20

2.3.2 ActiveRecord in JFinal

ActiveRecord is a plug-in of the JFinal framework. It is one of the core functions

of JFinal. The relational object mapping ORM is completed by ActiveRecord in

JFinal. After the system is configured with the database, the data table is reselected

by using object relational mapping. ActiveRecord supports many different types of

databases and generates different SQL statements for different database types.

2.4 REST API

REST API (also known as RESTful API) is an application programming interface

(API or Web API) that conforms to the constraints of the REST architecture style

and can interact with RESTful Web services. REST stands for Representational

State Transfer and was created by computer scientist Roy Fielding.

REST was used to describe the standard methods for creating HTTP APIs and found

that the four common behaviors (view, create, edit, and delete) could be mapped

directly to the GET, POST, PUT and DELETE methods already implemented in

HTTP.

When a client makes a request via the RESTful API, it transmits a representation

of the state of the resource to the requester or endpoint. This information or repre-

sentation is passed via HTTP in one of several formats: JSON (Javascript Object

Notation), HTML, XLT, Python, PHP or plain text. JSON is the most commonly

used specialist programming language because, despite its name, it is language-

agnostic and both humans and machines can both read it./7/

2.5 JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is

easy for humans to read and write. It is easy for machines to parse and generate.

JSON is a text format that is completely language independent but uses conventions

that are familiar to programmers of the C-family of languages, including C, C++,

C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON

an ideal data-interchange language. /8/

 21

Any of the supported types can be represented by JSON, such as strings, numbers,

objects, arrays and so on. However, objects and arrays are the two more specific

and commonly used types.

Objects in JS are the contents of {} wrapped in brackets and have the data structure

{key1: value1, key2: value2, ...} key-value pairs. In object-oriented languages, the

key is the property of the object and the value is the corresponding value. The key

name can be represented as an integer or a string. The type of the value can be of

any type.

{"firstName": "Brett", "lastName": "McLaughlin"}

Arrays in JS are the contents enclosed in square brackets [] and have the data struc-

ture ["java", "javascript", "vb", ...] of the index structure. In JS, arrays are a rela-

tively special data type that can also use key-value pairs like objects, but it is the

indexes that are used more often. Again, the type of value can be of any type.

{

"people":[

{

"firstName": "Brett", "lastName":"McLaughlin"

},

{

"firstName":"Jason", "lastName":"Hunter"

}

]
}

2.6 Development Tools

2.6.1 Eclipse

The Eclipse source code is open in nature and contains only a framework and a set

of services, however there is a standard set of plugins from which the development

environment can be built, and it is a Java based extensible development platform.

To write Android projects based on this, the appropriate development environment

needs to be formed first, in which the tool needs to be installed first, then the ADT

 22

plugin on it, and then specify the correct path to the SDK must be specified, so that

the Android virtual machine can be created. /9/

2.6.2 Android Studio

Android Studio is an Android integrated development tool from Google, based on

IntelliJ IDEA. Like Eclipse ADT, Android Studio provides integrated Android de-

velopment tools for development and debugging. /10/

 23

3 APPLICATION DESCRIPTION

3.1 General Description

The main requirement of the application is to be able to allow users to complete

online second-hand transactions on the platform. The application then needs a re-

mote database to store user information, commodity information and order infor-

mation. The system consists of a client side (Android application) and a server side

(WEB application). The client and server side of the application must include the

following functions.

� Client-side

The client is mainly operated by general users (not administrators). It includes

functional modules, such as user registration, user login, commodity infor-

mation, order information, logistics status checking and user profile modifica-

tion.

� Server-side

The server side is mainly operated by the administrator. It includes functional

modules, such as user information management, category management, com-

modity management as well as order dispatch and sign-off processing.

3.2 Quality Function Deployment

Based on an analysis of the user's needs, the requirements of the application can be

divided into three different categories to make the user experience better: must-have,

should-have and nice-to-have.

3.2.1 Must-have requirements

The must-have requirements of the application are listed below:

Client-side 1. Register as a new user.

2. Log in and out of the application.

 24

3. Display of commodity categories, commodity infor-

mation.

4. Users can make purchases.

5. Display of individual user order information and viewing

of logistics status.

Server-side

1. Login to the client application only by the administrator.

2. There are four main functional sections: User manage-

ment, Category management, Commodity management,

Order tracking.

3. Edit and delete users, commodity, and orders on request.

3.2.2 Should-have Requirements

The should-have requirements of the application are listed below:

Client-side

1. If a user forgets their password, they can retrieve it from

the phone number they filled in during registration.

2. The ability to find commodity by name keyword.

3. The status of the commodity is "received”, and the user

can give some comments.

4. Users can upload their own information about the used

items they want to sell.

5. Display of the results of the server-side's editing to im-

prove the user experience.

6. Users can add items to the shopping cart and watchlist.

 25

Server-side Edit the information of Administrator.

3.2.3 Nice-to-have Requirements

The nice-to-have requirements of the application are listed below:

Client-side

1. Communication between buyers and sellers by calling

third party social networking software Facebook.

2. Buyers can rate their purchases with rating, "Very Good"

"Good" and "Not Good”.

3. Reviews of sold items can be displayed to all users.

4. Users can add photos when uploading commodity.

5. New users can add an avatar when registering.

6. The user can reset password.

7. Responsive UI

3.3 Use Case Diagram

The system is divided into two main categories of users, namely users and admin-

istrators.

3.3.1 User Use Case Diagram

The user use case diagram is shown in Figure 7.

 26

Figure 7. User Use Case Diagram

The user use case diagram shows the user's interaction with the system. The user

needs to register and log in to the system. Users can register with their username

and password and set their nickname and avatar. Once registered, the user can log

in to the online second-hand trading application. Users do not have the right to

modify the data within this application system. If the user forgets their password,

they can retrieve it by using the phone number they filled in during registration.

Once logged in, the user can view information about all second-hand goods. The

user can add commodity to the shopping cart, collect them and buy them. Users can

also communicate with the seller by long clicking on the commodity and calling the

third-party social networking software Facebook. In addition, users can view all

order messages including the status of the delivery. After confirming receipt of the

commodity, users can rate and review it.

Users can also upload their own second-hand items that they want to sell, which

requires a photo of the item and other basic information. The password can also be

reset.

3.3.2 Administrator Use Case Diagram

The manager (administrator) use case diagram is shown in Figure 8.

 27

Figure 8. Administrator Use Case Diagram

Table 1 shows the user management module analysis.

Table 1. User Management Module Analysis

Case Name

Case Description

Prerequisites

User Management

Management of user information such as editing and deleting.

The system login successfully and the network connection is work-

ing.

Main Operations

 Editing User

1) The administrator opens the system.

2) Enter the system login screen and enter the set login account

and password.

3) Login to the system and enter the main system interface.

4) Click on the User Management module to access the user

management interface.

5) Click the “Edit” button to edit exited user information.

6) After filling the form, click the OK button to confirm and

the user information will be edit in the database.

 Deleting User

 28

1) In the User management interface.

2) Click “Delete” button to delete to the user you want to de-

lete.

3) Click the Confirm button to delete the user information and

the corresponding user information is deleted from the da-

tabase.

 Table 2 presents the commodity management module analysis.

Table 2. Commodity Management Module Analysis

Case Name

Case Description

Prerequisites

 Commodity Management

Adding and deleting commodity information is managed.

System login successfully and network connection is normal.

Main Operations

Editing Commodity

1) The administrator opens the system.

2) Enter the system login screen and enter the set login ac-

count and password.

3) Login to the system and enter the main system interface.

4) Click on the commodity management module to enter the

user interface.

5) Click “Edit” button and follow the prompts to select or en-

ter information, such as name, category, and price.

6) After filling the form, click the OK button to confirm and

the commodity information will be edit in the database.

Deleting Commodity

1) In the Commodity management interface.

2) Click “Delete” button to delete to the commodity you want

to delete.

3) Click the Confirm button to delete the commodity infor-

mation and the corresponding commodity information is

deleted from the database.

 29

. Table 3 shows the category management module analysis.

Table 3. Category Management Module Analysis

Case Name

Case Description

Prerequisites

 Category Management

Management of category information such as adding and deleting.

The system login successfully and the network connection is work-

ing.

Main Operations

Adding New Category

1) The administrator opens the system.

2) Login to the system and enter the main system interface.

3) Click on the category management function module to enter

the category management interface.

4) Click the Add category information button on the category

management interface to enter the Add category information

interface.

5) Follow the prompts and select or enter the category name

and other information.

6) After confirming that the information is correct, click the

OK button to confirm the addition and the category infor-

mation will be added to the database.

Deleting Category

1) You are in the category management interface.

2) Click the Delete button to delete the category you want to

delete.

3) Click the Confirm button to delete the category information,

and the corresponding category information is deleted from

the database.

 30

 Order management module analysis can be seen in Table 4.

Table 4. Order Management Module Analysis

Case Name

Case Description

Prerequisites

Order Management

Management of order information such as ship, received and delet-

ing.

The system logs in properly and the network connection is work-

ing.

Main Operations

Change logistics status: Shipped

1) The administrator opens the system.

2) Login to the system and enter the main system interface.

3) Click on the order tracking module to enter the order man-

agement interface.

4) Click on the 'Ship' button on the order tracking interface, the

current order status will be 'Shipped', and the corresponding

order status information will be changed in the database.

Change the logistics status: Received

1) The administrator opens the system.

2) Login to the system and enter the main system interface.

3) Click on the order tracking module to enter the order man-

agement interface.

4) Click on the 'Received' button on the order management in-

terface, the current order status will be 'Received', and the

corresponding order status information will be changed in

the database.

Deleting Order

1) You have entered the order tracking interface.

2) Click ‘delete’ button to delete the order you want to delete.

3) Click on the Confirm button to delete the order information

and the corresponding order information is deleted from the

database.

 31

3.4 Class Diagram

A Class diagram is a static view that describes the classes in a system, and the rela-

tionships between the classes. It is a model type, a static model type to be precise.

Class diagrams represent classes, interfaces, and the collaborative relationships be-

tween them. The project has two parts, the Web-side, and the Android-side.

Figure 9 shows the class diagram of the main classes for web development. The

Controller and Model parent classes are functional classes provided by the JFinal

development framework. The specific location of these two packages is com.jfi-

nal.core.Controller and com.jfinal.plugin.activerecord.Model.

Figure 10 shows the class diagram of the main development classes for Android

application development projects.

Figure 9. Class Diagram 1

 32

Figure 10. Class Diagram 2

3.5 Sequence Diagram

3.5.1 Administrator Login

Figure 11 depicts a sequence diagram of how the administrator logs into the back-

end management system. First, the administrator has a fixed password and

username (username: admin & password: admin) in the database. Then, the admin-

istrator can use the username and password to log in to the management system.

Figure 11. Administrator Login Sequence Diagram

 33

3.5.2 Administrator Delete/Edit User

Figure 12 shows the sequence diagram of the administration of users by the admin-

istrator. After the administrator has successfully logged into the management sys-

tem, he/she can delete and modify the registered users by clicking on the "User

Management" section. While the administrator is operating, the data of the edited

user is deleted or modified in the database by SQL statements.

Figure 12. Administrator Modifies Users Sequence Diagram

3.5.3 Administrator Delete/Edit Category

Figure 13 shows the sequence diagram for the administrator to manage the com-

modity categories. When the administrator logs into the management system,

he/she can delete and modify the existing commodity categories by clicking on the

"Category Management" section. The data of the edited category is deleted or mod-

ified in the database by SQL statements while the administrator is operating.

Figure 13. Administrator Modifies Category Sequence Diagram

 34

3.5.4 Administrator Add/Delete/Edit Commodity

Figure 14 shows the sequence diagram for the administrator to manage commodity

uploaded by users. Having logged into the management system, the administrator

can delete, modify, and add existing commodity by clicking on the "Commodity

Management" section. When the administrator operates, he can delete or modify

the data of the edited commodity in the database through SQL statements.

Figure 14. Administrator Modifies Commodity Sequence Diagram

3.5.5 Administrator Processes Order

Figure 15 shows the sequence diagram of the administrator for order management.

After successfully logging into the management system, the administrator can click

the "Order Tracking" section to simulate the shipping and received of existing or-

ders. During the operation of the administrator, the data of the edited order status

will be deleted or modified in the database through SQL statements.

Figure 15. Administrator Modifies Order Sequence Diagram

 35

3.5.6 User Registration

Figure 16 shows the sequence diagram of user registration. When the user starts the

software, it will enter the login interface, and the user can click "New User" to reg-

ister a new user. If the user already exists, the application will feedback the user's

existed Toast; if successful, it will also feedback the registered successfully Toast.

When the user is successfully registered, the application will return to the registra-

tion interface, and the user can log in with the registered Facebook username and

password.

Figure 16. User Registration Sequence Diagram

3.5.7 User Login

Figure 17 shows the sequence diagram of user login. When the user opens the pro-

gram, he/she enters the same username and password stored in the database to suc-

cessfully log in to the application homepage. If the username and password are en-

tered incorrectly, or the account does not exist, the appication will send user a Toast.

Figure 17. User Login Sequence Diagram

 36

3.5.8 User Forget Password

Figure 18 shows the sequence diagram of getting the password back when the user

forgets the password. The user enters the login interface. In case of a forgotten pass-

word, the user can click "Forgot your password?" and fill in the Facebook username

and phone number. By comparing with the phone number of the user corresponding

to the database, if the phone number is the same, the user's password toast will be

returned; if not, the wrong toast will be returned.

Figure 18. User Retrieve Password Sequence Diagram

3.5.9 User Collect Commodity to Watchlist

Figure 19 shows the sequence diagram of the user collecting commodity to the

Watchlist. After successfully logging in, the user enters the application home page

to view the commodity list. The user can click the commodity to collect it in the

watchlist, and the data of the commodity will also be updated in the database. The

user also can remove the commodity from the watchlist by clicking on it from the

watch list.

Figure 19. Collect Commodity to Watchlist Sequence Diagram

 37

3.5.10 User Add Commodity to Shopping Cart

Figure 20 shows the sequence diagram of a user adding an item to the shopping cart

and checking out. After the user logs in successfully, the user can click on the com-

modity and add it to the shopping cart. The user can view the shopping cart list by

clicking the shopping cart icon on the top right of the home page. Clicking on the

button below will check out the shopping cart and generate an order in "My order"

at the same time. The user can also click on an item to remove it from the shopping

cart. In the database, the status of commodity and orders are updated.

Figure 20. User Add and Checkout Shopping Cart Sequence Diagram

3.5.11 User Buy Commodity

Figure 21 shows the sequence diagram for direct purchase of commodity by users.

After successful login, users can click on the commodity, purchase the commodity

directly and generate an order.

Figure 21. User Buy Commodity Sequence Diagram

 38

3.5.12 User Sell Commodity

Figure 22 shows the sequence diagram of the user uploading commodity. When the

user login successfully, they can click "Profile" - "Sell" to upload the commodity.

The entered commodity information will be added to the database. The successfully

uploaded commodity will be displayed in the Commodity List screen after refresh-

ing.

Figure 22. Sell Commodity Sequence Diagram

 39

4 SYSTEM DESIGN

This section provides an overview of the system architecture design, database de-

sign and user interface design of the application.

4.1 System Architecture Design

The second-hand online shopping system generally adopts a B/S structure for sys-

tem design. After registering as a user of the system, the user can interact with the

backend server anytime and anywhere via Android device by Wi-Fi or mobile data

network. After successfully logging in, the user can perform appropriate operations

as needed. After HTTP interacts with the back-end data, the server will perform

appropriate processing according to the client's request to achieve database access

and send the user interface back to the mobile client to achieve smooth data inter-

action. In summary, the overall architecture of this system includes the Android

mobile client, the backend server, and the MySQL database. The architecture of the

system is shown in Figure 23.

Figure 23. System Architecture Diagram

As can be seen from the diagram above the system is made up of three parts, the

client, the server, and the database, with the three levels taking on different roles in

the system.

The client is the mobile terminal, where the user enters the system through a mobile

device and establishes communication with the system. For this system, this layer

is built on top of the Android-based application and includes the interface part of

 40

the application (Android view) and the logical control of the application (Android

controller). This layer obtains information by calling the server interface.

The server is a web application based on Java. Unlike traditional web applications,

this layer does not contain the display of the interface, but only provides the JSON

data interface for the frontend. This layer includes a control layer and a business

logic layer. The control layer is responsible for providing the external interface and

data definition for the interface. The business logic classes define the logic for ac-

cessing database information and the methods for accessing the database.

The data layer contains two data sources, one for accessing the local database and

the other for accessing the database of the existing Android platform based used

goods trading application system. Both in terms of data interaction and the design

of the interface and flow, the system follows the MVC design principles, dividing

the functional flow of the system into layers with independent functions. In the fu-

ture, the system will need to be modified or extended. In short, it is very convenient

to improve the scalability of the system.

At the same time, the system security design needs to be applied throughout the

data flow to provide security for the storage, transmission, and utilization of the

information system.

4.2 Database Design

The database of the application is created using MySQL. There are seven tables in

the database, including manager table, user table, commodity table, category table,

orders table, shopping cart table and watchlist table. Figure 24 below shows the E-

R diagram of the database.

� manager table - The manager table is used to record and manage the manager's

username, password, nickname, and telephone number.

� user table - The user table is used to record information about the user, which

includes the user ID, username, password, nickname, and phone number. The

u_id is the primary key of this table.

 41

� category table - This table is used to record the category of second-hand com-

modity, including category ID and category name. The category id is the pri-

mary key.

� commodity table – The commodity table is used to record the information of

the second-hand commodity, including commodity ID, picture, commodity

name, final price, original price, description of the commodity, uploaded time,

status, and category. The primary key of the table is c_id. The table is connected

to the primary key(u_id) of the user table in such a way that both the seller's

u_id and u_name are available.

� order table - The order table mainly contains basic information about the

secondhand items that have been sold. The structure is similar to the commod-

ity table, except that here the buyer's information is obtained from the user table

via u_id.

� watchlist table and shopping table - These two tables mainly record infor-

mation about the second-hand commodity that have been added to the shopping

cart and the watchlist. The main connection is made via the c_id and the com-

modity table to get the commodity information.

 42

Figure 24. Database ER Diagram

4.3 Graphical User Interface (GUI) Design

The main design languages for the front-end UI of the Web are HTML/CSS/JS, and

these files need to be created in the WebRoot package. The design language for

Android applications is XML, and the XML files are created in the layout package

of the application project. A GUI is an interface display format for users to com-

municate with their computer or cell phone.

4.3.1 Web UI Design

The web UI design is a ready-made front-end UI framework provided by Layui

(https://cdnjs.com/libraries/layui), which follows the native HTML/CSS/JS writing

and organization format.

 43

In this project, the web side is operated by the administrator and includes four main

functional sections. It is mainly used to manage users, manage commodity and com-

modity categories, and order management.

4.3.1.1 Login Page

Figure 25. Login Page

4.3.1.2 Home Page

As a backend management system, the design of the web page is more focused on

the realization of the function, so the functional section of the system should be

obvious and to let the user have a good operating experience. Clarity and conven-

ience are the key points of the web design of the backend management system.

Figure 26. Management System Homepage

The main interface mainly includes navigation, and administrator settings func-

tional modules.

 44

Figure 27. Left-Vertical Navigation

Navigation generally refers to a collection of page guidance channels, mostly in the

form of menus, which can be applied to the top and side, making the whole man-

agement system the key to easy operation. A good navigation menu bar can give

the user a comfortable operating experience. This system uses vertical/left naviga-

tion.

4.3.1.3 Four Main Functional Sections

For the backend management system of second-hand online shopping, the system

needs to allow the administrator to perform simple and clear operations on all users,

commodity, and orders, such as editing and deleting user or commodity information

and managing the status of commodity. The focus of the UI design is on clear, con-

venience and fast.

Figure 28. User Management Section

Figure 29. Category Management Section

 45

Figure 30. Commodity Management Section

Figure 31. Order Tracking Section

4.3.2 Android UI Design

The Android side is the client side, which is the interface used by the users. As it is

a service for all users, aesthetics and convenience are key to giving users a good

operating experience.

4.3.2.1 Launcher Icon

The application is started by clicking the Launcher Icon. The Icon design is very

simple and clear, with a blue "S" letter as the Icon. The name of this application

(VSHM) is derived from the abbreviation of VAMK Second-Hand Market.

Figure 32. Launcher Icon

4.3.2.2 Login Layout

Figure 33 shows the login page of the application. The login activity consists of

entering the Facebook username, password, and Login button. New users also need

to register for the first time by clicking on the "New User?" button. Registered users

 46

can log in directly with the correct username and password. If registered users for-

get their password, they can retrieve it by clicking on "Forget Password?" and using

the phone number they provided when registering.

Figure 33. Login Layout and Design

New users will need to fill in their Facebook username, password, nickname, and

phone number to register. This is because the application allows sellers and buyers

to communicate with each other in a timely manner by calling on third-party social

networking software during the purchase process after entering the application.

Therefore, registering with a Facebook username makes it easier for buyers to find

sellers and for them to communicate with each other.

Figure 34. Sign In Layout And Design

 47

If a registered user has forgotten their password, they can retrieve it by using the

phone number.

Figure 35. Forget Password Layout and Design

4.3.2.3 Main Page

Figure 36 shows the main screen of the application. This interface needs to be de-

signed to contain the basic functional points of the application, including infor-

mation about second-hand commodity, categories, and orders,. The commodity in-

formation includes photos, sale price, original price, stock status, upload time the

seller's Facebook username and the seller's description of the commodity.

A search bar is set up at the top, allowing users to conduct a fuzzy search by com-

modity name in each category section separately.

The three fragments transitions at the bottom of the main screen, will give the user

a better operating experience.

 48

Figure 36. Main page and design

4.3.2.4 Contact Seller by Facebook

On the main page, if the user wants to find out more details about the commodity,

they can call the third-party social networking software Facebook by long-clicking

on the selected commodity and communicate more with the seller by searching for

the seller's Facebook username. Figure 37 shows the process of calling Facebook.

Figure 37. Launch Facebook

 49

4.3.2.5 Profile Layout

Figure 38 shows the interface of profile. This screen contains three main functions,

uploading used items put up for sale, Watchlist, and resetting the user’s password.

From this screen it is also possible to exit the application by clicking on the 'Exit'

button.

Figure 38. Profile Layout Design

� Shopping Cart and Watchlist Layout

Users can perform three operations by clicking second-hand goods to be sold,

namely, buy, add to shopping cart, and collect (add to watch list). Figures 39,

40 and 41 show the shopping cart, purchase and watchlist layout.

Figure 39. Shopping Cart Layout and Design

 50

To make a purchase, the required credentials are username, delivery address

and phone number before clicking on "Buy It Now". Users can also stop the

purchase by clicking the "Cancel" button.

Figure 40. Buy Layout and Design

In the watchlist, users can click on a collected item to remove it.

Figure 41. Watchlist Layout and Design

 51

4.3.2.5 My Order Layout

Having successfully purchased an item, the user will see the status of the order in

My order, which generally has three statuses: Waiting for shipping, Shipped and

Received. Figure 43 shows an order waiting to be shipped.

Figure 42. My Order Layout and Design

4.3.2.6 Comment Layout

Once the status of an item has been changed through the backend management sys-

tem by the administrator, the user can give comments for the item once it has been

received. The first thing is to rate the commodity, including “Very Good”, “Good”

and “Not Good”, and then the user can enter reviews of the commodity. Once the

comments have been submitted, all users will be able to see the buyer’s review of

the commodity they have received on the main screen. No other user can take any

action on the item.

Figure 43 shows the process by which a user evaluates an item that has been re-

ceived.

 52

Figure 43. Rating and Give Comment layout

4.3.2.7 Sell Commodity Layout

In this application, users need to upload second-hand goods by filling in the infor-

mation of the commodity, including photos of the item, name, sale price, original

price, type, description.

The first image in Figure 44 shows the user interface for uploading commodity, and

the second image shows the result after uploading and refreshing.

Figure 44. Sell Commodity layout

 53

4.3.2.8 Reset Password Layout

Users can reset their passwords as needed. The user needs to enter the new password

twice, and the two passwords are consistent to modify it successfully. Figure 45

shows the interface for changing the password.

Figure 45. Reset Password Layout and Design

 54

5 IMPLEMENTATION

5.1 Database Connection Implementation

In this system we are using the http network protocol technology, which has two

types of requests GET and POST, and for the server interaction data, the program

uses JSON strings, Gson framework to parse and convert it, these methods are en-

capsulated in HttpsUtil.java and JsonUtils.java two tool classes, respectively. The

specific code is as follows to facilitate the implementation of each functional mod-

ule call.

GET request method:

public static String httpDoGet(String url) throws ClientProtocolException, IOException{
 String result = “”;
 HttpGet request = new HttpGet(url);
 request.addHeader(“Content-Type”, “text/html”);
 request.addHeader(“charset”, “utf-8”);
 //Get the responding object
 HttpResponse response = new DefaultHttpClient().execute(request);
 // When the request is successful
 if(response.getStatusLine().getStatusCode()==200){
 // Get the data returned by the response server
 result = EntityUtils.toString(response.getEntity());
 }
 return result;
}

Code Snippet 1. Get Request Method

POST request method:

public static String doPost(String postData, String urlStr)
 throws UnsupportedEncodingException, IOException,
 KeyManagementException, NoSuchAlgorithmException {
 URL url = new URL(urlStr);
 URLConnection cnx = getConnection(url); //connect to the server

 OutputStreamWriter wr = new OutputStreamWriter(cnx.getOutputStream());
 wr.write(postData);
 wr.flush();

 55

 wr.close();
 // Retrieve the result of the response
 return changeInputStream(cnx.getInputStream(), “utf-8”);
}

Code Snippet 2. POST Request Method

Parsing and conversion of JSON data:

public static String createJsonString(Object value) {
 Gson gson = new Gson();
 String string = gson.toJson(value);
 return string;
 }

public static <T> T getObject(String jsonString, Class<T> cls) {
 T t = null;
 try {
 Gson gson = new Gson();
 t = gson.fromJson(jsonString, cls);
 } catch (Exception e) {

 }
 return t;
}

public static List<?> StringFromJson(String jsondata, Type listType) {
 Gson gson = new Gson();
 ArrayList<?> list = gson.fromJson(jsondata, listType);
 return list;
}

Code Snippet 3. Parsing and conversion of JSON data

Code snippet 4 shows the online shopping system used to connect to an existing

database. By writing the URL format of the JDBC protocol, the application can be

connected to the local database.
jdbcUrl = jdbc:log4jdbc:mysql://localhost:8080/e1700704_vshm?characterEncod-

ing=utf8&zeroDateTimeBehavior=convertToNull

user =root
password = root

Code Snippet 4. Local Database Connection

 56

5.2 Server-Side Implementation

5.2.1 User Management

After entering the correct username and password, the administrator can log into

the homepage of the backend management system. In the user management module,

the administrator can manage the registered user information.

The UserController class, which inherits from Controller in the control layer, has

various methods that implement the management of users.

After modifying the user information by modifying the user, the corresponding user

information in the database will be deleted according to the u_id. The core code

snippet is as follows:

public void del() {
 try {
 String[] ids = getParaValues("id");
 for (String id : ids) {
 User.te.deleteById(id);
 }
 renderJson(JsonKit.toJson(new StatusJson("200", "suc", true)));
 } catch (Exception e) {
 // TODO: handle exception
 renderJson(JsonKit.toJson(new StatusJson("500", "fail", true)));
 }
}

Code Snippet 5. Delete user by Administrator

public void updates() {
 try {
 getModel(User.class, "", true).update();
 renderJson(new CommonData("500", JsonKit.toJson(User.te.findById(getPara("id"))),
""));
 } catch (Exception e) {
 // TODO: handle exception
 renderJson(new CommonData("500", "", e.toString()));
 }
}

Code Snippet 6. Edit user by Administrator

 57

5.2.2 Category Management

The CategoryController class, which inherits from Controller, has various methods

for implementing category management.

In the category management module, there are mainly functions for adding, editing,

and deleting. The delete and edit functions can be completed according to find the

id in the category table of the database. The code snippet below shows adding new

categories via PUT:

public void add() {
 try {
 getModel(Category.class, "", true).save();
 JSONObject js = new JSONObject();
 js.put("code", "200");
 renderJson(js.toJSONString());
 } catch (Exception e) {
 // TODO: handle exception
 System.out.println(e.toString());
 JSONObject js = new JSONObject();
 js.put("code", 500);
 js.put("msg", e.toString());
 renderJson(js.toJSONString());
 }

}

Code Snippet 7. Add new category by Administrator

5.2.3 Commodity Management

In the commodity management module, the functions are like those in the user man-

agement module, mainly including editing and deleting. The deleted or edited com-

modity will also be deleted or edited from the commodity table based on the id. The

following code snippet shows the delete function:

public void del() {
 try {
 String[] ids = getParaValues("id");
 for (String id : ids) {
 Commodity.dao.deleteById(id);
 }
 renderJson(JsonKit.toJson(new StatusJson("200", "suc", true)));
 } catch (Exception e) {

 58

 // TODO: handle exception
 renderJson(JsonKit.toJson(new StatusJson("500", "fail", true)));

}
}

Code Snippet 8. Delete commodity by Administrator

5.2.4 Order Management

In the order management module, the order status, including “shipped” and “re-

ceived”, is obtained through the getModel() method, and the status updated accord-

ing to the administrator's operation. At the same time, the order status in the data-

base will also be changed according to the id.

public void ship(){
 try {
 getModel(Orders.class, "", true).set("state","Shipped").update();
 renderJson(new CommonData("200", "", "success"));
 } catch (Exception e) {
 // TODO: handle exception
 renderJson(new CommonData("500", "", e.toString()));
 }
}
public void received(){
 try {
 getModel(Orders.class, "", true).set("state","Received").update();
 renderJson(new CommonData("200", "", "success"));
 } catch (Exception e) {
 // TODO: handle exception
 renderJson(new CommonData("500", "", e.toString()));
 }
}

Code Snippet 9. Changes the order status by Administrator

5.3 Client-Side Implementation

5.3.1 Login

The start of the application is the user login interface. The user needs to fill in the

Facebook username and password. This code is used to determine whether the user

exists and whether the username and password are consistent with the code value

 59

set in CommonData.java. If code = "200", msg displays the information of the suc-

cessful state, otherwise, code = "500", msg displays the information of the failed

state.

public void login() {
 User m = User.te.findUserByusername(getPara("username"));
 if (m == null)
 renderJson(JsonKit.toJson(new CommonData("500", null, "User does not exist...")));
 else {
 if (m.getStr("pass").equals(getPara("password"))) {
 setSessionAttr("u", m);
 renderJson(new CommonData("200", JsonKit.toJson(m), "success"));
 } else
 renderJson(new CommonData("500", null, "Incorrect password!"));
 }
}

Code Snippet 10. Identify the Login User

login.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 RequestParams ps = new RequestParams();
 ps.add("username", username.getText().toString());
 ps.add("password", password.getText().toString());
 UserClient.post("user/login", ps, new AsyncHttpResponseHandler() {
 @Override
 public void onSuccess(String content) {
 super.onSuccess(content);
 CommonData data = JSON.parseObject(content, CommonData.class);
 if (data.getCode().equals("200")) {
 User u = JSON.parseObject(data.getData(), User.class);
 MyApplication.getApp().setU(u);
 startActivity(new Intent(UserLogin.this, MainActivity.class));
 } else {
 MyToastUtil.ShowToast(con, data.getMsg());
 }
 }
 });
 }});

Code Snippet 11. Login button

 60

5.3.2 Registration

Users can fill in personal information as needed to register a new account, and then

click "Create an Account" to successfully register. The following code identifies

whether the user is already registered according to the username in database. If the

user does not exist, a new user is created. Then pass data through POST.

public void add() throws Exception {

 User u = User.te.findFirst("select * from user where username=?",
 getPara("username"));

 if (u == null) {
 getModel(User.class, "", true).save();
 renderJson(JsonKit.toJson(new CommonData("200", null, "successfully")));
 } else {
 renderJson(JsonKit.toJson(new CommonData("500", null, "User already exists...")));
 }
}
reg.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 RequestParams ps = new RequestParams();
 ps.add("username", username.getText().toString());
 ps.add("pass", password.getText().toString());
 ps.add("nickname", nickname.getText().toString());
 ps.add("tel", mobile.getText().toString());
 ps.add("head", head_url);

 UserClient.post("user/add", ps, new AsyncHttpResponseHandler() {

 @Override
 public void onSuccess(String content) {
 super.onSuccess(content);
 CommonData data = JSON.parseObject(content, CommonData.class);
 if (data.getCode().equals("200")) {
 MyToastUtil.ShowToast(con, "Registration success");
 finish();
 } else {
 MyToastUtil.ShowToast(con, data.getMsg());
 }
 }
 });

 }});

Code Snippet 12. Register A New User

 61

5.3.3 Add Commodity Shopping Cart and Purchase

Users can add the selected product to the shopping cart or watchlist by the sid and

uid of the commodity table and the user table in the database. It should be noted

that if the user purchases a commodity, the status of the commodity changes from

"in stock" to "sold". The following code snippet shows the implementation of the

function of adding products to the shopping cart and collect to watchlist:

listView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, final int position, long id) {
 new AlertDialog.Builder(getActivity()).setTitle("Do you want to 'buy' or 'collect'?")
 .setPositiveButton("Collect", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 RequestParams ps = new RequestParams();
 ps.add("sid", list.get(position).getId());
 ps.add("uid", MyApplication.getApp().getU().getId());
 UserClient.get("watchlist/add", ps, new AsyncHttpResponseHandler() {
 @Override
 public void onSuccess(String content) {
 super.onSuccess(content);
 if (content.equals("1")) {
 MyToastUtil.ShowToast(getActivity(), "Successfully");
 } else {
 MyToastUtil.ShowToast(getActivity(), "Collected");
 }
 }
 });
 }
 }).setNegativeButton("Buy", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 if(list.get(position).getState().equals("in stock")) {
 gm(list.get(position));
 }else{
 MyToastUtil.ShowToast(getActivity(),"Sold");
 }
 }
 }).setNeutralButton("Add to Cart", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 if(list.get(position).getState().equals("in stock")) {
 RequestParams ps = new RequestParams();
 ps.add("sid", list.get(position).getId());
 ps.add("uid", MyApplication.getApp().getU().getId());

 62

 UserClient.get("shoppingcart/add", ps, new AsyncHttpResponseHandler() {
 @Override
 public void onSuccess(String content) {
 super.onSuccess(content);
 MyToastUtil.ShowToast(getActivity(), "Successfully");
 }
 });
 }else{
 MyToastUtil.ShowToast(getActivity(),"Sold");
 }
 }
 }).show();
 }});
Code Snippet 13. Add or collect commodity to Shopping Cart or Watchlist

After the user clicks the "Buy" text button, the application will pop up a dialog box,

and the dialog box has automatically filled in the username and phone number, and

the user only needs to fill in the address manually. The application uses the

SharePreferance object to store and retrieve user information.

SharedPreferences pref = UserLogin.this.getSharedPreferences("data",MODE_PRIVATE);
SharedPreferences.Editor editor = pref.edit();
editor.putString("user",u.getUsername());
editor.putString("tel",u.getTel());
editor.commit();

Code Snippet 14. Get SharePreference Object

SharedPreferences pref = getContext().getSharedPreferences("data",Activity.MODE_PRI-
VATE);
SharedPreferences.Editor editor = pref.edit();
String username = pref.getString("user","500");
String tel = pref.getString("tel","500");
name.setText(username);
phone.setText(tel);

Code Snippet 15. Read Data from SharePreference

 63

5.3.4 Calling Facebook

Considering that users can learn more about the commodity, the application can call

third-party software, Facebook. Buyers and sellers can communicate in real time

via Facebook.

listView.setOnItemLongClickListener(new AdapterView.OnItemLongClickListener() {
 @Override
 public boolean onItemLongClick(AdapterView<?> parent, View view, int position, long id)
{
 Intent intent = new Intent("android.intent.category.LAUNCHER");
 intent.setClassName("com.facebook.katana", "com.facebook.katana.LoginActivity");
 startActivity(intent);
 return true;
 }
});

Code Snippet 16. Calling Facebook

5.3.5 Rating and Give Comments

The user can rate and comment on the order after receiving the commodity, and the

order status must be "received". Then the user clicks on the order in "My Orders"

to enable the comment function.

listView.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View view, final int position, long id) {
 if (list.get(position).getState().equals("Received")) {
 final String[] items = {"Very Good!", "Good.", "Not Good..."};
 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());
 builder.setTitle("Give your reviews: ");
 builder.setItems(items, new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 pl(list.get(position),items[i]);
 }
 });
 builder.show();
 }

}});
Code Snippet 17. Rate the Received Order

 64

private void review(final orders s, final String pf) {
 AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());
 final AlertDialog dialog = builder.create();
 final EditText msg = (EditText) view.findViewById(R.id.msg);
 Button btnOK = (Button) view.findViewById(R.id.add);
 Button btnCancel = (Button) view.findViewById(R.id.qx);
 btnOK.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 String msgs = msg.getText().toString();
 // password!=null && !password.equals("")
 if (!TextUtils.isEmpty(msgs)) {
 RequestParams ps = new RequestParams();
 ps.add("id", s.getId());
 ps.add("comment", pf+" | " + msgs);
 UserClient.post("orders/update", ps,
 new AsyncHttpResponseHandler() {
 @Override
 public void onSuccess(String content) {
 super.onSuccess(content);
 getlist();
 }
 });

 } else {
 Toast.makeText(getActivity(), "The content of the input box cannot be empty!",
 Toast.LENGTH_SHORT).show();
 }
 }
 });

 btnCancel.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 dialog.dismiss();
 }
 });

 dialog.show();
 }

Code Snippet 18. Give Comments

 65

5.3.6 Sell Commodity

Users can sell their second-hand commodity by uploading pictures and information

of commodity. This is done by clicking “Sell” in Profile to upload and sell com-

modity.

@Override
protected void initListener() {
 head.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 new AlertDialog.Builder(UploadCommodity.this).setTitle("Choose portrait").setNeg-
ativeButton("", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 SimpleDateFormat df = new SimpleDateFormat(
 "MMddHHmmssSSSS");
 names = df.format(new Date());
 Intent intent = new Intent(
 MediaStore.ACTION_IMAGE_CAPTURE);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, Uri
 .fromFile(new File(Environment
 .getExternalStorageDirectory(), names + ".jpg")));
 startActivityForResult(intent, 2);
 }
 }).setNeutralButton("Gallery", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 Intent intent = new Intent(Intent.ACTION_PICK, null);
 intent.setDataAndType(
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI, "image/*");
 startActivityForResult(intent, 1);
 }
 }).show();

 }
 });
 reg.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 RequestParams ps = new RequestParams();
 ps.add("name", name.getText().toString());
 ps.add("price", price.getText().toString());
 ps.add("msg", msg.getText().toString());
 ps.add("type", type.getText().toString());
 ps.add("yj", yj.getText().toString() + "€");
 ps.add("pic", head_url);
 ps.add("uid", MyApplication.getApp().getU().getId());

 66

 ps.add("uname", MyApplication.getApp().getU().getUsername());
 UserClient.post("sp/add", ps, new AsyncHttpResponseHandler() {

 @Override
 public void onSuccess(String content) {
 super.onSuccess(content);
 CommonData data = JSON.parseObject(content, CommonData.class);
 if (data.getCode().equals("200")) {
 MyToastUtil.ShowToast(con, "Successfully");
 finish();
 } else {
 MyToastUtil.ShowToast(con, data.getMsg());
 }
 }
 });

 }
 });
}

Code Snippet 19. Sell Second-hand Commodity

 67

6 TESTING

System testing is the final and very important step in software design. It is used to

check whether the quality, performance and reliability of the software meet the

needs of the user.

6.1 Web Application Testing

6.1.1 Administrator Login

The administrator login was tested as follows:

1) The administrator logs in according to the specified username and pass-

word (username: admin & password: admin).

2) Login with empty username or password

3) Click the “login” button to enter the background management system.

� Expected Result

Only administrators with correct username and password can enter the man-

agement system.

� Actual Result

Figure 46. Administrator Login Successfully

 68

6.1.2 User Management

The administrator managing user was tested as follows:

1) Delete the information of the fourth user “Jessica”. “Jessica” logs in An-

droid application and checks it.

2) Edit the password of the third user “Andrew” from “andrew1234” to

“hello1234”. “Andrew” logs in the Android application.

� Excepted Result

1) Because Jessica has been deleted, Jessica can no longer log in to the An-

droid application.

2) Andrew ca not only log in with the "andrew1234", the old password.

� Actual Result

Figure 47. Administrator Modifying User Successfully

Figure 48. Administrator Modifying User on Android Testing

 69

6.1.3 Category Management

The administrator managing category was test as follows:

1) Testing StepAdd a new category “Cosmetic”.

2) Edit the name of the seventh category “Transport” to “Transportation”.

3) Delete the fourth category “Instrument”.

� Excepted Result

1) The user successfully logs in to the Android application and can see the

newly added category "Cosmetics".

2) “Transport” category will be changed to “Transportation” on Android ap-

plication.

3) The category “Instrument” will not be on the Android app.

� Actual Result

Figure 49. Administrator Modifying Category Successfully

Figure 50. Administrator Modifying Category on Android Testing

 70

6.1.4 Commodity Management

The administrator managing commodity was test as follows:

1) Add a new second-hand commodity “CK Perfume” in “Cosmetic” cate-

gory.

2) Edit the price of the 8th commodity “IPhone pro 11 256G”, from 499 to

399.

3) Delete the 7th commodity “Lenovo - ThinkPad T490s” .

� Excepted Result

1) There will be a new item “CK perfume” in “Cosmetic” category on the

Android application.

2) The price of “IPhone pro 11 256G” from 499 to 399

3) There will not be “Lenovo - ThinkPad T490s” in Electronic.

� Actual Result

Figure 51. Administrator Modifying Commodity Successfully

Figure 52. Administrator Modifying Commodity on Android Testing

 71

6.1.5 Order Tracking

The administrator managing order was test as follows:

1) Ship the “old leather shoes” for user “Andrew”.

2) Received the “old leather shoes” for user “Andrew”.

� Excepted Result

1) The user "Andrew" who has purchased the commodity can change the or-

der status to "shipped" through the Android app.

2) The user "Andrew" who has purchased the commodity can change the or-

der status to "Received" through the Android app

� Actual Result

Figure 53. Administrator Modifying Order Successfully

Figure 54. Modifying Order on Android Testing

 72

6.2 Android Application Testing

6.2.1 New User Registration

The user registration was test as follows:

Register a new user "Lisa" from the Android application, the password is "Lisa,

the nickname is "VSHM#Lisa", and the phone number is "0469456789".

� Excepted Result

1) The new user Lisa can successfully log in to the VSHM Android applica-

tion with the account just registered.

2) The user management of the Web background management system can

view the information of newly registered users.

� Actual Result

Figure 55. Successfully Login Android App

Figure 56. Update in User Management

 73

6.2.2 Forget Password

The user retrieving password was tested as follows:

User “Lisa” retrieves the password by phone number.

� Excepted Result

User “Lisa” retrieves the password by phone number, the password is displayed

on the page.

� Actual Result

Figure 57. Retrieve the Password

6.2.3 User Login

The user login was test as follows:

1) Login with wrong password.

2) Log in with a user that does not exist.

� Excepted Result

The Android application will be notified of errors.

� Actual Result

 74

Figure 58. Error Message Display Successfully

6.2.4 Add to Shopping Cart

The user adding commodity was tested as follows:

1) The user adds "Beats" to the shopping cart.

2) Remove "Beats" from shopping cart.

3) Check the items in the shopping cart and click "Pay for the order".

� Excepted Result

1) Successfully added, successfully removed, and successfully purchased.

2) In "My Order", the user sees the "Beats" just purchased.

3) The administrator can see the order in “Order Tracking” in the web man-

agement system.

� Actual Result

Figure 59. Successfully Add, Delete and Pay in Shopping Cart

 75

� Improvement

After the commodity is ordered, the picture disappears. This situation is very

unstable and takes place often.

6.2.5 Add to Watchlist

The user adding commodity was tested as follows:

1) The user adds "Old Desk" to the Watchlist.

2) User removed "Old Desk" from watchlist

� Excepted Result

Successfully add and remove.

� Actual Result

Figure 60. Successfully Add and Remove Commodity to/from Watchlist

6.2.6 Launch Facebook

The user calling Facebook was tested as follows:

Long press the commodity to open Facebook.

� Excepted Result

 76

Launch Facebook successfully.

� Actual Result

Figure 61. Launch Facebook

6.2.7 Comments

The users review was tested as follows:

The user evaluates the "Beats" in the "Received" status.

� Excepted Result

1) Comment successfully.

2) The content of user comments can be seen by all users.

� Actual Result

Figure 62. Comment Successfully

 77

6.2.8 Sell Commodity

The user selling was tested as follows:

Users upload second-hand goods as required.

� Excepted Result

1) Uploaded successfully, you can see it in "Items".

2) After refreshing the web page of the Web management system, the admin-

istrator can see the commodity added by the user in the "Commodity Man-

agement" module.

� Actual Result

Figure 63. Upload Commodity Successfully

Figure 64. Upload Commodity Successfully in Commodity Management

 78

6.2.9 Reset Password

The user resetting password was tested as follows:

The user resets his password.

� Excepted Result

1) The user can successfully log in to the Android application with the reset

password.

2) The administrator can see the changed user password in "User Manage-

ment".

� Actual Result

Figure 65. Successfully Login After Resetting Password

Figure 66. Reset the Password Successfully in User Management

 79

7 CONCLUSIONS

This project was mainly to develop an Android application to provide users with an

online trading platform for second-hand commodity. The project consists of two

parts, the server, and the client. For the server-side, Web Application, its main func-

tions include managing the information of users, second-hand goods, and orders.

The client is the main part of the project, an application developed based on Android.

The main functions include the user registration and login, viewing of all second-

hand goods, purchase of the user’s favorite commodity, upload of second-hand

items the user want to sell, and viewing the status of one’s own orders , and com-

menting the commodity that have been received.

After the project development was completed, all the functions involved in must-

have requirement and should-have requirement had been realized. The application

was tested on different browsers and real Android devices.

During making of the thesis, a deep understanding of learning Java and Android

was received. At the same time, I learned that I need more advanced studies and

improvements. Due to time and learning constraints, many aspects and functions of

the application still need to be enhanced. In future study, these aspects and functions

will be further improved and perfected to make the application more professional

and completed.

7.1 Future Work

Although all basic functions have been implemented after the project was com-

pleted, many aspects still need to be developed and enhanced in this application. So

that other functions can be developed in the future, the following functions can be

improved in future learning:

� Security for clients.

� Design and develop a buyer and seller communication function within the

application, without having to call on Facebook.

 80

REFERENCES

/1/ Platform Architecture. Accessed 21.03.2021

https://developer.android.com/guide/platform

/2/ Guo Hongzhi. Android application development in detail [M]. Beijing: Elec-

tronic Industry Press 2016.6 417-420. (Chinese)

/3/ Ma Yanjun. 2015. App development based on Android system [J]. Technology

and Enterprise, 22:87-88. (Chinese)

/4/ Simple Example of MVC (Model–View–Controller) Architectural Pattern for

Abstraction. Accessed 21.03.2021

https://www.codeproject.com/Articles/25057/Simple-Example-of-MVC-

Model-View-Controller-Design

/5/ Burbeck, Steve. 1992. Applications Programming in Smalltalk-80:How to use

Model–View–Controller (MVC)

/6/ JFianl – manual. Accessed 21.03.2021

https://github.com/jfinal/jfinal-manual

/7/ What is a REST API? Accessed 21.03.2021

https://www.redhat.com/en/topics/api/what-is-a-rest-api

/8/ Introduction JSON. Accessed 21.03.2021

https://www.json.org/json-en.html

/9/ JSON Object. Accessed 21.03.2021

https://developer.android.com/reference/org/json/JSONObject.html

 81

/10/ Zhou Y, Yin SQ, Wang DQ, et al. 2016. Research on building an App devel-

opment platform based on Eclipse and Android system[J]. Journal of Qingdao

University (Engineering Technology Edition), 31(3):49-53. (in Chinese)

