

 Ranjan Yadav

Building a Blog Project using
JavaScript, NodeJS and MongoDB

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

9 May 2021

Abstract

Author: Ranjan Yadav

Title: Building a blog project using JavaScript, NodeJS and

MongoDB

Number of Pages: 27 pages

Date: 9 May 2021

Degree: Bachelor of Engineering

Degree Programme: Information Technology

Professional Major: Software Engineering

Supervisors: Janne Salonen, head of ICT department

Demand and popularity of full stack (frontend with backend) websites has been
growing steadily with time. JavaScript language became the language for developing
the front-end part of applications while to develop the backend part developers would
need to use other languages like python, java, PHP etc. The invention of NodeJS
changed this as it can execute the JavaScript code on the server. With JavaScript
being popular for web development, the popularity of NodeJS also grew with it. To
understand and learn Nodejs, a blog project will be developed using JavaScript,
NodeJS, Express and MongoDB. Users will be able to write their blogs, store it with
the help of a database and will be able to access and modify it as per their convenience.

Keywords: JavaScript, NodeJS, MongoDB

Contents

List of Abbreviations

1 Introduction 1

2 JavaScript 2

2.1 History of JavaScript 2

2.1.1 ECMAScript 3

2.1.2 ECMAScript 1 3

2.1.3 ECMAScript 2 4

2.1.4 ECMAScript 3 4

2.1.5 ECMAScript 4 5

2.1.6 ECMAScript 3.1 or 5 5

2.1.7 ECMAScript 6 and Beyond 5

2.2 Pros and cons for JavaScript 6

3 Node JS 8

3.1 Node.js Features 8

3.1.1 Asynchronous and Event Driven 8

3.1.2 Modules 8

3.1.3 Single threaded and Scalable 9

3.1.4 Fast 9

4 Express JS 10

4.1 Philosophy of Express 10

4.1.1 Minimal 10

4.1.2 Flexible 10

4.1.3 Web Application Framework 10

4.2 Core of Express 11

4.2.1 Routing 11

4.2.2 Middleware 11

4.2.3 Templating 11

5 MongoDB 12

6 Technology Used 13

6.1 Visual Studio Code 13

6.2 NPM 13

6.3 Bootstrap 13

7 Implementation 14

8 Results 24

9 Conclusion 26

References 27

List of Abbreviations

HTML: Hyper Text Markup Language

API: Application Programming Interface

TC39: Technical Committee 39

XML: Extensive Markup language

HTTP: Hyper Text Transfer Protocol

AJAX: Asynchronous JavaScript and XML

JSON: JavaScript Object Notation

I/O: Input/Output

ECMA: European Computer Manufacturer’s Association

1

1 Introduction

Developing an application which has both the front-end and back-end is known

as full stack web development. The front-end refers to the presentation of the

application user interface along with the interaction of the application with the

user. The back end refers to the computation of user input as per the application

demands while also interacting with databases. [1]First time the term “Full Stack

Developer” was inquired on Google in 2010. [2] Full stack is a recent

phenomenon which grew with the growth in Information Technology (IT) start-ups

and Multinational Corporations (MNCs). These companies or start-ups required

developers who could not only develop and manage either the front-end or back-

end but also could interchange their roles as per the organization demands. [2]

With the commercial success of online business and applications, the demand

for full stack developers has also grown over the years. The blog application is

going to have front-end build in JavaScript while the back end will be built in

NodeJS with Express.js framework, and the database used will be MongoDB.

2

2 JavaScript

JavaScript is an interpreted programming language which is lightweight and has

object-oriented abilities. [3] It is one of the most common programming languages

used today and its demand has skyrocketed recently where more websites built

today use JavaScript in some form. [4]

JavaScript brought changes in web pages where the web pages no longer had

to be written in static Hyper Text Markup Language (HTML) instead web pages

can interact with users and control its content dynamically. [3]

2.1 History of JavaScript

A Netscape programmer, Brendan Eich, developed a new scripting language in

September of 1995 which was then called LiveScript. Later LiveScript went on to

be called JavaScript. The invention of JavaScript was the outcome of browser

competition between Netscape and Microsoft. [5]. JavaScript first was released

for public in 1995 where it was integrated with Netscape Navigator 2.0 as shown

in Figure 1.

3

Figure 1:Netscape Navigator 2.0 (Copied from https://auth0.com/blog/a-brief-
history-of-javascript/)

2.1.1 ECMAScript

The rapid growth of JavaScript created the need for standardizing and

maintaining it. Netscape gave this task to the European Computer Manufacturers

Association (ECMA) [6]. JavaScript went through changes and revisions over the

years leading to oscillating popularity during its initial years.

2.1.2 ECMAScript 1

A committee was formed at ECMA which was named Technical Committee

39(TC39). TC39 was tasked to come up with standardization of JavaScript. The

first standard version of JavaScript was called ECMA-262 and was released in

1997. ECMA-262 still lacked major features for web development.

https://auth0.com/blog/a-brief-history-of-javascript/
https://auth0.com/blog/a-brief-history-of-javascript/

4

2.1.3 ECMAScript 2

ECMA-262 was handed over to the International Standards Organization (ISO)

as the final step for JavaScript standardisation process [7]. The second version

of JavaScript was released in 1998 in which the differences between ECMA-262

and ISO were addressed and corrected. No additional language features were

added in the second edition. The final accepted version was named ECMA-262,

Second Edition [7]

2.1.4 ECMAScript 3

During the development of the first version of JavaScript, the TC39 committee

discussed adding extra features to the language. Later, they agreed to postpone

these features until the JavaScript language was standardised. [7] Once the

ECMAScript 1.0 and ECMAScript 2.0 achieved standardisation, work on adding

more features to the language commenced. The third edition brought major

changes in the language which included added features such as regular

expressions, do-while block, exceptions and try/catch blocks, more built-in

functions for strings and arrays, formatting for numeric output, the ‘in’ and

‘instanceof’ operators and much better error handling [8]. The third version was

specified as ECMA-262 third edition. This version of JavaScript became popular

and was also supported by web browsers.

During the development of ECMAScript 3.0, Microsoft implemented a new

browser API (Application Programming Interface) called XMLHTTP in its Outlook

Web Access (OWA). XMLHTTP API allowed JavaScript to perform asynchronous

Hyper Text Transfer protocol (HTTP) requests to the server. This enabled

JavaScript web pages to send and transfer data from the server without reloading

the same page frequently [7]. In 2006, Jesse James Garrett coined the term

“AJAX (Asynchronous JavaScript and XML)” [7]. AJAX concept was used a lot

by developers to develop web pages over the following years which led to its

standalone standardisation as part of the Web Hypertext Application Technology

Working Group (HATWG) and World Wide Web Consortium (W3C). [8]

5

2.1.5 ECMAScript 4

Work on the fourth edition commenced right after the release of ECMAScript 3.0.

There was a proposal to include class definitions in JavaScript from the start in

order to manage large programs [7]. During the development of the fourth edition,

disagreements on the future of JavaScript began to appear more frequently within

the TC39 committee members. While some wanted JavaScript language to have

features for developing big applications, some were not convinced by it. The lack

of agreement and difficulty of few properties prolonged the development of the

fourth edition [8].

2.1.6 ECMAScript 3.1 or 5

Crockford put forth the idea of developing a manageable set of properties which

could be agreed upon. Syntax of the language remained the same while

enhancement of user experience was added. This was later known as

ECMAScript 3.1. ECMAScript 4.0 though was put aside; it was already accepted

as an ECMAScript even without any release. Thus, to avoid uncertainty, TC39

decided to name ECMAScript 3.1 to ECMAScript 5 in 2009. [8]

ECMAScript 5 did not have any syntax changes but included features that were

already being used by developers and recognised by browsers. It included

features which were aimed at improving programming and handling errors.

JavaScript Object Notation (JSON) was included. This version of JavaScript was

supported by different web browsers. [8]

In 2011, ECMAScript 5.1 was released which was aimed at correcting

misconceptions regarding standardisation. [8]

2.1.7 ECMAScript 6 and Beyond

ECMAScript 6 came with consequential improvements along with correcting the

imperfections of ECMAScript 5 [9]. It was released in 2015 and known as

6

ES2015. There were significant syntactic changes brought by ECMAScript 6 with

the intention to take JavaScript to a larger public and improve programming in

JavaScript significantly [8]. The support for ECMAScript 6 has been on the rise in

browsers over time as it will pave the way ahead for application development in

JavaScript. [9]

ECMAScript went through minor changes the following years in 2016 and 2017,

respectively. ECMAScript released in 2016 was the seventh edition of JavaScript

also called ES2016. The eight editions of JavaScript released in 2017 is also

called ES2017 [10]. For next edition of JavaScript, a term ES.Next was given.

[10]

2.2 Pros and cons for JavaScript

Here are advantages of JavaScript:

• Wherever JavaScript is hosted, it often runs on the client
environment to save bandwidth and accelerate the execution
process.

• The primary benefit of JavaScript is its ability to support and deliver
similar results in all modern browsers.

• Global corporations make a significant contribution by initiating
significant initiatives. Google (which invented the Angular
framework) or Facebook (created the React.js framework) are two
examples

• JavaScript integrates well with other programming languages and
can be used in a wide variety of applications.

• Numerous open-source projects assist developers in using
JavaScript.

• There are many methods for using JavaScript through Node.js
servers. It is possible to create a complete JavaScript application
utilizing just JavaScript. [11]

Some Limitations of JavaScript are listed below:

7

• No matter how powerful the JavaScript interpreter is, the JavaScript
DOM (Document Object Model) is slow and will never render as
quickly as HTML.

• The primary issue or downside of JavaScript is that the code is still
visible to everyone.

• With complex front-end projects, configuration is always a repetitive
process due to the number of resources that must be integrated to
create an environment suitable for a project.

• If an error occurs in the JavaScript, the entire website will fail to
render. [11]

8

3 Node JS

Node.js, written by Ryan dahl in 2009, is an amalgamation of the V8 JavaScript

chrome engine, a I/O (Input/Output) API and an event loop [12]. Node.js utilizes

event driven, non-blocking I/O model making it lightweight, coherent and ideal for

data-intensive real-time web applications that run across distributed devices [13].

V8 provides Node.js with a boost in performance by performing straight

compilation into native machine code instead of using an interpreter. [13] Node.js

provides JavaScript developers with a unique opportunity as the backend

program can be written using JavaScript. It avoids the inconvenience for

JavaScript developers to learn other programming languages for the back end

[14].

3.1 Node.js Features

Features of Node.js are as follows:

3.1.1 Asynchronous and Event Driven

APIs of Node.js library are asynchronous which allows servers built on Node.js

to move from an API to another without waiting for response. When there is a

response to the previous API call, the events of Node.js notifies it [15]. As

asynchronous I/O operations do not block the script execution, this allows

applications to execute without being slowed down while performing I/O

operations. This allows browsers to handle multiple requests from users while

also responding to them. [13]

3.1.2 Modules

Node.js was developed as a server runtime for JavaScript having access to the

filesystem. Access to filesystem was lacking JavaScript which allowed Node.js to

9

implement a distinct way to maintain modules. Node.js implemented CommonJS

which allowed JavaScript to have a module system in servers or domains outside

of browsers. CommonJS gained popularity in the browser environments which

was also helped by module bundlers like Browserify and Webpack. [16]

Module system assists in conveying the basic requirement of software

engineering. It assists in maintaining the code in an ordered way while also

helping to expand and examine several functionalities individually. This

independence provided by a module system allows for repeated use of the same

piece of code over several projects. Module system lets the desired part of code

implementation be hidden from public interfaces that are consumed by users of

a particular module. It helps developers to write over existing modules which

provides consumers to use the modules over time. [16]

3.1.3 Single threaded and Scalable

The basic concept to learn for scaling applications is load distribution. Load

distribution is the process of distributing load of an application over multiple

processes and machines. Node.js application runs on a single thread which

seems like a limitation but the non-blocking I/O model of Node.js allows

applications to optimize the utilization of resources to handle simultaneous

requests. Thus, Node.js applications running on a single thread is an advantage

for scaling applications over time. [16]

3.1.4 Fast

Node.js runs on the V8 engine which powers Google Chrome [13]. Competition

between multiple browsers to develop support and increase performance for

JavaScript over time has boosted performance of web applications. Node.js is

huge on streams and streaming. Streams are data distributed over time. Since

data keeps coming in blocks, it allows developers to work with each block of data

as they come instead of waiting for the whole data. This helps in saving time and

developing applications faster. [13]

10

4 Express JS

Express was designed by TJ Holowaychuk who outlined Express as a web

framework influenced by Sinatra, a web framework built on Ruby [17]. “Express

is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications” as stated by Express

website. [18]It is built upon Node.js core http module and connect components.

Express provides libraries for core Node.js modules that are robustly tested and

maintained. This helps developers to avoid the inconvenience of writing similar

code for the same Node.js module while building applications. Express also

allows for sophisticated reuse of code along with a Model-View-Controller (MVC)-

like design for web applications. [19]

4.1 Philosophy of Express

4.1.1 Minimal

Express limits the layer between the developer and the server. This allows

developers to have freedom with implementation of their ideas. Express allows

developers to use Express functionalities that are required for their applications

while excluding functionalities that are not used. Thus, it helps to avoid complexity

and bloating of applications. [17]

4.1.2 Flexible

Express provides flexibility to projects as developers can decide on the third-party

libraries and functionalities required for their applications. [19]

4.1.3 Web Application Framework

Express is the back-end part of the web framework which can be merged with

other services through web APIs. Also, Entire application can be built using back-

11

end rendering with Express making Express complete web application

framework. [17]

4.2 Core of Express

4.2.1 Routing

Routing is the process of determining the application response on finding a

particular endpoint requested by the client. The endpoint is a URL with a HTTP

request method. [20]

Routing can be defined using Express methods that respond to certain HTTP

requests for example App.get() handle get request and similarly App.post()

handle POST requests. [21]

4.2.2 Middleware

Middleware is a term that refers to something that sits within two layers of

software. Express middleware is a collection of functions that run during the

lifecycle of an Express transaction. [22]

Express uses the middleware in a wide array of fields. These may include serving

files, error handling, third parties middleware apps make web development easier

by working with session, cookies, user authentication etc. [23]

4.2.3 Templating

A template engine simply adds the dynamic data from the program to the HTML

page and merges it. The template file replaces this dynamic data with actual

values and display the HTML page [24]

Template engines such as EJS, Pug and Mustache are built on Express that

simplify the web development process. [24]

12

5 MongoDB

MongoDB is a flexible, scalable and document-oriented database. It is not a

relational database. [25] It is based on a document data model where data is

stored in key-value pairs. [26]

The size of data stored by applications are expanding which has brought the need

for scaling databases of applications. This leaves developers with two choices,

either scaling up or scaling out. Scaling up requires expensive and big machines

and in due course even that machine will not be enough. The other option is

scaling out for which MongoDB was developed. The document data model of

MongoDB helps to slice data across several servers. The maintenance of data

and load are taken care of by MongoDB along with rearranging data and routing

operations to the expected server. [25]

MongoDB not only allows users to perform database operations but also has

features that make it unique from other databases. These features are following

• MongoDB has common sub-indexes and gives distinct, composite,
geospatial and complete text indexing abilities. Sub-indexes on
hierarchical design are supported, enabling developers to have the
capability to model in procedures that complement their application.

• MongoDB offers a platform for data integration built on the principle
of data production channels. Aggregation channels allow you to
create complex analytics engines by manipulating data on the server
side in a sequence of steps, maximizing the benefits of database
optimizations.

• MongoDB allows time-to-live (TTL) collections for data ought to
expire after a specified period, such as meetings, and fixed-size
(capped) collections for data that should be retained indefinitely,
such as logs. MongoDB also supports fragmented indexes that are
restricted to documents that meet a defined requirements filter,
which improves performance and reduces the amount of storage
needed.

• MongoDB provides an intuitive protocol for storing massive files and
their metadata. [25]

13

6 Technology Used

6.1 Visual Studio Code

Virtual Studio Code is an efficient code editor with built-in support for JavaScript

and Node.js and supported across the major operating system. [27]

It has extensions built-in which enables to edit application code in a manageable

and efficient way. It also comes with extensions that are helpful in catching syntax

errors during the programming phase along with debugging features that helps

to avoid crashing of application. [27]

6.2 NPM

Npm is the largest software registry used by open-source developers to distribute

and use packages. Organizations can manage packages on their own for private

development of their applications. It consists of three unique components which

are the website, the Command Line Interface (CLI) and the registry. Developers

use the website to find packages as per their need, the CLI to communicate with

npm while the registry is a common database of JavaScript software along with

meta-information surrounding it. Npm can also be used to limit access to certain

developers, maintain versions of code and its dependencies and finding

developers pursuing same projects. [28]

6.3 Bootstrap

Bootstrap is a popular HTML, Cascading Style Sheet (CSS) and JavaScript

framework used for creating websites that are responsive and mobile friendly.

Bootstrap was developed in 2010 by two developers Mark Otto, Jacob Thornton.

Formerly known as Twitter Bootstrap, bootstrap has gone through many updates

and finally today we have Bootstrap 5. Bootstrap is used by around more than

one fourth of the world's websites roughly. [29]

14

7 Implementation

Implementation of the blog project was done in two phases. The first phase was

for designing the User Interface of the application and the second phase was for

taking in user input, saving it in the database and displaying it back to the user

with functionality using which the user can view, modify and delete their blog.

The blog project was initiated with npm and Express, ejs and mongoose were

installed. The folder structure of the project is shown in figure 2.

15

Figure 2: Folder structure of blog project

16

The model folder is for writing models for database, the routes folder is for writing

the routing file, views folder for writing the views. Express.js was used to write the

app.js file and it was assigned port 5000 to listen in. The server was up and

running as shown in figure 3 and the initial package.json file is shown in figure 4

respectively.

Figure 3: shows server is running

17

Figure 4: initial package.json file

Implementation of the user interface was commenced. The index.ejs page was

formed using the view engine ejs and rendered through Express. The index.ejs

file was styled using bootstrap in order to make it responsive and simple CSS

was used to style the header and footer of the page. In the initial phase, hard

coded data was supplied from the app.js file to the index.ejs file to check whether

18

the data was displayed with proper styling. When the data was displayed

correctly, the construction of newBlog.js file commenced to take in the user input.

A button-styled link was displayed in the index.ejs file as shown in figure 5 which

when clicked would take the user to the newBlog.ejs page. To make this happen,

a routes folder was created where blogs.js file was created to handle the routing

of the application.

Figure 5. The button-styled link.

A form.ejs file was created. form.ejs file was used to make the form and controls

for the application where the user can enter information. The form fields in

form.ejs file had required attributes so that the user did not leave them empty.

The motivation behind putting the form in a separate file was to increase

reusability of the file and avoid writing duplicate codes for other functionalities

which may use similar design. Then, the form.ejs file was passed to the

newBlog.ejs file. The rendered version of newBlog.ejs file is shown in the figure

6.

19

Figure 6. The rendered file newBlog.ejs.

As can be seen from figure 6, the user has been provided with two functionalities

on the rendered version of the newBlog.ejs page. On clicking the cancel button,

the user will be taken back to the index.ejs file while on clicking the save button

the user input will be saved, and the user will be routed to the allBlogs.ejs file.

20

When the user clicks the save button on the newBlog.ejs file, the input from the

user is sent to the blog.js file in the model folder by the help of the routing file

blogs.js. The database saves the user input.

Figure 7:shows rendered version of allBlogs.js file

The allBlogs.js file displays the saved user input as shown in figure 7. It also

provides the user with two functions, either the user can go to index.ejs file by

clicking the All Blogs button or can be routed to modify.ejs by clicking the modify

button where the user can change the earlier inputs.

The modify.ejs file has the same design as the newBlog.ejs file. The form.ejs file

is passed to the modify.ejs file which helps to avoid duplicating code and saves

time. The user can modify earlier input and save the changed file. The earlier

inputs are displayed while modifying as shown in figure 8. The changes done by

the user is then passed to the blogs.js file in the routes folder. The blogs.js sends

the changed information to the blog.js file in the model folder where the changes

from the user are updated and saved in the database.

21

Figure 8: shows modify.js file with data from initial inputs

The next functionality to add was the delete button which the users could click to

delete the blogs from the database. To make a delete button, methodOverride

library was installed using npm. This library allowed us to create a link with delete

method. The function for deleting blogs was created in the blogs.js file in the

routes folder. So, when the user clicks the delete button, the delete route in the

blogs.js file is called, and it deletes the particular blog form the database and

reloads the index.ejs file displaying the updated information. Along with delete,

users were provided with more and modify buttons when displaying each blog

using which full text of a blog could be read and modified respectively as shown

in figure 9.

Figure 9: shows all the buttons within the single blog display.

22

Once the main functionalities of the application were finished, some extra libraries

were installed, and their features were added. Slugify was used to manage the

links to each blog. Instead of using id of the links from the database, it was

replaced by s slug corresponding to the value of title of each blog. Dompurify and

jsdom libraries were used to provide basic security to the application. Marked

library was used to provide markdown when displaying the text entered in the

markdown field. The package.json file after the completion of project is shown in

figure 10.

23

Figure 9:Package.json file after the completion of project

24

8 Results

Multiple inputs of blog were inserted in the applications to populate the database

and the main page. Figure 11 shows the application index page.

Figure 10: index.ejs file after populating the database

The mongoDB database was also checked to verify the data displayed on the

index.ejs file and inside the database matched. The mongoDB database was

accessed through the terminal and is shown in figure 12.

25

Figure 11: Database of blog application

26

9 Conclusion

The purpose of this study was to carry out a blog project using JavaScript,

NodeJS and MongoDB, which worked as expected. Using Node.js to develop

applications was made simple by using npm. Npm, being a rich repository of

libraries and packages in JavaScript, helped with extra packages which were

needed to develop certain functionalities in the project. MongoDB was effortless

to maintain as the model can be written in JavaScript. Accessing the MongoDB

database was effortless because of easy-to-understand documentation

available on its official website.

Using Node.js for server-side programming has provided JavaScript developers

with comfort. The communities built around Node.js have many libraries or

packages which help to build full stack applications in JavaScript that might not

have been possible earlier.

27

References

[1] “https://www.leewayhertz.com,” Leewayhertz, [Online]. Available:

https://www.leewayhertz.com/full-stack-development/. [Accessed 25 04

2021].

[2] A. Anuradhac, “https://devopedia.org/,” Devopedia, 28 10 2020. [Online].

Available: https://devopedia.org/full-stack-developer. [Accessed 27 04

2021].

[3] D. Flanagan, “Introduction to JavaScript,” in JavaScript: The Definitive

Guide, Fourth Edition, California, O'Reilly Media, Inc., 2001.

[4] S. Powers, in Learning JavaScript, Sebastopol, O'Reilly Media, Inc., 2006.

[5] S. Powers, Learning JavaScript, Sebastopol: O'Reilly Media, Inc, 2006.

[6] T. DeGroat, “https://www.springboard.com/,” SpringBoard, 19 08 2019.

[Online]. Available: https://www.springboard.com/blog/data-

science/history-of-

javascript/#:~:text=JavaScript%20Origins&text=In%20September%20199

5%2C%20a%20Netscape,LiveScript%20and%2C%20later%2C%20Java

Script.t. [Accessed 21 04 2021].

[7] B. E. Allen Wirfs-Brock, “JavaScript: The First 20 Years,” 2020.

[8] S. Peyrott, “https://auth0.com,” auth0, 16 01 2017. [Online]. Available:

https://auth0.com/blog/a-brief-history-of-javascript/. [Accessed 02 05

2021].

[9] E. Brown, Learning JavaScript, 3rd Edition, Sebastopol: O'Reilly Media,

2016.

[10] L. Groner, Learning JavaScript DataStructures and Algorithms,

Birmingham: Packt Publishing, 2018.

[11] “https://www.geeksforgeeks.org/,” GeeksforGeeks, 25 11 2020. [Online].

Available: https://www.geeksforgeeks.org/advantages-and-

disadvantages-of-javascript/. [Accessed 01 05 2021].

28

[12] “https://www.section.io,” Section, 25 08 2020. [Online]. Available:

https://www.section.io/engineering-education/history-of-nodejs/.

[Accessed 05 05 2021].

[13] M. Cantelon, N. Rajlich, M. Harter and T. Holowaychuk, Node.js in Action,

New York: Manning Publications, 2013.

[14] “https://nodejs.dev/,” OpenJS Foundation, [Online]. Available:

https://nodejs.dev/learn. [Accessed 02 05 2021].

[15] “https://www.tutorialspoint.com,” Tutorialspoint, [Online]. Available:

https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm. [Accessed

02 05 2021].

[16] M. Casciaro and L. Mammino, Node.js Design Patterns - Third Edition,

Birmingham: Packt Publishing,, 2020.

[17] E. Brown, Web Development with Node and Express, 2nd Edition,

Sebastopol: O'Reilly Media, Inc, 2019.

[18] “https://expressjs.com/,” [Online]. Available: https://expressjs.com/.

[Accessed 02 05 2021].

[19] E. Hahn, Express in Action, Manning Publications, 2016.

[20] “https://expressjs.com,” OpenJS Foundation, [Online]. Available:

https://expressjs.com/en/starter/basic-routing.html. [Accessed 05 05

2021].

[21] “https://expressjs.com/,” OpenJS Foundations, [Online]. Available:

https://expressjs.com/en/guide/routing.html. [Accessed 03 05 2021].

[22] L. Brandt, “https://developer.okta.com,” Okta, 13 09 2018. [Online].

Available: https://developer.okta.com/blog/2018/09/13/build-and-

understand-express-middleware-through-examples. [Accessed 30 04

2021].

[23] “https://developer.mozilla.org/,” Mozilla and individual contributors,

[Online]. Available: https://developer.mozilla.org/en-

US/docs/Learn/Server-side/Express_Nodejs/Introduction. [Accessed 21

04 2021].

29

[24] “https://www.pabbly.com,” Pabbly, [Online]. Available:

https://www.pabbly.com/tutorials/template-engine-in-expressjs/.

[Accessed 01 05 2021].

[25] S. Bradshaw and K. Chodorow, MongoDB: The Definitive Guide,

Sebastopol: O'Reilly Media, Inc., 2019.

[26] W. d. R. França, MongoDB Data Modeling, Birmingham: Packt Publishing,

, 2015.

[27] “https://code.visualstudio.com/,” Microsoft, [Online]. Available:

https://code.visualstudio.com/docs. [Accessed 09 05 2021].

[28] “https://docs.npmjs.com/,” npm Enterprise,, [Online]. Available:

https://docs.npmjs.com/about-npm. [Accessed 09 05 2021].

[29] “https://getbootstrap.com/,” Bootstrap, [Online]. Available:

https://getbootstrap.com/docs/4.1/about/overview/#:~:text=Bootstrap%20

was%20created%20at%20Twitter,in%20without%20any%20external%20

guidance. [Accessed 09 05 2021].

Appendix 2

1 (1)

	1 Introduction
	2 JavaScript
	2.1 History of JavaScript
	2.1.1 ECMAScript
	2.1.2 ECMAScript 1
	2.1.3 ECMAScript 2
	2.1.4 ECMAScript 3
	2.1.5 ECMAScript 4
	2.1.6 ECMAScript 3.1 or 5
	2.1.7 ECMAScript 6 and Beyond

	2.2 Pros and cons for JavaScript

	3 Node JS
	3.1 Node.js Features
	3.1.1 Asynchronous and Event Driven
	3.1.2 Modules
	3.1.3 Single threaded and Scalable
	3.1.4 Fast

	4 Express JS
	4.1 Philosophy of Express
	4.1.1 Minimal
	4.1.2 Flexible
	4.1.3 Web Application Framework

	4.2 Core of Express
	4.2.1 Routing
	4.2.2 Middleware
	4.2.3 Templating

	5 MongoDB
	6 Technology Used
	6.1 Visual Studio Code
	6.2 NPM
	6.3 Bootstrap

	7 Implementation
	8 Results
	9 Conclusion
	References

