

Karolis Giačas

FULL STACK SOFTWARE
APPLICATION

Bachelor’s thesis

Double Degree

2021

Author (authors) Degree title

Time

Karolis Giač as Bachelor of
Engineering

April 2021

Thesis title

Full stack software application

43 pages
0 pages of appendices

Commissioned by

Supervisor

Timo Mynttinen

Abstract

The goal of this thesis is to develop a full stack application with a system architecture
similar to the current market standards. The project consists of a few major steps which will
be analyzed.

Most of the theoretical background of this study is based on documentation provided by
almost every service and package maintainer and includes multiple service comparisons.
Also, a lot of information was gathered via developer blogs. The project itself consists of
setting up a web framework and a server that would scrape data from the internet, store it
and expose it as JSON string in an API endpoint. To accomplish this, multiple additional
services will be used: database, task queue and cache storage. All of the services have to
be containerized to fit the current market standards. It also increases developing speed,
makes hosting less complex and helps to manage services as isolated containers. The
next step is the creation of a simple interactive GUI that connects to the open API endpoint
and fetches the data from the server. Finally, the server is hosted to any hosting service
provider and the application is fully deployed and accessed from anywhere.

The conclusion of the study consists of testing the software. The application is fully
deployed and working as intended.

Keywords

Docker, django, aws, sql, shell

CONTENTS

1 INTRODUCTION .. 4

2 FULL STACK DEVELOPMENT METHODS ... 5

2.1 MVC frameworks .. 7

2.2 Containerization services .. 12

2.3 Other services... 14

3 APPLICATION DEVELOPMENT .. 18

3.1 Setting up an API endpoint ... 18

3.2 Fetching data from an API endpoint ... 36

4 CONCLUSION .. 39

REFERENCES .. 41

LIST OF FIGURES

LIST OF CODES

LIST OF TABLES

4

1 INTRODUCTION

The demand for multiple different development services is increasing toe to toe

with the digitalisation of the globe. Currently there are hundreds of choices when

deciding the technology stack for every application idea. Most of the current

marketable applications consist of backend (server-side) and frontend (client-

side) services which are developed by backend and frontend engineers. In the

past few years, the concept of containerization is becoming more and more

popular because it makes handling full stack development more standardized.

Containerized applications are perfect for enterprise use because they can be

managed more efficiently by controlling every service in an isolated container.

Full stack engineering consists of managing both the development and the

operations phases (DevOps). Moderate programming skills are required for the

development part, and system administration knowledge is necessary in the

operations field.

The purpose of the study is to develop an application prototype which would be

similar to the current application market standards. Multiple different technology

reviews are included in the theory analysis. The core of the project is actually the

development of the application’s backend. The first service developed is a web

scrape. The information scraped will be related with some coronavirus statistics.

The same application architecture approach can be applied to any types of

statistics or information. The next services required are a task queue and cache

storage. The web scraping function in the backend must run on a given time

interval, so these services are crucial to accomplish that.

The last service in the backend is a web framework capable of opening API

(Application Programming Interface) endpoints, modifying data, saving data and

much more. For that, an MVC (Model-View-Controller) framework is ideal

because it allows to control the routing of a web page, deals with database

implementation and supports HTTP requests and responses.

5

2 FULL STACK DEVELOPMENT METHODS

The full stack topic has already become a new job trend, but what is it actually? A

full stack engineer is responsible for setting up a project from start to finish or

maintaining an already existing project and guaranteeing >99% service

availability. There are five main services of a full stack project:

 Frontend

 Backend

 Database

 DevOps

 Mobile App (optional)

In web applications, the frontend is an actual representation of a page in the

browser which is generated by HTML, CSS and JavaScript. HTML (HyperText

Markup Language) controls the actual creation of the document and marks most

of the components on the page. CSS (Cascading Style Sheets) is used to style

the HTML components. And JavaScript makes the page interactive with various

functions and events. This also includes mobile web frontend development. The

most popular current frameworks are React, Angular and Vue.js. For software

applications, the frontend is GUI (Graphical User Interface). There are a lot of

ways to make a GUI, since most of the programming languages support canvas

drawing modules such as “Tkinter” for Python, “Razor” for C#, “JFC/Swing” for

Java.

Backend is the actual brains of the project. Here it comes to pure coding and to

the idea of the project. This is a complete reverse of the frontend service and the

user or a client sees almost nothing of how the backend actually works, and they

do not see the code. When a tech-savvy person can meddle with frontend by

using a browser inspect tool and actually read all of the code in plain text. But this

is a case only for web applications (although fetching the code for GUI is not as

simple as finding out the source code of a web page). Backend can be created

with a variety of different technologies and frameworks, but some of the more

known are “Django” (Python), “Laravel” (PHP), Spring (Java) and .NET Core

(C#).

6

Databases are a straight-forward services which are used to store all kinds of

data. Current standard language for relational database management systems

are SQL (Structured Query Language). Two of the most common types of

databases are Relational and Document. Relational databases are categorized

by a set of tables in which every one of them has rows and columns while

document databases are more like a subclass of a key-value store. Relational

databases work well when the information has to be precisely connected with

some other kind of information, for example, a user's shopping history in an e-

commerce store. Document databases work better when there is a lot of data and

it needs to be stored as fast as possible, these databases are popular for video

games and mobile games.

DevOps (development & operations) is the bridge between developers and

system administrators. It is a combination of tools and practices designed to

increase the ability to deliver applications and services faster than traditional

software development implementations. Probably the most important DevOps

practice is CI/CD (Continuous Integration & Continuous Delivery). The technical

aim of CI is to establish a consistent and automated way to compile, build,

package and test applications. While CD picks up where CI ends, it is responsible

for pushing code changes to all of the environments in an automated way (some

possible environments - production, development, testing). DevOps is also

responsible for containerization of the project. It helps to maintain a stable

architecture of the applications and makes managing of multiple services easier

because each service is created in an isolated container. Most popular container

services – Docker and Kubernetes.

Mobile app development skills are a nice thing to have for a full stack engineer,

but this is not required since not all of the web pages and not all of the software

applications have a separate mobile app. But the demand for mobile apps is

increasing every year and we might reach a point when every new business will

want to have a mobile app as well as a web page / software application. The

current flagmen languages for mobile apps are iOS and Java (Android

development).

7

2.1 MVC frameworks

The backend for the project will have to consist of a web server that opens an

API endpoint and returns HTTP (Hyper Text Transfer Protocol) responses in a

JSON (JavaScript Object Notation) string which is basically a dictionary with key-

value store. The backend will also have to scrape some information from the

internet via a web scraper function. This function will also run on a given time

interval so we will need task queue and cache storage services (2.3). Also, it will

store the information in a dedicated database. To develop such a backend

server, MVC (Model-View-Controller) framework is the best choice.

An MVC framework makes the life of a developer easier by separating an

application's architectural pattern into three main logical components – Model,

View and Controller. MVC separates the business logic and presentation layer

from each other. MVC architecture is a must in the current web development job

trends.

Model in MVC is responsible for declaring how the shape of the data looks and

sends the shape for execution to the dedicated database. Also for changes to

take effect, database has to be migrated. For example, model declaration in

“Django” web framework looks like this -

Class User(models.Model):

 username = models.CharField(max_length=64)

 password = models.CharField(max_length=64)

 full_name = models.CharField(max_length=64)

Code 1. Django model

This is equivalent to creating a “User” table with three columns (username,

password and full_name) in SQL. Also, here we add a max_length constraint to

the columns.

8

Controller in MVC is responsible for handling user interaction with the page and

less commonly software application. Controller sends commands to the model

and a view to change their states, for example, saving a model instance after a

user has successfully registered. Also it can change the associated view’s

representation. Basically, controller is the engine of a MVC framework.

send_context(request):

 user_list = User.objects.all()

 return render(request, ‘index.html’, { user_list: user_list})

Code 2. Django controller

In this example a function “send_context” is created which can be called

whenever needed. A variable “user_list” is created which holds the information for

all of the users in the database. Then it returns the “index.html” file to the same

request with the user list embedded in a view.

Views (or templates in some MVC frameworks) are the actual representation of

the page document to the end user. A GUI for a software application is equivalent

to a view as well. Most of the web page views consist of three main parts –

HTML, CSS and JavaScript. Most of the modern MVC frameworks do not use

vanilla HTML, CSS and JavaScript, because there are many developers that are

working on new frontend frameworks which would be more optimized and more

powerful, but with a drawback of making the code more complex and more

difficult to learn. There are three major stacks that the current job market finds

very valuable – React, Angular and Vue.js. These frameworks are very similar

when compared on a technical level, because all of them use the JavaScript

programming language (or a branch of JS called TypeScript). Some of the key

differences are that Angular is the heaviest of the frameworks (by page document

size) and it has the steepest learning curve. All three have a component

functionality which helps to build a more customizable UI. In Angular,

components are more like references to HTML objects, while in React and

Vue.js, they are combined with the UI which allows more customizability.

9

Table 1. Frontend framework comparision

 React Angular Vue.js

Initial release 2013 2010 2014

Popularity High Medium High

Job offers High High Low

Community stars 164k 71k 200k

Used by Facebook, Uber Google, Wix Alibaba, GitLab

For this project the actual view will be a GUI for the end user which can be

created via any programming language. Since I’m most fluent in Python

language, there are two main options – simple GUI creation module called

“Tkinter” and an advanced variant called “Kivy”. The latter has a lot of different

advanced functionalities and is also the go-to module for Python mobile app

development. But for this project we will just fetch data from an API and display it

to the user so more basic “Tkinter” module will work flawlessly. There will be no

view for the backend API endpoint because the response of an API request can

be sent back by just using a controller instead of a separate view.

Choosing a backend MVC for a new project can be tricky because there is a lot of

things to take into consideration. For example, do you need a minimalistic

approach for the application/web or it will have a lot of traffic? Also it depends a

lot on what programming language suits the developer best. There’s six main

frameworks that the job market asks for – Django, Express, Laravel, Rails, Spring

and ASP.NET Core. The popularity of all the compared frameworks are pretty

similar by the number of community members.

Django is a big framework which was created back in 2005. This might look old

and outdated, but it is actually one of the main pros for this MVC. By having a

really dedicated community over the years Django polished most of itself and

became arguably the most secure backend service available. Python is getting a

huge acknowledgment from the developer community over the past few years, so

it results to developers migrating to this framework. Another key thing to mention

10

is that Django actually is not a MVC framework but an MVT (Model-View-

Template), although practically it follows the same logic. Developers choose

Django over other frameworks because it has a really well detailed

documentation, is an open-source MVC and is not as difficult as other choices.

One of the main downsides for Django is that it is completely based on an ORM

(Object-Relational Mapping) which has a tendency of being slower, and it actually

fails to compete with vanilla SQL for complex queries.

Express js is a very new framework released in 2019. This service is run on

JavaScript and can actually compete with other MVCs in API development or a

complete application development. The main pros for Express js is that it’s using

a minimalistic approach which makes it extremely fast. Also JavaScript’s

popularity is skyrocketing so this MVC might become the next default framework

for backend development. They key con for Express js is that it’s not very

detailed in documentation which might be really challenging for beginners.

Laravel is a light-weight framework with a lot of functionality built in. It runs on

PHP language which was extremely popular a decade ago. Because of that a lot

of current web applications are constructed by Laravel. The framework itself saw

the light of the day in 2011. This MVC has a built-in blade templating engine

which allows to create simple but effective layouts. It also ensures high security

and has a well detailed documentation. Although it’s actually not the best MVC

for huge websites because it can become too dependent on third-party tools.

Also Laravel is still in the development phase and its package composer is not as

great as other MVC composers (npm, ruby gems, pip).

Rails is considered a beginner-friendly framework because it is quite easy to

modify and migrate. Also it has a great package composer called ruby gems

which supports a lot of different packages. Rails runs on a Ruby programming

language; the framework was released in 2004. This MVC has a active

community behind itself as well as supporting a superior testing environment

compared to any other MVCs. But it lacks some in quality and standardization in

its documentation. Another few cons would be that it lacks in runtime speed and it

11

can get quite tricky to create a simple API. While it is quite simple for beginners,

the learning curve can get extremely steep when trying to delve deeper into the

framework trying to unfold its full potential.

Spring is run by the Java programming language which in the current years is

referenced to as a dead language. Probably the biggest advantage is that Spring

can be deployed by just assembling a jar artefact and it already uses an

embedded web server (Tomact, Jetty, Undertow), but it also arguably makes it

more exploitable, so security might be a big concern when choosing Spring.

Another advantage in question is its own version control that is arguably better

than other version control services. But the current development market

environment is standardizing towards “git” version control, because it’s proven to

be good over the years. Spring was released in 2002.

ASP.NET Core is another possible MVC framework to choose from. It is written

in C# language, which currently is the go-to language for game development.

Simple .NET applications can get quite complex and it’s not very beginner

friendly. But most of the benchmarks shows that Core is an extremely fast and

reliable framework. It also supports Visual Studio IDE which makes the

development process faster, and it is backed by Microsoft which will remain the

elite tech company for a while. Core was released in 2016.

Phoenix is an MVC framework which I believe requires an honourable mention. It

is run on Elixir programming language and was released in February 2021. It’s

currently in an infant stage compared to other MVCs, but it has already proven

that it’s the fastest thing out there bypassing other MVC benchmarks sometimes

even up to ten times. But since it’s very new and uses not-so-popular

programming language only time will show if it has the potential to become the

new leader in the framework race.

12

2.2 Containerization services

Containerization is a form of operating system visualization in which applications

or services are run in isolated spaces called containers, all using the same

shared operating system. A container is basically a fully packaged and portable

computing environment. The key advantage of it is isolation because everything

an application needs to work (binaries, libraries, configuration files,

dependencies) is encapsulated in a single instance, as well the container is

abstracted away from the host OS. As a result, containerized applications can be

run on most types of computer infrastructure (bare metal, in virtual machines or in

the cloud).

Since each container is an executable package that is running on top of a host

OS it may support many containers (from one to thousands). For example, micro

services architectures use numerous containerized applications. This works

because all of the containers run minimally with resource-isolated processes that

other containers cannot access. A containerized application is similar to a multi-

tier cake: first there is a layer of hardware infrastructure including the CPU(s),

disk storage and network interfaces. Secondly it is the host OS and the kernel

which bridges the container’s OS with the hardware of the underlying system.

Thirdly a container engine sitting on top of the host OS is used, and lastly there

are binaries and libraries for each application that is running in their isolated

containers.

One of the most distinctive features of containerization is that it occurs at the OS

level, with all of the containers sharing one kernel. While it is not the same with

virtualization. VM (Virtual Machine) runs on top of a hypervisor, which is

specialized hardware, software or firmware. Via the hypervisor every VM has not

only the essential binaries and or libraries assigned but also a virtualized

hardware stack that includes storage, network adapters and CPUs. Biggest

problem with that is that each VM requires separate virtualized kernels for every

application and a heavy extra layer (hypervisor). The additional layer increases

the risk of performance issues. A single VM can support way less virtualized

containers (around 10).

13

Two main containerization services are Docker and Kubernetes. The question

about the difference of these two often comes down to which one you should use.

But this is a bad view because they actually work the best when used in

conjuncture. Docker is a container file format for automating the deployment of

applications making it as portable and as self-sufficient as possible.

The idea of containerization and environment isolation isn’t new and there’s

actually multiple different service providers for that, but Docker is current the

default container format. It features Docker Engine which is a runtime

environment that allows building and running containers on any machine. Docker

also maintains Docker Hub to store or share already developed template

containers. It also can use Azure Container Registry. The problem here becomes

clear when the containerized application requires maintaining a large amount of

containers which can make coordination of the instances very complex.

Kubernetes is an orchestration software that provides an API endpoint to control

how, when and or where the containers will run. This tackles some of the

complexities when scaling multiple containers or deploying across multiple

servers. Kubernetes orchestrates a cluster of virtual machines and schedules

containers to run on the VMs based on their available resources and resource

requirements of each container. In Kubernetes the basic operational unit is called

a pod. Pods consist of multiple grouped containers allowing management of their

lifecycle and the desired state.

Figure 1. Kubernetes deployment via Azure

14

In the figure above we have a project maintainer (developer) that make code

changes and push it with any version control service (like git). Azure pipelines

detect the code changes and push them to update the container in Azure

Container Registry, while also keeping AKS (Azure Kubernetes Service) up to

date. AKS then synchronizes with the registry and the end user can access the

application via internet.

2.3 Other services

First service that this project requires is a web scraper. Most of the programming

languages support some sort of a web scraping, but Python has a lot of different

scraping modules. Some of the more popular ones are requests, beautifulSoup4,

lxml, selenium and scrapy. Requests is the simplest of all of them. It takes an

argument which is an URL, then sends a GET HTTP request to the given URL

and returns the source code of the page. Most basic usage looks similar to this -

Import requests

url = “http://google.com”

response = requests.get(url)

print(response.text)

Code 3. Requests

BeautifulSoup4 extends on the requests module by adding additional

functionality. BS4 transforms a complex HTML document into an equally complex

tree of Python objects. Also it allows to filter the raw source code by multiple

HTML selectors, for example, by class, ID, name and others.

Lxml is quite similar to BS4, but the main difference between these two modules

is that lxml also supports scraping XML documents more efficiently and doesn’t

require a requests module. Lxml works by using two C libraries, which are libxml2

and libxslt. This makes scraping data extremely fast.

15

Selenium is quite different from other scrapers. Actually, it’s not a scraper – it’s a

crawler. First of all, it works by using a web driver to simulate a browser’s

functionality. Basically selenium simulates actually opening the page and

interacting with it. This allows selenium to automate almost anything in the

internet. These automation scripts are called bots and they can cause problems

for web pages and that’s why developers implement some kind of a captcha

barricade to prevent bots from doing anything malicious. Selenium supports

almost everything from the above web scraping modules, but is comparably slow.

Scrapy is the heaviest module. It is also a web crawler. The main principle is that

scrapy enables having multiple nodes called spiders. Each spider can do multiple

things and can be easily managed by the main controller. This web crawler

supports almost all of the features of the modules mentioned above and is

surprisingly fast. Scrapy is an ideal option for huge projects.

The idea for the project is that the web scraper would gather data in a given time

period for example, every 12 hours. Let’s presume that I will use Django MVC

framework as a backend for the project. For the idea mentioned to work, a couple

of additional services are required – task queue and cache storage. The default

or go-to module for tasks in Python is Celery. The default cache storage that is

used in most of the applications is Redis. Celery detects tasks in the code by a

special notation that you can see below (@task).

@task

some_function():

 # code here

Code 4. Celery notation

Celery puts the notated tasks into Redis, which lets backend to continue working

on other things. On a separate container Celery runs workers that can pick up

tasks. Those workers listen to the Redis container. When a new task arrives, one

worker picks it up and executes it while also logging the result back to Celery.

16

There are two main types of databases to choose from – relational and document

(also known as SQL and NoSQL). Relational databases use a set structure that

allows them to link information from different tables using indexes. These data

pools could then be linked thorough a relationship. While NoSQL databases do

not use any kind of relational enforcement. The architect of the database

determines what relationships, if any, are necessary for their data, and creates

them. Both relational and document databases are better for different things. For

example, relational ones would be better suited for an application that requires a

lot of complex and intensive queries between different databases, which is

required in an e-commerce store. While document databases are typically better

for applications that require horizontal scaling and more flexible architecture,

such as big data analytics and real-time web applications. Choosing a correct

database infrastructure is crucial for a project to succeed. A system architect has

to think how the data will be handled, what kind of data will be received and quite

a few other things to take into consideration. Since this project won’t require big

data analytics, nor will it require extensive queries, I will use a PostgreSQL

database which is a relational type, works really well with Django backend

framework and is quite familiar to me. Another choice could be MongoDB which

is a document database, open-source and quite simple to use as well, but since I

have more experience with PostgreSQL, I will use a relational database.

To achieve this project four containers will be used, one for each of the services –

 Django

 Celery

 Redis

 PostgreSQL

Since we will not be using hundreds of them, we don’t actually need to use

Kubernetes containerization service, because Docker supports a service called

Docker Compose. It is a tool for defining and running multi-container applications.

Compose uses a YAML file to configure all of the application’s services. Then by

a single command all of the services can be built and ran.

17

version: “3”

services:

 django:

 build: .

 ports:

- “8000:8000”

depends_on:

- db

db:

 ports:

- “5432:5432”

Code 5. Docker Compose

Above we can see a simple Docker Compose configuration with two services,

backend (Django) and a database. Here those ports are defined on which the

services should be listening, and a build path is defined as well. Of course

additional parameters are required to make this work (like images), but this is

how the core concept of Docker Compose YAML file looks like. For the backend

we will also have to create a Dockerfile that will define how our service looks like.

Version control sometimes also known as source control is a tool for developers

to track and manage changes in the code. Version control systems accelerates

software development and deployment. This is a must-have tool for anyone who

works with DevOps. Version control keeps track of all of the modifications to the

code in a special kind of database. If something goes wrong, developers can turn

back the clock and compare earlier versions of the code to identify and help fix

the mistake made, while minimizing disruption to all of the team. Two main

version control services are GitHub and GitLab. GitHub has higher availability

and is more focused on infrastructure performance while GitLab is focused on

offering more of a wholesome system with centralized and integrated platform for

web developers. For this project GitHub will be used since it’s not actually a web

application, but it can be done on the GitLab without any problems as well.

18

Also another very important thing to mention is that this project is fully done on a

Linux machine, because a lot of services have a really great compatibility with

Linux kernel and shell is a great command interpreter for all of the development

and operations challenges. Shell in Linux operating system takes input from the

terminal window in the form of commands, then processes them and shows the

output of the command. It’s the default interface through which a user works on

the programs, commands and scripts in a Unix-based operating systems.

Although Docker supports development in Windows, it actually overcomplicates a

lot of simple things and sometimes Windows-exclusive issues might occur which

is really difficult to debug.

3 APPLICATION DEVELOPMENT

The next step of the thesis consists of two main parts – setting up an API

endpoint to the world wide web and fetching the data API results via graphical

user interface (GUI).

3.1 Setting up an API endpoint

Before hosting the application on a world wide web, we need to make sure things

work correctly in a local environment. There are some prerequisites before

starting to write the backend. The most important thing to install is Python

programming language module. This step is required when developing a solution

in Windows operating system, but my advice would be to use a Unix-based

operating system, because a lot of incompatibilities occur when using Windows

for development. Also Python comes pre-installed in an operating system like

Ubuntu. The next prerequisite is to install Docker Engine and Docker Compose.

Following the Docker documentation, first thing is to update the repositories on

the system

19

Figure 2. Update repos

Next step is to add Docker’s official GPG key via command

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

/usr/share/keyrings/docker-archive-keyring.gpg

Code 6. Add GPG key

Initialize Docker Engine installation

sudo apt-get install docker-ce docker-ce-cli containerd.io

Code 7. Docker Engine installation

Confirm the successful installation by validating Docker version

Figure 3. Docker Engine installed

The next step is to setup Docker Compose. The stable version can be

downloaded by using this command

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.1/docker-compose-$(uname

-s)-$(uname -m)" -o /usr/local/bin/docker-compose

Code 8. Docker Compose stable version download

20

Apply executable permissions to the binary

Figure 4. Chmod command

Confirm the successful installation by validating Docker-Compose version

Figure 5. Docker Compose version

After dealing with prerequisites, the process of backend server containerization

begins. Firstly, the project has to have default Django directories (an empty

project). Referencing to the Django documentation, it has to look like this

Figure 6. Django directories

Top directory (mysite/) is where the project is placed. Then there is the

manage.py file which controls some of Django’s functionality. The second mysite/

directory is a so-called root folder of a project. Two important files to mention

here is settings.py and urls.py. Settings file is responsible for a lot of the server’s

customization. Urls file handles the routing for the server. Easiest way to create

such directory template is installing Django and creating a project in some

directory.

21

Figure 7. Install Django

Figure 8. Setup an empty Django project

After settings up the directories, the server is almost ready for containerization.

To implement additional modules for the server’s container, modules are defined

in a separate file called ”requirements.txt”, which has to be located in the project

root directory.

Figure 9. Requirements.txt

First line refers to Django framework which has to be between version 3 and 4

(current stable version). Line 2 is a binary requirement for PostgreSQL database

adapter. Lines 3 & 4 are modules required for web scraping. Line 6 is cache

storage service Redis, lines 5 and 7 are modules for task queuing (Celery and its

worker Celery Beat).

After finishing with module requirements file, a Docker containerization file needs

to be created. Referencing Docker documentation, the file needs to be called

”Dockerfile”. This file is like the instructions on how the Docker container will look

like.

22

Figure 10. Dockerfile

First of all, the core language (Python) is declared. After that an argument

WORK_DIR is created, in line 6 this variable is set to the root directory of a

container. Line 3 and 7 deals with locally installed modules by adding them to a

virtual environment in the container. Line 4 is the reason why setting up an

empty project is required beforehand. Command COPY takes the manage.py file

which is created locally and puts it into the container. Line 5 ensures that any

Python output would be sent straight to the server’s terminal. Line 8 puts the file

requirements.txt into the container and line 9 executes installation of the file’s

contents. Line 10 puts everything else (core project files) into the container. Line

11 is not really required, but it helps to manage the virtual environment. Django

framework’s Dockerfile is ready. Since this project consists of multiple containers

and not just a single one, setup of docker-compose.yml file is required.

23

Figure 11. Docker Compose file

Starting with the compose file in the very top version of the file is declared, in this

case version 3. At the very bottom, the volumes and networks are declared.

Volumes is basically a directory where the data of storage services will be kept

(one of database and one for cache). Both of the volumes are local to the project

root directory. Networks basically stitches up the services on a bridged driver so

the containers could detect each other. For that case one network is defined

(”xakingas-backend-tier”). Most of the declarations is used for images, so let’s go

through each of them one by one. The first service in the file is called ”django”. It

takes an image parameter which can be fetched from Docker’s Image Registry

called Docker Hub. Next there is a build parameter, with context argument. A .

24

(”dot”) notation is left there, which in Unix-based systems means ”current

directory”.

Another argument is called a ”dockerfile”, which basically connects the previously

created Dockefile with the Django service. Next up there’s ”.env” parameter.

Every project has some secret keys or any other sensitive information, so for

each project a separate .env file should be created. This parameter in the docker-

compose.yml configuration declares path to the .env file. An example of how

such a file could look

Figure 12. .env file

It is IMPORTANT that this file does not get into public repositories, because

otherwise multiple of different exploits can be used against the server. This can

be easily prevented by just creating ”.gitignore” file and appending the file with

text ”.env”.

After that a command is given to the Django service. This command will run only

after containerization of server’s Dockerfile. The default command for Django

server to start is ”python manage.py runserver 0.0.0.0:8000”. This is not fully

secure by current market standards, because some sort of web server gateway

interface needs to be added, two main choices would be a web server or a

gunicorn service (both would need additional containers), but since this project is

created for educational purposes and for simplicity’s case – I will not set them up.

Then the volumes and networks are linked with the service. ”restart: unless-

stopped” parameter is also given to make the server restart every time something

unexpected happens. Service dependencies (”depends_on”) for the Django

service is defined (database and cache storage). And lastly ports are defined.

First port is called a ”HOST_PORT” which can be accessed externally and the

25

second port is ”CONTAINER_PORT”, which is basically used by Docker

internally. In a production environment, ports should not be the same, because of

the security concerns.

Next up there’s three services called ”db”, ”celery” and ”redis”. Each of these

services follow almost the same exact template as a previously example, but with

some adjustments. Docker Hub supports multiple of free pre-set images for some

of the services. Database and Redis images are pulled from Docker Image

Registry. Both of these services are run on an ”Alpine” linux distribution which is

probably the most lightweight Unix-based distro therefore increasing the

performance of the project. Also different ports for each of the service is declared.

The last thing I want to mention is the command that is passed to the ”celery”

service. The syntax for that can be found in the celery documentation, but

basically the worker runs on a specific schedule for an application ”xakingas” and

the configuration for celery is included in project’s root directory by a file called

”celeryconf.py”. Other services do not require additional setup, so let’s have a

look at celery configuration.

Figure 13. Celery config

Please ignore the red underlined code, because I don’t have celery module

installed locally, but it will work in the container swarm. Line 5 sets the settings to

the django project’s settings. Line 7 initializes celery instance for application

”xakingas”. Line 9 sets the timezone for celery. Line 11 creates configurations

26

from the settings (which is defined in line 5) and line 12 declares that celery itself

should look for available tasks that would be notated with previously mentioned

celery notation (”@task”).

At this point all of the core backend services are ready for deployment, but this

project is still empty, so let’s undo that.

Information that will be scraped from the internet can be about anything, but since

the world currently is going through a pandemic I want to address that. Webpage

scraped will be ”https://worldmeters.info/coronavirus/”. It has the statistics for total

cases, total deaths and total recovered for the whole world and for specific

countries like Lithuania and Finland.

First of all, models that define how data will shaped in PostgreSQL database has

to be created.

Figure 14. Django models

27

This is equivalent to creating three database tables (”worlddata”, ”lithuaniadata”

and ”finlanddata”) and each of the tables has four columns that are pretty self-

explanatory (cases, deaths, recovered and fetch_time). CharFields with max

length attribute is the same as ”VARCHAR (64)” in SQL. Blank and null values

are allowed just for the debug reasons (optional). ”DateTimeField” row value is

updated when a new record is created. To confirm the model changes to the

database it has to be migrated first. Migration is basically Django creating a

separate file which will be passed to the database interpreter and raw SQL

commands will be pushed to the PostgreSQL service.

Figure 15. Migration

28

Figure 16. Newly created database tables

The next step is to actually fill these databases with some information. For that a

web scraper will be built using Python Requests and BeautifulSoup4 modules.

For the scraper to work, the first thing is getting to know how the targeted

website’s source code looks like. This can be achieved in two main ways. The

first one is fetching the source code directly to the terminal via requests,

showcasing all kinds of code that website consists of. But a more efficient way

would be to use browser’s inspect tool.

29

Figure 17. Inspect tool

In the example above I’ve inspected the element which includes the numerical

value which I’m trying to scrape. Luckily for me, the counter is embedded to a

”div” element with unique ID – ”maincounter-number”.

Figure 18. Scraper logic

A simple scraper function is created. This function takes location as an argument

and fetches the source code for the location provided. In line 6 the raw_data is

converted into a BeautifulSoup object. Then the result is filtered by a BS4

30

function ”find_all”. Also, the declaration of required element and a unique ID is

passed. Finally, 3 different variables with the according information is returned.

Figure 19. Task logic

In the figure above is the main logic for a task that is passed to celery task

queuing service. Notice that ”fetch_data” function has a @task annotation.

Basically it’s a task that runs on a set interval of time. It calls a previously

mentioned ”scrape_data” function and creates new rows in the according

database tables.

Another important thing that needs configuring is Django settings.py file.

31

Figure 20. Connect database to Django

Figure 21. Connect Celery service to Django

One thing to mention here is line 146. Using crontab schedule expressions

”minute=’0’, hour=’*/12’” is equivalent to every 12 hours. One of the last things left

is to make the server act as API endpoint, which means returning HTTP (Hyper

Text Transfer Protocol) responses. For that I will add a file named views.py (an

equivalent of a controller in other MVCs).

32

Figure the default command for Django server to start. Fragment of views.py file

This file consists of three main functions. ”send_world”, ”send_lithuania” and

”send_finland”. I will only detail what’s happening here in ”send_world” function,

because all of them are quite identical, only the data returned changes. In line 10

the latest scraped data row is queried. After that the ”QuerySet” object is

serialized into the JSON string and some data manipulation is used to remove

unnecessary information (like a primary key of a row). Finally in line 17

HttpResponse is returned with finalized data.

To test if everything works as expected one more thing is required to do –

creating the endpoints themselves in the urls.py file.

Figure 22. Urls.py file

33

For the backend there is three url patterns, one for each of the views.py file

functions. ”api/world/” request will return ”send_world” function and so on. Let’s

test if everything works as expected.

Figure 23. Successful response

The application seems to be fully working locally, it’s time to host it on the world

wide web. For that I will use AWS (Amazon Web Services) because it offers a

great free tier with a quite a powerful host machine. The process of setting up a

default server on AWS is actually quite simple because the dashboard is really

user friendly and there is quite a lot of beginner friendly tutorials on YouTube.

One important thing is that specific inbound rules need to be set to be able to

reach the server.

Figure 24. Inbound rules

Two rules are included – Custom TCP and SSH. Custom TCP rule is used to

allow access on the 8000 port of the machine, where the API is exposed. There

are two separate custom TCP rules because of Ipv4 and Ipv6. The SSH source is

my home IP address, so I could actually get into the remote host from the

terminal. But before that let’s push the code to a private remote depository so it

could be pulled to the AWS server host.

34

git init

git add .

git commit –m ‘first commit’

git push origin master

Code 9. Git code

Figure 25. Github repository

Now everything is ready to be hosted on the internet. SSH remotely to the AWS

machine.

35

Figure 26. SSH connection

Lastly these commands are run to build the project on an AWS host.

git clone < HTTPS url of the repo >

docker-compose build

docker-compose up

Code 10. Commands on a AWS host

36

Figure 27. Success

The API endpoint is successfully hosted and deployed to the world wide web.

3.2 Fetching data from an API endpoint

To fetch the data from the API I will use requests module. To create a GUI, I will

use “Tkinter” module which is really simple to use if you have any experience with

Python. To install “Tkinter”, following command must be executed

sudo apt-get install python3-tk

Code 11. Install Tkinter module

Figure 28. Base links

In the first part of the code links are created to the API endpoint.

37

Figure 29. Dialog

Next a simple dialog box is created which will show the fetched results. This

function accepts three arguments – cases, deaths and recovered.

Figure 30. Functions

Functions are created that will be called on according to button clicks. After the

click requests module will fetch the proper url, jsonifies the returned information

and pass it to the dialog function which was covered above.

38

Figure 31. GUI

In the example above is the creation of the GUI itself. First of all, some images

are opened and resized to fit with the GUI. Afterwards buttons are created,

gridded and images set. Finally GUI is ran with ”mainloop” function.

Figure 32. Final GUI design

39

Figure 33. GUI with world data dialog box open

The full stack application has been successfully created and works as intended.

The server backend can be accessed from anywhere on the Internet and the

client software can run on any machine that supports Python language.

4 CONCLUSION

The aim of this study was to develop a full stack application with such

infrastructure that would be as similar as possible to the current market

standards. Multiple different options have been analyzed showcasing most of the

pros and cons of each major framework. The technology stack can vary quite a

lot between different goals, so similar analysis has to be done before starting

developing any bigger projects to prevent possible compatibility issues.

In conclusion, MVC frameworks are the current way to go with any web and

software application development. Although they are more compatible with web

applications, I had no problems creating this software by using MVC as the

backend for the project. Also containerization is now a required skill to have for

any aspiring developer, because the applications created every year need

40

multiple different services which would be semi-impossible to manage without

tools like Docker or Kubernetes.

41

REFERENCES

AWS documentation. Updated at 2021. https://docs.aws.amazon.com [Accessed

17 April 2021]

Burwood. 2019. Containerization vs. Virtualization: What's the Difference?

https://www.burwood.com/blog-archive/containerization-vs-virtualization

[Accessed 17 April 2021]

Celery documentation. Updated at 2021. https://docs.celeryproject.org/en/stable/

[Accessed 17 April 2021]

Codeinwp. 2021. Angular vs React vs Vue: Which Framework to Choose in 2021

https://www.codeinwp.com/blog/angular-vs-vue-vs-react/ [Accessed 17 April

2021]

Django documentation. Updated at 2021. https://docs.djangoproject.com/en/3.2/

[Accessed 17 April 2021]

Docker documentation. Updated at 2021. https://docs.docker.com/ [Accessed 17

April 2021]

FreeCodeCamp. 2017. What is MVC, and how is it like a sandwich shop?

https://www.freecodecamp.org/news/simplified-explanation-to-mvc-

5d307796df30/ [Accessed 17 April 2021]

Hazelcast. 2020. Caching. https://hazelcast.com/use-cases/caching/ [Accessed

17 April 2021]

Python Tkinter documentation. Updated at 2021.

https://docs.python.org/3/library/tk.html [Accessed 17 April 2021]

42

LIST OF FIGURES

Figure 1. Kubernetes deployment via Azure .. 13

Figure 2. Update repos .. 19

Figure 3. Docker Engine installed .. 19

Figure 4. Chmod command ... 20

Figure 5. Docker Compose version ... 20

Figure 6. Django directories .. 20

Figure 7. Install Django ... 21

Figure 8. Setup an empty Django project .. 21

Figure 9. Requirements.txt .. 21

Figure 10. Dockerfile ... 22

Figure 11. Docker Compose file .. 23

Figure 12. .env file ... 24

Figure 13. Celery config .. 25

Figure 14. Django models ... 26

Figure 15. Migration .. 27

Figure 16. Newly created database tables .. 28

Figure 17. Inspect tool ... 29

Figure 18. Scraper logic .. 29

Figure 19. Task logic ... 30

Figure 20. Connect database to Django .. 31

Figure 21. Connect Celery service to Django .. 31

Figure 23. Urls.py file .. 32

Figure 24. Succesful response .. 33

Figure 25. Inbound rules.. 33

Figure 26. Github repository .. 34

Figure 27. SSH connection .. 35

Figure 28. Success .. 36

Figure 29. Base links ... 36

Figure 30. Dialog ... 37

Figure 31. Functions .. 37

Figure 32. GUI ... 38

43

Figure 33. Final GUI design ... 38

Figure 34. GUI with world data dialog box open .. 39

LIST OF CODES

Code 1. Django model ... 7

Code 2. Django controller .. 8

Code 3. Requests .. 14

Code 4. Celery notation ... 15

Code 5. Docker Compose ... 17

Code 6. Add GPG key ... 19

Code 7. Docker Engine installation ... 19

Code 8. Docker Compose stable version download .. 19

Code 9. Git code ... 34

Code 10. Commands on a AWS host .. 35

Code 11. Install Tkinter module ... 36

LIST OF TABLES

Table 1. Frontend framework comparision .. 9

	1 INTRODUCTION
	2 FULL STACK DEVELOPMENT METHODS
	2.1 MVC frameworks
	2.2 Containerization services
	2.3 Other services

	3 APPLICATION DEVELOPMENT
	3.1 Setting up an API endpoint
	3.2 Fetching data from an API endpoint

	4 Conclusion
	REFERENCES

