
Matias Rask

Modular JavaScript

A Comparison of Module Loaders

Matias Rask

Degree Thesis

Information Technology

2012

EXAMENSARBETE

Arcada

Utbildningsprogram: Informationsteknik

Identifikationsnummer: 3728

Författare: Matias Rask

Arbetets namn: Modular JavaScript

A Comparison of Module Loaders

Handledare (Arcada): Jonny Karlsson

Uppdragsgivare: Nord Software

Sammandrag:

Det här examensarbetet handlar om hur modulärprogrammering kan implementeras i

JavaScript som saknar ett nativt modulsystem. JavaScript har vuxit från ett simpelt

skriptspråk till ett fullt utvecklat programmeringsspråk för webbapplikationer. På grund

av att webbapplikationer kan innehålla flera tusen rader kod, är det viktigt att

utvecklarna kan strukturera och spjälka upp källkoden för att underlätta upprätthållandet

av applikationen. Examensarbetet omfattar en teknisk beskrivning på hur JavaScript-

baserade webbapplikationer körs i webbläsare samt en teoretisk och en praktisk

jämförelse mellan modulladdarna Dojo Toolkit 1.6, Googles Closure library och

Asynchronous Module Definition (AMD). En experimentell applikation har

programmerats med hjälp av ovannämnda modulladdare för att kunna testa och jämföra

de praktiska egenskaperna.

Nyckelord: Dojo Toolkit, Closure library, Asynchronous Module Defi-

nition, AMD, Nord Software, JavaScript.

Sidantal: 34

Språk: Engelska

Datum för godkännande: 20.11.2012

DEGREE THESIS

Arcada

Degree Programme: Information technology

Identification number: 3728

Author: Matias Rask

Title: Modular JavaScript

A Comparison of Module Loaders

Supervisor (Arcada): Jonny Karlsson

Commissioned by: Nord Software

Abstract:

This thesis covers modular programming and how it can be implemented in JavaScript

which lacks a native module system. JavaScript has grown from a simple scripting lan-

guage into a complete programming language for web applications. Since web applica-

tions can include thousands of lines of code it is important for developers to be able to

structure and split up application source code into more manageable modules to simplify

the application maintenance. In this thesis, a description of how JavaScript web applica-

tions are executed in a web browser and a theoretical and a practical comparison of the

module loaders Dojo Toolkit 1.6, Google Closure library and Asynchronous Module Def-

inition (AMD) is provided. A sample application has been made with the help of the

above mentioned module loaders to compare and test the practical differences.

Keywords: Dojo Toolkit, Closure library, Asynchronous Module Defi-

nition, AMD, Nord Software, JavaScript.

Number of pages: 34

Language: English

Date of acceptance: 20.11.2012

CONTENTS

List of Acronyms .. 6

List of Figures ... 7

List of Tables... 7

1 Intorudction .. 8

1.1 Background ... 8

1.2 Aims and Goals ... 9

2 Javascript in web browsers .. 10

2.1 Web Documents and Web Applications .. 10

2.2 Embedding JavaScript .. 11

2.2.1 The <script> Element .. 11

2.2.2 HTML Element Event Handler Attribute .. 12

2.2.3 The URL Protocol .. 13

2.3 JavaScript Execution ... 13

2.3.1 How is JavaScript Executed in the Web Browser? ... 13

2.3.2 Timeline ... 14

3 The need for modules .. 15

3.1 What are Modules? ... 15

3.2 The Global Object.. 15

3.3 Loading JavaScript .. 16

4 Module loaders .. 17

4.1 Dojo Toolkit Version 1.6 .. 17

4.2 Closure Library .. 18

4.3 The Asynchronous Module Definition.. 19

4.3.1 The define Method ... 19

4.3.2 The require Method ... 21

4.3.3 AMD Loader Plugins .. 22

4.4 Summary ... 22

5 A practical comparison of module loaders .. 25

5.1 Building the Sample program with Different Module Loaders 25

5.1.1 Initializing the Application Module ... 25

5.1.2 Application Dependencies ... 27

5.2 Loading the Modules of the Sample Application ... 28

5.3 Performance Tests of Module Loaders ... 29

5.3.1 Timeline comparisons.. 29

5.3.2 Module Loading Comparison .. 32

6 Conclusion ... 33

References .. 35

AppendiX A: Sample Application made with Dojo Toolkit 1.6 37

AppendiX B: Sample Application made with Closure Library 39

AppendiX C: Sample Application made with AMD Specification 41

6

LIST OF ACRONYMS

AMD – Asynchronous Module Definition

API – Application Programming Interface

CDN – Content Delivery Network

CPU – Central Processing Unit

GB – Giga Byte

GUI – Graphical User Interface

HTML – HyperText Markup Language

HTTP – Hypertext Transfer Protocol

IE – Internet Explorer

KB – Kilo Byte

OS – Operating System

RAM – Random-access Memory

UI – User Interface

URL – Uniform Resource Locator

XHR – XMLHttpRequest

7

LIST OF FIGURES

Figure 1. Dojo Toolkit 1.6 module loading timeline .. 30

Figure 2. Closure library module loading timeline .. 31

Figure 3. AMD module loading timeline ... 31

LIST OF TABLES

Table 1. Differences between module loaders.. 23

Table 2. Module loader performance over HTTP .. 32

8

1 INTORUDCTION

This thesis is done for Nord Software which is a Finnish software company with global

customers. Nord Software’s expertise lies within web-technologies with JavaScript be-

ing the main programming language for the client platform. Nord Software tries to be

on the edge when it comes to knowledge, understanding and implementation of JavaS-

cript.

The Asynchronous Module Definition (AMD) (Burke 2012) is a JavaScript tool that has

recently attracted the company’s attention. A major limitation of JavaScript is its lack of

native modules and package systems and AMD is one approach for adding these fea-

tures.

This thesis discusses the limitations of JavaScript related to modules and examines dif-

ferent modular implementations with special focus on AMD.

1.1 Background

JavaScript started as a scripting language for the web browsers in 1997. Although the

development of the language started two years earlier, 1997 was the year when the lan-

guage was launched. In the early days of JavaScript its main focus was to bring some

slight interactivity to the user interface (UI) (Champeon 2001). Today a web

site/application might utilize thousands of lines of JavaScript code with several devel-

opers contributing to the code base. The transition of JavaScript from a simple scripting

language to a complete programming language has brought a number of problems for

developers creating larger applications with JavaScript. The main problem is how to

write reusable and maintainable code.

Organizing code into classes and modules makes the code more reusable in various sit-

uations. A module is regarded as a self-contained, reusable unit of code that can be easi-

ly distributed and used by different programs. Modules generally represent a separation

of concerns and improve maintainability of the code base. At the moment JavaScript

lacks the native functionality to define and load modules, but the next version of JavaS-

9

cript will have a module system implemented (harmony:modules 2011). It will take

years before the next version of JavaScript has gained an adequate amount of users so

that the support of legacy systems (web browsers of today) is not needed anymore.

Many JavaScript libraries and frameworks include some kind of module system, but all

of these implementations have their own syntax and are not compatible with other im-

plementations. Until the next version of JavaScript the AMD specification has become

the de facto standard for JavaScript modules.

1.2 Aims and Goals

This thesis describes how JavaScript is interpreted by the web browsers and what prob-

lems developers face due to the asynchronous nature of the web. The goal of this thesis

is to examine different modular implementations of JavaScript and their uses. Test cases

for each implementation are presented and compared. A sample application is made

with the help of each examined module loader to compare and test the practical differ-

ences. The tests include a comparison of module loading speed and module dependency

loading techniques.

10

2 JAVASCRIPT IN WEB BROWSERS

2.1 Web Documents and Web Applications

Web pages can be split into two sections, web documents and web applications. In web

documents JavaScript is unobtrusive and is not needed for the web page to function cor-

rectly. JavaScript is most often used to enhance the user experience by e.g. creating an-

imations and other visual effects.

In addition to the JavaScript features that web documents use, web applications also use

the services provided by the web browser environment. Web applications are possible

because the web browsers have grown beyond their original role as tools for displaying

documents and are moving towards simple operating systems (OS). An OS usually al-

lows the user to organize icons, files and folders via its graphical user interface (GUI).

An analogue to this in web browsers is the bookmarking system where the user can or-

ganize bookmarks in folders where bookmarks represent web documents and web ap-

plications. An OS can run multiple windowed programs where a web browser can have

multiple documents and web applications running in multiple tabs. An OS defines low-

level APIs for networking, data storage, graphics and all these features are found in web

browsers today to some extent.

As the web browsers work as simplified OS, web applications can access the underlying

services that the web browsers provide with the use of JavaScript. Perhaps the best

known of these services is the XMLHttpRequest (XHR) object (XMLHttpRequest

2012), which gives the JavaScript access to networking through HTTP requests. Web

applications use this service to retrieve data from the server without the need of a page

reload.

The new HTML5 specification (Pieters 2012) defines some additional APIs for web ap-

plications, such as data storage (file API, database API) and background threads. As Ja-

vaScript runs in a single thread any central processing unit (CPU) time consuming com-

putation will freeze the rest of the web application, including the UI. Threads were in-

11

troduced in HTML5, known as WebWorkers, which allow code to be run in the back-

ground.

JavaScript is more crucial for web applications as it is for web documents as web doc-

uments should function without JavaScript. As web applications use the OS services

provided by the browser, a web application is not expected to work without JavaScript.

(Flanagan 2011 p. 310)

2.2 Embedding JavaScript

JavaScript can be embedded into a web page in four ways:

 Inline between opening and closing script tags

 From an external file with the help of the script tags src attribute

 In a HTML elements event handler attribute

 With the javascript: URL protocol

The script tags also have a type attribute, which tells the web browser what kind of

scripting language lies between the tags. Internet Explorer (IE) is the only browser sup-

porting the Microsoft’s proprietary VBScript scripting language. If VBScript is used the

type attribute needs to be text/vbscript. In all modern web browsers the type attribute

defaults to text/javascript, therefore when implementing JavaScript in a web page the

type attribute is not needed.

2.2.1 The <script> Element

The script tags have an optional source (src) attribute that specifies a URL of the script

file to be loaded. Usually a JavaScript file loaded this way contains only JavaScript

without the script tags or any other HTML code. The script loaded via the src attribute

behaves exactly the same way if the content of the script file would be between the

opening and closing script tags. When loading script files with the src attribute any code

between the opening and closing script tags is ignored. If the scr attribute is not used

then the JavaScript code between the opening and closing tag is parsed and executed.

12

By loading script files with the src attribute versus inline script there are several ad-

vantages:

 Program logic gets separated from the presentation markup, i.e. JavaScript is

separated from the HTML.

 If multiple HTML documents refer to the same code the need to make changes

in several HTML documents when the code changes is eliminated.

 When several HTML documents refer to the same script file it is only down-

loaded once as the web browser usually caches the file.

 The HTML document can originate from one server and the script files can be

loaded from some other servers.

 Combining the cache mechanism of the browser and the ability to load the

scripts from external servers makes the use of content delivery networks (CDN)

feasible (Nygren et al. 2010). If the web page uses some well used JavaScript li-

brary, which is deployed from a CDN, there is a chance that the script files are

already cached by the web browser.

2.2.2 HTML Element Event Handler Attribute

To provide some interactivity on a web page JavaScript functions need to be bound to

events. Such events can be clicking a HTML element, submitting a form etc. One way

to call a JavaScript function is to assign a function to a HTML element event handler

attribute i.e. JavaScript inside an elements onclick, onmouseover or onchange attribute

is executed when the respective event fires.

Event handler attributes defined in HTML has the drawback that they combine program

logic with presentation and possible code change can be tedious, as mentioned in the

previous section. Alternative to this method of event binding is to use the web browser’s

JavaScript method addEventListener. The addEventListener method is available to al-

most every browser, except the Internet Explorer (IE) family prior to version 9. Earlier

versions of IE use the attachEvent method for event binding. These event binding meth-

ods offer the approach to separate program logic from presentation.

13

2.2.3 The URL Protocol

One way to execute JavaScript code is to use the javascript: URL protocol. This proto-

col is rarely used in a document but is useful when implemented as a bookmarklet

which is a JavaScript code block saved as a bookmark in the browser. When this

bookmarklet is launched it executes the code with the current web page as its context

(Flanagan 2011 p. 311). Bookmarklets can be used to run general debugging scripts or

games e.g. an Asteroids clone where the user controls a space ship to destroy visible

HTML element on the web page.

2.3 JavaScript Execution

A JavaScript program consists of all the JavaScript code in the web page regardless the

way the code has been inserted. All of these separate chunks of code share the single

global window object and thus share all the same global objects, variables and func-

tions. If two JavaScript code blocks define the same global object then the code block

that is executed last will overwrite the earlier object. The fact that almost everything in

JavaScript is mutable and bound to the global object is something that can have negative

side effects. For example inclusion of several different JavaScript libraries, where both

might define some global helper functions with the same name, can break the program

as the API might have changed.

2.3.1 How is JavaScript Executed in the Web Browser?

There are two phases of JavaScript execution in the web browser environment. In phase

one, asynchronous phase, the document content is loaded and code, both inline and ex-

ternal via the src attribute, from the script tags is executed in the order as the script tags

appear in the HTML document.

In the second phase the JavaScript interpreter enters an asynchronous, event-driven,

mode. In this mode the JavaScript interpreter waits for the web browser invoked events

defined via the HTML element event attributes or events that are registered via the

addEventListener or attachEvent functions.

14

2.3.2 Timeline

The timeline of JavaScript execution in web browsers is (Flanagan 2011 p. 323):

 The web browser creates a document object and starts parsing the HTML. The

web browser adds HTML elements and text nodes into the document object. The

document objects readyState property has the value loading.

 When the web browser encounters script elements it adds those elements to the

document and executes the JavaScript found within the opening and closing

script tags or loads the external script file and then executes the content of it. At

this point JavaScript code within the script tag can access its own script element

and all HTML elements found before it in the document object.

 If a script tag has an async attribute set the browser starts to download the script

file but it does not wait for the download to be ready before it continues to parse

the HTML document. Instead the script will be executed as soon as it is possible

after it has been downloaded.

 When the whole HTML document is parsed the document objects readyState

property will get the value interactive assigned to it.

 If any script tag had a defer attribute set, the JavaScript defined gets executed.

 The web browser fires a DOMContentLoaded event signaling that the HTML

document has been parsed. At this point the JavaScript interpreter transitions

from phase one, the synchronous mode, to phase two, the asynchronous mode.

There might still be some async scripts that have not been executed.

 At this point the HTML document has been completely parsed but there might

still be some resources that have not been loaded e.g. images. When all external

resources and async scripts have been loaded the documents readyState property

is changed to complete and the load event is fired.

 The browser is now ready with parsing and is waiting to fire event handlers

based on the user interactions.

15

3 THE NEED FOR MODULES

3.1 What are Modules?

By organizing code into classes code becomes more modular and reusable across appli-

cations. Modules are more than just classes since a module can be a set of classes, a util-

ity function or code to be run on invocation. Any piece of JavaScript can be a module if

it is written in modular fashion. Usually a module is represented by a single source file

with the file name reflecting the modules name.

The purpose of modules is to allow the assembly of larger applications from various

sources and to guarantee a successful execution of the code without unwanted side-

effects i.e. the code should run fine in the presence of third party code. To avoid side-

effects the modules should avoid polluting the global object, allowing other modules

and bits of code to run in a clean, non-altered, environment. (Flanagan 2011 p. 246)

There are few JavaScript libraries that provide a module system, of which Dojo Toolkit,

version 1.6 and 1.8, and Google’s Closure library are presented in more detail and eval-

uated in chapters 4 and 5. Both the Dojo Toolkit 1.6 and the Closure library define pro-

vide and require functions for declaring and requiring modules. The AMD specification,

utilized in the Dojo Toolkit 1.8, defines define and require methods for module han-

dling.

3.2 The Global Object

The global object feature of JavaScript has been a target of criticism (Crockford 2006).

In web browsers the global object is referenced as the window. All globally available

functions, objects and properties are accessed via this object. It is important for a mod-

ule not to pollute the global object as JavaScript is a weakly-typed language and almost

every variable can be overwritten.

One way to avoid the pollution of the global object is to use namespaces. Although

namespaces were once planned to be included natively into JavaScript, the idea has then

16

been dropped (Eich 2008). But namespaces can be simulated via objects. In modular

programming this is done by introducing only one new global object per top-level mod-

ule and nesting all sub-modules under this object. This ensures a minimal footprint on

the global object but with deeply nested modules this approach results into long

namespaces. This method is used by both the Dojo toolkit 1.6 and Google’s Closure li-

brary (See chapter 4 and 5 for more details). (Flanagan 2011 p. 246)

3.3 Loading JavaScript

As a module should be represented by a JavaScript source file the addition of modules

into the application can be achieved by loading the JavaScript source files into the

HTML document via the script tag (chapter 2.2). Without a client-side module loader

the script tags need to be added manually to the document. The order of the script tags

is important as any dependencies a module might require needs to be loaded prior to the

module.

In addition to script tags, adding JavaScript into the HTML document can be done by

the function eval which evaluates a string of JavaScript code. An XHR request can be

used to load JavaScript code from the server which is then passed to the eval function.

This allows dynamic loading of modules, but the usage of eval is discouraged as the

evaluated code is executed with the privileges of the caller and eval is slower than the

alternatives, as the JavaScript interpreter cannot optimize the evaluated code (eval

2012).

17

4 MODULE LOADERS

As mentioned earlier, JavaScript does not yet provide a native module system. Howev-

er, there are third party module loaders such as Dojo toolkit 1.6, Google closure library,

and AMD that can be used with JavaScript. This section provides an overview and a

comparison of these module loaders.

4.1 Dojo Toolkit Version 1.6

The Dojo Toolkit is an open source, modular JavaScript library provided by the non-

profit organization Dojo Foundation (Dojo Foundation 2012). It provides a package sys-

tem for declaring and loading modules and module dependencies. Declaration of mod-

ules in Dojo Toolkit 1.6 is done with a function called dojo.provide and importing mod-

ules is done via the dojo.require function (Lennon 2011).

The dojo.provide function tells the module loader that a specific module has been load-

ed and each module source file must contain at least one dojo.provide call at the top of

the file. For example the module prime in the myLib.Math.prime.js source file must call

dojo.provide(“myLib.Math.prime”) before declaring the modules code. (dojo.provide

2012)

The dojo.require function loads a module by name. If the module has already been

loaded then nothing is done, else the name is translated into a file path and the file is

then loaded from the server. For example dojo.require(“myLib.Math.prime”) loads the

file myLib.Math.prime.js.

The dojo.require uses the XHR + eval approach (see chapter 3.3) to load modules and

module dependencies dynamically. This leads into debugging difficulties and some

slight overhead in module loading as the response from the XHR request needs to be

evaluated to JavaScript.

Modules created with the Dojo Toolkit 1.6 can only be loaded by the Dojo Toolkit 1.x

module loader. The module loader is synchronous and code execution is halted until the

18

required modules are loaded and parsed. Developing applications with the Dojo Toolkit

1.6 can be cumbersome due to difficulties with debugging and the synchronous nature

of the loader.

4.2 Closure Library

The Closure Library is the JavaScript library used internally by Google but is provided

for public use under the Apache License 2.0. The Closure Library’s package and mod-

ule loading system resembles the Dojo Toolkit’s module loader. Both provide a provide

and a require method for defining and loading modules. The difference between Dojo

Toolkit 1.6 and Closure library is how modules are loaded from the server. Dojo uses

synchronous XHR requests to load data from the server, where Closure library appends

script tags into the HTML document.

Loading modules with Closure library is done in a similar way as with Dojo Toolkit 1.6,

with the goog.require method. This method takes a module name as an argument, but it

does not automatically map the required module names into source file paths, unlike the

Dojo Toolkit 1.6 module loader. Closure module loader needs to be told which source

files contain which modules. This module and dependency resolution mapping can be

achieved with the dependency calculator python script that comes bundled with the Clo-

sure library. The script requires python and is meant to be run on UNIX systems (Using

ClosureBuilder 2012).

The goog.require function call should not be used in the same script tag as the code that

uses the required modules. This is because goog.require adds code to the document af-

ter the script tag containing the call. (Getting Started with the Closure Library 2012)

Developing application with the Closure library requires python because of the depend-

ency script. As with the Dojo Toolkit 1.6, modules developed with the Closure library

cannot be used with other module loaders.

19

4.3 The Asynchronous Module Definition

The Asynchronous Module Definition API specifies a mechanism for defining modules

in a way that modules and their dependencies are loaded asynchronously. This tech-

nique suits well for the web browser environment as synchronous loading halts the Ja-

vaScript interpreter until the file is loaded and parsed.

AMD started as a transport format on the CommonJS wiki (Modules/Asynchronous

Definition 2012), but grew from a script loader to a module definition API. When no

consensus was reached on the CommonJS wiki on AMDs role the AMD proposal was

separated from CommonJS wiki into its own wiki. The CommonJS wiki focuses more

on server side, synchronous environment, implementations of JavaScript and AMD is

purely meant for asynchronous environments, i.e. the web browser. (Burke 2012)

One of the goals of the AMD API was to prevent the pollution of the global object. The

AMD API adds only two functions to the global scope, require and define, where Dojo

Toolkit 1.6 and Closure library both export modules into the global object (see chapter

3.2).

The AMD specification defines a method to load non-AMD resources with the help of

loader plugins. This is a valuable benefit when non-AMD dependencies are needed to

be loaded, e.g. HTML fragments, template files or CSS.

4.3.1 The define Method

The define method is used to create modules. It takes three arguments: an optional mod-

ule ID, an optional dependency list and a non-optional factory function or object literal.

4.3.1.1 The module ID

The ID argument is a string literal and it is optional. The ID looks like a file system path

and when the module is required, by the require or the define method, the ID is normal-

ized to an absolute URL.

20

The module ID format must comply with the following:

 A module identifier is a string of “terms” delimited by forward slashes.

 A term must be a camelCase identifier, “.”, or “..”.

 Module identifiers may not have file-name extension like “.js”.

 Module identifiers may be "relative" or "top-level". A module identifier is "rela-

tive" if the first term is "." or "..".

 Top-level identifiers are resolved off the conceptual module name space root.

 Relative identifiers are resolved relative to the identifier of the module in which

require is written and called.

For example the module ID myLib/Math/prime translates into a file path of

myLib/Math/prime.js.

When defining a module the ID is not recommended to be defined and is seen as a dep-

recated feature of the AMD API. If the module ID is left out, as recommended, then the

defined module is seen as an anonymous module meaning that the AMD module loader

knows which module to load based on the identifier in the dependency list.

Only build tools should add the module ID into the module definition. This way many

modules can be included into one file to reduce the amount of HTTP requests to the

server.

4.3.1.2 The Dependency List

The second, optional, argument is the dependency list. It is a list of module IDs that are

dependencies required by the module that is being defined. The dependencies are re-

solved before the defined modules factory function is called and the return values of the

dependencies are passed as arguments to the factory function in the order the dependen-

cies are introduced in the list.

21

4.3.1.3 The Module Factory

The third argument, factory, is the meat of the defined module. It can be a function or an

object literal. If it is an object literal, then that object is the return value of the module.

If it is a function then it is executed only once after all dependencies, if any, are re-

solved. The return value of the factory is the exported value of the module.

There are three reserved keywords that have special meaning and resolution in the de-

pendency list:

 require – A context-sensitive require method. Any requested modules ids are re-

solved relative to the module that made the request.

 exports – Instead of explicitly returning a value in the factory function, proper-

ties can be attached to the exports object. Attaching properties to the exports ob-

ject is the only way to define modules that are in a circular dependency.

 module – The module object has one property, exports. This module.exports is

the same thing as the exports object described above.

4.3.2 The require Method

The require function is used to configure the loader and to load AMD modules. It takes

three arguments, an optional configuration object, an optional dependency list and an

optional callback function which is run after all dependencies are resolved.

4.3.2.1 The Configurations Object

The configuration object is used to configure the AMD loader. As of the time of writing

the configuration object of AMD loaders is still in draft. An AMD loader is not required

to implement all configuration values defined in the AMD wiki, but if an AMD loader is

to provide a capability that matches these configuration values, it should use these

names, structures and behaviors:

 baseUrl – The baseUrl is a string that indicates the root used for ID-to-path

resolutions. Relative paths are relative to the current working directory. In web

browsers this is the directory containing the web page running the script.

22

 paths – The paths is an object, a hash-map, where every property is an absolute

module ID prefix, and the value is either a string or an array. If the value is a

string then it is the path to the module; relative to the baseUrl or an absolute

path. If the value is an array then it should act as a failover list which means that

if the loader is unable to load the module from the first path in the list then it

should try to load it from the second path and so on.

 packages – The packages configuration option is an array of package configura-

tion objects. A package configuration object consisting of the following proper-

ties:

o name – A module ID prefix, the first segment of an absolute module ID.

o location – Path of the module package relative to the baseUrl.

o main – The main module of the package. Default value is main.

 map – The map object is used to rewrite request from modules with specific

module ID prefix to point to another module.

4.3.3 AMD Loader Plugins

Loader plugins extend the AMD loader to load non JavaScript files, e.g. JavaScript Ob-

ject Notation (JSON) files, text files etc. Loader plugins are AMD defined modules with

a specific API. The plugins functionality is invoked by adding its module identifier be-

fore an exclamation mark in the dependency. The part after the exclamation mark is the

plugins resource identifier. (Burke 2012)

An example of using the text loader plugin:

require([text!myModule/readme.txt], function(contentOfReadme) {

 // Do something with the content of the readme.txt

});

4.4 Summary

Loading modules with the Dojo Toolkit 1.6 and Google’s Closure library is verbose.

Both loaders use the objects as namespace technique to minimize the global object

footprint. Both libraries provide mechanisms for defining and loading loosely coupled

23

modules, but they don’t mix and match. Modular application components made with the

Closure Library cannot be used by the Dojo loader and vice versa.

AMD is an improvement compared to declaring modules into the global object because

(Why AMD? 2012):

 Clear declaration of dependencies and avoids the use of globals.

 IDs can be mapped to different paths allowing swapping out implementation.

This is useful for mocks and unit tests.

 Encapsulation of the module definition. Avoiding the pollution of the global

namespace.

An AMD loader is an improvement compared to Dojo Toolkit 1.6 and Closure library

module loaders because:

 Dependency injection is done with the HTML script tags.

 Easier debugging compared to evaluated scripts.

 No need for server specific languages and tools.

 Module loader plugins ease loading of resources.

Below is a table that shows the module loaders feature differences.

Table 1. Differences between module loaders

Module loader differences Dojo Toolkit 1.6 Google's Closure
library

AMD

Asynchronous module load-
ing

No Yes Yes

Modules can be used by
other module loaders

No No Yes

Easy to debug No Yes Yes

Server-side tool dependant No Yes No

Loads modules with eval and
XHR

Yes No No

Loads modules by injecting
script tags into the HTML
document

No Yes Yes

24

Support of loading other
resources (text, json, css,
etc.)

No No Yes

Avoid declaration of mod-
ules in the global namespace

No No Yes

25

5 A PRACTICAL COMPARISON OF MODULE LOADERS

A sample program was developed to compare the differences between Dojo Toolkit 1.6,

Google’s Closure Library and an AMD module loader (Dojo Toolkit 1.8). The sample

application shows the basics of defining modules, loading modules and how dependen-

cies are resolved. The application itself is a primary number calculator which lets the

user choose the range from which prime numbers are to be searched.

5.1 Building the Sample program with Different Module Load-

ers

The code structure of the sample application is independent of which module loader is

used. The application consists of one HTML document, a module loader, the core appli-

cation module and one helper library module. Initially, the module loader is loaded and

configured in the HTML document and then the application module is loaded and start-

ed. Only the main application module is needed to be manually required as the module

loaders take care of loading all of the dependencies the application requires.

5.1.1 Initializing the Application Module

In the Dojo Toolkit 1.6 version of the application the core module of Dojo Toolkit is

loaded. This core module includes the module loader among other often used methods,

such as HTML element selector methods etc. After the core module and the module

loader is loaded to the HTML document the application’s main module is loaded using

the dojo.require method.

Loading the core Dojo Toolkit module:

<script type="text/javascript" src="js/lib/dojo/dojo.js"></script>

Loading the application module with the help of the Dojo Toolkit module loader is done

next:

<script type="text/javascript">

dojo.require('myApp.App');

26

// Rest of the application initialization is done here

</script>

After the dojo.require(‘myApp.App’) function call the application module is loaded and

accessible through the global object myApp.App. The application is instantiated by call-

ing the new operator on the constructor and binding the application into a variable:

var app = new myApp.App();

The Closure library module loader behaves in similar way. The Closure library core

module, including the module loader, is loaded in the HTML document:

<script type="text/javascript" src="lib/closure/goog/base.js"></script>

The Closure library’s module loader needs a dependency map to tell it from where to

load which module. The dependency map is loaded next:

<script type="text/javascript" src="deps.js"></script>

A call to the goog.require adds code to the HTML document after the script tag contain-

ing the call. Because of this all module required directly in the HTML document needs

to be loaded in a separate script tag:

<script type="text/javascript">

goog.require('myApp.App');

 // All module used directly in the HTML document are loaded here

</script>

As with the dojo.require calling goog.require(‘myApp.App’) results in a global object

myApp.App which is usable in similar way as in the Dojo Toolkit version of the sample

application.

The AMD is a bit different. Because of the factory function of the require method the

global object is not polluted as all variables declared inside this factory function are not

visible outside of the function.

Loading and initializing the application module with the AMD loader:

27

require(['App'], function(App) {

 var app = new App();

 // Rest of the application initialization is done here

});

5.1.2 Application Dependencies

The sample applications main module has only one dependency, the library module

primary. This module returns a method that calculates a list of all primary numbers be-

tween the first primary number, number two (2), and the input value.

The primary module dependency is loaded by the application module. With Dojo

Toolkit 1.6 this is achieved with the following:

dojo.provide('myApp.App');

dojo.require('myLib.Math.primary');

dojo.declare('myApp.App', null, {

 primes: function(n) {

 return myLib.Math.primary(n);

 }

});

First the application module is provided with the dojo.provide method. Before the mod-

ule is defined any dependencies are loaded. Here there is only one dependency, the pri-

mary module. After all dependencies are loaded the module can be defined. The do-

jo.declare method is a helper method to create classes in JavaScript. Here it is used to

declare the myApp.App class.

The Closure library needs to be told from where to load modules and dependencies. The

dependency map that needs to be loaded manually into the HTML document looks like

this:

goog.addDependency('../../myApp/App.js', ['myApp.App'], ['myLib.Math.primary']);

goog.addDependency('../../myLib/Math/primary.js', ['myLib.Math.primary'], []);

28

The goog.addDependency method tells the module loader the file path of a source file,

which modules reside in that file and what the dependencies are for the modules in that

file.

The application module made with the help of Closure library resembles the Dojo

Toolkit 1.6 application module:

goog.provide('myApp.App');

goog.require('myLib.Math.primary');

myApp.App = function() {};

myApp.App.prototype.primes = function(n) {

 return myLib.Math.primary(n);

};

Definition of the application module with the AMD syntax:

define(['dojo/_base/declare', 'myLib/Math/primary'],

function(declare, primary) {

 return declare([], {

 primes: function(n) {

 return primary(n);

 }

 });

});

Compared to the Dojo Toolkit 1.6 the AMD version of the application module explicitly

requests the declare method. In Dojo Toolkit 1.6 this method is loaded in conjunction

with the module loader.

5.2 Loading the Modules of the Sample Application

The application is loaded both from the file-system, to check if the module loaders can

be used without an HTTP server, and from a lightweight HTTP server, Mongoose

(Mongoose 2012).

29

Loading the Dojo Toolkit 1.6 version of the application from the file-system proved to

be impossible because of the XHR security restrictions of the browsers. The Dojo

Toolkit 1.6 method of loading modules with XHR cannot be used to load data from the

local file-system. Development and testing of modular applications without an HTTP

server is impossible with Dojo Toolkit 1.6. Both the Closure library and the AMD mod-

ule loaders are capable of loading modules from the local file-system as their loading

techniques do not involve any XHR requests. Some of the AMD loader plugins might

utilize XHR to load resources, but the JavaScript modules are loaded through the

HTML script tags. All three libraries operate without problems when used over HTTP.

The Closure library requires a separate dependency script to tell it from where to load

custom made modules. This dependency script can be built by hand but becomes tedi-

ous to manage when there are several modules and module dependencies used in the

application. Development of applications with the Closure library works best in con-

junction with an HTTP server.

5.3 Performance Tests of Module Loaders

Module loaders performance was tested by measuring the time it takes for the module

loaders to load the application, how big the application and the module loaders are in

terms of kilobytes (KB) and how many HTTP requests each module loader perform.

The tests were run with the Google Chrome web browser (Version 23.0.1271.64 m) on

a 64-bit Windows 7 PC with Intel Core i7-2630QM 2.00GHz CPU and 8 GB of RAM.

The application consists of only two custom modules. The number of custom modules

was kept to a minimum to compare the differences between the JavaScript libraries and

their module loaders.

5.3.1 Timeline comparisons

The Google Chromes Timeline pane is a good tool for measuring loading times of mod-

ules. It shows the exact point of time when a request was made and how long it took. It

also shows when the onload event was triggered. The time spent for loading resources is

30

shown in blue in Figure 1 where the timeline of the Dojo Toolkit 1.6 module loader is

shown. The timeline shows that the XHR requests are synchronous and modules are

loaded sequentially.

Figure 1. Dojo Toolkit 1.6 module loading timeline

31

The Closure library loads modules asynchronously and the timeline shows that the re-

quests are parallel (Figure 2).

Figure 2. Closure library module loading timeline

Figure 3 show that the Dojo Toolkit 1.8 AMD compliant module loader loads the mod-

ules in parallel fashion.

Figure 3. AMD module loading timeline

These graphs show that both Closure library and AMD module loaders load modules

parallel and the Dojo Toolkit 1.6 module loader loads modules in sequence. Parallel

32

loading of modules is faster compared to sequential loading, as several modules can be

loaded from the server at the same time.

5.3.2 Module Loading Comparison

Table 2 shows the differences between the module loaders when it comes to loading the

test application. The test was performed by loading the application ten times with each

of the module loaders. The browsers cache was emptied between every reload to ensure

comparable results. The number of request and the size of the application remains con-

stant (for each module loader) between each application load, but the time it takes for

the bowser to trigger the onload and the DOMContentLoaded events varies from appli-

cation load to application load.

Table 2. Module loader performance over HTTP

Loader perfromance Dojo Toolkit 1.6 Closure library AMD (Dojo Toolkit 1.8)

No. of requests 23 31 15

Transferred KB 397,90 592,17 182,8

onload event (s) 3,17 1,89 1,27

DOMContentLoaded
event (s)

3,17 1,89 0,35

The AMD module loader outperformed both the Closure library and Dojo Toolkit 1.6

module loaders in terms of number of requests needed to load the application compo-

nents, size of the application and the time it takes for the browser to parse the page con-

tent. This shows that the AMD approach results in faster load times because only the

used modules are loaded. Both Dojo Toolkit 1.6 and Closure library load modules that

are not necessarily used by the application.

33

6 CONCLUSION

Modules present a separation of concerns and improve the maintainability of the code

base. Even though JavaScript has grown from a simple scripting language into a full

blown programming language, it lacks a native module definition and loading system.

Many JavaScript libraries and frameworks include some kind of module system, but all

of these implementations have their own syntax and are not compatible with other im-

plementations. The Asynchronous Module Definition (AMD) is de facto standard for

module loaders. Modules that follow this standard can be loaded with any AMD com-

pliant module loader.

In this thesis three different module loaders are evaluated and a simple sample applica-

tion is built against each module loader specification. The module loaders tested are the

Dojo Toolkit 1.6’s, Google’s Closure library’s and the AMD compliant Dojo Toolkit

1.8’s module loaders. Module loader performance was tested by comparing the applica-

tion size and the loading time of the modules. Loading modules with the Closure library

and the AMD module loader were faster than with the Dojo Toolkit 1.6’s module load-

er. This is because the AMD and the Closure library load modules in parallel fashion

where the Dojo Toolkit 1.6 loads modules sequentially. Usage of the AMD module

loader resulted in fewer modules to be loaded as it loads only the required modules,

where both Closure library and Dojo Toolkit 1.6 load additional resources. This corre-

lates directly into the total download size of the application.

Modules built with the Dojo Toolkit 1.6 and the Closure library are not usable with oth-

er module loaders as both frameworks implement their own, proprietary, module defini-

tion syntax and loading mechanism. AMD specification compliant modules can be used

with any other AMD specification compliant module loader.

The AMD module loader is overall a better module loader than the Dojo Toolkit 1.6 and

the Closure library module loaders because:

 Modules can be loaded by other AMD compliant module loaders.

 Only modules that are used are loaded.

34

 None-AMD resources can be loaded with the help of loader plugins.

 It does not pollute the global object.

35

REFERENCES

Alman, B. 2010, Immediately-Invoked Function Expression (IIFE), published

15.11.2010. Available: http://benalman.com/news/2010/11/immediately-invoked-

function-expression/ Accessed 13.10.2012

Burke, J. 2012, AMD, published 22.5.2011. Available: https://github.com/amdjs/amdjs-

api/wiki/AMD Accessed 13.10.2012

Champeon, S. 2001, O’Reilly Web DevCenter, published 6.4.2001. Available:

http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html Accessed

13.10.2012

Crockford, D. 2006, Global Domination, published 1.6.2006. Available:

http://yuiblog.com/blog/2006/06/01/global-domination Accessed 13.10.2012

Croll, A. 2010, Understanding JavaScript’s ‘undefined’, published 16.8.2010. Availa-

ble: http://javascriptweblog.wordpress.com/2010/08/16/understanding-undefined-

and-preventing-referenceerrors/ Accessed 13.10.2012

Dojo Foundation. 2012, Dojo Toolkit. Available: http://dojotoolkit.org/ Accessed

14.10.2012

dojo.provide. 2012, Dojo Toolit Documentation. Available:

http://dojotoolkit.org/reference-guide/1.6/dojo/provide.html Accessed 14.10.2012

Eich, B. 2008, ECMAScript Harmony, published 13.8.2008. Available:

https://mail.mozilla.org/pipermail/es-discuss/2008-August/003400.html Accessed

13.10.2012

eval. 2012, Mozilla Developer Network, published 31.3.2005. Available:

https://developer.mozilla.org/en-

US/docs/JavaScript/Reference/Global_Objects/eval#Don.27t_use_eval.21 Ac-

cessed 14.10.2012

Flanagan, D. 2011, JavaScript: The Definitive Guide, 6th Edition. O’Reilly Media, 1100

p.

Functions and function scope. 2012, Mozilla Developer Network, published 9.9.2005.

Available: https://developer.mozilla.org/en-

US/docs/JavaScript/Reference/Functions_and_function_scope Accessed

30.9.2012

Getting Started with the Closure Library. 2012, Google Developers. Available:

https://developers.google.com/closure/library/docs/gettingstarted#step4 Accessed

16.10.2012

36

harmony:modules. 2012, ECMAScript wiki, published 23.3.2011. Available:

http://wiki.ecmascript.org/doku.php?id=harmony:modules Accessed 29.10.2012

Lennon, J. 2011, Dojo from the ground up, Part 2: Mastering object-oriented develop-

ment with Dojo, published 1.1.2011. Available:

http://www.ibm.com/developerworks/web/library/wa-ground2/index.html Ac-

cessed 27.10.2012

Modules/Asynchronous Definition. 2012, CommonJS, published 9.9.2012. Available:

http://wiki.commonjs.org/wiki/Modules/AsynchronousDefinition Accessed

29.10.2012

Mongoose. 2012, Mongoose – easy to use web server. Available:

http://code.google.com/p/mongoose/ Accessed 29.10.2012

Nygren, E. Sitaraman, R. K. and Sun, J. 2010, The Akamai Network: A Platform for

High-Performance Applications, published 7.2010. Available:

http://www.akamai.com/dl/technical_publications/network_overview_os r.pdf

Accessed 1.11.2012

Object.freeze. 2012, Mozilla Developer Network, published 4.10.2010. Available:

https://developer.mozilla.org/en-

US/docs/JavaScript/Reference/Global_Objects/Object/freeze Accessed:

13.10.2012

Osmani, A. 2011, Essential JavaScript Namespacing Patterns, published 23.9.2011.

Available: http://addyosmani.com/blog/essential-js-namespacing/ Accessed

13.10.2012

Pieters, S. 2012, HTML5 differences from HTML4, published 22.1.2008. Available:

http://dev.w3.org/html5/html4-differences/#new-apis Accessed 1.11.2012

Using ClosureBuilder. 2012, Google Developers. Available:

https://developers.google.com/closure/library/docs/closurebuilder Accessed

16.10.2012

Venners, B. 2003, Orthogonality and the DRY Principle, published 10.3.2003. Avail-

able: http://www.artima.com/intv/dry.html Accessed: 7.10.2012

Why AMD?. 2012, Require JS a JavaScript module loader. Available:

http://requirejs.org/docs/whyamd.html Accessed: 7.10.2012

XMLHttpRequest. 2012, Mozilla Developer Network, published 4.8.2005. Available:

https://developer.mozilla.org/en-US/docs/DOM/XMLHttpRequest Accessed:

1.11.2012

http://www.artima.com/intv/dry.html

APPENDIX A: SAMPLE APPLICATION MADE WITH DOJO

TOOLKIT 1.6

index.html

<!DOCTYPE html>

<html>

<head>

 <title>Modular JavaScript Dojo 1.6</title>

 <script type="text/javascript">

 console.time('DepsLoaded');

 var moduleStartTime = new Date().getTime(),

 moduleEndTime;

 </script>

 <script type="text/javascript" src="js/lib/dojo/dojo.js"></script>

 <script type="text/javascript">

 dojo.require('myApp.App');

 dojo.ready(function() {

 console.timeEnd('DepsLoaded');

 moduleEndTime = new Date().getTime();

 var app = new myApp.App(),

 loaded = dojo.byId('modulesLoaded'),

 input = dojo.byId('number'),

 result = dojo.byId('result'),

 button = dojo.byId('calculate'),

 report = dojo.byId('report'),

 value = 100,

 primes, startTime, endTime, totalTime;

 loaded.innerHTML = 'Module load time: ' + (moduleEndTime -

moduleStartTime) + 'ms';

 dojo.connect(button, 'onclick', function() {

 value = input.value;

 startTime = new Date().getTime();

 primes = app.primes(value);

 endTime = new Date().getTime();

 totalTime = endTime - startTime;

 result.value = primes.join(", ");

 report.innerHTML = 'Total: ' + totalTime + 'ms';

 });

 });

 </script>

 <style type="text/css">

 body, html {

 height: 100%;

 width: 100%;

 margin: 0;

 }

 h1 {

 margin-bottom: 20px;

 }

 .center {

 margin-left: auto;

 margin-right: auto;

 text-align: center;

 }

 #result {

 width: 600px;

 height: 300px;

 }

 </style>

</head>

<body>

 <div class="center">

 <h1>Dojo 1.6</h1>

 <h2>Primary number finder</h2>

 <div id="modulesLoaded"></div>

 <textarea id="result" readonly></textarea>

 <div>

 <input id="number" type="number" value="100" />

 <button id="calculate" type="button">Calculate</button>

 </div>

 <div id="report">

 </div>

 </div>

</body>

</html>

App.js

dojo.provide('myApp.App');

dojo.require('myLib.Math.primary');

dojo.declare('myApp.App', null, {

 primes: function(n) {

 return myLib.Math.primary(n);

 }

});

primary.js

dojo.provide('myLib.Math.primary');

myLib.Math.primary = function(n) {

 n = parseInt(n);

 var a = !!window.Int8Array ?

 new Uint8Array(n+1) : // If typed arrays are supported use those else

 new Array(n+1), // use normal arrays which are much slower

 max = Math.floor(Math.sqrt(n)), // Don't do factors higher than this

 p = 2, // The first prime is 2

 i, l,

 primes = []; // Store the found primes

 // Mark all non-prime indexes

 while (p <= max) { // Calculate primes less than max

 for (i = 2 * p; i <= n; i += p) { // Mark multiples of p as composite

 a[i] = 1;

 }

 while(a[++p]); // Next unmarked index is a prime

 }

 for (i = 2, l = a.length; i < l; i++) {

 if (!a[i]) {

 primes.push(i);

 }

 }

 return primes;

};

APPENDIX B: SAMPLE APPLICATION MADE WITH CLOSURE

LIBRARY

index.html

<!DOCTYPE html>

<html>

<head>

 <title>Google Closure</title>

 <script type="text/javascript">

 console.time('DepsLoaded');

 var moduleStartTime = new Date().getTime(),

 moduleEndTime;

 </script>

 <script type="text/javascript" src="lib/closure/goog/base.js"></script>

 <script type="text/javascript" src="deps.js"></script>

 <script type="text/javascript">

 goog.require('myApp.App');

 goog.require('goog.dom');

 goog.require('goog.events');

 </script>

 <style type="text/css">

 body, html {

 height: 100%;

 width: 100%;

 margin: 0;

 }

 h1 {

 margin-bottom: 20px;

 }

 .center {

 margin-left: auto;

 margin-right: auto;

 text-align: center;

 }

 #result {

 width: 600px;

 height: 300px;

 }

 </style>

</head>

<body>

 <div class="center">

 <h1>Closure library</h1>

 <h2>Primary number finder</h2>

 <div id="modulesLoaded"></div>

 <textarea id="result" readonly></textarea>

 <div>

 <input id="number" type="number" value="100" />

 <button id="calculate" type="button">Calculate</button>

 </div>

 <div id="report">

 </div>

 </div>

 <script type="text/javascript">

 // Google Closure library does not implement a document ready method.

 console.timeEnd('DepsLoaded');

 moduleEndTime = new Date().getTime();

 (function() {

 var app = new myApp.App(),

 loaded = goog.dom.getElement('modulesLoaded'),

 input = goog.dom.getElement('number'),

 result = goog.dom.getElement('result'),

 button = goog.dom.getElement('calculate'),

 report = goog.dom.getElement('report'),

 value = 100,

 primes, startTime, endTime, totalTime;

 loaded.innerHTML = 'Module load time: ' + (moduleEndTime -

moduleStartTime) + 'ms';

 goog.events.listen(button, goog.events.EventType.CLICK, function() {

 value = input.value;

 startTime = new Date().getTime();

 primes = app.primes(value);

 endTime = new Date().getTime();

 totalTime = endTime - startTime;

 result.value = primes.join(", ");

 report.innerHTML = 'Total: ' + totalTime + 'ms';

 });

 }());

 </script>

</body>

</html>

deps.js

goog.addDependency('../../myApp/App.js', ['myApp.App'], ['myLib.Math.primary']);

goog.addDependency('../../myLib/Math/primary.js', ['myLib.Math.primary'], []);

App.js

goog.provide('myApp.App');

goog.require('myLib.Math.primary');

myApp.App = function() {};

myApp.App.prototype.primes = function(n) {

 return myLib.Math.primary(n);

};

primary.js

goog.provide('myLib.Math.primary');

myLib.Math.primary = function(n) {

 n = parseInt(n);

 var a = !!window.Int8Array ?

 new Uint8Array(n+1) : // If typed arrays are supported use those else

 new Array(n+1), // use normal arrays which are much slower

 max = Math.floor(Math.sqrt(n)), // Don't do factors higher than this

 p = 2, // The first prime is 2

 i, l,

 primes = []; // Store the found primes

 // Mark all non-prime indexes

 while (p <= max) { // Calculate primes less than max

 for (i = 2 * p; i <= n; i += p) { // Mark multiples of p as composite

 a[i] = 1;

 }

 while(a[++p]); // Next unmarked index is a prime

 }

 for (i = 2, l = a.length; i < l; i++) {

 if (!a[i]) {

 primes.push(i);

 }

 }

 return primes;

};

APPENDIX C: SAMPLE APPLICATION MADE WITH AMD SPEC-

IFICATION

index.html

<!DOCTYPE html>

<html>

<head>

 <title>Modular JavaScript Dojo 1.8</title>

 <script type="text/javascript">

 console.time('DepsLoaded');

 var moduleStartTime = new Date().getTime(),

 moduleEndTime;

 </script>

 <script type="text/javascript" data-dojo-config="async: 1, tlmSiblingOfDojo: 0,

isDebug: 0" src="js/lib/dtk/dojo/dojo.js"></script>

 <script type="text/javascript" src="js/bootstrap.js"></script>

 <script type="text/javascript">

 require(['myLib/has'], function() {

 require(['App', 'dojo/dom', 'dojo/on', 'dojo/domReady!'], function(App, dom, on) {

 console.timeEnd('DepsLoaded');

 moduleEndTime = new Date().getTime();

 var myApp = new App(),

 loaded = dom.byId('modulesLoaded'),

 input = dom.byId('number'),

 result = dom.byId('result'),

 button = dom.byId('calculate'),

 report = dom.byId('report'),

 value = 100,

 primes, startTime, endTime, totalTime;

 loaded.innerHTML = 'Module load time: ' + (moduleEndTime -

moduleStartTime) + 'ms';

 on(button, 'click', function() {

 value = input.value;

 startTime = new Date().getTime();

 primes = myApp.primes(value);

 endTime = new Date().getTime();

 totalTime = endTime - startTime;

 result.value = primes.join(", ");

 report.innerHTML = 'Total: ' + totalTime + 'ms';

 });

 });

 });

 </script>

 <style type="text/css">

 body, html {

 height: 100%;

 width: 100%;

 margin: 0;

 }

 h1 {

 margin-bottom: 20px;

 }

 .center {

 margin-left: auto;

 margin-right: auto;

 text-align: center;

 }

 #result {

 width: 600px;

 height: 300px;

 }

 </style>

</head>

<body>

 <div class="center">

 <h1>AMD</h1>

 <h2>Primary number finder</h2>

 <div id="modulesLoaded"></div>

 <textarea id="result" readonly></textarea>

 <div>

 <input id="number" type="number" value="100" />

 <button id="calculate" type="button">Calculate</button>

 </div>

 <div id="report">

 </div>

 </div>

</body>

</html>

bootstrap.js

require({

 noGlobals: true, // Dojo loader specific configuration.

 // Implicitly not using the legacy namespaces.

 baseUrl: 'js/', // Defines the base URL from where the laoder loads local packages

 packages: [// Package definitions related to the baseUrl

 { name: 'dojo', location: 'lib/dtk/dojo' }, // The top module identifier dojo and

its location

 { name: 'myLib', location: 'lib/myLib' }, // Custom or third party library

 { name: 'App', location: 'myApp', main: 'App' } // Pointer to the application

],

 aliases: [// The aliases property is a Dojo loader specific implementation

that allows the

 ['text', 'dojo/text'], // loader to alias a package or dependency to another

name.

 ['has', 'dojo/has']

]

});

has.js

define(['has', './has/typedArrays'], function(has) {

 return has;

});

typedArrays.js

define(['has'], function(has) {

 has.add('typed-arrays', function(global) {

 return !!global.Int8Array;

 });

 return has;

});

App.js

define([

 'dojo/_base/declare',

 'has!typed-arrays?myLib/Math/primaryOptimized:myLib/Math/primary'

 // Use has module loader plugin to load an optimized version of the primary number

 // module if typed arrays are supported by the browser.

], function(

 declare,

 primary

) {

 return declare([], {

 primes: function(n) {

 return primary(n);

 }

 });

});

primary.js

define(function() {

 return function(n) {

 n = parseInt(n);

 var a = new Array(n+1),

 max = Math.floor(Math.sqrt(n)), // Don't do factors higher than this

 p = 2, // The first prime is 2

 i, l,

 primes = []; // Store the found primes

 // Mark all non-prime indexes

 while (p <= max) { // Calculate primes less than max

 for (i = 2 * p; i <= n; i += p) { // Mark multiples of p as composite

 a[i] = 1;

 }

 while(a[++p]); // Next unmarked index is a prime

 }

 for (i = 2, l = a.length; i < l; i++) {

 if (!a[i]) {

 primes.push(i);

 }

 }

 return primes;

 }

});

primaryOptimized.js

define(function() {

 return function(n) {

 n = parseInt(n);

 var a = new Uint8Array(n+1), // Optimized to use Uint8Array instead of Array

 max = Math.floor(Math.sqrt(n)), // Don't do factors higher than this

 p = 2, // The first prime is 2

 i, l,

 primes = []; // Store the found primes

 // Mark all non-prime indexes

 while (p <= max) { // Calculate primes less than max

 for (i = 2 * p; i <= n; i += p) { // Mark multiples of p as composite

 a[i] = 1;

 }

 while(a[++p]); // Next unmarked index is a prime

 }

 for (i = 2, l = a.length; i < l; i++) {

 if (!a[i]) {

 primes.push(i);

 }

 }

 return primes;

 }

});

