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ABSTRACT 
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Degree Programme in ICT Engineering Software Engineering  LAITILA, GAMZE: Evaluation of Pre-trained Object Detection Models for the Use in the SURE Project  Bachelor's thesis 46 pages, appendices 8 pages April 2021 
The main purpose of this study was to investigate as many object detection models as possible in order to evaluate their efficiency and determine a suitable model to be used in the SURE project. This model would have then processed images taken by drones outside, which contain mostly vehicles and crowds of people.  Out of 41 pre-trained object detection models, 17 were selected for evaluation. Over 1000 photographs taken by the drones were received as test data and 240 of them were chosen to be processed. In these photographs, 1754 objects were annotated using an image annotation tool. Detection results and actual annotation results of the images were then compared, and evaluation metrics were calculated using a code written in Python.  As a result of this process, it was found that EfficientDet D7 1536x1536, EfficientDet D6 1280x1280 and EfficientDet D5 1280x1280 were the three top ranking models in terms of accuracy whereas CenterNet Resnet50 V1 FPN Keypoints 512x512, CenterNet Resnet50 V2 Keypoints 512x512 and Faster R-CNN ResNet101 V1 800x1333 were the three top ranking models in terms of image processing speed.  The findings indicate that models that were proven to be the most accurate in international competitions were not necessarily useful for the SURE project. One-stage models could later be investigated, for example YOLO and RetinaNet, but this study suggests the use of the model EfficientDet D6 1280x1280 for efficiency in accuracy and Faster R-CNN Inception ResNet V2 1024x1024 for efficiency in image processing speed. 

Key words: object, detection, mAP, evaluation 
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ABBREVIATIONS AND TERMS 
 
 
SURE Smart urban security and event resilience 
TAMK Tampere University of Applied Sciences  
GPU Graphical Processing Unit 
YOLO You Only Look Once 
SSD Single Shot Detector 
R-CNN Region Based Convolutional Neural Network 
Mask R-CNN Mask Region Based Convolutional Neural Network 
Cascade R-CNN Cascade Region Based Convolutional Neural Network 
MS COCO Microsoft Common Objects in Context 
mAP Mean Average Precision 
Faster R-CNN Faster Region Based Convolutional Neural Network 
CNN Convolutional Neural Network 
ReLU Rectified Linear Unit 
RoI Region of Interest 
SVM Support Vector Machine 
IoU Intersection of Union 
TP True Positive 
FP False Positive 
FN False Negative 
AP Average Precision 
code_models Code that was used for image detection 
code_mAP Code that was used for evaluation of the models 
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1 INTRODUCTION 
 
 
With the rapid innovations in image obtaining techniques and digitalized data 
storage options, people and entities are able to obtain more and more image 
data. As a result of this, researchers are keen to use these sources for 
humanity’s benefit and look for fields where this number of images can be used. 
The analysis of the image data obtained, and the extraction of the results have 
a special importance. With a variety of image processing techniques, results 
can be drawn from raw image data and used in several applications. For 
example, daily applications such as face recognition on smartphones or license 
plate detection of vehicles in traffic are among the most prominent applications 
in the field of image processing. 
 
In the attempts of developing urban security measures, city of Tampere has 
initiated a project called SURE (Smart urban security and event resilience), 
where object detection in images will be used as an observation tool in outdoor 
events taking place in the city.  
 
Throughout this study, modern object detection methods and models derived 
from them will be investigated in terms of their accuracy and speed. These 
models will be evaluated by certain evaluation metrics and the results will be 
analysed in order to determine a suitable model to be used in the SURE project. 
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2 ABOUT SURE 
 
 
Tampere’s SURE is an EU-financed project that receives its funds worth of 3.2 
million euros from Urban Innovative Actions initiative. Its main purpose is to 
develop and apply security technologies for cities. Project is to be completed in 3 
years and its development started in September 2019.  
 
Partners of the project are Insta Group, Nokia, Securitas, University of Tampere, 
TAMK (Tampere University of Applied Sciences), Business Tampere and The 
Baltic Institute of Finland.  
 
One of the project’s focus areas is the observation of events in the city where 
large amounts of people gather. These events and gatherings would be observed 
with unmanned aerial vehicles, commonly known as drones. The visual data 
received from these drones will be processed by an object detection algorithm to 
identify the objects and decipher the happenings throughout the. For example, 
unexpected movements of the crowd such as pushing, mass movement towards 
a certain direction or a fast-moving vehicle would be detected by the algorithm 
and precautions would be taken beforehand in order to prevent security 
breaches. 
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3 OBJECT DETECTION 
 
 
Object detection is a technique used in image processing which lets us detect, 
identify and track various objects of determined classes (cars, humans, dogs, 
buildings etc.) in digital images and videos. Object detection is used in many 
applications simply for image retrieval or in more complex cases like video 
surveillance. 
 
In the recent years, the amount of unprocessed raw data has increased 
considerably with the effect of the developments in information storage 
technologies. This increase led to parallel computing methods and high 
processing power becoming indispensable for areas such as machine learning 
and image processing. With all these developments, new libraries that allow 
parallel calculation on graphic cards have been created. Due to GPUs’ 

(Graphical Processing Unit) high bandwidth, easily programmable registers, and 
efficiency through thread parallelism, it has become quite easy and convenient 
to perform arithmetic operations on graphic cards that would normally require a 
lot of time and high processing power.  
 
As a result, high computation and processing power made it possible to work 
with multi-layer networks called deep neural networks. Multi-layer neural 
networks have proven to be the best in the field by getting much better degrees 
than normal machine learning methods in competitions for classification and 
detection of objects in images. 
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4 OBJECT DETECTION METHODS 
 
 
State-of-the-art object detection methods can be divided into 2 categories: one-
stage methods and two stage-methods.  
 
In one-stage methods primary focus is on speed whereas in two-stage methods 
it is on detection accuracy. Example methods for one-stage methods can be 
YOLO (You Only Look Once), SSD (Single Shot Detector) and RetinaNet and 
for two-stage they can be Faster R-CNN (Region Based Convolutional Neural 
Network), Mask R-CNN and Cascade R-CNN. The most popular benchmark is 
the MS COCO (Microsoft Common Objects in Context) dataset and the main 
evaluation metric used is Mean Average Precision (mAP) metric. (Papers With 
Code n. d.) 
 
During the time of this study, Google and TensorFlow are the leading publishers 
of object detection models. Every passing year new and more efficient methods 
and models are developed, and these new models prove themselves in multiple 
challenges after they have been trained on certain datasets. Dataset in general 
is a collection of data. This data could be, for example, a combination of several 
tables which include attributes and values of collected data or like in this case, a 
database consisting of thousands or millions of images.  
 
Most of above-mentioned challenges are based on MS COCO dataset where 
there are 80 classes and 328 thousand images or ImageNet dataset where 
there are 1000 classes and over 14 million images to be detected by the 
models. Models used in this study are trained on the COCO 2017 dataset with 
TensorFlow 2.  
 
 
4.1 Models under investigation 
 
Models that are tested in this study with their full names, including versions and 
image resolutions are the following:  
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- CenterNet HourGlass104 Keypoints 512x512 
- CenterNet HourGlass104 Keypoints 1024x1024 
- CenterNet HourGlass104 512x512 
- CenterNet HourGlass104 1024x1024 
- CenterNet Resnet50 V1 FPN Keypoints 512x512 
- CenterNet Resnet50 V2 Keypoints 512x512 
- EfficientDet D2 768x768 
- EfficientDet D3 896x896 
- EfficientDet D4 1024x1024 
- EfficientDet D5 1280x1280 
- EfficientDet D6 1280x1280 
- EfficientDet D7 1536x1536 
- Faster R-CNN Inception ResNet V2 640x640 
- Faster R-CNN Inception ResNet V2 1024x1024 
- Faster R-CNN ResNet101 V1 800x1333 
- Faster R-CNN ResNet101 V1 1024x1024 
- Mask R-CNN Inception ResNet V2 1024x1024 

 
At the time of this study, there were 41 pre-trained object detection models 
available (appendix 1) which were developed using TensorFlow 2 for the COCO 
2017-dataset. 17 of these 41 models were chosen for investigation: various 
versions of Faster R-CNN, EfficientNet and CenterNet and one Mask R-CNN 
model. These are all two-stage methods. One-stage methods such as YOLO, 
SSD or RetinaNet could be compared in a later study. 
 
Models seen in appendix 1 were tested and competed at least in the MS COCO 
2017 Challenge and got a spot in the comparison charts. Easiest way would 
have been to choose the one with the best rankings and claim that it can be 
used in the SURE project. But there are many factors that prevent this, like 
reverse ratio between accuracy and speed or unexpected results caused by 
image resolutions.  
 
For example, it can be seen from the list that ‘CenterNet Hourglass104 

Keypoints 1024x1024’ seems to be the most accurate model to determine the 
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keypoints of the objects although is not as good at boxing them. However, there 
are way faster models that are not as accurate at keypoints but relatively good 
at boxing.  
 
Another reason for testing so many models is the difference in image 
resolutions which can be seen at the end of the model names. A model would 
transform the resolution of the input image into its own, 640x640, 800x1333, 
1024x1024 etc. So, detection with higher resolution would last longer yet results 
would be more accurate.  
 
Last and most important reason for testing these models is the dissimilarity 
between the images taken by the SURE drone (picture 1; picture 2) and the 
images in COCO dataset (picture 3) which were used to test the models in 
getting their rankings. 
 

 
PICTURE 1. Sample image taken by the SURE drone 
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PICTURE 2. Sample image taken by the SURE drone 
 

 
PICTURE 3. Sample images from COCO dataset 
 
As clearly seen in the pictures above, images taken by the drone and images 
used in testing have totally different concepts and scalings. The SURE drone 
will be taking the photographs from over tens of meters away in order to capture 
crowds and places in wider views. While a person’s silhouette can easily cover 
half of a test image, drone image may consist tens or hundreds of persons with 
way smaller coverage. As a result, a model that has significantly good numbers 
in the rankings might not perform as well with the SURE drone images. 
 
Because of the reasons mentioned above, selection of the pre-trained models 
started from the top rankings in terms of accuracy. As the list went down, 
models with the most variety in methods, resolution and speed were additionally 
selected. 
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4.2 Two-stage, Neural Network-based Object Detection techniques 
 
Now that it is established which models are under investigation in this study and 
why, following sections will present relatively brief information about them. In 
order to set the basics of Faster R-CNN and Mask R-CNN, earlier methods of the 
R-CNN family (CNN (Convolutional Neural Network), R-CNN and Fast R-CNN) 
are also explained in the following sections. 
 
 
4.2.1 CNN 
 
CNN is a deep learning network developed for image and video processing. 
CNN consists of 4 layers. These are Convolution layer, ReLU (Rectified Linear 
Unit) layer, Pooling layer and Fully connected layer (picture 4).  
 

 
PICTURE 4. Architecture of CNN (Swapna 2020) 
 
Convolution layer is the first layer that handles the image in CNN algorithms. 
Technically images are matrices consisting of pixels with certain values in them. 
In the convolution layer, a filter smaller than the original image size hovers over 
the image and tries to capture certain features from these images. Parameters 
learned in CNN algorithms are the values in these filters. The model constantly 
updates these values and begins to detect features even better. 
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ReLU (Rectified Linear Unit) is a nonlinear function that works as in f (x) = max 
(0, x). For example, a result that passes from the convolutional layer might 
consist of negative numbers caused by a matrix filter. ReLU function takes the 
negative value, let’s say -25, and gives an output of 0. Another ReLU function 
that takes the value 25, gives 25 as output. ReLU’s main purpose is to get rid of 
negative values, and it has a very important role in CNN. 
 
Like the convolution layer, the pooling layer also aims to reduce the 
dimensionality. This way the required processing power is reduced, the 
captured unnecessary features are ignored, and more important features can 
be focused on. 
 
In the Fully Connected layer the image passes through the convolution layer 
and the pooling layer several times and is transformed into a flat vector. 
 
 
4.2.2 R-CNN 
 
R-CNN (Region-based Convolutional Neural Networks) works in two main 
steps. As shown in picture 5; first with selective search, it splits the image area 
into about 2000 “candidate” pieces which are called Region of Interest (RoI). In 
the second step, system then computes previously mentioned CNN features for 
each region in order to produce classifications. (Weng 2017.) 
 

 
PICTURE 5. The architecture of R-CNN (Girshick, Donahue, Darrell & Malik 
2014) 
 
As pawangfg (2020) explains, selective search is a method used to determine 
the regions that need to be captured in images. Small regions are determined 
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first, which works with the logic of hierarchy from small to large. Then, two 
similar regions are combined, creating a larger region. This process (picture 6) 
continues repeatedly and at the end larger regions appear in each iteration. 
 

 
PICTURE 6. Selective search (pawangfg 2020) 
 
According to Gandhi (2018), there were still problems with R-CNN. First of all, 
classification of nearly 2000 region proposal was time consuming and real-time 
implementation was unlikely due to 47 seconds of process cycle per image. 
Complex multi-stage training pipeline and fixed selective search algorithm 
prevented the model from learning during the process. 
 
One year after R_CNN, computer scientists developed Fast R-CNN which is 
about 146 times faster than the R-CNN during the test time. It solves above-
mentioned issues efficiently. 
 
 
4.2.3 Fast R-CNN 
 
In R-CNN, creation of 2000 different candidate regions and the use of 2000 
different CNN networks for these regions costs hugely in terms of the training 
process. To solve this, Fast R-CNN gets rid of the 2000 CNN models and uses 
only one model. 
The biggest improvement in Fast R-CNN is that it combines CNN, SVM (Support 
Vector Machine) and Regressor phases that were used in R-CNN. SVM, 
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“classifier” in picture 7, is an algorithm that finds significant distances between 
data points in an N-dimensional space where N is the number of features of 
mentioned data points. This way different types of features are “classified”. 
Regressor is used to determine more precise coordinates for the bounding box. 
With this combination, it achieves a tremendous advantage in performance. 
These phases are summarized and shown in picture 7. 
 

 
PICTURE 7. Fast R-CNN combined the CNN, classifier, and bounding box 
regressor into one, single network. (Girshick 2015, edited) 
 
 
4.2.4 Faster R-CNN 
 
After seeing the imperfections of Fast R-CNN, Ren at al. (2015) developed a 
better and “faster” version of Fast R-CNN called Faster R-CNN which would lower 
the number of region proposals, is faster and more accurate than selective search 
and is able to offer better region selections for overlapping objects. (Weng 2017.) 
 
Considering picture 8, on the image on the left, there are a lot of objects 
overlapping each other. On the right side of the picture, the bounding boxes are 
drawn for each object. Selective search could be applied here but as a result 
there would be too many RoIs to handle. In this case, Faster R-CNN method 
offers the use of Anchor Boxes. 
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PICTURE 8. An image consisting overlapping objects and their bounding boxes 
(Yelisetty 2020) 
 
Anchor Boxes 
 
There are generally 3 types of boxes where an image could fit. These boxes could 
be squared, rectangular and wide or rectangular and tall. In addition, these 3 
types of boxes could have 3 different sizes: big, small of medium (picture 9). 
Experimentally, it was found that any object in an image could be detected using 
one of these 9 boxes. If the overlapping image shown above in picture 8 to be 
considered, hovering these 9 types of boxes over the image would result in 
determining the majority of the overlapping objects although not very accurately 
since the size of the boxes would be fixed. (Yelisetty 2020.) 
 

 
PICTURE 9. Anchor boxes shown with their aspect ratios and scales (Yelisetty 
2020) 
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4.2.5 Mask R-CNN 
 
Mask R-CNN extends Faster R-CNN to pixel-level image segmentation (Weng 
2017). The most significant improvement in Mask R-CNN is that it offers instance 
segmentation for each detected object. The method is used in applications where 
there is the need to know where each and every detected object is located. For 
example, a self-driving car would need to see each car around it in order to make 
necessary calculations. (ArcGIS Developers n. d.) 
 
Examples of Mask R-CNN results on the COCO test set are shown in picture 10. 
 

 
PICTURE 10. Mask R-CNN results on the COCO test set. (He et al. 2017) 
 
 
4.2.6 CenterNet 
 
According to Zhou, Wang and Krähenbühl (2019), object detection algorithms 
where the method is based on window-sliding are wasteful since a large number 
of locations and dimensions need to be counted and processed. They found a 
new and more efficient method called CenterNet where objects are represented 
by a single point at the center of their bounding box as shown in picture 11. 
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PICTURE 11. Example of modelled objects with the center of their bounding 
boxes (Zhou et al. 2019) 
 
The main idea is to feed the image to a fully convolutional network which 
generates a heatmap (picture 12). Peaks of the heatmap address the 
centerpoints of the bounding boxes, hence the objects. Result image also 
contains the height and weight of the bounding boxes. 
 

 
PICTURE 12. Examples of heatmaps: Left parts show the original image and right 
parts heatmaps (Tzelepi & Tefas 2017) 
 
Zhou (2019) also claims that CenterNet runs at a very high speed due to its 
simplicity and can easily be adjusted to serve other tasks such as 3D object 
detection and multi-person human pose estimation. 
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4.2.7 EfficientNet 
 
In a traditional CNN, factors like depth, width and scaling of the resolution are 
arbitrary. In order to increase the power of a CNN, more convolution layers are 
often added to the network e.g. ResNet18, ResNet50, ResNet1202. But the 
amount of the layers and the performance of the system do not increase at the 
same rate so after a while this process becomes impractical. 
 
Unlike the conventional practice, EfficientNet uses a compound coefficient to 
uniformly scale width, depth, and resolution in a principled way (picture 13). The 
main reason to come up with this compound coefficient, was to prevent the 
inefficiency caused by the increase in layers and channels, as the size of the 
images got bigger. (Papers With Code n. d.) 
 

 
PICTURE 13. Model scaling (Tan & Lee 2019) 
 

In the above picture; 
• (a) is a baseline network example, 
• (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution and 
• (e) is the proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio. (Tan & Lee 2019.)  
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5 EVALUATION METRICS FOR OBJECT DETECTION 
 
 
5.1 Ground truth  
 
Ground truth, in general, means a defined standard by which an algorithm’s 

successful result is evaluated. In object detection, ground truth represents the 
true state of an object located in an image (picture 14). This state would include 
the visual bounding box around the object, predicted along with its width, height 
or centerpoint and an expression to show what class it belongs to. Class here 
could be a specific object like siberian husky, german shephard, hognose 
snake, sand viper etc. (classes from ImageNet dataset) or a more generalized 
one like dog, snake etc. (classes from MS COCO dataset). 
 

 
PICTURE 14. Example of ground truth and detection bounding boxes of an 
object 
 
In this work, the evaluation process required that the ground truth 
representation would be in text format where one row of the file would consist 
the information that belongs to one detected object. Detailed explanation of this 
process can be found in section 6.3. 
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5.2 Intersection over Union 
 
Intersection over Union (IoU) is the name of the calculation which gives “the 
overlap divided by the union” of 2 bounding boxes: ground truth bounding box 
and detection (prediction) bounding box. A simple visual example of IoU is 
shown in picture 15. 
 

 
PICTURE 15. Intersection over Union 
 
For most evaluation cases like competitions, an IoU threshold of 0.5 is 
sufficient. This number means that there is most likely an object inside the 
ground truth box. IoU is used to determine whether a prediction is positive or 
negative. For example, if mAP is being calculated for IoU value of 0.5 
(mAP@0.5) 

• IoU >= 0.5, then true positive (TP): ground truth object is detected with 
the correct class. 

• IoU < 0.5, then false positive (FP): ground truth object is detected with a 
wrong class. 

• False negative (FN): ground truth object is not detected. 



23 
 

 

Example cases are shown in picture 16. 
 

 
PICTURE 16. Example cases of IoU results where (a) is a true positive, (b) a 
false positive and (c) a false negative. 

 
True positive (TP), False positive (FP) and False negative (FN) concepts are 
used to calculate precision and recall, which are explained in the next section. 
 
 
5.3 Precision and Recall 
 
Precision tells in what ratio the object detection model found the correct objects 
in the image. Or in other words, how many of the positive results are actually 
positive. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=  

𝑇𝑃

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙
 

 
Recall tells in what ratio the model managed to identify those cases that are 
positive. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑔 𝑖𝑚𝑎𝑔𝑒𝑠
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5.4 Mean Average Precision 
 
Mean average precision (mAP) is the most used object detection model 
evaluation metric which measures the model’s ability to correctly determine the 

objects’ bounding boxes for some confidence value. (Nelson 2020.) 
 
Basically, mAP is the average of APs (Average Precision) where AP is found by 
calculating the area under the precision-recall curve, for specific values of IoUs.  
 

To calculate the AP, for a specific class (say a “person”) the precision-recall curve is computed from the model’s detection output, by varying the model score threshold that determines what is counted as a model-predicted positive detection of the class. (Arlen 2018.)   
An example precision-recall curve may look like in picture 17. 
 

 
PICTURE 17. Precision-Recall curve for an example classifier. A point on the 
precision-recall curve is determined by considering all objects above a given 
model score threshold as a positive prediction, then calculating the resulting 
precision and recall for that threshold (Arlen 2018) 
 

The final step to calculating the AP score is to take the average value of the precision across all recall values. This becomes the single value summarizing the shape of the precision-recall curve. To do this unambiguously, the AP score is defined as the mean precision at the set of 11 equally spaced recall values, Recalli = [0, 
0.1, 0.2, …, 1.0]. Thus,  
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𝐴𝑃 =  
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙𝑖

 
 The precision at recall i is taken to be the maximum precision measured at a recall exceeding Recalli. (Arlen 2018.) 
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6 ANALYSIS OF THE OBJECT DETECTION MODELS 
 
 
6.1 Work environment  
 
The computer used for this work had the following system specifications: 

- Processor: Intel® i5-4460  
- RAM: 16.0 GB DDR3 @ 1600 MHz. 
- 250 GB Crucial MX500 SATA SSD 

 
At first, object detection process was tested by using GPU but the existing GPU 
(GTX 1060) had a RAM size of 3 GB which proved to be insufficient for the 
process. During the time of this study, there was a worldwide shortage in GPU 
production and there was no other way to access another PC having the 
necessary GPU features. So, the work had to be performed using the existing 
CPU and RAM combination. This affected the image process time to be a couple 
of minutes per image whereas this number is tens or a couple of hundreds of 
milliseconds with GPU process. 
 
Models were run on Python (3.7.9) in Anaconda using many necessary packages 
one of which was TensorFlow 2.1.0. 
 
The first code, later referred to as “code_models”, that processes the images 
through the models was obtained from TensorFlow Hub Object Detection Colab 
(The TensorFlow Hub Authors 2020.). In order to speed up the process, code 
was mildly edited e.g loops were added to run through image folders so that the 
model can process one image after another without break. Another edition 
(appendix 2) was made to extract detection results (class name, confidence 
percentage, coordinates of the bounding box) and write them in a text file to be 
used later. 
 
The second source code, later it will be referred to as “code_mAP”, which 
calculates the mAPs was developed by Cartucho and his colleagues for their 
paper (Cartucho et al. 2018.). It required that both ground truth (more in section 
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6.3) and object detection files (more in section 6.4) were in text file format, having 
the same file names with the following syntaxes: 
 
Ground truth:  

<class_name> <left> <top> <right> <bottom> [<difficult>] 

e.g 

tvmonitor 2 10 173 238 

book 439 157 556 241 

book 437 246 518 351 difficult 

pottedplant 272 190 316 259 

 

 Detection results:  
<class_name> <confidence> <left> <top> <right> <bottom> 

e.g 

tvmonitor 0.471781 0 13 174 244 

cup 0.414941 274 226 301 265 

book 0.460851 429 219 528 247 

chair 0.292345 0 199 88 436 

book 0.269833 433 260 506 336  
Ground truth files were created using a graphical image annotation tool named 
labelImg (Tzutalin 2015, Copyright (c)). 
 
 
6.2 Source of the tested images 
 
Over 1000 photographs taken by the SURE drones were received as test data. 
Since the focus classes of object detection were persons and vehicles, out of 
over 1000 images, 240 of them were chosen to be tested through these models. 
Having a random vehicle in these images was inevitable so chosen images were 
those where there were as many people at the same time with vehicles, in many 
angles as possible. 13 of these images had a pixel resolution of 4056x2280 and 
227 had 1920x1080.  
 
 
6.3 Annotation of the images 
 
Ground truth bounding boxes can be drawn by a graphical image annotation tool. 
Several open-source tools are available on the internet, and in this work Tzutalin’s 
“labelImg” (2015) was used. It was written in Python and uses Qt as graphical 
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interface. Tool is provided with the original images and a text file that consists a 
list of the object classes’ names (appendix 3). After drawing bounding boxes on 
an image and saving it, the tool produces an XML file (used for ImageNet dataset) 
that holds the annotation data such as the annotated object’s class and 

coordinates of the ground truth bounding box. 
 
However, “code_mAP” required a text file with each row only consisting of the 
detected object’s name and coordinates of the bounding box in the order of  

- left (starting pixel on x-axis) 
- top (starting pixel on y-axis)  
- right (ending pixel on x-axis) and  
- bottom (max pixel value on y-axis).  

 
So, after the annotation was done, XML files (picture 18) needed to be modified 
where unneeded columns were removed, and the rest was saved as (for the lack 
of an option with “space” as a delimiter) a “tab delimited” text file (picture 19). 
 

PICTURE 18. Example XML file produced by labelImg opened in Excel; needed 
data were in columns I, M, N, O and P 
 

 
PICTURE 19. Example text file consisting of the necessary data for “code_mAP” 
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A piece of code was written for this problem which deleted the first row (titles) 
and changed each tabulator with a space character and was run through all 240 
ground truth files.  
 
A total of 1754 objects of 9 classes (car, person, truck, bench, boat, bicycle, bus, 
dog, motorcycle) were annotated in 240 images with .jpg format as received from 
the SURE drone. Figure 1 shows totals of the annotations made in these images, 
sorted by class names. 
 

 
FIGURE 1. Total numbers of annotated objects, sorted by class name 
 
“code_mAP” required that the detection results text files and the ground truth text 
files to have the same names. Because of this, each model had its own ground 
truth files created for the same 240 images (copied from original ground truth files 
and given the model’s name and the name of the image in use), with names 
coinciding with the corresponding detection result files. This meant there would 
be 4560 ground truth text files to be handled. Another code piece (appendix 4) 
was written to speed up this process and keep the filenames organized. 
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6.4 Detection results framed by classes 
 
At the end of its process, “code_models” would produce a copy of the input 
image (pictures 20; picture 21) including bounding boxes and confidence values 
of the objects it has detected in the image. 
 

 
PICTURE 20. Example of a framed image (objects detected by model 
EfficientDet D7 1536x1536) 
 

 
PICTURE 21. Example of a framed image (objects detected by model Faster R-
CNN Inception ResNet V2 1024x1024) 
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Detection result text files would also be created at the end of the process 
(pictures 22; picture 23) using the additional code (appendix 3). As seen in 
picture 23, sometimes detected classes’ names consisted of more than 1 word. 
In any case, it was enough that class names would match the ones that are in 
the ground truth files but since the annotations were only for the classes car, 
person, truck, bench, boat, bicycle, bus, dog and motorcycle which consisted of 
only 1 word. So there was need to modify only those detection text files that had 
the 2-word class names; some of them manually and some of them using rows 
1211–1229 in the code seen in appendix 2, 2 (2). 
 

 
PICTURE 22. Detection result text file by model EfficientDet D7 1536x1536 
 

 
PICTURE 23. Detection result text file by model Faster R-CNN Inception 
ResNet V2 1024x1024 
 



32 
 

 

“code_model” had, to begin with, a confidence threshold of 30 % to decide 
whether a detected object was going to be marked on the image or not. In this 
work, threshold was kept as 0.3, since images taken in the SURE project would 
be from further away and higher threshold values than 0.3 would not be enough 
to obtain a healthy view of the whole picture.  
 
It was observed that during a model’s process, sometimes it would detect an 
object with 2 classes and frame it with both. In these cases, the class with the 
higher confidence would be saved in the detection results text file. 
 
 
6.5 Evaluation results 
 
For the sake of a realistic analysis, instead of considering only one evaluation 
value (mAP@0.5), mAP was calculated within the range of “0.5, 0.95, 0.05”, 

meaning that 10 APs were calculated with an IoU starting from 0.5 to 0.95, 0.05 
being the increment. These 10 APs were then simply averaged to find the value 
of mAP@(0.5, 0.95, 0.05).  
 
“code_mAP” was provided with coinciding ground truth and detection result files 
of each model and ran for 10 IoU values as mentioned above. Results for each 
AP, for each object class were documented per model. Complete chart of these 
findings, with average image processing times, can be seen in appendix 5. 
 
Since the SURE project’s focus area involves detection of people and vehicles, 

top 4 models with the most accuracy can be extracted from the complete chart, 
including these specific results (table 1). 
 
TABLE 1. Four most accurate models with mAP results 

Model name 
avg_time 

(min/image) 
Class name Rank 

mAP @ 
(.50, .95, .05) (%) 

EfficientDet D7 1536x1536  
2,73  

bus 3 54,42 
car 2 55,40 

person 2 44,98 
truck 2 30,38 

overall avg. 1 35,43 
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EfficientDet D6 1280x1280  
2,61 

bus 1 59,67 

car 1 56,33 

person 1 47,01 

truck 1 31,59 

overall avg. 2 35,20 

EfficientDet D5 1280x1280 2,06  

bus 2 54,93 

car 3 50,20 

person 5 38,06 

truck 4 26,20 

overall avg. 3 30,40 
Faster R-CNN Inception ResNet V2 1024x1024 

1,48  

bus 5 49,69 
car 8 43,04 

person 6 36,59 
truck 3 26,91 

overall avg. 4 27,41   
Three out of six EfficientNet models shared the top three ranks in terms of 
accuracy. The 4th coming model, Faster R-CNN Inception ResNet V2 
1024x1024, is also added to this table because it has relatively high mAP 
results with a much better speed than the top three models. Comparison 
between these four models can be observed more clearly in figure 2.  
 

 
FIGURE 2. Evaluation results of top 4 models 
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The speed of the models is another metric that should be considered. 
Therefore, table 2 is also extracted from the complete chart which shows the 
top three models that excel in speed. 
 
TABLE 2. Three fastest models with mAP results 

Model name avg_time (min/image) Class name Rank mAP @ (.50, .95, .05) (%) 

CenterNet Resnet50 V1 FPN Keypoints 512x512 0,56 
bus 15 1,02 % 
car 16 20,78 % 

person 16 17,32 % 
truck 16 2,80 % 

overall avg. 16 6,59 % 
CenterNet Resnet50 V2 Keypoints 512x512 0,56 

bus 16 1,02 % 
car 17 20,78 % 

person 17 17,32 % 
truck 17 2,80 % 

overall avg. 17 6,59 % 
Faster R-CNN ResNet101 V1 800x1333 0,75 

bus 8 39,95 % 
car 9 41,82 % 

person 7 35,77 % 
truck 5 24,43 % 

overall avg. 7 24,91 %  
 
Detailed analysis of these results can be found in the discussion section. 
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7 DISCUSSION  
 
 
Most of the models that were selected for evaluation were at the top of the 
COCO 2017 challenge chart, having successful results in terms of accuracy and 
speed in object detection. Considering the methodology behind all the models, 
each newer method used in them brought a better and more efficient technic 
into the field.  
 
As a result of this study, it was found that the following three models were at the 
top of the list in terms of accuracy: 

1. EfficientDet D7 1536x1536 
2. EfficientDet D6 1280x1280 
3. EfficientDet D5 1280x1280  

 
and the following three models were at the top of the list in terms of image 
processing speed: 

1. CenterNet Resnet50 V1 FPN Keypoints 512x512 
2. CenterNet Resnet50 V2 Keypoints 512x512 
3. Faster R-CNN ResNet101 V1 800x1333 

 
CenterNet and EfficientNet models had shared the highest ranks in the 
challenge chart to begin with. Three out of six EfficientNet models came up as 
the top three in mAP scores. Although EfficientDet D7 1536x1536 is the 1st only 
by looking at its mAP@(0.5, 0.95, 0.05) score, EfficientDet D6 1280x1280 is the 
model that has the highest average mAPs for the specific objects that were 
focused on: bus, car, person and truck. For this reason, it can be suggested that 
EfficientDet D6 1280x1280 is more suitable for the SURE project than 
EfficientDet D7 1536x1536. 
  
Four out of six CenterNet models came as the last four in mAP scores which 
indicates that their object detection skills were not precise enough for the tiny 
objects in the test images. Two out of six CenterNet models came as 5th and 6th 
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with relatively good mAP scores however, they were the top two slowest 
models. 
 
Faster R-CNN models were expected to stand out from the R-CNN family. 
Although Mask R-CNN is the best ranking in locating objects in the family, its 
application area is too specific, it is slower than Faster R-CNN and does not 
necessarily improve the previous algorithm. In the light of all this, it was not 
unexpected that a relatively old Faster R-CNN model, Faster R-CNN Inception 
ResNet V2 1024x1024, would be in the higher ranks (4th) of the list, with a high 
mAP score and high speed. 
 
Listing the results in terms of the models’ speed though, drew a rather 
disappointing picture. Only one of the fastest models had a decent detection 
accuracy and this model was also a Faster R-CNN model. Therefore, the 
decision of choosing the most suitable model can not be based on the speed of 
the models but primarily on their accuracy. 
 
In conclusion, this work gives two suggestions for the suitable object detection 
model for the SURE project. First one is EfficientDet D6 1280x1280, if the 
object detection’s primary concern is accuracy. Second one is Faster R-CNN 
Inception ResNet V2 1024x1024, if the primary concern is speed. 
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APPENDICES 

Appendix 1. Complete list of pre-trained models with TensorFlow 2 for COCO 
2017 dataset, sorted by mAP results. Marked ones are used in this work. 

 Model name Speed (ms) COCO mAP Outputs 
1 CenterNet HourGlass104 Keypoints 1024x1024  211 42.8/64.5 Boxes/Keypoints 
2 CenterNet HourGlass104 Keypoints 512x512  76 40.0/61.4 Boxes/Keypoints 
3 Mask R-CNN Inception ResNet V2 1024x1024 301 39.0/34.6 Boxes/Masks 
4 CenterNet Resnet50 V1 FPN Keypoints 512x512  30 29.3/50.7 Boxes/Keypoints 
5 CenterNet Resnet50 V2 Keypoints 512x512  30 27.6/48.2 Boxes/Keypoints 
6 EfficientDet D7 1536x1536 325 51,2 Boxes 
7 EfficientDet D6 1280x1280 268 50,5 Boxes 
8 EfficientDet D5 1280x1280 222 49,7 Boxes 
9 EfficientDet D4 1024x1024 133 48,5 Boxes 

10 EfficientDet D3 896x896 95 45,4 Boxes 
11 CenterNet HourGlass104 1024x1024 197 44,5 Boxes 
12 CenterNet HourGlass104 512x512 70 41,9 Boxes 
13 EfficientDet D2 768x768 67 41,8 Boxes 
14 CenterNet MobileNetV2 FPN Keypoints 512x512  6 41,7 Keypoints 
15 SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152) 

111 39,6 Boxes 
16 SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101) 

104 39,5 Boxes 
17 Faster R-CNN Inception ResNet V2 1024x1024 236 38,7 Boxes 
18 EfficientDet D1 640x640 54 38,4 Boxes 
19 SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50)  87 38,3 Boxes 
20 Faster R-CNN Inception ResNet V2 640x640 206 37,7 Boxes 
21 Faster R-CNN ResNet152 V1 1024x1024 85 37,6 Boxes 
22 Faster R-CNN ResNet152 V1 800x1333 101 37,4 Boxes 
23 Faster R-CNN ResNet101 V1 1024x1024 72 37,1 Boxes 
24 Faster R-CNN ResNet101 V1 800x1333 77 36,6 Boxes 
25 SSD ResNet101 V1 FPN 640x640 (RetinaNet101)  57 35,6 Boxes 
26 SSD ResNet152 V1 FPN 640x640 (RetinaNet152)  80 35,4 Boxes 
27 SSD ResNet50 V1 FPN 640x640 (RetinaNet50)  46 34,3 Boxes 
28 CenterNet Resnet101 V1 FPN 512x512  34 34,2 Boxes 
29 EfficientDet D0 512x512 39 33,6 Boxes 
30 Faster R-CNN ResNet152 V1 640x640 64 32,4 Boxes 
31 Faster R-CNN ResNet101 V1 640x640 55 31,8 Boxes 
32 Faster R-CNN ResNet50 V1 800x1333 65 31,6 Boxes 
33 CenterNet Resnet50 V1 FPN 512x512  27 31,2 Boxes 
34 Faster R-CNN ResNet50 V1 1024x1024 65 31 Boxes 
35 CenterNet Resnet50 V2 512x512 27 29,5 Boxes 
36 Faster R-CNN ResNet50 V1 640x640 53 29,3 Boxes 
37 SSD MobileNet V1 FPN 640x640 48 29,1 Boxes 
38 SSD MobileNet V2 FPNLite 640x640  39 28,2 Boxes 
39 CenterNet MobileNetV2 FPN 512x512  6 23,4 Boxes 
40 SSD MobileNet V2 FPNLite 320x320  22 22,2 Boxes 
41 SSD MobileNet v2 320x320 19 20,2 Boxes 

http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_hg104_1024x1024_kpts_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_hg104_512x512_kpts_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v1_fpn_512x512_kpts_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v2_512x512_kpts_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d7_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d6_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d5_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d4_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d3_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200713/centernet_hg104_1024x1024_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200713/centernet_hg104_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d2_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20210210/centernet_mobilenetv2fpn_512x512_coco17_kpts.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_inception_resnet_v2_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d1_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_inception_resnet_v2_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet152_v1_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet152_v1_800x1333_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet101_v1_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet101_v1_800x1333_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet101_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet152_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_resnet50_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet101_v1_fpn_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d0_coco17_tpu-32.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet152_v1_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet101_v1_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet50_v1_800x1333_coco17_gpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v1_fpn_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet50_v1_1024x1024_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/centernet_resnet50_v2_512x512_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/faster_rcnn_resnet50_v1_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v1_fpn_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20210210/centernet_mobilenetv2fpn_512x512_coco17_od.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_320x320_coco17_tpu-8.tar.gz
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1 (2) 
Appendix 2. Additional codes made to “code_models” and 
models\research\object_detection\utils\visualization_utils.py (Tensorflow models 
repository):  

- In object_detection_gamze.py file, lines 241&242 
- In visualization_utils.py file, lines 1121&1122, 1183, 1210–1229, 1257–

1274 
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Appendix 3. List of object class names in MS COCO dataset 
1-16 17-32 33-48 49-64 65-80 

person dog sports_ball sandwich mouse 
bicycle horse kite orange remote 
car sheep baseball_bat broccoli keyboard 
motorcycle cow baseball_glove carrot cell_phone 
airplane elephant skateboard hot_dog microwave 
bus bear surfboard pizza oven 
train zebra tennis_racket donut toaster 
truck giraffe bottle cake sink 
boat backpack wine_glass chair refrigerator 
traffic_light umbrella cup couch book 
fire_hydrant handbag fork potted_plant clock 
stop_sign tie knife bed vase 
parking_meter suitcase spoon dining_table scissors 
bench frisbee bowl toilet teddy_bear 
bird skis banana tv hair_drier 
cat snowboard apple laptop toothbrush 
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Appendix 4. Additional code piece, for renaming ground truth text files for each 
model. 
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Appendix 5. Complete chart consisting of image processing times, ranks and 
mAP scores of each model, sorted by models names in alphabetical order. 
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2,59 

bench 12 3,00 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3,33 0,00 

bicycle 9 17,08 29,22 29,22 29,22 24,04 24,04 17,95 12,30 4,76 0,00 0,00 

boat 12 6,33 17,81 15,86 15,86 6,36 3,81 3,03 0,53 0,00 0,00 0,00 

bus 14 5,29 6,87 6,87 6,87 6,87 6,87 6,87 5,77 2,56 2,56 0,77 

car 13 33,37 47,76 47,40 46,96 46,47 45,19 43,40 35,93 15,91 3,81 0,84 

dog 11 34,71 45,50 45,50 45,50 39,95 37,57 37,57 33,33 33,33 22,45 6,35 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 9 31,60 53,40 51,77 50,42 46,03 39,28 30,07 23,36 13,97 5,97 1,70 

truck 14 6,88 10,82 10,60 10,16 9,95 9,95 9,95 3,56 2,94 0,84 0,00 

mAP 14 15,36 23,86 23,39 23,15 20,33 18,89 16,91 13,12 8,53 4,33 1,07 
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3,80 

bench 3 18,04 25,28 21,39 21,39 21,39 21,39 21,39 16,23 16,23 13,64 2,06 

bicycle 5 23,30 45,61 36,53 36,53 34,14 26,36 23,95 18,15 11,11 0,62 0,00 

boat 10 7,67 16,95 15,61 13,17 10,48 10,48 6,39 3,33 0,26 0,00 0,00 

bus 10 32,57 39,05 39,05 39,05 39,05 39,05 39,05 32,94 29,98 24,65 3,85 

car 4 48,43 65,41 64,91 64,50 64,28 62,52 58,44 50,41 34,13 18,38 1,33 

dog 5 48,02 66,95 66,95 66,95 60,92 56,26 48,51 43,45 36,92 30,92 2,38 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 4 43,87 67,21 66,36 64,59 61,32 57,14 46,34 36,22 24,72 12,15 2,69 

truck 12 11,39 17,01 16,00 16,00 14,25 13,50 13,20 10,85 8,55 4,31 0,25 

mAP 5 25,92 38,16 36,31 35,80 33,98 31,85 28,59 23,51 17,99 11,63 1,39 
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1,84 

bench 8 7,20 8,67 8,67 8,67 8,67 8,67 8,67 6,67 6,67 6,67 0,00 

bicycle 12 15,64 25,93 25,93 25,93 21,16 17,90 17,90 17,90 3,70 0,00 0,00 

boat 13 5,08 14,20 14,20 12,87 3,56 2,59 2,59 0,37 0,37 0,00 0,00 

bus 17 0,77 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,00 0,00 

car 15 31,50 47,06 46,59 45,80 45,09 42,96 37,10 29,47 15,76 4,52 0,66 

dog 13 28,73 41,90 41,90 37,57 30,91 30,91 30,91 30,91 25,62 14,02 2,65 

motorcycle - 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 8 31,64 53,08 51,14 48,35 43,79 39,14 32,18 22,80 15,45 8,11 2,32 

truck 15 6,05 10,45 9,63 9,18 8,40 8,17 8,17 4,28 1,83 0,36 0,05 

mAP 15 14,07 22,47 22,11 21,04 18,06 16,81 15,39 12,60 7,82 3,74 0,63 
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3,12 

bench 4 14,13 15,00 15,00 15,00 15,00 15,00 15,00 15,00 15,00 11,33 10,00 

bicycle 4 26,68 46,14 46,14 46,14 41,36 31,48 31,48 18,82 4,63 0,31 0,31 

boat 5 15,03 38,06 30,90 30,90 19,46 18,50 6,95 5,35 0,19 0,00 0,00 

bus 12 24,99 30,91 30,91 30,91 30,91 30,91 30,91 24,18 24,18 16,09 0,00 

car 7 46,11 64,62 64,27 63,99 63,23 60,80 51,23 42,57 32,34 16,51 1,54 

dog 6 45,27 60,11 60,11 60,11 55,34 55,34 55,34 43,10 39,00 15,87 8,33 

motorcycle - 2,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 3 44,26 67,59 66,62 64,81 60,53 55,11 47,85 37,95 24,55 14,07 3,48 

truck 11 11,42 17,18 16,55 15,41 15,41 13,29 13,29 10,68 8,22 3,56 0,61 

mAP 6 25,32 37,73 36,72 36,36 33,47 31,16 28,01 21,96 16,46 8,64 2,70 
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0,56 

bench 16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

bicycle 16 1,11 3,70 3,70 3,70 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

boat 16 0,56 1,85 1,85 1,85 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

bus 15 1,02 1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28 0,00 0,00 

car 16 20,78 35,53 35,08 34,02 33,41 31,06 18,28 11,58 6,78 1,91 0,13 

dog 15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

motorcycle - 15,72 23,81 23,81 23,81 23,81 19,05 19,05 19,05 4,76 0,00 0,00 

person 16 17,32 33,91 31,18 27,71 23,30 19,54 15,54 12,37 6,79 2,30 0,51 

truck 16 2,80 4,26 4,26 3,78 3,78 3,64 3,64 3,53 0,61 0,50 0,00 

mAP 16 6,59 11,59 11,24 10,68 9,51 8,28 6,42 5,31 2,25 0,52 0,07 
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bench 17 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

bicycle 17 1,11 3,70 3,70 3,70 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

boat 17 0,56 1,85 1,85 1,85 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

bus 16 1,02 1,28 1,28 1,28 1,28 1,28 1,28 1,28 1,28 0,00 0,00 

car 17 20,78 35,53 35,08 34,02 33,41 31,06 18,28 11,58 6,78 1,91 0,13 

dog 16 15,72 23,81 23,81 23,81 23,81 19,05 19,05 19,05 4,76 0,00 0,00 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 17 17,32 33,91 31,18 27,71 23,30 19,54 15,54 12,37 6,79 2,30 0,51 

truck 17 2,80 4,26 4,26 3,78 3,78 3,64 3,64 3,53 0,61 0,50 0,00 

mAP 17 6,59 11,59 11,24 10,68 9,51 8,28 6,42 5,31 2,25 0,52 0,07 
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1,22 

bench 7 8,81 11,90 11,90 11,90 11,90 11,90 11,90 11,90 4,76 0,00 0,00 

bicycle 15 10,44 20,11 20,11 20,11 11,11 11,11 8,15 8,15 5,56 0,00 0,00 

boat 14 4,08 7,41 7,41 7,41 7,41 7,41 1,85 1,85 0,00 0,00 0,00 

bus 13 24,93 31,99 31,99 31,99 31,99 31,99 31,99 28,14 20,34 7,00 1,92 

car 14 32,82 46,17 45,88 45,69 45,30 44,47 36,26 30,27 24,93 8,94 0,25 

dog 12 29,53 34,83 34,83 34,83 34,83 34,83 34,83 34,83 30,91 15,82 4,76 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 14 19,24 29,13 28,96 28,16 24,07 22,41 19,62 17,48 13,60 7,64 1,35 

truck 14 10,86 15,25 14,90 14,90 14,21 13,87 12,73 10,24 7,21 5,32 0,00 

mAP 14 15,63 21,87 21,77 21,66 20,09 19,78 17,48 15,87 11,92 4,97 0,92 
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bench 5 9,66 11,67 11,67 11,67 11,67 11,67 11,67 11,67 11,67 3,22 0,00 

bicycle 11 16,13 25,46 25,46 25,46 20,68 20,68 20,68 12,65 10,19 0,00 0,00 

boat 11 7,01 20,12 12,65 12,65 12,65 3,70 3,70 3,70 0,93 0,00 0,00 

bus 11 26,56 32,48 32,48 32,48 32,48 32,48 30,49 30,49 30,49 8,10 3,63 

car 10 39,32 56,27 55,76 55,05 54,47 53,12 45,49 37,16 26,77 8,83 0,29 

dog 10 35,54 44,05 44,05 44,05 44,05 39,29 39,29 39,29 30,67 30,67 0,00 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 12 25,30 39,25 38,33 36,91 34,02 30,96 26,45 19,84 15,27 9,21 2,78 

truck 8 16,21 25,31 25,31 23,48 22,74 22,74 21,98 9,46 6,91 3,69 0,45 

mAP 10 19,52 28,29 27,30 26,86 25,86 23,85 22,19 18,25 14,77 7,08 0,79 

Ef
fi

ci
e

n
tD

et
 D

4
 1

02
4x

10
24

 

1,74 

bench 13 2,83 3,33 3,33 3,33 3,33 3,33 3,33 3,33 3,33 1,67 0,00 

bicycle 10 16,30 22,22 22,22 22,22 22,22 22,22 18,52 18,52 11,85 2,96 0,00 

boat 2 19,26 34,47 34,47 31,44 31,44 27,35 18,94 9,45 3,76 1,23 0,00 

bus 6 47,07 56,16 56,16 56,16 56,16 56,16 56,16 53,28 53,28 22,51 4,67 

car 5 46,56 61,91 61,41 60,95 60,02 58,42 54,81 49,71 38,32 19,22 0,84 

dog 8 40,71 51,98 51,98 51,98 45,87 45,87 45,87 40,71 36,51 31,35 5,00 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 10 28,87 43,38 42,40 41,96 39,44 36,20 29,88 23,47 17,39 11,12 3,45 

truck 7 19,46 28,91 27,10 26,52 25,27 24,14 22,34 19,51 11,52 8,92 0,32 

mAP 8 24,56 33,60 33,23 32,73 31,53 30,41 27,76 24,22 19,55 11,00 1,59 
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bench 10 6,70 7,29 7,29 7,29 7,29 7,29 7,29 7,29 7,29 6,10 2,62 

bicycle 2 30,20 47,65 47,65 47,65 43,09 39,42 28,16 20,54 15,76 8,40 3,70 

boat 3 16,80 35,62 35,62 32,63 29,88 11,83 7,48 7,48 7,48 0,00 0,00 

bus 2 54,93 66,58 65,19 65,19 65,19 65,19 62,17 62,17 56,35 38,42 2,88 

car 3 50,20 66,51 66,15 65,82 64,77 62,97 60,00 53,21 39,01 21,72 1,83 

dog 4 50,46 63,85 63,85 63,85 59,57 59,57 59,57 50,01 43,51 32,28 8,57 

motorcycle - 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 5 38,06 56,36 55,65 54,55 51,78 47,52 40,28 32,27 22,82 14,96 4,41 

truck 4 26,20 37,34 36,24 36,24 33,85 31,97 31,97 25,07 16,48 12,38 0,46 

mAP 3 30,40 42,36 41,96 41,47 39,49 36,19 32,99 28,67 23,19 14,92 2,72 
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bench 2 23,97 28,81 28,81 28,81 28,81 28,81 28,81 28,81 24,98 11,33 1,67 

bicycle 1 30,50 44,44 44,44 44,44 39,20 35,31 35,31 27,93 22,22 9,88 1,85 

boat 4 16,74 32,66 32,66 32,66 30,43 11,16 10,05 10,05 7,13 0,62 0,00 

bus 1 59,67 69,89 69,89 69,89 69,89 69,89 69,89 68,25 63,46 44,85 0,79 

car 1 56,33 71,52 71,10 70,83 69,81 68,77 67,04 60,96 50,70 30,42 2,15 

dog 3 51,02 65,73 65,73 65,73 65,73 65,73 55,67 46,26 46,26 28,57 4,76 

motorcycle - 2,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 1 47,01 71,35 69,98 68,47 64,50 58,89 49,16 40,13 27,12 16,31 4,16 

truck 1 31,59 45,85 43,70 43,70 40,48 38,84 38,39 30,54 18,28 14,43 1,70 

mAP 2 35,20 47,81 47,37 47,17 45,43 41,93 39,37 34,77 28,90 17,38 1,90 
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bench 1 27,19 33,36 33,36 33,36 33,36 33,36 33,36 33,36 25,52 10,71 2,17 

bicycle 3 29,92 42,22 42,22 42,22 42,22 33,84 31,03 27,44 27,44 6,91 3,70 

boat 1 22,51 35,75 35,75 35,75 30,96 30,96 22,35 12,54 12,54 8,47 0,00 

bus 3 54,42 64,15 64,15 64,15 64,15 64,15 64,15 64,15 57,72 29,40 8,01 

car 2 55,40 70,44 70,29 70,03 69,02 68,32 65,49 60,77 51,28 26,85 1,50 

dog 1 54,07 64,74 64,74 64,74 64,74 64,74 64,74 60,54 50,92 36,51 4,29 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 2 44,98 68,28 66,99 65,11 61,49 55,86 49,29 37,08 23,66 16,76 5,27 

truck 1 30,38 41,08 40,34 39,81 39,81 38,62 36,85 30,08 22,25 14,45 0,54 

mAP 1 35,43 46,67 46,43 46,13 45,08 43,32 40,81 36,22 30,15 16,67 2,83 
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2,18 

bench 15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

bicycle 13 11,60 25,02 22,90 22,90 19,81 17,04 8,33 0,00 0,00 0,00 0,00 

boat 8 9,94 20,60 18,32 18,32 18,32 14,55 4,39 4,39 0,26 0,26 0,00 

bus 9 35,52 49,61 49,61 49,61 49,61 49,61 49,61 40,25 15,16 1,92 0,21 

car 12 37,60 53,92 52,97 52,63 51,26 48,92 44,99 38,25 27,74 5,19 0,09 

dog 14 16,55 19,05 19,05 19,05 19,05 19,05 19,05 19,05 19,05 13,10 0,00 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 15 18,13 34,68 32,40 29,45 25,08 20,39 15,43 11,80 7,40 4,33 0,36 

truck 9 15,72 24,36 23,79 23,07 21,79 21,16 19,77 14,35 6,26 2,62 0,05 

mAP 12 16,12 25,25 24,34 23,89 22,77 21,19 17,95 14,23 8,43 3,05 0,08 
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1,48 

bench 6 8,98 14,74 14,71 14,71 13,61 10,88 9,53 6,26 5,37 0,00 0,00 

bicycle 7 17,95 32,79 32,79 32,79 31,18 26,55 15,02 6,20 1,41 0,74 0,00 

boat 6 10,98 19,24 19,24 19,24 19,24 16,46 12,72 1,85 1,85 0,00 0,00 

bus 5 49,69 64,34 64,34 64,34 64,34 64,34 64,34 53,30 33,25 23,08 1,18 

car 8 43,04 63,53 62,93 61,80 59,33 56,63 51,89 39,00 26,23 8,82 0,20 

dog 2 52,60 78,56 73,10 73,10 69,29 69,29 52,68 38,97 35,91 32,74 2,38 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 6 36,59 64,27 62,23 58,37 53,51 45,04 35,74 24,26 13,96 7,58 0,96 

truck 3 26,91 41,21 41,21 38,73 37,46 36,07 33,19 25,01 11,40 3,89 0,88 

mAP 4 27,41 42,07 41,17 40,34 38,66 36,14 30,57 21,65 14,38 8,54 0,62 
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bench 9 7,13 8,89 8,89 8,89 8,89 8,89 8,89 8,89 6,98 2,06 0,00 

bicycle 6 21,37 40,84 39,61 31,19 31,19 31,19 22,22 15,37 2,06 0,00 0,00 

boat 7 10,52 21,78 21,78 21,78 16,21 12,90 10,16 0,62 0,00 0,00 0,00 

bus 8 39,95 51,24 51,24 51,24 51,24 51,24 51,24 41,84 36,19 14,02 0,00 

car 9 41,82 59,58 58,99 57,48 55,45 53,33 49,58 42,54 31,89 9,09 0,31 

dog 7 43,21 55,56 55,56 55,56 48,67 48,67 48,67 48,67 38,59 31,35 0,79 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 7 35,77 62,39 60,33 57,59 52,55 44,58 33,02 22,35 15,28 7,69 1,91 

truck 5 24,43 36,40 35,21 34,47 34,01 32,88 30,30 22,47 14,66 3,80 0,12 

mAP 7 24,91 37,41 36,84 35,35 33,13 31,52 28,23 22,53 16,19 7,56 0,35 
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bench 14 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

bicycle 8 17,85 29,63 29,63 29,63 29,63 25,93 15,98 15,98 2,12 0,00 0,00 

boat 9 7,79 15,37 13,79 13,79 13,79 13,79 7,41 0,00 0,00 0,00 0,00 

bus 7 47,07 57,10 57,10 57,10 57,10 57,10 57,10 53,28 51,08 23,17 0,55 

car 11 37,62 55,37 54,76 53,80 52,26 49,85 44,26 35,69 24,39 5,78 0,06 

dog 17 13,90 29,17 29,17 21,43 17,01 17,01 10,88 10,88 2,72 0,68 0,00 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 13 20,13 40,56 36,44 33,75 27,94 22,09 16,93 12,49 7,72 3,22 0,14 

truck 10 15,17 21,53 20,88 20,58 20,34 19,99 19,99 14,84 9,43 3,14 0,99 

mAP 11 17,73 27,64 26,86 25,56 24,23 22,86 19,17 15,91 10,83 4,00 0,19 
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1,86 

bench 11 4,19 7,96 7,96 7,96 7,96 6,11 1,57 1,57 0,83 0,00 0,00 

bicycle 14 10,69 28,36 22,82 22,82 12,54 9,93 4,94 4,94 0,28 0,28 0,00 

boat 15 3,53 8,78 6,80 5,94 4,02 4,02 4,02 1,42 0,25 0,00 0,00 

bus 4 51,77 66,03 66,03 66,03 66,03 66,03 62,88 62,88 47,60 14,22 0,00 

car 6 46,15 62,83 62,32 61,70 60,32 58,07 53,28 44,92 37,06 19,43 1,56 

dog 9 36,16 52,38 46,32 46,32 46,32 46,32 41,13 27,21 27,21 27,21 1,19 

motorcycle - 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

person 11 28,10 48,33 45,37 43,12 39,85 35,87 28,51 20,17 12,75 6,13 0,88 

truck 6 21,60 33,01 33,01 33,01 32,03 28,66 27,88 19,84 7,14 1,45 0,00 

mAP 9 22,47 34,19 32,29 31,88 29,90 28,33 24,91 20,33 14,79 7,64 0,40 
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