

Lotta Laukkanen

Front end development with
ClojureScript framework Re-frame

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

1 April 2021

Abstract

Author: Lotta Laukkanen

Title: Front end development with ClojureScript framework Re-

frame

Number of Pages: 36 pages + 3 appendices

Date: 1.4.2021

Degree: Bachelor of Engineering

Degree Programme: Information and Communications Technology

Professional Major: Media Technology

Instructors: Tero Kojo, Manager Software Engineering

 Ulla Sederlöf, Senior Lecturer

This thesis addresses the difference between popular web development framework
ReactJS and less known Re-frame, a framework based on React, and compares
their strengths and weaknesses in front end development. Due to the nature of Re-
frame, this thesis also explores reactive functional programming and the primary
languages of these frameworks: JavaScript and ClojureScript. The topic is addressed
from an angle of adopting Re-frame and Clojure into enterprise use as an alternative
to ReactJS.

A web-based user interface for a laboratory robot is used as a use case for the
technology. One workflow wizard is in the center of the project. Wizards are used to
create pipetting workflows by setting parameters and creating plate maps for the
robot. The use case presents the most relevant features of the framework in the
context of front-end development in a way approachable for people not familiar with
the technology. It was discovered that despite Clojure’s unpopularity in front end
development, ClojureScript paired with Re-frame is suitable for the purpose. The
project was carried out for an international laboratory equipment manufacturer
company.

Keywords: Clojure, React, Re-frame, user interfaces

Tiivistelmä

Tekijä: Lotta Laukkanen

Otsikko: Käyttöliittymäkehitys ClojureScript-kirjasto Re-

framella

Sivumäärä: 36 sivua + 3 liitettä

Aika: 1.4.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Mediatekniikka

Ohjaajat: Manager Software Engineering Tero Kojo

Lehtori Ulla Sederlöf

Opinnäytetyössä perehdyttiin suositun web-sovelluskehitysteknologia
ReactJS:n ja vähemmän tunnetun React-pohjaisen Re-framen eroihin ja
punnittiin niiden heikkouksia ja vahvuuksia käyttöliittymäohjelmoinnissa. Re-
framen luonteen vuoksi opinnäytetyössä pureuduttiin myös reaktiivisen
funktionaalisen ohjelmoinnin konseptiin sekä mainittujen kirjastojen
pääasiallisten kielten, JavaScriptin ja ClojureScriptin, eroavaisuuksiin. Käsittelyn
näkökulmaksi otettiin Re-framen ja ClojureScriptin ottaminen yrityskäyttöön
tilanteessa, jossa sitä punnitaan vaihtoehtona ReactJS:lle.

Opinnäytetyössä käytettiin esimerkkinä laboratoriorobotille toteutettavaa web-
pohjaista käyttöliittymää ja keskityttiin erityisesti kehittämään yhtä
käyttöliittymän osakokonaisuutta, jolla luodaan ohjatusti uusia työnkulkuja
syöttämällä sovellukseen työnkulun parametreja ja kuoppalevykaavio.
Esimerkkityön kautta tarkasteltiin teknologian olennaisimpia piirteitä
käyttöliittymäkehityksessä ja pyrittiin avaamaan Re-framella toteutettavia
projekteja myös yleisellä tasolla.

Opinnäytetyössä ilmeni, että vaikka Clojure ei ole kovin suosittu kieli
käyttöliittymäkehityksessä, Re-frame-kirjaston kanssa ClojureScript soveltuu
tähän takoitukseen hyvin. Työ toteutettiin kansainväliselle laboratoriolaitteita
valmistavalle tekniikan alan yritykselle.

Avainsanat: Clojure, React, Re-frame, käyttöliittymät

Contents

List of Abbreviations

1 Introduction 1

2 UI development with ClojureScript 2

2.1 Functional programming and user interfaces 2

2.2 React and Reagent 3

2.3 Re-frame 4

3 Comparing Re-frame and React 7

3.1 Technical differences 7

3.1.1 Syntax 8

3.1.2 Components 10

3.1.3 Development environment and tooling 12

3.1.4 State management 13

3.1.5 Libraries 14

3.2 Arguments for and against ClojureScript 14

3.2.1 Performance 15

3.2.2 Scaling and modularity 15

3.2.3 Error handling 15

3.2.4 Popularity of the technology 16

4 Proof of concept: development of a web based UI with ClojureScript 19

4.1 Project goal and description 19

4.2 Starting point 19

4.3 UI design and prototyping 24

4.4 UI implementation with ClojureScript 26

4.4.1 What needed to be done 26

4.4.2 A closer look into the directory 26

4.4.3 Adding a new workflow wizard 27

4.4.4 Creating the content 29

4.4.5 Working with state 29

4.4.6 Styling 30

4.4.7 Running and deploying 31

5 Results 32

5.1 User testing and feedback 32

5.2 Analysis 33

5.2.1 Test results 33

5.2.2 Testing 34

6 Conclusion 35

6.1 About moving from React to Re-frame 35

6.2 About adopting Re-frame to project or company 36

References 37

Appendices

Appendix 1: User test plan

Appendix 2: User test notes and interview

Appendix 3: User test reflections

List of Abbreviations

JS: JavaScript

CLJ: Clojure

CLJS: ClojureScript

SPA: Single Page App

UI: User Interface

GUI: Graphical User Interface

LISP: List Processing Language

DOM: Document Object Model

FRP: Functional Reactive Programming

API: Application Programming Interface

HTML: Hypertext markup language

CSS: Cascading Style Sheets

JSX: JavaScript XML

IDE: Integrated Development Environment

REPL: Read-evaluate-print loop

TCA-kit: The Human T Cell Activation Cell and Cytokine Profiling Kit

1

1 Introduction

This thesis introduces a ClojureScript framework Re-frame and compares it to

ReactJS, a popular web development framework. Along with Re-frame a

programming language called ClojureScript is introduced and compared to

JavaScript, the language primarily used with ReactJS. This thesis also briefly

displays the development of a Single Page App (SPA) UI created using Re-

frame.

The project done within the scope of this thesis is a fraction of a larger project.

The larger project strives to create a web based UI for a laboratory robot. The

UI will be used to create liquid handling workflows and to run them in

simulations or with the robot. The technologies for this UI were chosen by the

project’s Tech Lead prior to the beginning of the thesis project. Because the

chosen language and framework are new to the company, this thesis addresses

the pros and cons of the choices and introduces the basics. The thesis project

focuses on the basics of the technology using the TCA-kit workflow wizard as a

case example, since it is a simple entity with all the crucial Re-frame

functionalities.

Clojure is a functional LISP programming language originally released in

2007(1; 2). As a functional language, it features a strong set of immutable data

structures and favours pure functions. ClojureScript, first released in 2011 (3), is

essentially a Clojure compiler targeting JavaScript. ClojureScript projects also

tap into Google Closure Library and Closure Compiler, which offer a wide range

of tools for UI development and DOM manipulation while optimizing the code.

While compilers usually compile programming language into machine code,

Google Closure compiler compiles JavaScript into optimized JavaScript instead.

(4; 5; 6).

Using ClojureScript it is possible to create web and mobile applications with the

same flexibility and toolset, as one would have with JavaScript, while avoiding

2

difficulties related to typical JavaScript development. This is helpful especially in

large-scale projects.

The framework used in the thesis project is Re-frame. It is a single framework

for web application development. Re-frame uses ClojureScript-React interface,

Reagent, and adds Redux-like state management to it.

2 UI development with ClojureScript

2.1 Functional programming and user interfaces

Functional programming is a style of programming based on pure functions -

ones that only take data as parameters and output data without having “side

effects”. Functional programming avoids mutable state and uses immutable

data structures (7, chapter 1.3).

As can be seen from the definition above, functional programming does not

sound compatible with any application that should have a state the user can

change - with any user interface, effectively. This is where Functional Reactive

Programming (FRP) comes into play.

Reactive programming is a broad term referring to event-based programming

style, which responds to input and can be viewed as a flow of data as opposed

to flow of control. It does not define any specific means to achieve these goals

and they can be met with several different technologies and styles. Functional

reactive programming is a form of reactive programming that strives for

functionality as far as it is possible in the scope of reactiveness. (7, chapter 1.3).

While achieving usage of pure functions in an app can be implemented almost

perfectly, use of shared mutable state is a necessity for an app that has to make

updates on the client side without updating the entire website every time the

user makes a change. In the case introduced here this is handled by Re-frame.

The framework manages the state of the app in a similar manner as Context

API or Redux would do in a React app. In a way, functions using data from this

3

state could be considered impure and thus the goal of pure functions can be

achieved almost completely, but not quite (8).

In addition to the improvements in the state management and functions,

functional reactive programming seeks to solve the problem of observer pattern.

The dominant way of propagating events in software these days are listeners or

callbacks (7, chapter 1.7). While being widely used they also have several

issues related to the event listeners receiving the events in an awkward order or

lacking information of what to update. This can cause, for example, missing the

first event, threading and leaking of callbacks and issues with the state, or UI

updates happening in unintended ways. (7, chapter 1.7; 9.) With FRP principles,

one should be able to avoid these pitfalls and achieve a modular and easy-to-

test software. Using powerful functional programming with immutable data in JS

can be done with additional libraries, but it is in-built in Clojure language and

thus is native to Re-frame.

2.2 React and Reagent

To understand what Reagent and Re-frame do, it is necessary to understand

the basics of React as a framework. React is a UI development library used to

build Single Page Apps for the web. It mainly uses JavaScript, but some HTML

and CSS is also needed. With React it is possible to create dynamically

updating web content and reusable components for the application. Originally,

React used JavaScript classes to create the components, but lately functional

components have gained popularity due to the advantages of functional reactive

programming.

Reagent is a ClojureScript interface to React. It was created to enable powerful

functional programming with React before functional components were released

(8). That is, it is based on React class components and does not fully support all

features of functional components (20). Reagent uses Hiccup data structure,

explained in detail in chapter 3 (3.1.2 Components), to create HTML by using

nested Clojure vectors as HTML elements (10). It makes it possible to write UI

4

code almost only with ClojureScript functions. Reagent components are

essentially pure or almost pure ClojureScript functions that take parameters as

basic Clojure data types. Reagent components re-render only when their data

changes, which together with ClojureScript optimizing enhances the software

performance to a point where one rarely has to think about it. For this reason,

even the simplest components should be called as Reagent components

instead of Clojure functions, even if calling them as Clojure functions would be

possible. (11.) Holding on to component syntax at all times is also a good

practice for code uniformity and makes the code clearer to read.

2.3 Re-frame

Re-frame is a data-oriented framework for ClojureScript. It uses Reagent as an

interface between React and ClojureScript and adds more data and state

handling that can be compared to, for example, Redux or Elm (12).

Re-frame handles the data loop by following these steps:

1. Event dispatch

– Events are dispatched when something changes, for example on a UI
event.

2. Event handling

– Declarative descriptions of a needed effect are computed.

3. Effect handling

– The effect declared in step 2 is executed. If it makes changes to the
application state, the following steps unravel as well.

4. Query

– Extraction of the changed data from the app state.

5. View

– ViewFunctions i.e. Reagent components describe DOM elements in
Hiccup syntax.

6. DOM

– DOM nodes provided in step 5 are actioned by Reagent.

5

The data flow of Re-frame can be illustrated with the water cycle diagram

(Figure 1). The diagram can be interpreted as a depiction of the data loop going

through the six steps of iteration to keep data fresh, as humorously implied in the

Re-frame documentation. (13.)

Figure 1: A water cycle diagram symbolising the steps and the smoothness of
Re-frame data loop (13).

Re-frame stores the entire application state into one place named app-db,

which is similar to an actual database. In practice, app-db is a Reagent atom

containing the application state as a map. (14.) Atom is a reference type in

Clojure and will be described in more detail in chapter 3 “Comparing Re-frame

and React”. Using a Reagent atom for this means that components using the

atom get re-rendered whenever the value changes (11).

6

The handling of data in a Re-frame app can also be depicted as The Signal

Graph (Table 1). Simply, a needed piece of data is extracted from app-db,

computed into derived data - however, this step is sometimes left out in more

simple solutions - and then subscribed to be used in DOM. (15.)

Table 1. Table created following the logic of an example in the Re-frame
documentation (15).

Layer name Data Excel function
equivalent

Description

app-db Bruce | Wayne |
1007 Mountain
Drive | Gotham

 Layer 1: app-
db holding app
state

extraxtion Bruce =LEFT(B1,FIND(" |
",B1))

Layer 2:
Extracting
piece of data

computation Hello Bruce =CONCAT("Hello ",B2) Layer 3:
Computing the
needed value
for the view

view [:div "Hello Bruce "] =CONCATENATE("[:div
""" ,B3,"""]")

Layer 4:
Computing
Hiccup

However, these steps or nodes are created in the opposing order: changes in

the view create a subscribe, which in turn launches the data extraction from the

app-db. The opposing flows can be seen in the diagram below (Figure 2). (15.)

7

Figure 2: Signal graph describing how the Signal Graph nodes are created (15).

3 Comparing Re-frame and React

3.1 Technical differences

Despite the fact that Re-frame is technically one way to use React, these two

technologies are very different. Re-frame consists of Reagent, React-interface,

and state management. Even though this could be and often is compared to the

combination of React and Redux, React in fact has an in-built global state

management tool called Context API. That is why the separate library Redux is

mentioned, but not considered as the default state management option for

React in this thesis. This chapter addresses five areas that greatly differ

between Re-frame and React.

8

3.1.1 Syntax

Syntax is the very first thing a person sees when looking at code. The language

used with Re-frame is Clojure. Clojure syntax looks very different from that of

JavaScript for a couple of reasons. Firstly, Clojure is homoiconic, meaning that

the data and code are essentially the same; consequently, code is also

presented as data structures. As typical for a LISP Clojure uses a lot of

parentheses (16), although square and curly brackets are also used regularly.

When compared to Python Clojure parentheses seem excessive, but when

compared to JavaScript they are in fact quite equal. The number of brackets

and parentheses might still seem high because Clojure syntax is more compact

than JavaScript. This can create the illusion of more parens, when in fact there

are just fewer lines of code representing the same functions with roughly the

same amount of parentheses. The following code snippets demonstrate how

the same function in these languages can have different type of brackets and

different numbers of lines, while maintaining a similar number of brackets.

The following code (Listing 1) written in JavaScript has eight pairs of brackets

altogether, half of them are round and half of them are curly brackets. This

function takes ten to twelve lines.

function buildString(someInteger) {
 var question = "Initial text";
 if (someInteger == 1) {
 question += " put this string ";
 } else if(someInteger == 2) {
 question += " oh! another string ";
 } else if(someInteger == 3) {

 question += " guess what? ";
 }
 return question;
}

Listing 1. A JavaScript function that builds a string (17).

In the following Clojure snippet (Listing 2) the same is done in six lines, using

eleven pairs of brackets. Two pairs are square brackets and the rest are the

round parentheses LISP languages are notorious for. The difference in parens

per line from JavaScript to Clojure, however, is three pairs of parens more and

9

up to six lines of code less. Thus the paren to code ratio may seem intimidating

even though the difference in parens per function is not that massive.

(defn build-string [some-integer]
 (let [question "Initial text; "]
 (cond
 (= some-integer 1) (str question "Add string one")
 (= some-integer 2) (str question "Add string two")
 (= some-integer 3) (str question "Add string three"))))

Listing 2. A Clojure function that builds a string (17).

These examples also show another major difference between the languages:

the way functions are assembled. When in JS function parameters are declared

inside parentheses right after the function call, in Clojure functions are handled

as lists, with the first element representing the verb and the rest representing

parameters. This difference becomes especially visible with arithmetic

operations: the operator is placed in the beginning of the function. The following

snippet (Listing 3) returns value 2021.

(+ 20 2000 1)

Listing 3. A basic arithmetic function in Clojure.

In JS the arithmetic operators are infixed which could be argued to be more

intuitive to an average user than the Clojure solution. This is due to the way

mathematics is usually taught: the snippet above written in JS or in a math

textbook would be (20 + 2000 + 1). Handling the arithmetic operators, the same

way as other function calls, however, makes the language syntax uniform. (18)

When discussing React and Re-frame, components are in a very central role.

While the components themselves will be addressed in the following section,

their syntax is a noteworthy detail. While React often utilizes a syntax extension

called JSX to describe UI (19), Re-frame does the same using Clojure vectors.

This data structure describing HTML is known as Hiccup (10). Reagent adds

some extensions to usual Hiccup, but the markup style is the same (20).

10

3.1.2 Components

UI elements in Re-frame are described with nested Hiccup-style vectors that

follow these general rules: first element is keyword or symbol, second one is a

map that represents the attributes of the element and the rest are either vectors

representing child elements or string literals representing child text nodes. If the

first element is a keyword, the vector is considered an HTML element. If it is a

symbol, the vector is considered a component. Behind the scenes Reagent

uses React function React.createElement to render the UI elements. (10.)

React components can be either class components or functional components.

Since functional components are a closer equivalent to Clojure vectors, only

they are addressed here. A functional React component is essentially a function

which returns a UI element in some form. As mentioned before, it is often

recommended to use JSX to describe what kind of UI a React component

should render. JSX is a syntax extension that makes it possible to have the

markup and the logic of the app in the same file. JSX syntax resembles HTML

code, providing HTML tags and hierarchies for UI development in JavaScript. It

is also possible to write JavaScript code inside JSX, (19.) however, JSX is not a

requirement for using React, since JSX is just a wrapping for

React.createElement. In other words, React components can be created

directly by using that function (21), which Reagent also utilizes behind the

scenes.

The following snippets (Listing 4; Listing 5) show the same styled element in

Hiccup and in JSX. The common elements are visible, despite being written

differently. The similarity is more clear when looking at the React.createElement

function (Listing 6) below them: it is undeniably JS, but the function takes

exactly the same parameters in the same order as the Hiccup style element.

11

[:div {:style {:display "grid" :grid-template-columns "auto 1fr"

 :align-items "center" :grid-column-gap "32px"

 :grid-auto-rows "60px"}}

 [:span.with-info "Mix by pipetting"

 [components/infobox "Gently pipette up and down at least 6 times to

completely mix the solution."]]]

Listing 4. A UI element presented with Hiccup syntax.

<div style={{

 display: "grid",

 gridTemplateColumns: "auto 1fr",

 alignItems: "center",

 gridColumnGap: "32px",

 gridAutoRows: "60px"}}>

 Mix by pipetting

 <Infobox>

 Gently pipette up and down at least 6 times to completely mix the

solution.

 </Infobox>

 </div>

Listing 5. The same element as above (Listing 4) in JSX.

React.createElement("div", {

 style: {

 display: "grid",

 gridTemplateColumns: "auto 1fr",

 alignItems: "center",

 gridColumnGap: "32px",

 gridAutoRows: "60px"

 }

 }, React.createElement("span", {

 className: "with-info"

 }, "Mix by pipetting", React.createElement(Infobox, {

 prop: "Gently pipette up and down at least 6 times to completely mix the

solution."

 })));

Listing 6. A React element created with a function.

React elements are essentially objects created with the createElement function.

The following code snippet (Listing 7) shows the simplified form of such an

object. If the elements were written directly in these data structures, they could

be manipulated by merging or concatenating with normal JS operations. These

operations cannot be applied to JSX elements, but since Hiccup is Clojure data

structure, similar Clojure operations work on Hiccup elements.

12

// Note: this structure is simplified

const element = {

 type: 'h1',

 props: {

 className: 'greeting',

 children: 'Hello, world!'

 }

};

Listing 7. A sample React element object (19).

3.1.3 Development environment and tooling

There are several options for IDE that work with Re-frame and React.

Technically both frameworks can be edited with a great variety of IDEs, but it is

highly recommended to choose one that highlights paired parentheses or has

an extension that does so when working with LISP languages due to the

amount these languages use parentheses. The one picked for the project

described in this thesis is the IDE IntelliJ paired with the Cursive extension.

According to the Popularity of Programming Language Index in March 2021,

IntelliJ was the sixth most searched IDE and statistics provided by G2 it is within

the top 3 most popular IDEs (22; 23). A more popular IDE Visual Studio Code

(22; 23) has an extension for Clojure and ClojureScript development too, which

makes it a good alternative for Re-frame development. React can be written

directly into HTML files for learning purposes, but for production use a Node.js

environment needs to be installed (24). Because React needs Node for

production versions, Re-frame that uses this functionality requires installation of

Node too to compile builds for deployment.

Re-frame and React both use a terminal tool to automate and build projects,

and to manage dependencies. With React, recommended tools are npm, which

comes along with Node.js (25), or yarn. With Re-frame Leiningen is the

recommended tool since it is specifically designed for Clojure and ClojureScript.

(26.) There are beginner-friendly starting points available for both technologies

utilized with aforementioned management tools. React documentation

recommends creating a new project using the Create React App environment,

which initializes the React project folders with the required files and folders.

Additional tools and libraries can be added on the go after initialisation via

13

terminal. The client-only template recommended in Re-frame documentation

adds shadow-cljs and cljs-devtools and creates the required folders and files for

a new project. The mentioned tools enable the use of some developer tools like

Chrome devtools, live reload of the app and REPL (Read-Evaluate-Print-Loop),

a terminal-like interactive code editor. Additional tools and libraries can be

added via the command line after creating the project. Back end and full stack

templates are separate and are set up with different commands. (26.)

3.1.4 State management

In both React and Re-frame it is possible to store app state somewhere that

could be considered to exist outside the app itself. In Re-frame the state is

managed using Reagent atoms. The data flows in a data loop and the app

state, named app-db, is never mutated but swapped into an updated version

whenever the state should change. (13; 14.) This is how Redux works too:

events get dispatched and then trigger a chain of events that leads to changes

in the app state. Redux will not make changes to the Redux store either, but

rather replaces all data once the updated version of the store is compiled. (27.)

Unlike atoms in Re-frame, Redux is a library that is not automatically included in

React apps. However, the principle is similar to Re-frame state management

and therefore is often compared to it.

The default form of out-of-component state management in modern React are

contexts. The official Context API was released within React 16.3 in 2018 (28)

and is automatically included in 16.3+ React apps. The intent is to dodge the

need to drill component props through generations of child components by

making it possible to serve app state from contexts spanning the entire app if

needed. Updating these state values happens with set-style functions that

replace the data instead of changing it. Context API differs from Redux by, for

one, being native to React and requiring less operations for changing the stored

values, making it arguably easier to approach for beginners.

14

3.1.5 Libraries

For ClojureScript there are several libraries available, of which some, but very

likely not all, are listed in ClojureScript documentation (29). Most importantly

though, ClojureScript can use Google’s massive Closure library which serves as

the base library of several Google products like Google Maps, Google Books

and Gmail (5). Since ClojureScript is compiled with Google Closure compiler the

library size is not an issue; only the parts that are used are included in the

compilation (3). It is also possible to use npm libraries like Material-UI with Re-

frame. The npm ecosystem consists of over one million libraries for different

purposes (30). Of course, the aforementioned Google Closure library is

included in it and is available for React too. It should also be mentioned that

since React is Facebook’s creation it does have some very carefully tested and

professionally maintained Facebook-originated libraries available. A big issue

with importing and using libraries in React apps, however, is the size problem

that can be dodged if the code is Closure compiler compatible. Without efficient

compiling a React app may easily become bloated due to mostly unused

libraries clinging to the app (3).

3.2 Arguments for and against ClojureScript

“Clojure is arguably simpler, more powerful and more robust than
JS” – Rich Hickey, NYC Clojure 20.1.2011

The most important feature of JavaScript is its reach. JavaScript is used in

many areas and platforms, and in some places, it is the only possible solution

since especially web and mobile platforms favour JS. (3.) Using ClojureScript

instead of JavaScript does not mean abandoning JavaScript entirely, but

producing JS source code by writing ClojureScript, much like one would do with

for example TypeScript. There are, however, arguments for and against the use

of ClojureScript instead of JavaScript in programming.

15

3.2.1 Performance

Because of Google Closure compatible code, apps written in ClojureScript tend

to be more efficient concerning the size of the codebase and unused libraries

than ones in JavaScript (3). In addition to this, using immutable data structures

gives ClojureScript a great advantage when it comes to comparison of data.

The equality comparison of immutable data structures is faster than comparison

of mutable ones since shallow comparison is enough to determine if there has

been changes (31). This is extremely relevant in use cases where information

about changes in UI input data is needed to render or re-render UI components

correctly, namely in React and in frameworks based on React. Use of

immutable data structures removes the need for deep equality comparisons

because whenever the data changes, so does the reference.

3.2.2 Scaling and modularity

Since pure functions do not have side effects and they only take in data and

then return data, they are easily reusable. Both React and Re-frame have this

advantage, although React alone does not enforce the use of modular pure

functions the way Re-frame and ClojureScript do. Both also scale well for large

applications for different platforms, as can be seen from companies that have

used them in their products: React was created by Facebook and ClojureScript

in some form is used by at least Twitter, Netflix and Heroku (32). Re-frame,

however, has the upper hand of optimized code through Closure compatible

output. Simply put, applications compiled with Google Closure take less disk

space and therefore have shorter download times than uncompiled ones. In the

case of very large online applications that might become crucial.

3.2.3 Error handling

This problem in Clojure has to be mentioned, because it is considered a

regrettable design mistake by Rich Hickey himself, the creator of Clojure and

ClojureScript (33, page 36). The error messages come from the compiler and

16

several macros, and Java stack traces indicate that one needs to know or learn

Java before being able to effectively use Clojure (33, page 35). This is

misleading and confusing.

3.2.4 Popularity of the technology

When choosing technologies for a larger scale development project, workforce

is an important thing to consider. This would be a heavy argument against the

use of ClojureScript: as can be seen from the diagram below (Figure 3). Based

on internet communities in Reddit and LinkedIn, Clojure users are scarce and

ClojureScript professionals even fewer, especially compared to the users of

JavaScript.

Figure 3: Members in language user groups. Numbers collected from LinkedIn
and Reddit 17.2.2021

This might make recruiting developers on the project challenging. Neither

language appears to offer very many job openings either, at least via LinkedIn

(Figure 4).

177147

1400000

7358 25400527 2600
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Members in LinkedIn groups Members in Reddit groups

Members in user groups

JavaScript Clojure ClojureScript

17

Figure 4: Job openings available in LinkedIn job search 17.2.2021

Another downside of a small user pool is inevitable scarcity of open source

material and advice. The following diagram (Figure 5) shows GitHub repository

results and StackOverflow questions tagged with these languages. GitHub is an

online code-hosting platform currently hosting over 100 million repositories for

over 56 million developers (34). StackOverflow is a question and answer site for

programmers with over 100 million visitors per month (35).

492

24
1

0

100

200

300

400

500

600

Open positions in Finland

Job openings in LinkedIn

JavaScript Clojure ClojureScript

18

Figure 5: Community content for Clojure and ClojureScript compared to
JavaScript. Numbers collected from GitHub and StackOverflow 25.2.2021.

React is a library developed by Facebook. It was created in 2011 and open

sourced in 2013. Currently Facebook uses over 50,000 React components in

production and therefore has interest in keeping the technology stable and

usable for all major browsers, in several versions. As a corporate-supported

library, React is also one of the few open source libraries with full-time staff

working on it. (36.) This supports Re-frame as well, even though all the React

improvements are not available in Re-frame: for example, React hooks that

were introduced in React version 16.8 (37) are primarily used in functional

components. Reagent, however, requires access to the React component state,

which makes it difficult to use functional components (20).

909518

2175986

35209 167935726 2125
0

500000

1000000

1500000

2000000

2500000

GitHub repositories StackOverflow questions

Repositories and Stackoverflow activity

JavaScript Clojure ClojureScript

19

4 Proof of concept: development of a web based UI with
ClojureScript

4.1 Project goal and description

The goal of this project was to design, prototype and implement a workflow

wizard for a laboratory robot UI with a technology that is very new to the

company. The workflow in question is based on the IntelliCyt TCA-kit

experiment equipment kit and its manual manufactured by IntelliCyt Corporation

(38). The goal was to create a workflow wizard that takes all needed

parameters as input and produces a data package to be used for controlling the

laboratory robot in a lower level.

The UI is web-based and will be served from the cloud but was not released

within the project scope. A local Windows machine was used for development,

although the app was originally designed to be developed and built on a Linux

platform and the README file contains instructions for setting up the

development environment in a local Docker container. The UI itself was written

in ClojureScript using the Re-frame framework.

4.2 Starting point

The UI introduced in this thesis had been planned and prototyped by a

Customer Experience Designer in autumn 2020 and the development was

started by the project’s new Tech Lead a few weeks prior to the beginning of the

thesis project. Therefore, the development environment and base structure of

the app had already been established in the beginning of the project and there

was already some programming done for the Graphical User Interface (GUI).

The folder structure and logic hold a trace of the robot interaction in the form of

e.g. robot movement coordinate data in folders named project, even though this

is not evident in the scope of the thesis project. The relevant parts of the folder

structure are illustrated below (Listing 8). It is important to notice how the

codebase is divided between different types of Clojure used in the project and

20

by the usage of Re-frame framework in the code. Folders “clj”, “cljc” and “cljs”

are divided based on if they can be run with Java only (clj) or ClojureScript only

(cljs) or if they can be used with both (cljc). This is because functions borrowed

from JavaScript do not work with Java. The parts of the projects that utilize Re-

frame are in folders labelled project_gui and the ones not using it are in folders

named project.

21

project_gui Root folder

│

├──.clj-kondo Development tool configuration

├──.idea Project settings, IntelliJ specific

├──.lsp

├──.shadow-cljs Development tool configuration

├──dev

│ └──cljs

│ └──user.cljs Default namespace when working with

REPL

├──devenv Cmd and shell commands for

development environment

├──node_modules Node modules

├──resources

│ └──public Target location for compiled code to

be deployed

├──src

│ ├──clj Java-Clojure

│ │ └──project_gui

│ │ └──css.clj

│ ├──cljc Common Clojure for Java and

ClojureScript

│ │ ├──project General functions and application

logic

│ │ │ ├──deck.cljc

│ │ │ └──workflow.cljc

│ │ └──project_gui

│ │ └──style.cljc General style details, like company

colors, with keywords

│ └──cljs ClojureScript only

│ ├──project

│ │ └──plate cljc

│ └──project_gui GUI

│ ├──tests These tests can be run anytime.

│ ├──workflow_edit

│ │ ├──core.cljs Wizard page initialization and

related scripts

│ │ ├──tca_details.cljs Single page components

│ │ ├──tca_plates.cljs

│ │ └──tca_preview.cljs

│ ├──components.cljs Collection of smaller components

│ ├──core.cljs Initialization of the GUI

│ ├──icons.cljs Icons as vectors in string form

│ └──material_ui.cljs Imports from Material-UI library

├──target Temporary compilation folder

├──.gitignore

├──watch.sh Helpful shell commands

├──deploy.sh

├──karma.conf.js Testing tool configuration

├──package.json

├──package-lock.json

├──project.clj

├──README.md

├──shadow-cljs.edn Development tool configuration

└──project-gui.iml Project settings, IntelliJ specific

Listing 8. The relevant parts of the project directory tree.

The following diagram (Figure 6) shows the relations between the UI

components in this application. Contents of TCA-kit workflow pages, created

during the thesis project, are shown in a separate diagram (Figure 7) in more

detail. Components with white background have their own namespaces which

22

contain only the component in question and are not reused; otherwise the

namespaces have been color-coded to visualize how components are reused.

The components with the same background colour are defined in the same

namespace or are re-used from the same namespace.

The diagram does not visualize possible wrapper elements or Material UI

components. Neither does it show how many times a component appears as a

child of one component.

Figure 6: A diagram showing the component relations in the UI.

The TCA-wizard contains very similar components as the general workflow

creation wizard, as can be seen from the diagram below (Figure 7).

The map editor is a GUI for planning plate maps for pipetting. The tca-plate-

map-editor is almost the same component as the plate-map-editor in the

previous diagram. The component is given different values for navigation

23

buttons, next and previous, but the plate-map-editor/view and its children are

exactly the same as in the plate-map-editor. Currently the navigation is

hardcoded into the components, but this is likely to change into a more flexible

model in the future, possibly making this component redundant.

Plate information for sample and assay plates is gathered with form input

elements in the tca-plates component. The data is updated into app-db

whenever the inputs change. In future this data could be used to auto-generate

plate maps for the plate map editor.

Details about equipment choice and workflow-specific parameters are gathered

in tca-details component containing extra information in tooltip information

modals along with the inputs.

On the preview page all the data gathered from the user is displayed on one

page, tca-preview, so that the user can check if the parameters are correct

before moving on to the deck planner. The deck planner, used to place the

plates near the robot, is not part of the project scope.

24

Figure 7: Components of the TCA-wizard.

4.3 UI design and prototyping

The original mock-up by the Customer Experience Designer was created using

the Invision prototyping tool, but the following prototypes were created with

Adobe XD. General views of designing and prototyping in Adobe XD are shown

in the following images (Figure 8; Figure 9). Different views of the app are

created as separate artboards that are connected in prototype tab to form a

working clickable prototype.

25

Figure 8: Design view in Adobe XD prototyping tool.

The following image (Figure 9) shows all the connections and effects between

the prototype pages and components.

Figure 9: Prototyping view.

The minimalist visual guidelines of the company were unexpectedly updated in

the middle of the project but are still fairly simple and straightforward. The

26

prototyping could be done with a very simple toolset of the Adobe XD software

and the implementation did not require vast knowledge of style sheets.

As the UI in question is designed to be used for instructing a laboratory robot,

most of the UI consists of different types of inputs the user provides, and the UI

passes on. Finally, the parameters given by the user and pre-existing

information about the workflow are compiled into a preview before sending the

data onwards.

4.4 UI implementation with ClojureScript

Because the project concerned front end development with ClojureScript, most

of the actions took place in the project_gui/src/cljs/project_gui directory. If that is

not the case, it is mentioned in the text.

4.4.1 What needed to be done

Creating a new workflow wizard in the app consists of two larger sections that

can be divided into smaller pieces. First creating and integrating the new

workflow and second creating and integrating the content of the workflow.

Being a very modular functional framework, Re-frame can be used for building

an app piece by piece without necessarily breaking the existing parts. This

made it possible to actually advance in the order mentioned above. Before

presenting the implementations, it would be wise to take a closer look at the

working directories and pre-existing components of this project.

4.4.2 A closer look into the directory

The main namespace is the piece that determines which page view is rendered

at any given time. It subscribes the information about the active view from app-

db and returns the component to be rendered. For example, the following code

snippet (Listing 9) shows how in the case of active-panel being :edit-workflow

27

the function returns a vector representing the component workflow-edit/view. In

any other case it would return a vector representing an empty div.

(case active-panel

 :edit-workflow [workflow-edit/view]

 [:div])

Listing 9. Case function returning the appropriate page.

Workflow-edit is a view that is separated into a folder of its own, as opposed to

the smaller and more general areas of the UI, for example the login, which has

only one file of code. This folder has its own core.cljs which defines the contents

of the view again by the information subscribed from app-db. Based on the

result core should point directly to one of the page namespaces, for example,

tca-plates. It is noteworthy that while the file names are written with underscore,

Clojure namespaces are written with just a dash. This is not a typo and it

matters in the code. Therefore, tca-plates refers to the namespace in

tca_plates.cljs.

The wizard-page component and the navigation buttons for it are in

components-namespace along with a few other regularly used components.

Page components have to require it in their own namespaces if they are using

it. The navigation buttons are Back-, Cancel- and Next -buttons at the bottom of

the page. The dispatch functionality to update app-db is tied to the buttons, but

the target page for each event has to be declared in each page component.

4.4.3 Adding a new workflow wizard

Creating a new workflow wizard to the project happens by following these steps:

1. Add the desired workflow in the categories-map in workflow-
namespace in cljc/project folder.

 {:id :thesis, :label "Thesis-example", :icon :code, :description ""}

2. Create a new .cljs file in the workflow_edit folder and if the IDE does
not create a namespace automatically, create a namespace by
copying an existing one or creating an empty namespace according
to the example. Remember that if a filename or path has an
underscore, it is to be written as a dash in the namespace name.

28

 (ns project-gui.workflow-edit.thesis)

3. Require Re-frame in the namespace:

 (ns verto-gui.workflow-edit.thesis

 (:require [re-frame.core :as rf]))

4. Require the namespace just created in workflow-edit.core just like
re-frame in the previous step.

5. Find the map called step-info and add the new namespace to the
map by the name assigned in the require.

 :thesis {:view [thesis/view]}

6. Also add it to select-workflow-category’s case function. The double
colon refers to a keyword defined in the namespace.

(case category

:tca-kit [::tca-plates/init]

:thesis [::thesis/init]

[::plates-type/init])

7. Return to the recently created namespace in workflow_edit. Require
components-namespace from the parent folder and use it to create
the view for the component. Required parameters, here replaced
with “attributes” and “children”, can be found in the components
namespace where wizard-page is defined.

(defn view [] [components/wizard-page {attributes} children])

8. Create reg-event-db to update the step in app-db when a user
chooses the workflow and the view is initiated. The first keyword in
assoc function refers to the destination of the data that comes after,
in this case keyword :thesis.

(rf/reg-event-db ::init

(fn [db _]

(-> db (assoc :project-gui.workflow-edit.core/step :thesis))))

Creating more pages on the same workflow is done by following these

instructions but skipping steps 1 and 6. Linking the pages to each other is done

by defining the :prev and :next attributes of the wizard-page component in the

namespace as in the snippet below. The attributes point to the namespace

associated with the init function called when the button in question is pressed. If

the keyword has value nil as in the snippet below (Listing 10), the button will not

render at all.

{:title "Thesis"

 :prev nil

 :next [:project-gui.workflow-edit.thesis-two/init]}

Listing 10. Previous-button will not render with the value nil.

29

4.4.4 Creating the content

As mentioned before, Hiccup syntax is just Clojure vectors. As can be seen

from the following snippets (Listing 11; Listing 12), this markup has the same

elements as the usual JSX element.

<div className=”classy” style={{position: “absolute”, top: “20px”, left:

“45px”}}>

 “Hello World!”

</div>

Listing 11. Div element in JSX.

[:div.classy {:style {:position “absolute” :top “20px” :left “45px”}} “Hello

World!”]

Listing 12. Div element in Hiccup.

Considering this similarity it is fairly simple to create DOM content with basic

knowledge of JSX or HTML.

4.4.5 Working with state

Within this project the updating of app-db with workflow wizard input data is

done within the input components in project_gui.form and they are subscribed

by whichever component needs them. The following code snippet (Listing 13) is

from form namespace and it shows the event tied to the change in the radio

buttons element where re-frame.core function dispatch gets triggered and

dispatches field-value-change to store the values in app-db at the position the

data-path points to.

:on-change #(rf/dispatch [::field-value-change data-path nil (-> % .-target .-

value)])

Listing 13. Dispatch happens when the value changes.

The function field-value-change is declared in the same namespace, hence the

double colon, and uses assoc-in to execute the update of the app-db as shown

in the following snippet (Listing 14).

30

(assoc-in db (concat [::data] data-path){:value value})

Listing 14. Function updating app-db.

This functionality, however, was integrated to the form element inputs. In this

way a programmer rarely needs to work with dispatching data, they use the

elements containing the effect. In the preview page, however, the data stored in

app-db should be made visible for the user. The following snippet (Listing 15)

shows a function that gets a data fraction called :details from app-db’s form/data

section.

(rf/reg-sub ::details (fn [db _] (get-in db [::form/data :details])))

Listing 15. Getting data from app-db.

That function by itself does not yield the data needed on the page. The following

snippet (Listing 16) shows how the data is subscribed and pieced into even

smaller fractions: :container-type from details and from that :value.

(let [details @(rf/subscribe [::details])]

 [:div.preview-section

 [:div.data-line

 [:div "Containers for serial dilution"]

 [:div (:value (:container-type details))]]

])

Listing 16. Usage of a subscription to get specific piece of data.

4.4.6 Styling

Styling of the project was done technically with CSS, but using a library called

Garden, which makes it possible to create CSS styles with Clojure vectors

much like Hiccup.

The general style details are defined in cljc/project_gui/style.cljc by binding

general values, like a map of company colours, to symbols. Symbols are a

Clojure data type that reminds variable names in many other programming

languages. In this way, they could be required in whichever namespace needed

them.

31

The rest of the styling is located in clj/project_gui/css.clj. The styles are defined

within a macro called screen as can be seen in the following snippet (Listing

17). The first element in the Clojure vector refers to an element in a manner

known from CSS. Asterisks and hashes (referring to id) are strings, but tag

names and classes are stated with keywords. Aside from the colons and the

quotes, the selectors are precisely the same as in CSS. Use of the company

colours required from a map in the style namespace can be seen in the last line

of the snippet.

(defstyles screen

 ["*" {:box-sizing "border-box"}]

 ["#app" {:width "100%" :position "absolute" :bottom 0 :top 0}]

 [:body {:font-family "TTNormsPro-Regular,Open Sans,Helvetica,Arial,sans-

serif" :margin 0 :height "100%"}]

 [:.yellow {:background (:primary-yellow style/colors)}])

Listing 17. Heavily trimmed screen-macro.

The macro accepts an arbitrary number of parameters and generates styles out

of them. Selectors can be used in a similar manner as in CSS. The following

snippet (Listing 18) shows styling of two nested elements. The first is a div

element with the class info-wrapper, containing a div with the class info-button.

The style, however, is only applied when the cursor is hovered over the wrapper

element. The second style is an infobox div element wrapping a simple

classless div element.

[:div.info-wrapper:hover [:div.info-button {:background-color (:gray-40

style/colors)}]]

[:div.infobox [:div {:margin "10px"}]]

Listing 18. Styling of info-wrapper and infobox elements.

4.4.7 Running and deploying

Running the development build locally is done by opening two terminals and

typing in the following commands one to each:

32

lein watch

lein garden auto

Deployment to production is done quite similarly with a few commands that

build and upload the app to the Azure cloud platform. However, this is not part

of the thesis project scope.

5 Results

5.1 User testing and feedback

User testing was done in the beginning of the project with an Adobe XD

prototype to find out the general direction of the project. Unfortunately, due to

the situation with secrecy and global pandemic, the testing could be done with

only the Application Development Scientist.

The final user test for the thesis project was done on 17.3.2021 with the in-

house Application Development Scientist. In addition to the TCA workflow

wizard, the test included running workflows in simulation mode and on the

actual robot. Therefore, the test documentation (appendices 1-3) has content

clearly not related to the thesis project. The test was planned and analysed

loosely following the agile development user testing principles introduced in a

book called Kehitä kokeillen: organisaation käsikirja (39).

The user test documents (appendices 1-3) show test planning, test notes and

analysis as separate pages as they are very distinct parts of the user test

process.

The following storyboard (Figure 10) presents one of the user stories tested in

this user test, excluding steps 5 and 6, which were tested with another

workflow.

33

Figure 10: A storyboard depicting the ideal case of using the system.

5.2 Analysis

5.2.1 Test results

The test generally concentrated on the visual detailing of the UI but concerning

the TCA-kit workflow part the focus was also on the usefulness of the content. It

was discovered that the naming of the settings was quite unclear and clumsy for

experienced lab personnel. The flow and the length of the workflow wizard,

however, were considered appropriate. The tooltip-infoboxes containing

detailed information about the related input field were considered very useful

and, in fact, made it possible to finish creating the workflow despite the poor

naming of the inputs.

Due to the modularity of a Re-frame project, updates and fixes to these issues

and to most of the other issues mentioned in the test notes are simple to

34

implement. A few logical errors, like the sample count possibly being bigger

than available wells, also should be fixed with fairly simple functions. The

biggest visual problem, in fact, did not come up in the tests, but in the new

brand style guides released in early March. The guides state that, for example,

a brand application cannot have round or round edged elements. Style library

Material UI used in the GUI rounds the edges of every element by default.

These conflicts between the guides and the already existing application means

the application style has to be revamped to be brand compliant in near future.

5.2.2 Testing

The test offered insight into the shortcomings of the GUI. However, it became

clear that the product should be tested more with several test users not so

closely in contact with the development. This test user had already seen

multiple versions of the GUI before and seemingly found it difficult to pretend to

be a mere tester during the user test and not suggest detailed improvements to

the GUI during the test tasks. This and the familiarity to the logic and flow of the

product might have diverted the attention from the general user experience. It

would be useful to test the product more often with fresh users who have no

previous experience of the product to acquire more accurate feedback on the

usability and user experience. Testing with more users would also result in a

greater variety of feedback and opinions. Testing with just one person over and

over again will result in a very efficient and optimized product for that specific

user but may overlook features and issues that would be important to other

users. However, this type of testing is still better than to go on without testing

entirely. Considering the current restrictions, it is very likely that tests with other

test users would have to be organized remotely.

35

6 Conclusion

6.1 About moving from React to Re-frame

For people who mainly use LISP languages or are otherwise used to functional

programming, Re-frame might be an easy way to take up React. In Re-frame,

the React concepts are described using only Clojure data types and syntax and

the style seeks to be as purely functional as possible - with Re-frame the illusion

of purity is near perfection. For people who come from object oriented or

imperative styles, getting a grasp of the philosophy of functional programming in

Re-frame might require some effort. Functional programming, however, is a

trending phenomenon: the newest React releases have had new features that

support functional style programming and the immutable data libraries, like

Immutable.js, have become popular. The perks of functional programming and

immutable data are unquestionable when it comes to performance and they

also reduce the possibility of human error in data handling.

The most noticeable, and therefore most intimidating part of adapting a new

technology or language, is the syntax. Clojure syntax is very different from

JavaScript, and that might make the new language seem alien and difficult. It is

hard to convince a programmer that a certain language is clearer when they do

not understand the syntax at all, which makes one of the Re-frame favouring

arguments useless. Of course, this goes both ways: some Clojure programmers

find HTML-like syntax of JSX in the middle of JavaScript too chaotic to consider

React a comfortable option. This evidently is an issue of firstly the attitude and

secondly the learning curve.

Popularity could be seen as the biggest single argument against adapting Re-

frame instead of or with the usual JavaScript React. The size of communities

surrounding these frameworks and their primary languages are barely

comparable in size. The lack of support from a community may feel

disheartening when learning something new, but it also should be mentioned

that a smaller community is often less scattered and offers less bad advice than

36

a community of tens of thousands of members. Looking at the statistics of

GitHub repos and StackOverflow entries it also seems that perhaps JavaScript

has already passed the limit of useful, constructive community content and the

vast number of possibilities becomes a nuisance instead.

6.2 About adopting Re-frame to project or company

A project like this GUI could very well be implemented with Re-frame if

supervised by at least one person who has experience in the technology.

Proceeding fast with the project would not be possible if everyone in the team

has to first learn a new programming style, then a language and then the

implementation. Knowing Clojure beforehand would of course flatten the

learning curve. As an employer it should also be considered how few Clojure

programmers there are to hire, compared to JavaScript programmers and

people with experience with React. Scarcity of in-house Clojure programmers is

a risk for any project implemented with a Clojure-based technology.

Learning and adapting the technology still has potential for paying off in the end

through performance and eventual code clarity and modularity. When deciding

upon the technologies of a project it should, however, be considered if there is

time for the learning phase and if the risk can be afforded. Re-frame and

especially ClojureScript have potential to become a very popular technology but

currently they are still a very niche curiosity. ClojureScript would not be the first

promising technology, which never really lifted off or died out quickly after a

good start. On the other hand, the more businesses that join into pioneering the

new technology the more popular it is bound to become. Perhaps the question

to consider should not be if you should try developing with Re-frame or not, but

rather, should you do it now.

37

References

1 ClojureScript. Online material. ClojureScript.org.
<https://clojurescript.org/index>. Updated 11.3.2021. Viewed 15.3.2021.

2 Hickie, Rich. 2009. Clojure is Two! Online material. Clojure.
<https://clojure.blogspot.com/2009/10/clojure-is-two.html>.16.10.2009.
Viewed 22.2.2021.

3 Hickie, Rich. 2011. ClojureScript release. Online material. YouTube.
<https://www.youtube.com/watch?v=tVooR-dF_Ag>. Viewed 10.2.2021.

4 Google Closure Library. Online material. ClojureScript.org.
<https://clojurescript.org/reference/google-closure-library>. Updated
11.3.2021. Viewed 15.3.2021.

5 What is the Closure Library? Online material. Closure Library
documentation. <https://developers.google.com/closure/library/>. Updated
24.5.2019. Viewed 13.2.2021.

6 What is the Closure Compiler? Online material. Closure Compiler
documentation. <https://developers.google.com/closure/compiler>.
Updated 20.8.2020. Viewed 13.2.2021.

7 Blackheath, Stephen & Jones, Anthony. 2016. Functional Reactive
Programming. E-book. Manning Publications.

8 Brotherus, Robert. 2021. Tech Lead, Sartorius Biohit Liquid Handling Oy.
Voice call 15.2.2021.

9 Brotherus, Robert. 2021. Tech Lead, Sartorius Biohit Liquid Handling Oy.
Voice call 10.3.2021.

10 Using Hiccup to Describe HTML. Online material. CLJDOC.
<https://cljdoc.org/d/reagent/reagent/1.0.0/doc/tutorials/using-hiccup-to-
describe-html>. Viewed 15.2.2021.

11 Reagent: Minimalistic React for ClojureScript. Online material. Reagent-
project documentation. <http://reagent-project.github.io/>. Viewed
20.1.2021.

12 Thompson, Michael. Re-frame. Online material. Re-frame documentation.
<https://day8.github.io/re-frame/re-frame/>. Viewed 20.1.2021.

https://clojurescript.org/index
https://clojure.blogspot.com/2009/10/clojure-is-two.html
https://www.youtube.com/watch?v=tVooR-dF_Ag
https://clojurescript.org/reference/google-closure-library
https://developers.google.com/closure/library/
https://developers.google.com/closure/compiler
https://cljdoc.org/d/reagent/reagent/1.0.0/doc/tutorials/using-hiccup-to-describe-html
https://cljdoc.org/d/reagent/reagent/1.0.0/doc/tutorials/using-hiccup-to-describe-html
http://reagent-project.github.io/
https://day8.github.io/re-frame/re-frame/

38

13 Thompson, Michael. A Data Loop. Online material. Re-frame
documentation. <https://day8.github.io/re-frame/a-loop/>. Viewed
24.1.2021.

14 Thompson, Michael. Application State. Online material. Re-frame
documentation. <https://day8.github.io/re-frame/application-state/>.
Viewed 24.1.2021.

15 Thompson, Michael. Subscriptions. Online material. Re-frame
documentation. <https://day8.github.io/re-frame/subscriptions/>. Viewed
10.3.2021.

16 Seibel, Peter & Margolin, Barry. 2005. Practical Common Lisp. E-book.
Apress.

17 Converting a javascript function using Clojure. 2018. Online material.
StackOverflow.
<https://stackoverflow.com/questions/52010587/converting-a-javascript-
function-using-clojure>. 26.8.2018. Viewed 16.3.

18 Olsen, Russ. 2018. Getting Clojure. E-book. Pragmatic Bookshelf.

19 Introducing JSX. Online material. React documentation.
<https://reactjs.org/docs/introducing-jsx.html>. Viewed 10.3.2021.

20 Schæ, Jacek. 2020. Reagent with Juho Teperi. Online material.
ClojureScript podcast. <https://soundcloud.com/user-959992602/s4-e2-
reagent-with-juho-teperi>. 29.4.2020. Viewed 22.2.2021.

21 React Without JSX. Online material. React documentation.
<https://reactjs.org/docs/react-without-jsx.html>. Viewed 10.3.2021.

22 Top IDE index. 2021. Online material. PYPL Index.
<https://pypl.github.io/IDE.html>. Updated March 2021. Viewed 10.3.2021.

23 Best Integrated Development Environments (IDE). 2021. Online material.
G2. <https://www.g2.com/categories/integrated-development-
environments-ide?utf8=%E2%9C%93&order=popular>. Viewed
10.3.2021.

24 React Getting Started. Online material. W3schools.
<https://www.w3schools.com/react/react_getstarted.asp>. Viewed
10.3.2021.

25 Setup Option 2: Local Development Environment. Online material. React
documentation. <https://reactjs.org/tutorial/tutorial.html#setup-option-2-
local-development-environment>. Viewed 7.3.

26 Paris, Dylan. 2015. Re-frame-template. Online material. GitHub.
<https://github.com/day8/re-frame-template>. 2.3.2015. Updated 9.3.2021.
Viewed 10.3.2021.

https://day8.github.io/re-frame/a-loop/
https://day8.github.io/re-frame/application-state/
https://day8.github.io/re-frame/subscriptions/
https://stackoverflow.com/questions/52010587/converting-a-javascript-function-using-clojure
https://stackoverflow.com/questions/52010587/converting-a-javascript-function-using-clojure
https://reactjs.org/docs/introducing-jsx.html
https://soundcloud.com/user-959992602/s4-e2-reagent-with-juho-teperi
https://soundcloud.com/user-959992602/s4-e2-reagent-with-juho-teperi
https://reactjs.org/docs/react-without-jsx.html
https://pypl.github.io/IDE.html
https://www.g2.com/categories/integrated-development-environments-ide?utf8=%E2%9C%93&order=popular
https://www.g2.com/categories/integrated-development-environments-ide?utf8=%E2%9C%93&order=popular
https://www.w3schools.com/react/react_getstarted.asp
https://reactjs.org/tutorial/tutorial.html#setup-option-2-local-development-environment
https://reactjs.org/tutorial/tutorial.html#setup-option-2-local-development-environment
https://github.com/day8/re-frame-template

39

27 Redux Fundamentals, Part 2: Concepts and Data Flow. Online material.
Redux documentation. <https://redux.js.org/tutorials/fundamentals/part-2-
concepts-data-flow>. Viewed 12.3.2021.

28 Vaughn, Brian. 2018. React v16.3.0: New lifecycles and context API.
Online material. React blog. <https://reactjs.org/blog/2018/03/29/react-v-
16-3.html>. 29.3.2018. Viewed 12.3.2021.

29 ClojureScript Libraries. Online material. ClojureScript.org.
<https://clojurescript.org/community/libraries>. Viewed 14.3.2021.

30 1,000,000 million packages! now at 1,000,019 and growing - thank you
npm community!. 2019. Online material. Npm. Twitter.
<https://twitter.com/npmjs/status/1135968692062130176>. 4.6.2019.
Viewed 16.3.2021.

31 Guerreiro, André. 2017. How comparing things is faster and simpler with
immutability. Online material. No Solo Software blog.
<http://nosolosoftware.com/comparing-things-with-immutability/>.
1.5.2017. Viewed 12.3.2021.

32 Hickey, Rich. 2015. Clojure, Made Simple. Online material. Oracle
Developers. <https://www.youtube.com/watch?v=VSdnJDO-xdg>.
2.6.2015. Viewed 3.2.2021.

33 Hickey, Rich. 2020. A history of Clojure. In publication Wadler, Philip (ed.).
Proceedings of the ACM on Programming Languages, June 2020, article
No.: 71.

34 GitHub landing page. Online material. GitHub. <https://github.com/>.
Viewed 4.3.2021.

35 Who we are. Online material. StackOverflow.
<https://stackoverflow.com/company>. Viewed 4.3.2021

36 House, Cory. 2019. Why Your Team Should (Or Shouldn’t) Use React.
Online material. Pluralsight.
<https://www.youtube.com/watch?v=UNb44DKECIU&list=PLif6_xhXJh4R
OWfVVwPAKr-3lI3_isuNf&index=3&t=0s >. 13.11.2019. Viewed
12.3.2021.

37 Introducing Hooks. Online material. React documentation.
<https://reactjs.org/docs/hooks-intro.html>. Viewed 13.3.2021.

38 Human T Cell Activation Cell and Cytokine Profiling Kit. 2018. IntelliCyt
Corporation. Document number 12660-A. Albuquerque: IntelliCyt
Corporation.

39 Hassi, Lotta; Paju, Sami; Maila, Reetta. 2015. Kehitä kokeillen:
organisaation käsikirja. E-kirja. Talentum Pro.

https://redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow
https://redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow
https://reactjs.org/blog/2018/03/29/react-v-16-3.html
https://reactjs.org/blog/2018/03/29/react-v-16-3.html
https://clojurescript.org/community/libraries
https://twitter.com/npmjs/status/1135968692062130176
https://www.youtube.com/watch?v=VSdnJDO-xdg
https://github.com/
https://stackoverflow.com/company
https://www.youtube.com/watch?v=UNb44DKECIU&list=PLif6_xhXJh4ROWfVVwPAKr-3lI3_isuNf&index=3&t=0s
https://www.youtube.com/watch?v=UNb44DKECIU&list=PLif6_xhXJh4ROWfVVwPAKr-3lI3_isuNf&index=3&t=0s
https://reactjs.org/docs/hooks-intro.html

40

Appendix 1

1 (2)

User test plan

User test March 2021 plan

What do we want to know Why? (Hypothesis or user story) Priority 1-3

Are the "Details" inputs understandable? They might not be clear enough 1

Is "number of samples" a useful setting?

If we use autofill plates -feature, it might

be? 1

What information the "Preview" page should

contain?

So the user has a clear idea of what the

robot is going to do 1

Is the flow of the wizard ok?

Usability -> Should we change the order

of the pages? 1

Reformatting demo-workflow

Is it easy to open "Xmas 24->96" workflow for

execution?

Is the workflow-tree understandable?

Is the expanding and collapsing of the tree nodes

intuitive?

What is suitable detail level available in the tree?

What attributes of a task should be displayed in its

tree-node?

Are the icons on the task-tree clear? Should icons

be removed or changed?

It is good idea to hide some task-node info when it

is not selected?

Is it easy to find how to execute a task?

Does the deck view contain details that are

unnecessary and/or distracting? (eg. equipment

location number, row and column headers, deck

pins)

Appendix 1

2 (2)

SHould some details be added to the deck view?

Is the marking of pipetting head positions clear?

Is the highlighting of plates / wells of selected node

clear?

Is the Simulation / Run on Robot texts and meaning

clear?

Is it easy to change speed of simulation?

Is it easy to stop the simulation / run?

Is it clear what "Reset Deck" does and when it is

needed?

Should the destination plate display current

progress of pipetting (like it does now) or

destination plate-map?

Appendix 2

1 (3)

User test notes and interview

User test March 2021 notes

Test information

 Testers Söderholm,Sandra. Application Development Scientist

 Date 17.3.2021

 Place Helsinki

 Feedback Interview

 Recording No

Tasks for the tester

Create new TCA workflow

Open Xmas 24-96 reformatting workflow

Execute the workflow in simulation mode

Stop simulation

Execute a single liquid-transfer in robot

mode

Execute the workflow in robot mode

Interview questions Notes

Did you succeed in the tasks? Unsure about the single transfer lquid transfer

On scale 1-10 how difficult were the tasks? Easy, 3

What would have helped you / made them

easier? Naming of the plates, execute/robot toggle clearer

Good things about the UI? Hover for help buttons

What would you change? Adding favourites and favourites on the front page.

Are we still missing something? I don't think so

Points mentioned in the plan Notes

Are the "Details" inputs understandable?

No. Short names for the steps and more grouping, although

help bubbles help a lot. Add title “Preparation of standards”

Is "number of samples" a useful setting? Possibly.

Appendix 2

2 (3)

What information the "Preview" page

should contain? More subtitles and grouping

Is the flow of the wizard ok? Yes

Reformatting demo-workflow

Is it easy to open "Xmas 24->96" workflow

for execution? YES, I barely managed to tell the task before it was open...

Is the workflow-tree understandable? Yes

Is the expanding and collapsing of the tree

nodes intuitive? Seemed to be, user went ahead and opened them instantly.

What is suitable detail level available in the

tree?

Is it easy to find how to execute a task? Easy enough, choosing which one was harder.

Does the deck view contain details that are

unnecessary and/or distracting? (eg.

equipment location number, row and

column headers, deck pins) Deck pins (agreed on numbers too when asked about it)

SHould some details be added to the deck

view?

Is the marking of pipetting head positions

clear?

Is the highlighting of plates / wells of

selected node clear?

Is the Simulation / Run on Robot texts and

meaning clear?

The toggle between them is a bit unclear, said the user,

although had no problems recognizing them.

Is it easy to change speed of simulation?

It is easy but user found is confusing that the speed menu was

not available when simulation was not running

Is it easy to stop the simulation / run?

It was easy to stop and run, but user was confused because

there was no pause option: stop resets progress.

Is it clear what "Reset Deck" does and when

it is needed? No

Appendix 2

3 (3)

Should the destination plate display

current progress of pipetting (like it does

now) or destination plate-map?

 Categores confuse on the front page: user tries to first go

through side bar but ends up in the same creation menu.

 Sample count can be bigger than the number of wells

 Filling of the plate map: user tries select-choose color method,

which does not work

 Sample-id missing

 Mini maps should include the plate type (sample/assay)

 Label: Containers for serial dilutions → Standards serial

dilutions.

Label: Mix by pipetting → Mix by pipetting in Serial dilution

 Plates reset if user goes back to the plate form

 Execution mode details make screen blink too much

 Optionally hide low level steps

 Optionally hide stuff from deck view

 Pipetting on the robot: aspiration not done?

 Pipetting on the robot: dispensing too late

Appendix 2

1 (2)

User test reflections

User test March 2021 reflections

Acquired knowledge Follow-up plan Priority 1-3

Things should be named properly instead of

"N" or "Y" if not testing help-button

specifically.

Come up with better names and check

them with Sandra. 3

Workflow visualization in a tree form seems

intuitive to use.

Continue using this format, but clean up

the lowest level tasks. 3

Extra information in the deck view did not

bother an experienced user.

Make the deck view less noisy for a new

user but keep the extra information

optional. 2

Simulation controls are too scattered and/or

unclear and not always visible (toggle,

speed, stop, reset).

Group the controls and make them always

visible. 1

Filtering on the left sidebar does not seem

like filtering, it is assumed navigation.

Evaluate possibilities of a) tweaking the

filter's appearance to be more clear b)

turning the view into several "pages" and a

navbar on the side. 2

BUG: sample count can be bigger than well

count.

Fix the bug in logic OR remove sample

count field (duplicate info) 2

Some users prefer selecting wells in plate

map first and the contens after, some users

prefer the other way around. Evaluate and test the two options further. 3

Sample id and plate name missing. Add the features. 3

BUG: plates suddenly resets if user goes back

far enough in wizard mode.

Fix the bug in logic (save data or warn

about losing the data). 2

Robot moves too hastily and skips or

executes too late some of the steps:

aspirating and dispensing.

Investigate the problem further to

determine good solution. 1

Things good and beautiful:

Appendix 2

2 (2)

Wizard is short, just a few pages

Help tooltips

Simulation speed control (exists)

