

PREFACE

I would like to thank my colleague Johannes Bohren for suggesting this

excellent topic for my thesis. When I heard about this concept for the first

time, I didn’t know that it was even possible to develop such an application

which can be beneficial for so many areas like climate change, reducing co2

footprints, employee health etc. I have faced a lot of challenges. Mostly, it

was trying to find the peace of mind to write and study the different areas

required to complete this paper, especially after office hours with 2

energetic kids.

I would like to give credit to my wife, Hafiza Mariam Khan, for her help in

managing my routine and taking all the burdens on her shoulders so that I

could concentrate on my studies. I would also like to thank Ville

Jääskeläinen for encouraging and pushing me so that I could complete my

studies as soon as possible, and also for providing loads of ideas on how to

write a good paper, along with time management. I would also like to thank

Zinaida Grabovskaia and Vesa Ollikainen for designing the course in a way

that helped me to write the thesis paper easily.

I would also like to thank my friends and university teachers, especially Dr.

Humera Tariq and Dr. Nadeem Mahmood, who suggested the idea of

completing my Masters as soon as possible: finally, after 10 years, I have

managed to follow their suggestion.

Last but not least, I would like to thank my parents Shair Muhammad and

Rubina Shair for keeping ne on the path of studies during my early years.

Nurmijärvi, 31.05.2021
Muhammad Monis Amjad

Author Muhammad Monis Amjad

Title
Designing and developing a smart commuting

application to support healthy lifestyles

Number of Pages 77 pages

Date 31 May 2021

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s) Ville Jääskeläinen, Head of IT Master's program

Obesity is one of the great challenges of modern civilization. Heart disease,

diabetes and other conditions related to obesity are already a major problem.

People become lazy when encouraged to use their own car instead of public

transport or walking to work: this leads to more problems, such as traffic

congestion, pollution and parking issues. The aim of this thesis is to design and

develop the basic required characteristics, functionalities, options and features

of an application which can be used by companies to provide incentive to their

employees and provide analytics about the wellbeing of these employees. It is

all about incentivizing people and organizations to make choices that have a

positive impact on the environment. The mobile application Cleancentive was

designed, developed and tested for companies so they can support their

employees with their physical health activities.

The study shows that while testing the application, the daily routine and

lifestyle of the author was benefitted, bringing more energy for the day and

also increasing productivity. It was also found that incentive models may need

to be customised on a company-by-company basis to find out which model

works best for them, always bearing in mind that people tend to get motivated

and excited when they’re getting some kind of financial reward.

Keywords Smart Commuting, Wellbeing, Health

Contents

PREFACE

List of Abbreviations

1. Introduction 1

2. Method and Material 4
2.1. Background of this Thesis 4
2.2. Research Design and Solution Development 5
2.3. Solution Evaluation, Reliability and Validity 6

3. Technologies Used for Tracking Application 8
3.1. Developing Tracking Application 8

3.1.1. Technology Decision for Web Application 8
3.1.2. Technology Decision for Frontend 11
3.1.3. Technology Decision for API 17
3.1.4. Technology Decision for Database 20
3.1.5. Technology Decision for Mobile Application 20

3.2. Usability, Testing and Releasing 24

4. Results and Analysis 26
4.1. Understanding Requirements 26
4.2. Compensation Model 28

4.2.1. Environmental Benefit 28
4.2.2. Health Benefit 29

4.3. Design of the application 30
4.4. Development of the application 32

4.4.1. Development environment setup 33
4.4.2. Integrating Design 40
4.4.3. User Authentication 46
4.4.4. Application Permission 47
4.4.5. Tracking User Location 49
4.4.6. Tracking user activity 60
4.4.7. Calculating Incentive Model 62

5. Discussions and Conclusions 65

List of Abbreviations

AJAX Asynchronous JavaScript And XML

API Application programming interface, provides an interface

so that two or more applications can communicate with

one another.

CSS Cascading style sheet

HTTP Hypertext transfer protocol

IDE Integrated development environment

MPA Multi-page application

MVC Model view controller

MVP Minimum viable product

MVVM Model view viewmodel

NPM Node package manager

REST Representational state transfer

SOAP Simple object access protocol

SSR Server side rendering

UI User interface

UX User experience

VCS Version control system

1

1. Introduction

Obesity is one of the great challenges of modern civilization. Heart disease,

diabetes and other conditions related to obesity are already very costly.

Lower productivity, an increase in taxes to help fund an overworked

healthcare system and, on a personal level, lowered resistance to other

health threats such as Covid-19 are just the most obvious outcomes.

Obesity is caused by many different factors. Besides eating too many

sweets and processed food, a major factor is a lack of basic physical

movement. Although workers typically commute further than ever before,

many move their bodies too infrequently. Many people are spending their

work time in front of a computer screen with little physical movement

during their daily routine. Most spend a full day sitting down, not really

moving their bodies. Nowadays each and every company offers health care

to their employees precisely because inactivity in their daily routines creates

numerous health issues, and the companies are simply covering their own

backs.

Most employees use their car to get to the office which leads to pollution,

traffic congestion and parking issues. It is a commonly accepted fact that

human beings are overstretching the planet's capacities with their lifestyles

and resource usage. A major factor in this usage is the phenomenon of

commuting to work by car. It is crucial that we research new technologies

and find innovative solutions to address this. At the same time, people also

have to learn to value their mobility more, and discover smarter and

healthier ways of moving around.

Many companies are willing to invest considerable sums in corporate

responsibility and sustainability programs, partly because of customer

demand and existing regulations. As a result, many platforms and projects

have emerged where emission rights can be traded or compensated. The

transparency for many of these is limited, and critics talk of greenwashing.

It is crucial to first improve one’s own operations and then support projects

which have a positive impact, in line with the views and intentions of the

2

company itself. Think globally and act locally, also when it comes to

compensation for emissions.

The visionary design of a new application called Cleancentive is all about

incentivizing people and organizations to make choices that have a positive

impact on the environment. By incentivizing healthy mobility, it can improve

public health issues. Giving positive and negative externalities a price, the

“healthy” becomes cheaper, and the “dirty” can’t freeride. By offering cities

analytics and data about commuting behaviour, behavioural changes and

infrastructure bottlenecks, it can help to establish a genuinely “smart city”.

The aim of this thesis is to design and develop the basic required

characteristics, functionalities, options and features of an application which

can be used by companies to provide incentive to their employees and

provide analytics about the wellbeing of these employees. This means

developing a mobile application to answer questions such as:

● What technologies could be used to develop such a tracking

application?

● What benefits does it bring to the employee and employer?

● What kind of incentive model works best?

Codistan Oy, as a sustainable solution provider company, is focusing on

helping both companies and consumers to adopt efficient and convenient

methods for everyday tasks with the help of local communities.

Codistan's goal, with the help of this thesis and the innovative product, is to

fight climate change and other environmental issues related to transport

with the help of technology, data and a market approach. The study is

important in many ways and it will help to solve the following challenges:

● Unhealthy lifestyle choices

● Weight management issues

● Joint and skeletal problems

3

● Cardiovascular diseases

● CO2 emission levels

The study includes the development of mind maps of the concept, a visual

design of the application and the development and deployment of the

application. It also includes analyses and testing of the application model to

find health benefits for the employees, along with their experience of the

app, a compensation model and health analysis along with analyzing the

commuting habits of employees and their impact on pollution and CO2

offsetting. The study doesn’t cover major problems such as infrastructure,

public transport, traffic congestion and parking improvements.

This thesis has been divided into seven sections. The first section introduces

the topic of the thesis, the second sections covers the background and

history of the topic, the third section explains the development of the mind

map and feature selection for the application, the fourth section explains the

design process of the application, the fifth section describes the

developmental journey, the sixth section shows the testing methods and the

final section defines outcomes, results and the further development needs

of the application.

4

2. Method and Material

During the development of any web and mobile application, the theory

involves some key processes of software development, user activity

monitoring, human resources and compensation. It also needs to take into

account how to attract potential users to the application in a better way, by

providing a proper user interface and considering the user’s needs. The

application design and interface should be the most important things in a

new software system. This involves going through several iterations with

users to understand the usability, reliability, trust, extensibility and easiness

in using the application, all important aspects which shouldn’t be ignored.

This section covers the development background of the application.

2.1. Background of this Thesis

The idea of the application originates from the Chief executive officer (CEO)

of Codistan Oy, Johannes Bohren, who came up with an idea to compensate

users for not using cars to avoid polluting the environment and to reduce

traffic congestion. This idea became more interesting to the author because

of its focus on compensating company employees for using bicycles, or

walking/running or using public transport to get to the office, from a health

benefits perspective. Enjoying a healthy lifestyle and reducing carbon

emissions are very important to the author, and Codistan Oy wanted to

reduce the amount of money paid for health facilities. Instead, the money

could be spent on people's well-being so that they remain healthy and don’t

have to use health care services so often.

The application created in this thesis was originally the kind which is able to

track user activity automatically as soon as the user starts moving.

However, the scope of the application was narrowed down to a more

traditional way of recording user activity by providing an option to the user

to start, pause and end the trip and activities. The application is able to

track the activity of the user and the mode of transport. On the basis of the

5

type and distance of an activity, benefits will be calculated and transferred

to the user. There is no actual money transfer integration being done as

part of the scope of this thesis.

The suggestions for future development added to the application include

determining actual user physical activity and the compensation of users

based on the agreed/proposed model. Multi-language support is added as

part of the solution so it will be possible to target more users. The mobile

application will be tested by Codistan employees, who will receive

compensation for being healthy.

2.2. Research Design and Solution Development

This thesis is based on knowledge which was collected and organized by

reading various articles on the internet, technical solutions and their

documentation and interviewing clients and their employees to generate a

feasible solution for them. Designing the application was thoroughly based

on collected data. As the application and its concept is unique in nature and

requires an understanding of different systems, there was no existing

reference solution available related to the concept itself. However, there is

much information available about different technical solutions, concepts and

designs separately in their domains which were later merged to form the

design of the application. Youtube, Stackoverflow, Github, Wikipedia and

technical documentation of the technology being used were good sources to

search for help, but the biggest help was provided by the CEO of Codistan in

testing and formalizing the concept of this thesis, and the thesis instructor

who has helped a great deal in reviewing the content of the thesis

thoroughly and frequently. Once the required information had been

collected it was comparatively easy to develop the solution. Figure 1 below

describes the design process of this thesis.

6

Figure 1. Application design process.

The application design process for creating a minimum viable product began

by having a meeting with Codistan and their employees. The target was to

understand the application concept by identifying the core elements of the

system, designing a mind map of the application and selecting a feature set

from the mind map. After several meetings over the course of 2-3 months,

a wireframe of the application was finalized. During the application UI

design, the client’s colour preferences were kept in mind and wireframes

were transformed to a functional user interface using Adobe XD to try out

the look and feel of the real application.

2.3. Solution Evaluation, Reliability and Validity

The evaluation of the solution was done throughout the whole writing and

coding process. It was done by testing the application in a normal work

day’s routine by the CEO of the company and the author himself, along with

a few other volunteers and friends. The reliability of the solution was tested

through constantly using the application in different weather conditions both

in winter and spring. It was tested by trying out different modes of

transportation such as car, bicycle, public transport and walking. Only one

compensation model was tested with Codistan, as agreed with them.

7

The model worked for their employees, so it wasn’t necessary to try out

different compensation models. Codistan will continue developing and

customizing the application to include new features and try different

compensation models with different companies. The application demo was

presented at the end of the thesis to Codistan.

8

3. Technologies Used for Tracking Application

The word “Cleancentive'' was a combination of two words “Clean” and

''Incentives''. It literally means: get an incentive for keeping the

environment clean. This chapter explains different ways that have been

used to counter climate change, the history and theory in the background,

the basics of creating web and mobile applications, technical challenges,

and a short comparison of different programming solutions.

3.1. Developing Tracking Application

The process of creating a mobile or web application is widely known in the

software industry. Developing web applications requires knowledge of HTML

and CSS to make it look attractive. It also requires knowledge of API to

provide an interface for the database and JSON/XML knowledge to work as

a transfer medium. On the other hand, developing mobile applications

requires understanding of mobile platforms such as iOS or Android to build

frontend of the mobile and API. On top of that, it is also necessary to have

knowledge of the options which cloud providers offer for deploying the web

application, along with understanding the application publishing process to

Google Play and the Apple store. This chapter covers everything needed to

develop the web and mobile application.

3.1.1. Technology Decision for Web Application

There are many web technologies present today to help develop the web

application, some of which have existed for more than 20 years in the

market and have proven to be strong enough to be the default choice for

many developers. To develop Cleancentive, there were two choices: either

to develop everything integrated in one application by using some php

based frameworks such YII2 or Laravel or ASP.NET or Java servlet

application, or to have it created frontend of the web application

http://asp.net

9

independent of backend. Both have their pros and cons.

Developing integrated applications means that there are several pages with

static or dynamic information (text, images, etc) and links to the other

pages with the same content. During a jump to another page, a browser

reloads the content of a page completely and downloads all resources again,

even the components which are repeated throughout all pages (e.g.,

header, footer) [1]. HTML, CSS and Javascript along with any backend

technologies such as PHP, JSP, ASP etc. can be used for building multi-page

web applications. The Multi Page Application (MPA) life cycle usually looks

as show in the picture below:

Figure 2. Multi page web applications lifecycle [2]

On the other hand, Single Page Application (SPA) is a web application

hosted on a single web page that downloads all the necessary code for the

job, along with the page itself [2]. It usually loads a single piece of

content and updates the page as the user interacts with the app. They use

AJAX and HTML5 to create fluid and responsive Web apps, without constant

page reloads. This means that much of the processing happens on the client

side, mainly using JavaScript. The picture below explains the lifecycle of a

single page application:

https://www.wizdom.ai/cite-in-google-docs/v2?cid=1625c79a-3cdb-4611-ab81-e1ae3209ec7d;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=94618e51-a90b-4e7e-a947-a15c62d8d1c0;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=94618e51-a90b-4e7e-a947-a15c62d8d1c0;;;;;

10

Figure 3. Single page web applications lifecycle [3]

The development of MPA is usually fast, so the system could be quickly got

ready within a few months but it would also require developing some sort of

interface for mobile applications to be connected with the backend. In the

normal world it would require double development by creating integrated

applications and creating some sort of API to connect mobile devices. This

also means that it requires business logic to be applied in two different

places, which is not ideal when the products become huge and also not

good in terms of maintenance and the scalability perspective. Sometimes in

integrated applications, when updating certain models it is also required to

update the frontend logic of the application, which leads to different

problems.

https://www.wizdom.ai/cite-in-google-docs/v2?cid=53ff0b97-8efd-49c8-b7b6-c7ba65bc70f2;;;;;

11

Table 1. Difference between SPA and MPA [4]

SPA MPA

Responsiveness and High Speed SEO

Offline Opportunities (Caching) Scalability

Easier to make mobile responsive Existing frameworks and solutions

Decoupled frontend

Cleancentive requires an API to provide an interface for the mobile

application and for the web application. SPA is famous for its decoupled

frontend logic, now with modern framework scalability, and Search Engine

Optimization (SEO) is not a big issue so it was decided to develop the web

application as an SPA so it could use the same API. It would also provide a

possibility to change the API or frontend technology separately in future, if

needed, without affecting another part of the application.

Now that it had been decided how the web application would be built, it

required a few more choices for frontend application and API.

3.1.2. Technology Decision for Frontend

This section covers what was chosen for the frontend application. There are

many frontend technologies available in the market: the most famous of

these are AngularJs, ReactJs or VueJS.

AngularJs

AngularJS is a JavaScript-based open-source front-end web framework

mainly maintained by Google and by a community of individuals and

corporations to address many of the challenges encountered in developing

single-page applications [5]. It aims to simplify both the development and

https://www.wizdom.ai/cite-in-google-docs/v2?cid=dc7e6cc1-2502-428c-a5bd-659f301a2864;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=7e95f119-5ea0-4ddc-aebc-fdea39970c31;;;;;

12

the testing of such applications by providing a framework for client-side

Model View Controller (MVC) and Model–View–Viewmodel (MVVM)

architectures, along with components commonly used in web applications

and progressive web applications. AngularJS is used as the frontend of the

Mongo Angular Express NodeJs (MEAN) stack, consisting of MongoDB

database, Express.js web application server framework, AngularJS itself,

and Node.js server runtime environment. AngularJS's design goals includes:

● Decoupling Document Object Model (DOM) manipulation from

application logic. The difficulty of this is dramatically affected by the

way the code is structured.

● Decoupling the client side of an application from the server-side. This

allows development work to progress in parallel and allows for reuse

of both sides and to provide structure for the journey of building an

application: from designing the UI, through writing the business logic,

to testing.

ReactJs

React is an open-source, front end, JavaScript library for building user

interfaces or UI components. It is maintained by Facebook and a community

of individual developers and companies. React can be used as a base in the

development of single-page or mobile applications. However, React is only

concerned with state management and rendering that state to the DOM, so

creating React applications usually requires the use of additional libraries for

routing, as well as certain client-side functionality [6].

React makes it painless to create interactive UIs and design simple views

for each state in the application. It will efficiently update and render just the

right components when data changes occur. Declarative views make the

code more predictable, simpler to understand, and easier to debug. It

makes it possible to build encapsulated components that manage their own

state, then compose them to make complex UIs. Since component logic is

written in JavaScript instead of templates, it can easily pass rich data

https://www.wizdom.ai/cite-in-google-docs/v2?cid=28b24731-d5de-4414-937b-d51645be4564;;;;;

13

through the app and keep state out of the DOM.

VueJs

Vue.js is an open-source model–view–viewmodel front end JavaScript

framework for building user interfaces and single-page applications. It was

created by Evan You, and is maintained by him and the rest of the active

core team members [7].

Vue.js features an incrementally adaptable architecture that focuses on

declarative rendering and component composition. The core library is

focused on the view layer only. Advanced features required for complex

applications such as routing, state management and build tooling are

offered via officially-maintained supporting libraries and packages, with

Nuxt.js as one of the most popular solutions. Vue.js lets the user extend

HTML with HTML attributes called directives. The directives offer

functionality to HTML applications, and come as either built-in or user

defined directives.

Table 2. Comparison between AngularJs, ReactJs and VueJs [8]

React Angular Vue

It is a library of JavaScript It is a framework of
JavaScript

It is a framework of
JavaScript

Small-size, fast bundles
are provided.

Medium-sized fast bundles
are provided

Small, fast bundles are
provided

Provides only a core set of
instructions.

Provides a huge set of
features.

Provides a medium size
set of features.

https://www.wizdom.ai/cite-in-google-docs/v2?cid=9db0297f-1b54-4665-ad32-af54b4fe42ac;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=0d1fdade-85c4-44c5-831a-972d0c5d0bf0;;;;;

14

Some additional
improvements are
provided.

Lots of additional
improvements are
provided.

Some additional
improvements are
provided

Popular and relatively
mature library.

Popular and relatively
more mature.

Extremely popular and
relatively mature.

It is well established and
is being used, also easy to
learn and implement.

Developed and
maintained by Google.

Open source team
effort. Establishing
Framework and needs
more time to capture
the market

Since ReactJs is a library, it doesn’t come with all sorts of unnecessary code

and whatever is needed for the application can just be added separately. It

also possesses a small bundle size and is widely used in the community. It

was decided to use ReactJs for Cleancentive because the author has

previous working experience with ReactJs. It was also the choice of

development by the client.

The client also wanted Typescript to be used to develop the system along

with ReactJs because Javascript is a statically-typed language, and it is

very difficult to manage the code with it. Typescript is the layer built on top

of Javascript to provide the possibility of using types, which makes it easier

to manage the code and scale well in future. For these reasons, it was

decided to use Typescript. Below is the comparison between Typescript with

Javascript.

15

Table 3. Comparison of typescript vs javascript [9]

Typescript Javascript

Superset of JavaScript developed to

overcome code complexity for large

projects

A scripting language that helps

create dynamic web page content

Errors can be found and corrected during

compile time

Errors can be found only during

run-time as it is an interpreted

language

Strongly typed, supports both static and

dynamic typing

Weakly typed, no option for static

typing

Converted into JavaScript code to be

understandable for browsers

Can be directly used in browsers

Since it is a superset, all the JavaScript

libraries, and other JavaScript code works

without any changes

JS libraries work by default

There is support for ES3, ES4, ES5 and

ES6

No support for compiling additional

ES3, ES4, ES5 or ES6 features

Supports modules, generics and interfaces

to define data

No support for modules, generics or

interface

Functions can have optional parameters This feature is not possible in

JavaScript

Numbers, strings are considered as

interfaces.

Numbers, strings are objects.

Powerful and intuitive language Neat and clean, most suitable for

simple web applications

The community support is still growing

and not so huge

Huge community support with lots of

documentation and support for

solving issues

https://www.wizdom.ai/cite-in-google-docs/v2?cid=43873529-864e-447f-9893-0ddcc6f3797c;;;;;

16

Prototyping is possible Prototyping support is not present

Takes time to learn and code, scripting

knowledge is a must.

Can be learned on the go, no prior

scripting experience is needed.

Proper build setup (npm package) is

required for static type definitions

No build setup is required

The biggest problem with the single page applications is that they are

rendered on the client side. It was required by the client for the page to be

parsed by search engines. It is necessary for the application to be rendered

on the server side and send the HTML from the server, so that search

engines will be able to understand the content of the pages. This means it

requires Server Side Rendering (SSR). There is a mechanism available in

React which could be used to render the application on the server side, but

that would mean that it has to build and maintain the logic, which is not

ideal. It also needs routers which means that the application has to make

sure that SSR works along with routes, and also in different languages. For

this purpose, it was decided to use NextJs, which is a framework built using

ReactJs, and provides an easy routing interface as well as server side

rendering. Also, it causes the development bundle to be loaded when it is

required. React-i8n-next-js module was added separately to provide the

support of internationalization in the application.

Now that the development technologies for the frontend had been decided,

it was time to select the styles technology to make the application look

good. There are many alternatives, starting from a plain Cascading Style

Sheet (CSS) or using some framework such as Bootstrap or MaterialUI or

using preprocessors similar to LESS, SASS, POSTCSS etc or StyleJsx or

StyledElements. CSS is very difficult to manage for large scale applications,

and requires more time to write code and add unnecessary duplications. It

also adds to the complexity that if some class name or id were used in one

place then there is a chance that it will affect another place with the same

class name. LESS, SASS and POSTCSS help in avoiding the problem of code

duplication and makes it easy to write and maintain css code so technically

17

it could use any of these, but it doesn’t solve the problem of duplicate

naming, so it needs to combine some technique such as BEM styles to make

the naming specific to the component. StyleJsx and StyledElement solve

this problem automatically by randomizing the styles but there is a

limitation to that, as well as the fact that randomizing makes it easier to

target child elements from the parent component. After considering all

these permutations it was decided to choose NextJs SASS module along

with StyleJsx.

3.1.3. Technology Decision for API

API stands for Application Programmable Interface, and is a software

intermediary that allows two applications to talk to each other [10]. It was

discussed in 3.2.3 that Cleancentive uses a single page application which

requires an API to provide an interface to the database. It will be used to

store and retrieve the trip, activity and other data to Web and Mobile

applications.

Currently there are two different architectural styles mainly used in Service

Oriented Architectures (SOA). One of them is Rest and the other one is

Simple Object Access Protocol (SOAP). This chapter covers the comparison

of the two styles – the SOAP-style with procedural designs and the

REST-style with loosely coupled service.

Rest is commonly used to create interactive applications that use Web

services. A Web service that follows these guidelines is called RESTful [11].

SOAP on the other hand uses XML for its message format, and relies on

application layer protocols, most often Hypertext Transfer Protocol (HTTP)

for message negotiation and transmission [12].

The table presented below was taken from Comparing Architectural

Styles for Service-Oriented Architectures – a REST vs. SOAP Case

Study and explains the head-to-head comparison between SOAP and

REST. As per the author, The REST style comprises many services (or better

https://www.wizdom.ai/cite-in-google-docs/v2?cid=5d8e4348-1cb7-4757-90b6-2ed4e5d1394c;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=0148ec72-7e66-4e8d-8b94-8c9116bb9286;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=9b36b5d2-bf5a-46ae-ae09-1829243d6fce;;;;;

18

still, resources) which are explicitly linked to each other. This might look

complicated and overwhelming in the beginning, but due to the uniform and

fixed interfaces of each service it leads to a much looser coupling in the

end. [13]

Figure 4. Evaluation of SOAP-style and REST-style

Based on the comparison above, it was decided to use REST API for

Cleancentive because REST is easy to implement and many web

applications nowadays use REST-based architecture for API. It was also one

of the suggestions by the client to use REST API to connect Cleancentive

mobile and web applications.

19

Now that it was decided that the backend of the application would be

developed using REST API, It was time to select what technology would be

suitable for developing Cleancentive API. Similar to other technologies there

are many options available to develop Rest API. One possibility is to use

NextJs, a technology which is used for developing the frontend, to develop

the API as it provides support for API as well. Another alternative is to use

standalone NodeJs along with ExpressJs, Spring Boot or some PHP

frameworks etc. The author has worked on Spring Boot and NodeJs before,

they are very well established frameworks and provide good support for

building rest-based API. Kotlin is getting popular these days because of its

interchangeability with Java, support of writing web, mobile and desktop

applications.

Table 4. Comparison of typescript vs javascript [14]

Features and functionalities NodeJs Java

Rock-solid foundation

Ubiquity

Better support of IDEs

Database queries

Types with TS

Syntactic flexibility

Simple build process

JSON

Remote debugging

Handhelds

Desktop

Libraries

Solid engineering

Speed

Threads

https://www.wizdom.ai/cite-in-google-docs/v2?cid=8ced2dd5-17d9-4918-8e6a-32ce2ce707f4;;;;;

20

Momentum

It was suggested to use Kotlin (Ktor) framework to develop a Cleancentive

API as the author also wanted to learn something new while working on

Cleancentive but due to time constraints and based on the above

comparison it was agreed to use NodeJs to create quick MVP of the

application.

3.1.4. Technology Decision for Database

For databases there are many popular alternatives such as SQL or NoSQL.

In relational databases there are many choices such as Postgres and MySql

(which are the most popular ones) and also NoSql or MongoDb could be

used. But the application can’t use any of these, as Cleancentive will have a

relational database structure as well as a time series kind of structure where

it requires the need to store user location from time to time and relational

databases are not ideal for this.

Because of the kind of structure needed in the application, it was decided

to use a combination of Relational database along with NoSql document

based structure to store user trip and activity data in a column of the

relational database. It was also decided to use SqlLite on mobile

applications to store active trip data, to avoid unnecessary calls to API and

once the trip is completed it will send all the trip data at once to the server.

3.1.5. Technology Decision for Mobile Application

Since the client wanted to develop an application which runs on both

Android and iOS, there were only two options for developing the

application.

21

Native Technology

Native technology means that applications will be running in the native

language such as Swift or Objective C for iOS and Kotlin or Java for Android.

This would mean maintaining two separate developments of the same

application which requires two separate code bases and two separate

maintenance and bug fixing processes. It would double the development

time, so if an application has certain features which would require at least 2

months of work, developing in the native language using this approach

means that it will take at least 4 months. This also increases the testing

time and makes operations tasks such as release to the app store, fixing

bugs etc. difficult to manage in the future. It would also require that the

author has enough knowledge of at least one iOS and one Android

programming language to complete the application. The advantages of

developing native applications is that the app will only be focused on one

device, so changes will not disturb another platform. It will also be smooth

in terms of usage and UI, as the technology is focused specifically for that

platform.

Hybrid technology

Hybrid technology means that there will be one code base, and that

technology will be able to convert the application to run on both Android

and iOS platforms. This doesn’t necessarily mean that 100% of the code will

be written only once. In most types of application, hybrid technology works

fine and one could keep 90-95% of the code the same for both platforms. It

just requires maintaining configuration, build and release-related code

separately in most cases, provided an application isn’t required to use

native functionality such as camera, sensors, hardware etc. More native

functionality means less common code, but there are modules available

which help in this regard. One disadvantage for choosing hybrid technology

is that changes affect both platforms, so one has to be careful and test

properly. Another disadvantage is that the more external modules are used,

the less visibility there is about what is happening inside, and some minor

update could just break everything on both platforms.

22

There are many options available currently in terms of hybrid application:

Phonegap, Ionic, React Native, Flutter, Zamrin etc. The most commonly

used of these are Ionic and React Native.

React Native:

Javascript technology can be used to write the code and in the end it

converts the code into the native platform. If React is a familiar web

application programming framework, then it could easily be used to develop

the mobile application by using more or less the same sort of pattern. The

result will be as smooth as the native application, if developed properly. In

cases where there is previous experience with React, this should be the first

choice.

Ionic:

Ionic is a Javascript technology which can be used to develop the

application for both the platforms, but it runs the application inside the

browser embedded in the native application. It has been observed that

when using Javascript technology, some small issue is capable of damaging

the whole application. The feeling of the application is also more like using

a web application customised for mobile UI embedded in native browsers.

Angular or Vue or React could also be used to write the code by using Ionic.

23

Figure 5. Comparison of React Native vs Ionic [15]

For Cleancentive, it was decided to use React Native because React Native

generates native cross-platform apps and also has better performance

compared to Ionic, as well as better community support. On top of that, the

author has previously worked on React and the web application of

Cleancentive will be deployed using ReactJs. Also, the client team suggested

that React Native was a more suitable fit for Cleancentive, as the application

doesn’t require any such advanced level hardware interaction features and

the client wanted the application to give a native feeling. Since there is no

24

co-author of this thesis, it was decided that it doesn’t make sense to

develop a native application and work twice on the same stuff. Maybe there

are other better alternatives, but as per current understanding it was

decided to choose React Native to develop the Cleancentive application, a

line of approach also supported by Codistan.

3.2. Usability, Testing and Releasing

User experience and usability are two of the most important elements of

any design: they should both be considered thoroughly when designing

mobile applications. Usability is important throughout the product

development cycle. It needs to be discussed thoroughly when the project

starts, and during any feature planning. Why is usability important?

Because it helps meet user needs and also helps save the cost of

development. How does it save the cost of development? It helps us avoid

implementing something which is not user-friendly and which probably

needs to be changed. This also brings quality to the product: if the product

is developed considering the user's needs, this is clearly a big plus. Usability

describes the extent to which a product can be used by specified users to

achieve specific goals with effectiveness, efficiency and satisfaction in a

specified context of use [16].

Involving people who are going to use the product during the mind mapping

and design process, and considering their opinion, is the optimal way to

find the best design. It is always very time-consuming and expensive to

involve people throughout the design process, so the best one can do is to

try to have one meeting to check the wireframes, or then try to give users

the product to test before launching, and consider their feedback.

Usability testing hooks into top level terms such as 25 Information

Architecture (IA) and Iterative Design. The first is the process of organizing

information including the structure, design, layout and navigation in a way

that is easy for people to find, understand and manage. The second is a

design methodology involving repeated cycles of design, evaluation, and

https://www.wizdom.ai/cite-in-google-docs/v2?cid=4242445a-9e36-4a96-86d4-dfc6173eb09a;;;;;

25

analysis. Refinements are made for the next cycle based on current analysis

and feedback.

In Cleancentive, several meetings were conducted with the client and

employees to finalise the usability of the product. It included the

onboarding/registration process, the compensation model, tracking user

activity, gathering user locations, the payment process and several other

items to make sure usability and the UX of the product were not

compromised. These processes have been explained thoroughly in chapter

4.2-4.4

Testing the Cleancentive application can be done in a similar way to any

other application. Features such as onboarding, maintaining user profiles

etc. can be tested by adding unit tests along with automated tests, but only

manual testing was considered for the purposes of this thesis because the

most important functionality of the application is tracking user activity,

which anyway requires manual testing. Employees have promised to use

and test the application throughout the process by bringing the application

into their daily routine so it can produce more and more data, and it will be

easy to test further in the future. Real-time testing of the application will be

covered in more detail in upcoming chapters.

Releasing the Cleancentive application is straightforward, as it has already

been determined from the thesis that it will not be published to Google Play

or the Apple App store. Although applications will be built using hybrid

technology, testing and releasing on iOS was also disregarded because of

the complexity of the application and the platform itself. The Android bundle

will be generated and provided to the employees who can install the

application on their mobile, and that is how the release of the app will be

handled.

26

4. Results and Analysis

In the start of this thesis process, the main objective was to build a proper

functional MVP for the Cleancentive application. It was realised during the

process that making an actual MVP would be more suitable as a doctoral

thesis because it would require definitions and design work (requirements,

technical solutions, user experience and interface etc.) and the development

itself would have taken many months just for the mobile application, while

the web application would also require several months, following which

would come deployment and the release of the application to app stores.

Considering all this, it was decided to disregard many of those things during

this thesis and focus only on the development of the simple MVP, which

tracks user activity and presents users with the benefits they have earned.

This MVP includes designing the Cleancentive application which includes:

collecting requirements, assessing different technical platforms, designing

the Mindmap, selecting the features of the application and wireframing the

user interface of the application. As far as development is concerned, it

includes: designing simple mobile applications where users can login and

register, tracking user activity and presenting the incentive. For

deployment, only Android and APK will be used to install directly within the

mobile application instead of from an actual app store. This approach will be

enough to test the application and its model. Everything else has been put

aside for future development.

This chapter explains the finalization of the target audience, the design of

the Mind Map, the design of the wireframe/UI, development of the

application, usability and testing of the application.

4.1. Understanding Requirements

After several meetings with the clients, the requirements of the application

were identified. The client expected us to create a mobile application which

employees can install on their phone which tracks their location and activity.

27

Based on their activity, it will give them health and environmental benefits.

The target audience for Cleancentive was always employers and employees.

One of the important challenges in the development for Cleancentive was to

decide the scope of the application and what to include and what to skip.

This section covers the task of defining the application’s requirements.

To define the requirement properly, one needs to understand the whole

concept behind the application. Looking at the Mind Map can help us with

that.

The diagram below shows the Mind Map of the application, covering almost

everything required in this mobile and web application. This thesis only

looks at the home screen, activity recording, the display of different

activities, the active trip and incentive calculation.

28

Figure 6. Mind Map of the Application

The above Mind Map defines the possible options and features in the web

and mobile application. This thesis only covers the mobile application, which

is explained on the right section of the diagram.

When users start using the mobile application, they will have the option to

register to the service. In case they are already registered they will use the

login option. Users will go to the home page, where they will see their

current environment and health benefits. They will also be able to see how

many kilometers they have covered in each activity along with mobility

records, meaning all their activities and their benefits.

4.2. Compensation Model

The idea behind Cleancentive was to develop an application which will track

user activity and compensate them. How the user gets compensated needs

to be decided. By having several meetings with clients and employees, it

was agreed that there will be two types of compensation or benefits. One

will be called health benefit, and the other will be called environmental

benefit.

4.2.1. Environmental Benefit

This will be awarded to users for not using the car or not producing Co2.

This benefit will be calculated at the start of every month, and will be paid

to the user by the end of the month if the user hasn’t used a car for their

trips to the office. The application will show the possible environmental

benefit to the user as soon as they open the application, and on the basis of

the user’s car activity this possible incentive will be deducted. Benefit will be

calculated based on the user’s distance from home to work, how many trips

are allowed to the user (in normal cases, 2) and the number of working

days in the month. This factor then will be a multiplied base unit of per

29

kilometre compensation which is currently set at 0.11 cents, based on client

suggestions.

environment_incentive = distance_from_home_to_work x

no_of_times_trip_allowed x no_of_working_days_in_month * 0.11

So if the user’s work to home distance is 10 km, and they are allowed to

have 2 trips everyday, and there are 22 working days in a month then the

calculation will look like this:

environment_incentive = 10 * 2 * 22 * 0.11 = 48.5 Eur

This would mean that if the user uses public transport, they will be able to

cover the cost of the seasonal public transport ticket. If the user uses the

car more often than permitted, then a sum will be deducted from the

environmental incentive. Let say someone uses the car on 2 days for two

trips: then an amount of 4.4 euros will be deducted from environmental

incentive.

lost benefit = 2 * 2 * 10 * 0.11 = 4.4 Eur

Where the first 2 is the number of days the individual used a car, the

second 2 is the number of trips the user has made, and 10 is the distance

from home to work.

4.2.2. Health Benefit

Health benefits are given when the user travels to work by using a bike or

walking or running. The benefit amounts have been set at 0.48 per km for

walking or running and 0.30 per km for Bicycles. These values were

suggested by the customer.

Based on this incentive model, if users don’t use cars and at the same time

use bikes to go to work, they will get more money, because they are not

30

producing any Co2 so they automatically get environmental benefits and at

the same time they are getting health benefits for keeping themselves

healthy.

4.3. Design of the application

The design of the application was carried out by having a meeting with the

client. Although full application design was created during this process, this

thesis only explains the few screens required for the implementation.

The first wireframe of the application was designed using paper and pencil

which at a later stage converted to Adobe XD wireframes. The client wanted

it so that on the first day of every month the application would calculate the

possible benefit users could get, based on the calculation defined in the 4.1

section. It would display the active trip on the home screen along with the

total mobility incentive. Depending on how many times the user uses the

car, the application will update the benefits and show only the remaining

benefits. The application was also required to display the active trip on the

map and the total distance covered in each activity, along with the total

time spent.

31

Figure 7. Wireframe of the application

Figure 7, shown above, presents the wireframe of the application’s home

page. It includes the benefits (shown in the header) and the total number of

kilometers the user has covered in each category.

After designing the wireframe the colour of the application was finalised,

along with some other minor changes. The current activity boxes consume a

lot of space on the map, so it was decided to change them to a tab bar

format, such that clicking on each item will highlight the activity part of that

trip. After these changes and filling up the colours in the wireframe

application, the home page now appears as shown below in figure 8:

32

Figure 8. Design of the application

4.4. Development of the application

As with any other web and mobile application, the development process

required knowledge of programming languages, methods and environment.

This section covers everything that was needed to develop the Cleancentive

application.

33

4.4.1. Development environment setup

Setting up the development environment is one of the basic steps when

starting any project. It requires creating code repositories on some cloud

services, the installation of language and necessary modules and setting up

IDE. This section covers everything which is required to set up the

development environment.

Version Control System (VCS) setup

VCS is used to maintain changes in the code and keep track of the

differences between them. It creates a copy of the code on the cloud every

time new changes are published. This is a very handy tool for keeping

everything in one place, and also if something needs to be changed back in

the future it would be easy to accomplish.

In this thesis Git, which is a very popular VCS, has been used to code and

maintain the history on Github cloud. The client has created the repository

and provided the read and write access to the author so that code can be

maintained on the client’s own supervised environment. Setting up Github is

very easy: it requires installation of the Git binary installer which was

downloaded and installed with few clicks. After the repository was created

by the client and named `Cleancentive-mobile-app`, everything was set

up by running a few commands.

Listing 1 shows the commands which were used to clone the repository on

the local machine.

Listing 1. Git clone command

34

After running the above command, code was copied to the local machine as

shown in Listing 2.

Listing 2. Cloning the repo

Setting up IDE

An Integrated Development Environment (IDE) is a software application

that provides comprehensive facilities to computer programmers for

software development. An IDE normally consists of at least a source code

editor, build automation tools and a debugger. Some IDEs also contain the

necessary compiler, interpreter, or both [17].

For the development of Cleancentive, it was decided to use Visual Studio

code because it is a common tool used by the client’s technical team. The

code repository was opened in Visual Studio code and then the basic

parameters required for this project were initiated.

The following settings were used to maintain code spacing and general

consistency, as shown in Listing 3.

https://www.wizdom.ai/cite-in-google-docs/v2?cid=fbf80470-619c-4016-9ce0-d75b76ea688e;;;;;

35

Listing 3. Prettier setting

Prettier Setup

Prettier is an opinionated code formatter. It enforces a consistent style by

parsing the code and reprinting it with its own rules that take the maximum

line length into account, wrapping code when necessary [18].

The following plugins have been installed to ensure that the format of the

code remains constant throughout the thesis.

https://www.wizdom.ai/cite-in-google-docs/v2?cid=f5468710-a02b-11eb-a349-9dbc3f16047f;;;;;

36

Listing 4. Visual Studio code extensions settings

React Native Installation

This section covers the installation process for the Cleancentive mobile

application. There are two ways React Native can be installed.

Expo CLI

The easiest way to install React Native is to use Expo CLI. It comes with a

variety of tools built around React Native, which helps one to get started

with the application quickly. It only requires NodeJs and an emulator/phone

to get started.

React Native CLI

React Native CLI is one option for setting up mobile application

development, but it is a little more complex compared with Expo because it

requires XCode in case of developing iOS apps, or Android Studio when

developing an Android app. It also requires the user to have CocoaPods.

The author was already familiar with developing mobile applications so it

was easy to get started with React Native CLI. It was decided to use the

name “Cleancentive-mobile-app” so by running the following command

things were arranged quite quickly.

37

Listing 5. Initialise React Native

After running the command, it begins to download the template and install

Cocoapods dependencies. Once the installation is complete, it will present

the following screen as shown in Listing 6, and can start running the

application.

Listing 6. React Native installation

Now that React Native is installed the following commands, presented in

Listing 7, can be used to start the application which will start Metro Builder.

npx react-native start

Listing 7. Start React Native application

Listing 8 displays the command to run the application on iOS. It should be

run in the new terminal.

npx react-native run-ios

Listing 8. Running react native application

Once the application is started, it will present the following screen as shown

in Figure 9.

38

Figure 9. Default view of React Native application

Installation of necessary modules

This section covers the extra plugins or modules required to build up the

application. The Cleancentive application needs the support of different

languages. i18next module is installed to manage multiple languages in the

application. It allows language translation to be stored in a JSON file and

based on the selected language to fetch the translated text.

It also requires state management tools to be able to maintain the state of

the user. For that purpose, Redux and Redux Persist were installed so that

the state can be managed in one place and stored somewhere in the file

39

system. Redux-persist, as the name suggests, persists the state into

application storage.

Along with the above module, Axio is required for making an HTTP

connection with the API, and for React-navigation to have different types of

navigation such as drawer, tab and stack navigation in the application.

Build management

For build management, React Native already provides support where

applications just need to manage different environment files containing

different configuration values. At the time of building the application, these

files can be provided and the app loads that particular file for the release.

Parameters such as API URL, Google Analytics ID etc. can be stored in that

file. The file has an extension of .env. Here is how the Cleancentive local

environment file looks, as shown in Listing 9 below:

Listing 9. Setting application environment

The command to create the build for Android and iOS on react native

includes loads of parameters and is difficult to remember, so the command

which is displayed in Listing 10 was added to package.json to create a

release with local configuration. Users just need to run the yarn android

command to create the build.

40

Listing 10. Running application on Android

4.4.2. Integrating Design

Integration designing was a little challenging as initial thinking had to focus

on how the different screens and navigation will appear. For this purpose,

the colours required by the theme were declared in a separate file which is

displayed in Listing 11. This also defines the font sizes which will be used in

the app. To keep spacing consistent in the app, it also defines spacing

between different sections on the screen by a multiple of 4 as shown in

Listing 12.

export const colors = {

white: '#FFFFFF',

black: '#02212B',

orange: '#E67D18',

lightBlue: '#27CEE1',

grey: '#DDDDDD',

darkGrey: '#033242',

green: '#059F00',

purple: '#C800C1',

lightOrange: '#FF6F00',

lightGreen: '#27E171',

};

Listing 11. Application theme

41

export const fontSizes = {

xs: 10,

small: 12,

medium: 14,

large: 16,

extraLarge: 18,

xxl: 20,

xxxl: 24,

xxxxl: 28,

};

Listing 12. Define application font sizes

The view was created with basic styles and padding around the edges to

keep the screen padding consistent. A separate component for header was

created to match the design which includes the title of the screen, the back

button and burger menu. In order to display icons, React Native vector

icons have been used which provide the ability to add different icons to the

application.

There are three types of navigators available in React Native. These are

defined below.

Tab Navigator

The tab navigator is the most common navigation style used in mobile

applications. It means the user can press the tab and it switches the screen.

It is used in many mobile applications, usually on the bottom of the screen

or sometimes on the top of the screen, even in the header.

It is used in the Cleancentive application on the bottom of the screen to

bring up the total number of kilometers the user has traveled in each

42

activity type. It is also used to display activities in each and every trip and

to highlight the activity which was selected. For example, a user has

covered 15 km in total, of which 3 km is by bicycle, 2 km by walking, 7 km

by public transport and 8 km by car. In this case, the application will display

all these activities on the map with different colors for the tabs and the user

can get a highlighted route by clicking on the activity tab. Figure 10 below

shows the design of the trip when the user has travelled 5 km by walking

and 20 km by public transport.

Figure 10. Home screen of the application

The following command has been used to install tab navigator in the

application, as shown in Listing 13:

43

npm install @react-navigation/bottom-tabs

Listing 13. Tab bar installation

After installing the tab navigation, a reusable component is created in the

app with the following properties as displayed in listing 14:

export interface ITabScreenProps {

icon?: IconType;

component: React.ReactNode;

name: ScreenType;

translation: string;

color: string;

}

interface ITabNavigatorProps {

tabList: ITabScreenProps[];

tabBar: (props: BottomTabBarProps<BottomTabBarOptions>) =>

React.ReactNode;

}

Listing 14. Tab bar properties

This tab component will take an icon shown in the tab, a translation of the

text shown, colour, name and component of the screen. Tab navigation will

take a list of tabs to be shown in the tab bar and return the navigator.

Stack Navigator

This provides a way for the app to transition between screens where every

new screen is placed on top of a stack. By default, the stack navigator is

configured to have the familiar iOS and Android look & feel: new screens

slide in from the right on iOS, and fade in from the bottom on Android. On

44

iOS the stack navigator can also be configured to a modal style where

screens slide in from the bottom [19].

In Cleancentive, the purpose of the stack navigator is the same as usual,

i.e. to stack the screens on top of one another. This means that when a

user clicks on the mobility record, it will add and display mobility record

details on top of that screen. By using the back button, the user will return

to the mobility record screen once again.

The following command, shown in Listing 15, has been used to install the

stack navigator in the application:

npm install @react-navigation/stack

Listing 15. Installation of stack navigation

All the related sections in the application are stacked to form different stack

navigators which will be used in the drawer navigator presented in the next

section. As per design, the following stack navigator categories have been

identified:

● Home

● Compensation Model

● Location

● Mobility Records

● Wallet

● Projects

● Setting

● Safety

Drawer navigator

Nowadays, mobile applications use a navigation pattern shown by swiping

from left or right. It will appear on the top of the screen where users can

choose the options. In Cleancentive, swiping from right to left displays the

https://www.wizdom.ai/cite-in-google-docs/v2?cid=a6a510fb-81dd-4889-96b2-03bd2e13c5b2;;;;;

45

navigation drawer as shown in design section 4.6. The command displayed

in Listing 16 was used to install the drawer navigation which is shown

below.

npm install @react-navigation/drawer

Listing 16. Installation of drawer navigation

After installation, a component is created in a

way that drawer navigation items can be

added in future easily, and the navigator can

be reused for further development in the

future. As per design section 4.6, it will have

a header section showing information of the

login user, menu items and footer links for

terms, privacy and data policy screens.

A drawer navigator component shown in

Figure 11 was created, which will accept a list

of different stack navigators containing name,

icon and screen. It is divided into 4 parts:

Header, ProfileMenu, MenuItems and Footer,

where Header components contains the

heading and close button, ProfileMenu

contains the login user information,

DrawerContentItem contains the navigation

menu and Footer contains the links of terms,

privacy and data policy screens. This whole

process includes pure coding, so it was not

included in this section.

Figure 11. Drawer navigation in the application

46

4.4.3. User Authentication

Originally the plan was to implement a proper authentication system where

users were able to register and login to the application using their desired

credentials. As this is not the core functionality for developing the

application, it was decided that user options will be presented in the

application by choices which bind the data with the user profile.

This option will be presented to the user as soon as the application is

launched and upon selection it will save the selection for later use.

When a user trip or activity is started, it will automatically fetch the

selected user and connect the trip data with the user. This will also

present the option to the user to select the desired language as

displayed in Figure 12 below.

Figure 12. User selection screen

47

4.4.4. Application Permission

As with any other mobile application, Cleancentive requires the internet to

work properly: along with that, the application also requires user storage,

activity recognition and location permission.

React Native provides a PermissionsAndroid model to access the permission

in Android. Normal permissions can be granted by default at the time of

installation of the application if they are added in AndroidManifest.xml.

However, permission which requires access to sensitive information of the

user requires a dialog prompt. Cleancentive uses the PermissionsAndroid

module for asking permissions. Permission in iOS works differently than

Android. Usually it requires permission at the time of using such sensitive

information which can be requested with a separate popup, but they are not

covered in this thesis because of their complexity.

If a user has previously turned off a permission that you prompt for, the OS

will advise your app to show a rationale for needing the permission. The

optional rationale argument will show a dialog prompt only if necessary -

otherwise the normal permission prompt will appear [20].

The following permissions listed in Listing 17 were added in

AndroidManifest.xml considering the requirement of the application:

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission

android:name="android.permission.FOREGROUND_SERVICE"/>

<uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION"/>

https://www.wizdom.ai/cite-in-google-docs/v2?cid=75498a6b-0fa2-4f07-b59b-51982bbc6425;;;;;

48

<uses-permission

android:name="android.permission.ACCESS_BACKGROUND_LOCATION"

/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

<uses-permission

android:name="android.permission.ACTIVITY_RECOGNITION" />

Listing 17. Application permission setting

● INTERNET permission is required for the application to function

properly.

● FOREGROUND_SERVICE service permission is needed to run a

process to track user activity.

● BACKGROUND_LOCATION, COARSE_LOCATION and FINE_LOCATION

is used to fetch user location at the time the activity is performed.

● ACTIVITY_RECOGNITION is to determine whether a user is stationary

or moving.

● WAKE_LOCK permission indicates that the application requires the

device to be kept on.

Now it is clear what kind of permissions are needed. Listing 18 presents the

code which was used to request the permission.

const {request, PERMISSIONS} = PermissionsAndroid;

const permissionResult = await request(PERMISSIONS.ACCESS_FINE_LOCATION, {

title: t('PERMISSIONS.LOCATION.TITLE'),

message: t('PERMISSIONS.LOCATION.MESSAGE'),

buttonPositive: t('PERMISSIONS.LOCATION.BUTTON.ALLOW'),

buttonNegative: t('PERMISSIONS.LOCATION.BUTTON.CANCEL'),

buttonNeutral: t('PERMISSIONS.LOCATION.BUTTON.IGNORE'),

});

Listing 18. Requisition Application permission

49

Once this code runs it will request location permission. Similarly, all other

permissions can be requested. It will display a location permission popup

and it can be checked by using the code mentioned in Listing 19, whether

the user has granted the permission or not.

if (permissionResult === PermissionsAndroid.RESULTS.GRANTED) {

return true;

}

Listing 19. Code to grant permission

4.4.5. Tracking User Location

This chapter covers everything related to the tracking of user location. Now

that the application has already covered the part to request user location, it

needs to integrate that part to a process which will record the location

continuously.

It seems React Native provides a way to run background tasks using

Headless JS. Headless JS is a way to run tasks in JavaScript while your app

is in the background. It can be used, for example, to sync fresh data,

handle push notifications, or play music [21]. Integrating Headless JS was

not so difficult, as all that was needed was to copy paste the following code:

import { AppRegistry } from 'react-native';

AppRegistry.registerHeadlessTask('SomeTaskName', () =>

require('SomeTaskName')

);

module.exports = async (taskData) => {

// do stuff

};

https://www.wizdom.ai/cite-in-google-docs/v2?cid=4b65112c-87c3-4e73-bdc7-f3e34e6c5032;;;;;

50

cCod

Listing 20. Background task listener

Figure: Code example (21)

List 20 explains the code required to run the different tasks in the

background. After looking into Headless JS, it was soon realised that it

doesn’t really work for iOS. It was decided to start looking for other options

on both Android and iOS considering that Cleancentive will work on iOS and

Android.

After this Headless JS situation, many React Native plugins and their

solutions have been tried, such as react-native-queue,

react-native-background-job and react-native-background-task but it

was very difficult to integrate them into the application. After so many hits

and misses, it was discovered that react-native-background-timer

seems to work fine on both Android and iOS. It was integrated with the

separate custom native module which was created to show the notification

bar when the background tasks are running.

Native Module was only created for Android and later on it could also be

done for iOS. NativeModule exposes instances of native classes to

JavaScript through JavaScript objects which will allow applications to

execute native code. This was the same reason React Native was selected

initially. If a native API is not exported from React Native which was

required by the application then there should be a possibility to write a

custom module!

There are two ways to create a custom native module in React Native. The

first method is to directly create an iOS/Android project in the code and the

second method is by creating a NPM package that can be installed as a

dependency by other React Native applications. In Cleancentive it was

decided to implement using the first option, which is to create an Android

project. It requires defining the module name in native code which will be

used in the JavaScript code by implementing the getName method as shown

in Listing 21.

https://www.wizdom.ai/cite-in-google-docs/v2?cid=4b65112c-87c3-4e73-bdc7-f3e34e6c5032;;;;;

51

public class ForegroundServiceModule extends ReactContextBaseJavaModule {

private final ReactApplicationContext reactContext;

public ForegroundServiceModule(ReactApplicationContext reactContext) {

super(reactContext);

this.reactContext = reactContext;

}*

@NonNull

@Override

public String getName() {

return "ForegroundService";

}

Listing 21. Foreground Service module

After exposing the methods in native code, it is then required to create the

bridge in a JavaScript file by using the code in Listing 22. It also requires

creating a package by implementing a ReactPackage shown in listing 23

import BackgroundTimer from 'react-native-background-timer';

import {NativeModules, AppRegistry} from 'react-native';

const ForegroundServiceModule = NativeModules.ForegroundService;

Listing 22. Foreground Service Bridge

public class ForegroundServicePackage implements ReactPackage {

@NonNull

@Override

public List<NativeModule> createNativeModules(@NonNull ReactApplicationContext

reactContext) {

return Collections.singletonList(new ForegroundServiceModule(reactContext));

52

}

@NonNull

@Override

public List<ViewManager> createViewManagers(@NonNull ReactApplicationContext

reactContext) {

return Collections.emptyList();

}

}

Listing 23. Foreground package

Using the command in Listing 24 will register the package in the main

Android application so it is available in Javascript.

packages.add(new ForegroundServicePackage());

Listing 24. Foreground package registration

This thesis doesn’t cover the whole volume of code written for integration,

just the basic necessary steps. Now the bridge between the native and

React Native application is ready, the logic behind adding the notification is

required. Since the application has to show different text based on the

different notification, it was decided that Notification config will be provided

by JavaScript. Listing 24 explains the notification config, Listing 25 explains

how notification is passed from JavaScript to Native code and Listing 26

explains how it actually starts the service with the notification.

export type NotificationConfig = {

id: number;

title: string;

message: string;

vibration?: boolean,

visibility: 'public' | 'private' | 'secret',

largeicon?: string,

icon?: string,

ongoing?: boolean,

importance: 'default' | 'max' | 'high' | 'low' |

53

'min' | 'none' | 'unspecified'

number: number,

button?: boolean,

buttonText?: string,

buttonOnPress?: string,

mainOnPress: string,

};

Listing 24. Notification configuration

async startService(config: NotificationConfig): Promise<boolean> {

if (!this.started) {

await ForegroundServiceModule.startService(config);

this.started = true;

}

return this.started;

}

Listing 25. Starting foreground service

private boolean startService(Bundle notificationConfig) {

int id = (int) notificationConfig.getDouble("id");

Notification notification = NotificationHelper

.getInstance(getApplicationContext())

.buildNotification(getApplicationContext(), notificationConfig);

startForeground(id, notification);

return true;

}

Listing 26. Displaying notification when activity starts

Automated starting of the user activity was difficult to implement in the

scope of this thesis because of the limitations imposed by iOS and Android,

so a simple process for recording the activity was selected. This section

shows simple play, pause and stop buttons which were added to record user

location and to draw that on Google Maps as shown in Figure 13 and Figure

14.

54

Figure 13. Start trip action

Figure 14. Restart and stop trip actions

Based on the above information it is clear how the recording of the location

should be carried out, but the application needs some sort of map to display

that information on, so it can be seen that recording actually took place.

It was discussed and finalised with the client’s technical team that

React-native-maps would be used to install Google Maps within the

application. There is an option to show the map on both Android and on

iOS. This requires the Google Map key, which is generated using Google

Console. On iOS, one can choose between Google Maps or the native Apple

Maps implementation (22). The command shown in Listing 27 was used to

install Google Maps within the application.

npm install react-native-maps --save-exact

Listing 27. Installation of Google Maps

After installation, the Google Maps API key should be added to

AndroidManifest.xml along with the installation of the play service in the

emulator as shown in Listing 28.

https://www.wizdom.ai/cite-in-google-docs/v2?cid=67676135-0fc2-41b5-8236-a05f1db6872e;;;;;

55

<application>

<meta-data

android:name="com.google.android.geo.API_KEY"

android:value="GOOGLE_MAP_API_KEY"/>

<uses-library

android:name="org.apache.http.legacy"

android:required="false"/>

</application>

Listing 28. Google Maps configuration

After installation was successful, a new component was created for “Map”,

as it will be used in many places. The code of the reusable map component

is shown below in Listing 29.

import React from 'react';

import MapView, {MapViewProps} from 'react-native-maps';

import {styles} from './Map.styles';

interface IProps extends MapViewProps {

width?: number;

height?: number;

}

const Map: React.FC<IProps> = ({height = 1920, width = 1080, children,

...props}) => {

const ASPECT_RATIO = width / height;

const LATITUDE = 60.3803784;

const LONGITUDE = 24.7555976;

const LATITUDE_DELTA = 0.005;

const LONGITUDE_DELTA = LATITUDE_DELTA * ASPECT_RATIO;

return (

<MapView

style={styles.map}

initialRegion={{

latitude: LATITUDE,

longitude: LONGITUDE,

latitudeDelta: LATITUDE_DELTA,

56

longitudeDelta: LONGITUDE_DELTA,

}}

{...props}>

{children}

</MapView>

);

};

export default Map;

Listing 29. Google Maps reusable component

Now that we have a reusable map component, it can be added to the home

page where the application displays the user location. Applications are now

required to record the user location by implementing the actions of play,

pause and stop.

<ActivityActions onEndTrip={onEndTrip} onStartActivity={onStartActivity}

onStopActivity={onStopActivity} />

Listing 30. Activity action component

ActivityActions was created, with buttons to start and stop the activity or

the trip. The original idea was that as soon as the user moves out of the

apartment, the activity will start automatically. This sort of logic will be

implemented in the next section. Currently, when the user presses the start

button it will begin recording the location, while the stop button will stop the

recording. When there is no active trip in the record, pressing the start

button for the first time will start the trip and at the same time will start the

activity as well. When the trip is ongoing, pressing the stop button will end

the activity but it will not end the trip. Pressing the stop button for a second

time will end the trip, but if the user has stopped in the middle of the

activity for some reason, then pressing the start button again will start

another activity. Later on, these activities will be adjusted to conform with

the actual activity.

57

The following pseudocode explained in Listing 31 is the implementation of

activity recording when the start button is pressed. Task configuration

defines the name of the task and the delay in which this task will be

re-executed. It checks if the service is already running: if not, it displays

the activity recording notification.

const taskConfig: TaskConfig = {

taskName: 'RecordingLocation',

repeat: true,

delay: secondsToMillis(5),

taskId: 'activityRecording',

onError: (e: Error) => console.log('on error:', e),

};

const onStartActivity = async () => {

if (!await foregroundService.isRunning()) {

await foregroundService.startService(notificationConfig);

}

await setActiveTripStatus('started');

await foregroundService.addTask({

...taskConfig,

onExecution: trackLocation,

});

setStopRecording(false);

};

Listing 31. Starting activity with the start button

When the activity is started, it adds a task which runs trackLocation method

with the defined time interval. Track location fetches the user’s current

location, adds that to the paths which are used to draw the activity on the

map and adds at the same time the new coordinates to the active trip as

shown in Listing 32.

58

const trackLocation = async () => {

if (!fetchingLocation) {

const coordinates = await getCurrentLocation(t, defaultGeoOptions);

const prevPath = await getActiveTrip();

if (coordinates) {

updatePath(prev => [...prev, coordinates]);

await setActiveTrip([...prevPath, coordinates]);

}

}

};

Listing 32. Location tracking

Stopping the activity is a simple process: the application simply has to mark

the trip as paused, remove the notification and recording of the topic as

shown in Listing 33:

const onStopActivity = async () => {

await setActiveTripStatus('paused');

if (await foregroundService.isRunning()) {

await foregroundService.removeTask(taskConfig.taskId);

await foregroundService.stopService();

setStopRecording(true);

}

};

Listing 33. Stop activity on stop button

The following pseudocode, shown in Listing 34, explains the logic behind

ending the trip. It removes the active trip from the record, and sets the

status to end. If there are any tasks running in the background it also stops

those tasks and clears the activity notification.

59

const onEndTrip = async () => {

await removeActiveTrip();

await setActiveTripStatus('ended');

if (await foregroundService.isRunning() || stopRecording) {

const stopped = await foregroundService.stopService();

setServiceStopped(true);

setStopRecording(false);

return stopped;

}

};

Listing 34. End trip

The recording of the activity and the location is completed, and now

drawing that to the map requires Google Maps Polyline feature. Polyline is

the line drawn between two points, tracking the whole activity to the map

application with all coordinates. By using the code in Listing 35, Polyline can

be drawn on the maps with the given coordinates where the coordinates are

extracted from the active trip. How Polyline is displayed on the map is also

show below in Figure 16:

<Map showsUserLocation={true}>

<Polyline coordinates={trip.map((item) => item.coords)} strokeWidth={5} />

</Map>

Listing 35. Draw trip on the map

60

Figure 16. Trip drawing on the map

4.4.6. Tracking user activity

This chapter covers the implementation of enriching the location recording

completed in the above section with the activity type. For the purpose of

this thesis, it was decided that initially it would be sufficient if the

application got the activity data from an external service such as Google Fit.

For this purpose, Google Fit is installed using the code in Listing 36:

61

yarn install react-native-google-fit

Listing 36. Google fit installation

When the activity is running, the start Google Fit permission is requested

from the user. It is necessary to require Google Fit permission before the

start of the trip because otherwise Google Fit will not be able to identify the

user activity. Listing 37 presents the code which was added to startActivity

method to request the permission:

GoogleFit

.authorize(options)

.then(({success}: any) => resolve(success))

.catch(() => {

console.log('Unknown error fetching Google fit authorization', 'ERROR');

resolve(false);

});

Listing 37. Google Fit authorization

Google Fit provides the list of activities between the given start and end

time. It also requires at least 60 seconds to determine the current activity:

until then, it is shown as “unknown activity type”. Instead of fetching the

activity on each location change, it was agreed with the client that once the

trip is ended the application can fetch all the activities during that time and

update the trip by finding out the start and end point of each and every

activity.

The following code presented in Listing 38 was added to fetch the activities,

filter the unknown activities and merge them with the current trip.

const allacts = await getActivitySamples(startDate, endDate);

const activities = allacts.filter(a => a.activityName !== UNKNOWN);

Listing 38. Fetching activating from Google Fit

62

4.4.7. Calculating Incentive Model

This section of the thesis implements the incentive model which was

presented in the previous sections. As per formula, the application needs to

calculate the distance covered in each activity. It was decided by discussion

with the client to use the haversine formula.

The haversine formula determines the great-circle distance between two

points on a sphere, given their longitudes and latitudes (23) which is shown

in Listing 39 below (24):

const distance = (p1: GeoPosition, p2: GeoPosition): number => {

const lat1 = p1.coords.latitude;

const lon1 = p1.coords.longitude;

const lat2 = p2.coords.latitude;

const lon2 = p2.coords.longitude;

const R = 6371e3; // earth radius in meters

const φ1 = lat1 * (Math.PI / 180);

const φ2 = lat2 * (Math.PI / 180);

const Δφ = (lat2 - lat1) * (Math.PI / 180);

const Δλ = (lon2 - lon1) * (Math.PI / 180);

const a = (Math.sin(Δφ / 2) * Math.sin(Δφ / 2)) +

((Math.cos(φ1) * Math.cos(φ2)) * (Math.sin(Δλ / 2) * Math.sin(Δλ /

2)));

const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

return R * c;

};

Listing 39. Haversine formula

In Cleancentive, there are many coordinates recorded in each activity, so to

calculate the total distance covered in each activity the application needs to

https://www.wizdom.ai/cite-in-google-docs/v2?cid=310fe1e0-69ae-475d-bf5a-c9c36140ace2;;;;;
https://www.wizdom.ai/cite-in-google-docs/v2?cid=3869215e-e284-4f50-bf61-6398f912287c;;;;;

63

factor in all the coordinates, calculate the distance between them and sum

everything up. Listing 40 shows the code which calculates the distance of

the activity by receiving the coordinates:

const calculateDistance = (points: GeoPosition[] = []): number => {

if (!points || points.length === 0) {

return 0;

}

const distObj = points.reduce((dista: any, point) => {

return {

point,

distance: Object.keys(dista).length === 0 ? 0 : (dista.distance

+ distance(dista.point, point)),

};

}, {});

return distObj.distance;

};

Listing 40. Calculating distance of the trip

Now that we have the method to calculate the distance covered in the

activity, it just requires the application to implement the formula for

calculating the benefit loss or gain in each trip. In the benefit calculation,

car journeys have been carefully noted, and ignored when mobility and

health benefits for the activities are calculated. The total “own effort”

covered distance is calculated, and multiplied with the unit price of each

activity to find out the health benefit earned by the user as shown in Figure

17. Lists of all mobilities records, possible benefits earned or lost and the

trip details are also calculated, shown below in Figure 18.

Figure 17. Health and Environment benefits

64

Figure 18. Mobility record and Trip Details

65

5. Discussions and Conclusions

This thesis was about developing and designing an MVP of the mobile

application for Codistan employees to encourage healthy lifestyles. The

main question were:

● What technologies could be used to develop such a tracking

application?

● What benefit would the application bring to the employees and

employer?

● What kind of incentive model works best?

Many companies are trying out different methods to keep their employees

fit and healthy, especially in the IT industry where most work requires

sitting in one place in front of a computer. This kind of application can bring

a possibility for the employees to earn some incentive by keeping

themselves fit and active.

The requirements for this solution were that Cleancentive could bring a

healthy lifestyle to its employees and clients who are IT professionals. One

of the requirements set by the client was that Cleancentive should be used

as part of Codistan’s normal everyday operation, where employees come to

the office by using public transport or by walking/bicycling and avoid using

cars to reduce their carbon footprints. There are environmental factors

currently in development as well: these would offer the option to avoid car

usage, reduce traffic congestion and encourage users to use public

transportation.

The thesis presents a comparison between different development options

for tracking applications. Since the application was actually intended to be

put into service, this thesis contains recommendations of what to consider

in developing web applications, along with technology choices and methods.

66

The MVP created in this thesis includes designing a Cleancentive mobile

application as a whole: the UI and UX of the application, technical method

and programming language recommendations, recording of the user

location with activity and calculating the incentives. The main finding about

technical solutions was that, when developing tracking applications

involving a great deal of hardware and mobile sensors, it is better to

develop native applications instead of hybrid applications. This brings the

possibility of developing the application in a better way, and avoiding

unnecessary complications. React Native might not be the correct language

choice for developing such a tracking application, because it might need to

interact with phone sensors and background activities. React Native also

requires a lot of custom module writing and that work has to be done

separately for iOS and Android platforms. If 50% of the work requires

custom module writing, then it is better to write native code. React Native

works just fine now for the purpose of this thesis, but it would be wise in

the future to expand things and create a native application which brings

more expansion options for this product.

It was also identified while testing the application that it brought a

somewhat healthy lifestyle to the author's daily routine, and if that also

comes with a fiscal compensation then this would potentially increase the

usage of the application.

It was noticed during testing that the author has started to feel more

energetic during everyday routines, and during a period when most of the

time was spent on the computer without any physical activity, the author

felt low energy. The proposed incentive model works for the client, but it

could vary from company to company, department to department and

country to country. The proposed model is just set as an example, and it

could be modified as needed.

This experiment was small, but it brought out the possibilities that a mobile

tracking application offers, and such an application could encourage healthy

lifestyles for users, if given a proper incentive. The kind of simple user

activity and location tracking application presented in this thesis could be

67

expanded to multiple fields, departments, companies and countries.

The next steps include implementing the activity recognition API provided

by Android and iOS to record the trip automatically. The logic could be

implemented in such a way that when the user leaves home, and the

activity recognition senses that the user is moving, it could start the activity

automatically and when the user returns home and is again stationary, the

application will stop the trip. When the user is still outside and the activity

sensor picks up that the user is stationary it will stop the activity and wait

for the user to start moving again to begin a new activity. This would also

bring real time drawing of different activities on the active trip.

Implementing the same activity recognition on the iOS would also be a

positive development, so that iPhone users could also get to use the

application. Other development items in the pipeline include user

authentication, recording and storing user addresses, onboarding process,

wallet, safety, statistics and push notification in the mobile application, web

applications where companies can be added easily by the client, a company

panel where they can manage their employees, set their benefits, approve

the activities and check the statistics related to individuals and expenditure.

68

References:

1. What's the difference between single-page application and multi-page

application?: | ADCI Solutions [Internet]. 2021 [cited 2021 Apr 18].

Available from:

https://www.adcisolutions.com/knowledge/whats-difference-between-si

ngle-page-application-and-multi-page-application

2. (PDF) THE DIFFERENCE BETWEEN DEVELOPING SINGLE PAGE

APPLICATION AND TRADITIONAL WEB APPLICATION BASED ON

MECHATRONICS ROBOT LABORATORY ONAFT APPLICATION [Internet].

2021 [cited 2021 Apr 18]. Available from:

https://www.researchgate.net/publication/324380010_THE_DIFFERENC

E_BETWEEN_DEVELOPING_SINGLE_PAGE_APPLICATION_AND_TRADITI

ONAL_WEB_APPLICATION_BASED_ON_MECHATRONICS_ROBOT_LABOR

ATORY_ONAFT_APPLICATION

3. Programming: Single Page Applications Fundamentals [Internet]. 2021

[cited 2021 Apr 18]. Available from:

http://thephantomprogrammer.blogspot.com/2016/08/web-fundamenta

ls.html

4. SPA vs MPA: Which One is Better For You? (2021) | Yojji [Internet].

2021 [cited 2021 Apr 18]. Available from:

https://yojji.io/blog/spa-vs-mpa

5. AngularJS - Wikipedia [Internet]. 2021 [cited 2021 Apr 18]. Available

from: https://en.wikipedia.org/wiki/AngularJS

6. React (JavaScript library) - Wikipedia [Internet]. 2021 [cited 2021 Apr

18]. Available from:

https://en.wikipedia.org/wiki/React_(JavaScript_library)

https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://www.adcisolutions.com/knowledge/whats-difference-between-single-page-application-and-multi-page-application
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.researchgate.net/publication/324380010_THE_DIFFERENCE_BETWEEN_DEVELOPING_SINGLE_PAGE_APPLICATION_AND_TRADITIONAL_WEB_APPLICATION_BASED_ON_MECHATRONICS_ROBOT_LABORATORY_ONAFT_APPLICATION
https://www.researchgate.net/publication/324380010_THE_DIFFERENCE_BETWEEN_DEVELOPING_SINGLE_PAGE_APPLICATION_AND_TRADITIONAL_WEB_APPLICATION_BASED_ON_MECHATRONICS_ROBOT_LABORATORY_ONAFT_APPLICATION
https://www.researchgate.net/publication/324380010_THE_DIFFERENCE_BETWEEN_DEVELOPING_SINGLE_PAGE_APPLICATION_AND_TRADITIONAL_WEB_APPLICATION_BASED_ON_MECHATRONICS_ROBOT_LABORATORY_ONAFT_APPLICATION
https://www.researchgate.net/publication/324380010_THE_DIFFERENCE_BETWEEN_DEVELOPING_SINGLE_PAGE_APPLICATION_AND_TRADITIONAL_WEB_APPLICATION_BASED_ON_MECHATRONICS_ROBOT_LABORATORY_ONAFT_APPLICATION
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
http://thephantomprogrammer.blogspot.com/2016/08/web-fundamentals.html
http://thephantomprogrammer.blogspot.com/2016/08/web-fundamentals.html
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://yojji.io/blog/spa-vs-mpa
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/AngularJS
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/React_(JavaScript_library)

69

7. Vue.js - Wikipedia [Internet]. 2021 [cited 2021 Apr 18]. Available from:

https://en.wikipedia.org/wiki/Vue.js

8. Comparative study of Svelte vs React vs Angular vs Vue -

GeeksforGeeks [Internet]. 2021 [cited 2021 Apr 18]. Available from:

https://www.geeksforgeeks.org/comparative-study-of-svelte-vs-react-v

s-angular-vs-vue/

9. Typescript vs Javascript: Difference You Should Know [Internet]. 2021

[cited 2021 Apr 18]. Available from:

https://hackr.io/blog/typescript-vs-javascript

10. What is an API?: (Application Programming Interface) | MuleSoft

[Internet]. 2021 [cited 2021 Apr 18]. Available from:

https://www.mulesoft.com/resources/api/what-is-an-api

11. Representational state transfer - Wikipedia [Internet]. 2021 [cited 2021

Apr 18]. Available from:

https://en.wikipedia.org/wiki/Representational_state_transfer

12. SOAP - Wikipedia [Internet]. 2021 [cited 2021 Apr 18]. Available from:

https://en.wikipedia.org/wiki/SOAP

13. Becker J, Matzner M, Muller O. Comparing Architectural Styles for

Service-Oriented Architectures a REST vs. SOAP Case Study. In 2009

[cited 2009 Jan 1]. p. 20715. Available from:

http://link.springer.com/content/pdf/10.1007/b137171_22.pdf

14. Node.js vs. Java: An epic battle for developer mindshare | InfoWorld

[Internet]. 2021 [cited 2021 Apr 18]. Available from:

https://www.infoworld.com/article/2883328/nodejs-vs-java-an-epic-bat

tle-for-developer-mindshare.html

https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/Vue.js
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.geeksforgeeks.org/comparative-study-of-svelte-vs-react-vs-angular-vs-vue/
https://www.geeksforgeeks.org/comparative-study-of-svelte-vs-react-vs-angular-vs-vue/
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://hackr.io/blog/typescript-vs-javascript
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.mulesoft.com/resources/api/what-is-an-api
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/SOAP
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
http://link.springer.com/content/pdf/10.1007/b137171_22.pdf
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.infoworld.com/article/2883328/nodejs-vs-java-an-epic-battle-for-developer-mindshare.html
https://www.infoworld.com/article/2883328/nodejs-vs-java-an-epic-battle-for-developer-mindshare.html

70

15. Ionic vs React Native: Which Framework you should Choose? | by

Team4Solution | Medium [Internet]. 2021 [cited 2021 Apr 18].

Available from:

https://team4solution.medium.com/ionic-vs-react-native-which-framew

ork-you-should-choose-4572de4e938a

16. Integrated development environment - Wikipedia [Internet]. 2021

[cited 2021 Apr 18]. Available from:

https://en.wikipedia.org/wiki/Integrated_development_environment

17. prettier/prettier: Prettier is an opinionated code formatter. [Internet].

2021 [cited 2021 Apr 18]. Available from:

https://github.com/prettier/prettier

18. createStackNavigator | React Navigation [Internet]. 2021 [cited 2021

Apr 25]. Available from:

https://reactnavigation.org/docs/stack-navigator/

19. PermissionsAndroid React Native [Internet]. 2021 [cited 2021 Apr 25].

Available from: https://reactnative.dev/docs/permissionsandroid

20. Headless JS React Native [Internet]. 2021 [cited 2021 Apr 25].

Available from: https://reactnative.dev/docs/headless-js-android

21. react-native-maps/installation.md at master

react-native-maps/react-native-maps [Internet]. 2021 [cited 2021 Apr

25]. Available from:

https://github.com/react-native-maps/react-native-maps/blob/master/d

ocs/installation.md

22. Haversine formula - Wikipedia [Internet]. 2021 [cited 2021 Apr 25].

Available from: https://en.wikipedia.org/wiki/Haversine_formula

https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://team4solution.medium.com/ionic-vs-react-native-which-framework-you-should-choose-4572de4e938a
https://team4solution.medium.com/ionic-vs-react-native-which-framework-you-should-choose-4572de4e938a
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://github.com/prettier/prettier
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://reactnavigation.org/docs/stack-navigator/
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://reactnative.dev/docs/permissionsandroid
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://reactnative.dev/docs/headless-js-android
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://github.com/react-native-maps/react-native-maps/blob/master/docs/installation.md
https://github.com/react-native-maps/react-native-maps/blob/master/docs/installation.md
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://en.wikipedia.org/wiki/Haversine_formula

71

23. Calculate distance and bearing between two Latitude/Longitude points

using haversine formula in JavaScript [Internet]. 2021 [cited 2021 Apr

25]. Available from:

http://www.movable-type.co.uk/scripts/latlong.html

https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio
https://www.wizdom.ai/cite-in-google-docs/v2?cid=wizdomaiBiblio

