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Taking the world by storm, machine learning has revolutionized how data is used and 
analyzed. Built on pre-existing algorithms, the sheer amount of data collected nowadays 
kickstarted this technology as a staple, as pattern recognition and other statistical studies 
require large sample size to yield relevant results. 
 
The overarching goal of the thesis was to introduce Machine Learning in an intuitive and 
readily comprehensible way, as well as encourage schools to consider machine learning-
driven personalized guidance as a future tool to improve educational offering. It teaches 
concepts such as artificial intelligence, statistical analysis and machine learning algorithms. 
 
The study focuses on illustrating this knowledge through a comparison of different machine 
learning libraries, namely scikit-learn and TensorFlow, at predicting students’ study path 
selection. The data used for this research comes from BITe students at Haaga-Helia in 
Finland and HES-SO ARC in Switzerland, as 97 of them responded to a questionnaire. 
 
The questionnaire focused on study level, study path selection, demographic questions, as 
well as statements about BITe studies judged using a Likert scale. 
 
Built exclusively using Python, four algorithms were tested using the dataset: logistic 
regression, support-vector machine, k-nearest neighbor and decision tree. On top of that, a 
deep learning neural network was also used to compete with the other algorithms. 
 
As comparison was the main element of this research, each method was tested 500 times 
and the best, worst and mean of each technology were extracted. Each try had a 
randomized separation between the training set (75% of the data) and the testing set (25% 
of the data), but the proportion of study path was maintained. 
 
The average accuracy was among 36% to 46%, while the best reached 67% to 83% and 
the worst 6% to 22%, highlighting the importance of cross-validation and preprocessing, 
especially with low sample sizes. It also called attention to the similarities and differences 
between the schools’ students and mindset, backed by the survey results. 
 
In line with the thesis’ objectives, this project could be used to showcase how to improve 
machine learning results with deeper implementations and iterations. The idea itself could 
be developed further and implemented by schools to better guide students towards their 
ideal studies. 
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Terms and abbreviations 

AI Artificial Intelligence 

API Application Programming Interface 

BITe Business Information Technology 

GOFAI Good Old-Fashioned AI 

IDE Integrated Development Environment 

KNN K-Nearest Neighbor 

ML Machine Learning 

NN Neural Network 

PCA Principal Component Analysis 

SVM Support-Vector Machine  
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1 Introduction 

The new decade brought with itself numerous challenges as the coronavirus pandemic 

radically changed the way we communicate, work and interact. Education shifted to a remote 

system for most, allowing students to pursue their education without pauses. However, these 

unannounced circumstances proved to be hard to deal with for many as having to navigate 

through a major crisis while adapting to a new environment is no easy task(Sahu, 2020). 

 

While not unique to the outbreak, schools now rely more than ever on their internet presence 

to encourage future alumni to enroll in their programs, as visits and workshops are less likely 

to happen. As such, it is critical to understand the link between a person’s interests and their 

studies(Sellami et al., 2017) to be able to advertise interesting and tailored options to 

everyone and offer guided counselling on course selection. 

 

Furthermore, student attrition is an ongoing issue in higher education all across the 

world(O’Keefe, 2013) and improving both the transparency of faculties and their features as 

well as strengthening the bond between institutions and students with better academic 

advising could improve students’ perception and thus retention(Roberts & Styron, 2010). 

 

One field of study that could support this vision is Machine Learning (ML). Taking the world 

by storm, ML has revolutionized how we use and analyze data. Built on pre-existing 

algorithms, it is the sheer amount of data collected nowadays that kickstarted this technology 

as a staple, as pattern recognition and other statistical studies require large sample size to 

yield relevant results(Marley, 2014). The use of ML to build recommendation tools has proven 

to be very successful as giant corporations use them, such as personalized feed on social 

media platforms or video suggestions on streaming platforms. However, different use cases 

call for different algorithms and methods to provide the best results in terms of efficiency and 

accuracy. 

 

Consequently, this thesis explores the aforementioned themes through an initiation to ML and 

related studies via a comparison of different machine learning libraries at predicting the study 

path selection of students in the Degree Programme in Business Information Technology 

(BITe). It is the author’s deep interest in new technologies and education that drives this 

research, as well as a deep care for those struggling with their career paths. 
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2 Research questions and Research methodology 

2.1 Objectives of the project and research question 

The overarching goal of the thesis is to introduce Machine Learning in an intuitive and readily 

comprehensible way, as well as encourage schools to consider ML-driven personalized 

guidance as a future tool to improve educational offering. For the thesis author, it serves as 

an introduction to the topic as well as personal training for writing academic papers and 

possibly course material, being interested in teaching later on. 

 

The empirical research will focus on the following questions: 

 

1.) Is there a significant margin in accuracy between the different Machine Learning libraries 

at predicting students’ study path selection? 

 

2.) What is the best accuracy the Machine Learning libraries can reach at predicting students’ 

study path selection? 

2.2 Scope of the thesis 

This thesis focuses on the explanation of and research around Machine Learning. Ultimately, 

this thesis could serve as a stepping stone for both educational purposes and future products 

focused on helping students select their study path. 

 

The thesis’ scope does not include any sort of interface, application or website that can be 

fed with data to use with the algorithms. It will also not include an exhaustive number of 

algorithms and will focus on the most common and used instead. 

2.3 Methodology 

As a research thesis, the project follows a structure akin to those of academic papers to 

facilitate the understanding of the subject for beginners. Indeed, the thesis author’s goal was 

to make the project a good entry point to modern machine learning programming for BITe 

students and possibly use it for teaching purposes. The thesis is conducted over a period of 4 

months, from February to May. 
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3 Related Research 

To better understand the mechanics behind our study, it is important to clarify the context and 

underlying technologies used in our project. Artificial Intelligence (AI), a broad field of study 

that encompasses Machine Learning is presented. Then the more specific themes of 

statistical analysis and datamining are brought up before dissecting the functioning of ML 

algorithms. 

3.1 What is AI? 

First coined in 1956, Artificial Intelligence is a field of computer science that focuses on the 

creation of systems that can work independently and intelligently, meaning that it can make 

decisions informed by parameters and variables to carry out tasks that supposedly require a 

human brain. Though the thought of computers or robots being able to surpass humans and 

take over the world is often used for fearmongering headlines or science-fiction movies, 

general AI, or AI that are capable of doing many different tasks, is nowhere near this sort of 

capabilities. The current developed AIs are what is called narrow AIs, they are only good and 

trained at doing one specific task where they might outperform humans, but they lack the 

ability to do many different tasks like a person can(Sajja, 2021). 

3.1.1 Symbolic Learning 

Beyond the distinction between narrow and general artificial intelligence, AI is divided into 

multiple subsections, starting with one of the two main groups: Symbolic Learning. Symbolic 

Learning, sometimes also called Good Old-Fashioned AI (GOFAI), uses symbols to represent 

real-world data and solve problems by using logic. It requires hard-coded rules, human 

knowledge, to understand how the symbols interact with each other. GOFAI also employs 

relations, either expressed as adjective to symbols to describe them, or verb to specify the 

dynamics between symbols(Philip, 2019). 

 

Figure 1. Example of Symbolic AI 

PLAY(PERSON,VIDEOGAME)

PEPPERONI(PIZZA)

PERSON VIDEOGAME
PIZZA

IS(PIZZA,COOKED)
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The collection of symbols and relations a GOFAI uses like in Figure 1 is called a knowledge 

base and logic appears either as logical connectives (or, and, if/then, …). The rules are 

implemented as truth tables, which uses propositional logic to understand the implications of 

each equation. GOFAI also learns through inference, which compares propositions and to 

draw conclusions(Mira, 2008). 

 

Symbolic Learning was particularly dominant prior to the 1990s but having hard-coded rules 

asked both for a lot of time and effort, as it demands people to first understand the 

relationships of the symbols before adding them to the knowledge base. Besides, GOFAI is 

particularly prone to preconceptions as the knowledge comes from a person which might 

have biases and assumptions. However, unlike the other main type of AI, Machine Learning, 

GOFAI does not require a lot of data, which is another reason why ML only became 

marketable recently with the rise of Big Data. Another one of its perks is that its logic is 

comparable to a glass box, whereas ML is more like a black box; because GOFAI uses logic 

and reason, while ML uses trial-and-error methods(Garnelo & Shanahan, 2019). 

3.1.2 Machine Learning 

Machine Learning is the other main type of AI, which saw a rise in popularity and usage with 

the rapid growth of data sets and interconnections that social media brought with themselves. 

As stated before, ML’s accuracy depends on the quantity of information available as well as 

fast computing power, rendering it almost unusable until recently(Al-Jarrah et al., 2015). 

Contrary to GOFAI, ML are used to perform specific tasks but without any clear instructions. 

By feeding algorithms a large amount of data known as training data, ML-based AI tries to 

find recurring patterns and correlations between inputs, called features, and outputs, called 

labels(Tu, 2019). 

 

As mentioned earlier, AI is split into many divisions and Machine Learning methods can be 

categorized into three groups which all use different algorithms: supervised learning, 

unsupervised learning, and reinforcement learning. 

 

Supervised learning is used when the objectives are known, hence the learning being 

named task driven. Therefore, human intervention is essential for supervised learning, as it 

founds its knowledge on preexisting answers or targets. 

 



 

8 

There are two kinds of supervised ML: classification and regression. Classification is when 

data needs to be attributed to specific labels. The output is called nominal or discrete, as 

each value are distinct and separate.  Regression on the opposite, is employed to predict 

unknown elements based on existing observations. In this case, the data is numerical and 

continuous(Kotsiantis, 2007). 

 

For example, determining if a flower is part of a certain genus based on the size and number 

of its petals, its color and its fruit would be classification, as we assign a category to the 

flower. On the other hand, determining the size of a cat according to its race, age and 

parents’ size would be regression, as the answer follows a continuous line established by the 

training data. Figure 2 represents how each model relates to the data. 

 

Figure 2. Visualization of Supervised ML 

 

On the other hand, unsupervised learning draws on algorithms that do not need defined 

goals. Instead, they figure out patterns on their own using either clusters or associations. This 

type of learning is called data driven. This approach can lead to discoveries of hidden 

patterns that would otherwise be unidentifiable, for example in complex and multidimensional 

data models. It can also pick up anomalies and faults like a data point seemingly too different 

from the rest, or a value that seems abnormal(Schlegl et al., 2017). 

 

Clustering classifies the data into groups, similarly to classification ML, but this time, classes 

are formed by the algorithm itself instead of being explicitly given. Comparatively, 

associations work by analyzing possible dependencies between items in a data set. 

 

To put it simply, a clustering algorithm might be able to find new customer profiles for a 

supermarket, spotting recurring data like the products they bought, the time and day they do 
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their shopping and the average price of their basket. Meanwhile, an association algorithm 

would detect which products are often bought together, like bread and jam or pasta and 

sauce. This technology is particularly used in data mining, which will be introduced in the next 

chapter. 

 

Finally, reinforcement learning is a type of ML that focuses on training AI to perform 

complicated tasks by using a reward system. Basically, an agent is put into an environment 

and is asked to perform a specific task or goal for which it will be rewarded. Starting with no 

knowledge, it will first effectuate random actions that may or may not be rewarding. However, 

through trial and error, it will slowly optimize itself, learning from each previous iteration(Buffet 

et al., 2020). 

 

Reinforcement learning is especially sought-after in robotics and game development. A 

notable example that played a role in the resurgence of AI is DeepMind, which created a 

program called AlphaGo back in 2015 that was taught how to play Go and won against 

champions, a breakthrough at the time. They later developed other programs able to 

successfully play more complex games like StarCraft, a real-time strategy computer game, at 

pro level(Byford, 2016; Hoffman, 2019). 

3.1.3 Neural Networks and Deep Learning 

Deep Learning is a sub-field of ML that is inspired by the structure of the human brain. Using 

what is called an artificial neural network (NN), this type of AI uses multiple layers of neurons 

to recognize increasingly more complex features from an input(Cook, 2020). 

 

The neurons of the first layer, called input layer, extract the smallest fragment possible of the 

incoming data, for example a pixel for an image. Then, it sends the information it has stored 

to the neurons of the next layer via channels. Each neuron of that layer assigns a value to the 

incoming channels, based on the relevance of the information for its task. Subsequent layers 

are called hidden layers, and all contain neurons with progressively more abstract tasks, from 

identifying contrast between pixels to recognizing eyes in a picture(Neapolitan & Neapolitan, 

2018). Finally, after any number of hidden layers, the last layer, called output layer, contains 

a neuron for all the possible answers, which determine the odds of the final guess as a 

percentage. Figure 3 illustrates a NN model with 3 hidden layers, 3 input neurons and 2 

output neurons. 
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Figure 3. Example of a neural network structure 

 

An important thing to consider with NNs, is that the number of hidden layers increases the 

complexity of the system, making the reasoning behind the end result more complicated to 

understand. This can be problematic when deep learning is used in medical or financial fields, 

as it is essential for patients or customers to understand the motives behind certain decisions, 

such as why a certain insurance or grant has been refused(Balasubramanian et al., 2018). 

3.2 Statistical Analysis and Data mining 

Statistics are the foundations which ML is built upon. Therefore, it is decisive to understand 

key concepts that are recurrent in ML algorithms. This chapter will also touch upon what data 

mining is and its applications in today’s society. 

3.2.1 Bias/variance Tradeoff 

One of the most important statistical concepts that plagues machine learning is the 

bias/variance tradeoff. When using statistical analysis and ML, data is split into two separate 

sets, one for creating prediction models and teach ML algorithms called the training set and 

one for testing how well it handles new data called the testing set. The bias/variance tradeoff 

is a dilemma between how faithful the model is to its training data and the fidelity of the model 

when testing data is introduced to it(Neal et al., 2018). 
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Because of the separation of the data into subsets or simply the nature of the information, 

statistical models are incapable of replicating the perfect relationship between responses and 

variables. This is the bias. Note, that bias can also be inherent to the model used, as for 

example a linear regression will never be able to replicate a curved relationship, as it is a 

linear model. The amount of bias varies depending on how close to the testing data points the 

predictions are. Variance on the other hand, describes how vulnerable the model is to 

fluctuations in the training set(Belkin et al., 2019). 

 

 

Figure 4. Comparison between two statistical models with training data set (green) to 

illustrate bias and variance (Starmer, 2020) 

 

As shown on Figure 4, high variance models are technically more accurate than high bias 

models. However, Figure 5 highlights that too much variance is detrimental to the model as it 

ends up lowering the reliability of the model past the training phase. This phenomenon is 

called overfitting, because the model has become too dependent of its training set. 

 

Figure 5. Same model comparison as Figure 4 but this time with testing data set (orange) 

(Starmer, 2020) 

 

In conclusion, the ideal model aims to find the right compromise between variance and bias, 

as it needs to accurately represent all relevant relations in the dataset while also being able to 

produce consistent predictions across datasets(Yang et al., 2020). 
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3.2.2 Cross-validation 

Data has to be separated into two sets to both train and test models, as using the same data 

for both tasks is a bad idea, since the algorithm might simply regurgitate the information that 

has been fed to it instead of making estimations(Berrar, 2018). However, simply dividing the 

data into two sets would be prone to an arbitrary choice, so the best way to ensure that this 

separation leads to a model with the optimum reliability is to use cross-validation.  

 

The concept of cross-validation is to separate the data into multiple blocks and then test the 

accuracy of each different combinations to find the most accurate. The most common 

practice is the ten-fold cross validation, which separates the data into 10 blocks. A special 

case of cross validation is the “leave one out cross validation” which reduce the size of the 

testing dataset to an individual sample(Brownlee, 2019; Raschka, 2018). 

 

Cross-validation is also used to find which method should be used for a problem, by 

comparing how well each algorithm perform. This also means that each algorithm will go 

through the training and testing data separation process, but while it can be time and 

resource consuming, cross-validation is very beneficial and guarantees that a model is 

fulfilling its goal to the best of its ability(Vanwinckelen & Blockeel, 2012). 

3.2.3 Data Mining 

A process that has seen a stark development recently is data mining. While often used as a 

blanket term for any form of information processing with huge amount of data or anything 

remotely close to AI or BI, data mining specifically refers to the discovery of hidden patterns 

or valuable structures from available data. It is crucial to understand that it does not concern 

the search of data like the name would suggest, but the search of knowledge within the 

data(Bramer, 2016). Analysis of the data is only a part of data mining, as other tasks such as 

data loading, data transformation, data modeling and data visualization are also part of the 

data mining process. 

 

Compared to other data analysis methods, data mining uses ML to uncover information that 

cannot be found through traditional means like queries, giving an edge to those who employ 

this technology(Rahman, 2018). 
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3.3 ML algorithms 

When using ML technologies, it is vital to grasp the importance of a well-chosen algorithms, 

as the algorithms dictate the perception and understanding we have of the data(Almustafa, 

2020). As such, many algorithms have been created and tested in order to achieve the best 

accuracy for any given problem. This chapter presents the most commonly employed and 

available algorithms used in supervised and unsupervised learning approaches. 

3.3.1 Predictions  

Prediction algorithms are all used in supervised learning, whether for classification or 

regression. They use features and their relations to each other to define the key variable. 

Some are very similar from each other, as sometimes the only difference between 

classification and regression is the use of bounds to create categories. Some of the most 

popular techniques are linear regression, logistic regression, decision tree, support-vector 

machine (SVM) and k-nearest neighbor (KNN)(Brownlee J., 2019). 

 

Linear regression is one of the most basic prediction models. It lies on the principle of 

independent and dependent variables, meaning that there is a clear relationship between the 

response and the features. Using training data as a basis, a linear equation is created to fit 

the observations as closely as possible by applying the least squares method, where the aim 

is to minimize the sum of the errors, which are the differences between the estimations and 

their projections on the line as shown on Figure 6. 

 

Figure 6. Visualization of linear regression terminology (Starmer, 2020) 
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Logistic regression is similar to linear regression but is used when the outcome variable is 

categorical. It is often used when the output is in binary form, such as “qualify” or “does not 

qualify”; this is called a binomial logistic regression. However, it is still possible to use logistic 

regression with more than two categories, for example with image classification of clothes; in 

this case, it is multinomial. 

 

To predict data classes, logistic regression models use a logistic sigmoid function which 

establishes boundaries due to its asymptotic nature. Logistic regressions are often used 

when the amount of data is scarce, but also in large data sets as regression is quick and easy 

to implement(Connelly, 2020). 

 

Decision tree is a classification model that functions using series of binary choices to 

categorize an input based on their path. A decision tree begins with a root node that points to 

internal nodes which can split as well, and this until the process is over when a leaf node is 

reached. Also, final classifications can be repeated, meaning that two different paths can 

point towards the same answers on different nodes. It is also possible that similar decision 

nodes appear in the tree with different values for example, as decision trees support both 

numeric and categorical classifications.  

 

When building a decision tree, choosing the right root node is key(Bulac & Bulac, 2016). To 

determine which attribute should be the root node, impurity is calculated, which represent 

how decisive the trait is in the final outcome. The lesser the impurity, the more the variable is 

determining and the closer it should be to the root node, with the least impure characteristic 

being the root node itself. 

 

Support-vector machine is a complex classification and regression method for supervised 

learning which uses thresholds called margins to separate data that belongs in the same 

group. To support outliers, SVM uses soft margins which allows data to be considered 

misclassified in order to create a model that has a better overall performance compared to a 

standard maximal margin classifier that simply split the space between the closest 

observation of each type at an equal distance. As soft margins and misclassifications 

influence bias and variance, cross-validation is used in SVM to determine the best soft 

margin classifier by checking the number of misclassifications and correctly classified data for 

each soft margin. 
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SVMs can support hugely varied data both in term of dimension and representation, because 

soft margin classifiers also called support vector classifiers adapt to the number of 

dimensions. The number of dimensions of the support vector classifier hyperplane is always 1 

less than the dataset’s, meaning that the support vector classifier is a point for a one-

dimensional dataset, a line for a two-dimensional dataset, a plane for a three-dimensional 

dataset and so on. Furthermore, SVMs can transpose data to n-dimension using what is 

called a kernel function. This allows separation of data that would be otherwise impossible to 

divide using classifiers like presented in Figure 7. 

 

Figure 7.Example of solving classification problems with extra dimensions (Starmer, 2020) 

 

K-Nearest Neighbor is a simple but powerful algorithm often seen used in most classification 

problems. KNN models assign a category to a new input by comparing it to the categories of 

the nearest data points on a graph(Larose & Larose, 2014). The number of data points used 

for the comparison, or nearest neighbors, is determined manually by the K parameter. For 

example, if K=3, the algorithm will only use the 3 closest points to determine which category 

the unknown fits the best, assigning it to the category represented the most among the 

nearest neighbors.  

 

Finding the best value for K is invaluable but complicated, as there is no default setting that is 

suitable for all circumstances. Furthermore, low K values tend to be subject to outliers and 

noise, while high K values can completely overlook categories with low population. It is also 

important to avoid ties, as such results often end up being unclassified, so K values tend to 

be odd(Seidl, 2016). 
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3.3.2 Pattern recognition 

Pattern recognition belongs to unsupervised learning, as the patterns are not yet known. 

These algorithms focus on closeness or similarities to find patterns or groups among the 

data. As this thesis focuses mainly on supervised learning, only one of the most used 

algorithms is explained, as it has both similitude and relevance with the topic and previous 

techniques(Mittal et al., 2019). 

 

K-Means Clustering is a classification algorithm that draws similarities with KNN. Using a 

given K value to determine the number of clusters it has to find, K-means clustering picks a 

number of random data points equals to K and attribute all the other data points to groups 

based on the closest random point. Then, it calculates the mean of each group and reclassify 

data points using proximity again. If any cluster changes, the mean is assessed again, and 

classification goes on until there are no more changes. After that, the variations of all clusters 

are summed together and stored to be compared with the results given by other random data 

points. The goal is to find the random points that give the least amount of final variation to 

determine the best groupings(Sinaga & Yang, 2020). 

 

As K-means clustering is used for unsupervised learning, it can be hard to find the best K 

value when using this algorithm, as the exact number of clusters necessary might not be 

known. A method used to find this variable is the elbow method like Figure 8. This showcases 

that the preferable K value is the one before an efficiency dip(SAPUTRA et al., 2020). 

 

Figure 8. Illustration of an elbow plot used to determine K value 
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3.4 ML programming language 

As ML relies heavily on algorithms, many programming languages can support this 

technology, making the creation of commercial ML tools possible for a lot of different 

scenarios. However, there are many factors that weigh in language selection. For example, in 

infrastructures and projects, using the same language for every application can make for a 

more robust environment and does not require as many skills, and therefore people, to 

maintain. Certain domains also favor a certain language, like video games who are often 

coded in C or C++. Yet, Python is currently considered the n°1 programming language for AI 

and ML (Raschka et al., 2020), but this could change as new technologies are being 

released, such as brainJS, a JavaScript library that brings NNs to an already very popular 

language. 

3.4.1 Python 

While first released in 1991, Python’s popularity has been exponentially growing since it’s 3.0 

release in 2008. There are many reasons to this and the first one is its simplicity and 

readability. Indeed, Python is both beginner-friendly and very compact, able to do a lot of 

operations with as little code as possible, while also taking care of complex tasks as a high-

level programming language (Kadriu et al., 2020). This amplifies a virtuous cycle that Python 

benefits from between users, libraries and fields of application, as its ease of use attracts 

more users and programmers, which develop open source tools thanks to the language’s 

high extensibility design. As such, there are libraries available for almost all use cases with an 

enormous community behind them to get help from or interact with. It also benefits from being 

cross-platform, being able to be built and run on Windows, Mac and Linux operating systems. 

 

Multiple machine learning and deep learning libraries are available on Python, the most 

noteworthy being TensorFlow, Keras, OpenCV and PyTorch. 

3.4.2 Scikit-learn 

Originally developed by David Cournapeau, scikit-learn is a library offering various kinds of 

ML algorithms such as SVMs, KNN and Decision Tree. It also provides multiples tools like 

dimensionality reduction, model selection and preprocessing to prepare and tune data for 

algorithms(Buitinck, 2013). 
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3.4.3 TensorFlow 

Developed at Google, TensorFlow is a deep learning platform that provides application 

programming interfaces (APIs), allowing beginners and experts alike to create machine 

learning models. Free and open source, it is principally a Python extension, but models can 

be imported and deployed to other platforms, such as JavaScript and Edge devices (Android, 

iOS, Raspberry Pi). A first version was released on 2017 before leading to the release of 

TensorFlow 2.0 in 2019 to compete with the Facebook ML library PyTorch (Sayantini, 2019). 

 

TensorFlow excels in abstraction, able to provide complex ML models through simplified 

interfaces, allowing the creation of graphs without having to worry about the implementation 

of algorithms and thus enabling developers to focus on the logic of the application (Tutorials 

Point, 2019). 

 

One of TensorFlow’s most fundamental aspect is the tensor. Tensors are generalizations of 

vectors and matrices to potentially higher dimensions, containing n-dimensional arrays of 

base datatypes. As demonstrated in Figure 9, they are defined by a rank, which is the 

number of dimensions a tensor has, and a shape, which represents the length of each axes 

of the tensor. 

 

Figure 9. Representation of a rank-4 tensor 

 

One of the most used tools of TensorFlow is Keras, a deep learning high-level API that is 

integrated with TensorFlow 2, offering approachable methods and functions to build robust 

machine learning applications, focused mostly on deep learning and neural networks. 
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4 Empirical study 

This chapter focuses on the context and the preparation done for the study of the thesis. The 

project consists of a basic implementation of machine learning algorithms and neural network 

model to illustrate them and emphasize the importance of good practices. 

4.1 Project background 

The first inklings of a machine learning based thesis came to be in an email exchange 

between the thesis author and the thesis supervisor. The researcher initially proposed 

multiple subjects all dealing with various machine learning implementations such as an 

application for computer games recommendations or a small game using reinforcement 

learning, but ended up choosing Dr. Amir Dirin’s suggestion, eager to work on a project linked 

to education and agreeing that the workload would better fit the time restriction of the thesis. 

 

The topic itself is linked to previous research led by the thesis supervisor, focusing on trying 

out multiple ML libraries and using programming rather than data mining software. The data 

would also be gathered anew to better reflect the current world situation as the coronavirus 

pandemic severely affected students and education alike. 

 

Soon after, a kickoff meeting was organized between both parties to discuss the project’s 

structure as well as guidelines. 

4.2 Project methodology 

As working with Machine Learning requires good data, understanding the research and the 

metrics used is paramount to ensure that the results yielded by the experiment are both 

useful and viable. This chapter focuses on explaining what went into the experimentation 

before implementing the final design. 

 

The first step was to create and conduct a questionnaire for our empirical study. The goal 

was to reach a sample size of at least a hundred BITe students, though the use of mock data 

could have been relevant in case that number wasn’t met. Then research on related fields 

and the applicable methods of Machine Learning, as well as suitable algorithms were studied 

and documented in the thesis, adopting a zooming-in approach to introduce complicated 

concepts in an approachable way. 
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Lastly, the actual experiment, which entailed testing the accuracy of each machine learning 

technique over 500 tries, each time with a shuffled dataset, completed with reports and 

analysis of the results, such as examples, accuracies, to reflect upon the work that has been 

done. 

4.3 Data gathering 

Data gathering was among the first objectives of the project, as the whole process can take a 

long time to be completed. 

4.3.1 Questionnaire 

To collect information regarding study path, a questionnaire was made using the Google 

Forms tool. The design and questions of the survey were based both on previous works on 

the subject(Niemivirta, 2002) as well as another thesis Dr. Dirin worked on as an 

advisor(Saballe, 2019). A copy of the questionnaire can be found in Appendix 1. 

 

The specialization paths, which were going to be the label of our AIs, were divided into four 

main ones: Software Development, Digital Service Design, Business and ICT, and ICT 

structure. 

4.3.2 Data collection 

Once the questionnaire was finished, it needed to be shared with as many students as 

possible, as a good sample size was crucial for the project to come to fruition. At first, only 

Haaga-Helia students were considered for the study, but then, the thesis advisor and the 

researcher agreed on collecting data from the HES-SO ARC University as well, the thesis 

author’s school. 

 

In order to officially reach BITe students at Haaga-Helia, a research permission form needed 

to be filled and submitted to Haaga-Helia’s administration. A copy of that form can be found in 

Appendix 4.  

 

When the data were extracted, there were a total of 25 respondents from the HE ARC and 72 

respondents from Haaga-Helia. Appendix 2 and 3 provides an overview of the results of each 

school. Mock data generators such as Mockaroo were considered but ultimately not used, as 

enough respondents were found to conduct the experiment and the use of such tools could 

have altered the final result. 
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4.3.3 Data preparation 

A preliminary step was to transfer the data from Google Forms to Google Sheets thanks to 

the automated tools provided by the services. This was chosen over exporting the data 

directly as csv as manipulating data in spreadsheets is much easier. Then, the first change to 

the data set was to remove the timestamp column that comes with Google Forms datasets, 

as it wasn’t needed for the purpose of the machine learning experiment. The column names 

were also tweaked as they were primarily labelled as the survey’s questions. Some data were 

also simplified such as the semesters were changed to numbers only. Then, the dataset was 

transformed into the csv format as it’s one of the most common and lightweight formats with 

machine learning libraries. 

4.4  Machine Learning 

In order to use the multiple libraries needed for the project, they need to be installed in a 

Python virtual environment that will serve as the code interpreter. Virtual environments allow 

users to install libraries for specific uses rather than installing them in the main environment 

which is shared by all projects. As such, it is used to create tidy workplaces where libraries 

are only present if they are needed for the projects using the virtual environment.  Figure 10 

showcases the main steps to set up a virtual environment using Windows PowerShell. 

 

Figure 10. Steps to configure the Python virtual environment 

 

The integrated development environment (IDE) used for the project is PyCharm(JetBrains, 

2017). PyCharm, like most modern IDEs, allow the creation and configuration of projects 

through user-friendly interfaces. As such, the installation of the virtual environment and the 

packages could have also been done through PyCharm. 
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5 Implementation 

This section covers the project development and the coding of the different algorithms as well 

as the neural network. These two methods are separated in two different PyCharm projects. 

The creation of a project on the IDE isn’t documented as it is irrelevant to the experiment 

which can be done using any Python tool. 

5.1 Algorithms 

All algorithms are implemented following their basic implementation found in scikit-learn’s 

documentation(Pedregosa, 2011). 

5.1.1 Setup 

The first thing to do when using libraries is to import them in the main file as shown in Figure 

11. The line at the top is not an import but a future statement. Future statement changes how 

the interpreter functions and as such has to be the first line of the file. It allows the use of 

functionalities that are not yet implemented in the current Python module but will be in future 

version, allowing developers to get used to new features. In this project, it is used for multiple 

reasons such as divisions that return decimal numbers. 

 

Beyond scikit-learn libraries, we also import numpy and pandas, which are two widespread 

data science libraries. Pandas(The pandas development team, 2020) is built on top of numpy 

and offers dataframes, which can be seen as similar to spreadsheets. The keyword as 

followed by a namespace allows the use of a shorter alias to avoid typing out the full name 

each time the module is utilized. 

 

Figure 11. Future and imports for the algorithm project 
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5.1.2 Data Manipulation 

In order to use the data which are stored in csv files in the project folder, they need to be 

loaded in the code. To do so, the method pandas.read_csv() is used, which transforms a csv 

file into a dataframe, as seen on Figure 12. 

 

Figure 12. Loading and preparing the data for the algorithm project 

 

Still on Figure 12, the next step is to transform most of our demographic columns, which are 

qualitative rather than quantitative, into data that can be interpreted by the algorithm. As 

simply turning each category variable into a number is not quite enough, since there is no 

gradual ranking between them, they are instead transformed into indicators. Indicators are 

Boolean variables created for each value of a categorical variable. For example, a column 

tracking the age category with either child, adult or senior would be transformed into three 

true/false indicators: age_child, age_adult and age_senior. This process is done to the 

columns age, gender and origins. 

 

Then, the label and features were separated into two variables, named X and y for 

convenience purposes. The pop() function removes a column from a dataset and returns it. 

Only the values are extracted as scikit-learn mostly uses numpy arrays over pandas 

dataframes. Afterwards, the label is transformed into numeric values for standardization. This 

process is documented on Figure 13. 

 

Figure 13. Separating label and features for the algorithm project 
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5.1.3 Algorithm loop and pipelines 

To illustrate that machine learning tools are not simply some sort of magical technology that 

can make sense of data without any effort, the algorithms are tested 500 times, using the 

same data but split differently every time. The number of times tested has been chosen as a 

compromise between speed and the ability to test as many data arrangement as possible. 

First, to be able to collect the data in this loop, an array has to be created for each algorithm, 

as shown on Figure 14. 

 

Figure 14. Result arrays declaration to store each loop's results for the algorithm project 

 

Inside the loop, the data are shuffled by using the train_test_split() method, which separates 

both the label and the features into two sets, a training set and a testing set. The parameter 

test_size dictates the size of the test set, here equals to a fourth of the data. The stratify 

parameter, here switched on, keeps the proportion of label occurrences between both sets, to 

avoid ending up with certain data not showing up during training, thus being problematic 

during the testing phase, as the model would be unfamiliar with this output. Figure 15 sums 

up this process. 

 

Figure 15. Splitting data into train and test samples using scikit-learn method for the algorithm 

project 

 

As visible on Figure 16, the first algorithm tested is the logistic regression, which uses cross 

validation to speed the process by using results used in previous steps. The number of steps 

is determined by the max_iter parameter, but the optimization can stop earlier once it 

determines that it has reached its goal, and the number of folds used in the cross-validation 

process is determined by the cv parameter, here set to 3 as the default 5 is bigger than the 



 

25 

number of study paths we have. The random_state parameter shuffles the data but has no 

incidence on this particular instance. 

 

Figure 16. Logistic regression pipeline 

 

Pipelines allow multi steps processes to be done when the model is being trained. In these 

occurrences, it is used to standardize the data before using it with the algorithms as it is 

required for most machine learning estimators. The SVM model used in Figure 17 uses two 

parameters, C and gamma, influences the regularization and the Kernel coefficient 

respectively. 1 is the default value for C and ‘auto’ for gamma defines the coefficient as 1 

divided by the number of features. Similar to the previous algorithms, the model is then 

trained by using the fit() function. The ravel() function is used on y_train to reverse its 

dimension. In a visual representation, it would become a column instead of a row. Then, the 

model is tested using score() which returns the accuracy of the test as a percentage and is 

stored in the array corresponding to the algorithm. 

 

 

Figure 17. SVM pipeline 

 

As KNN models can greatly vary depending on the value chosen for K, this pipeline has been 

put into another loop to test the algorithm with K values from 1 to 20, represented by the j 

parameter in Figure 18. 

 

Figure 18. KNN pipeline looped for K=1 to K=20 
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The decision tree model shown in Figure 19 is the simplest of all the algorithms, with no 

additional parameters, which shows how bare and simple a model can be when created using 

scikit-learn. 

 

Figure 19. Decision tree pipeline 

 

Finally, in Figure 20, once out of the loop, the results of each algorithm are printed in the 

console. Using the data of each array, the best, worst and mean are extracted using native 

min() and max() functions and numpy’s mean() function. 

 

Figure 20. Showing the results at the end of the algorithm experimentation 
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5.2 Neural Network 

The deep learning project is built based on the Premade Estimators tutorial on TensorFlow’s 

website (TensorFlow, 2021). 

5.2.1 Setup 

Similarly, to the algorithm project, future is used in the neural network project to use the most 

recent python functionalities, as shown on Figure 21. On top of TensorFlow, numpy and 

pandas, three modules from scikit-learn are reused, namely train_test_split, LabelEncoder 

and StandardScaler, as these functionalities are useful even with TensorFlow, especially for 

splitting the data and the preprocessing step. 

 

Figure 21. Future and imports for the deep learning project 

 

The second step when setting up the deep learning project is to create the input function for 

the neural network. This is defined early to avoid having to create the function later on, as the 

function itself is a parameter of the classifier used further in the code. As seen in Figure 22, 

the function creates a dataset from the tensors passed that serves as the input when training 

and testing. Notably, when training, the dataset is shuffled, and the function is repeated for a 

number of steps defined later on. The function returns a dataset with a number of entries 

equals to the batch_size parameter. 

 

Figure 22. Input function needed when using a TensorFlow neural network, defined earlier to 

avoid repeated inner functions 
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5.2.2 Data Manipulation 

When it comes to data manipulation, most steps are similar to the scikit-learn project’s steps. 

First the data are extracted from the csv files into pandas dataframes. Then, Boolean 

columns are made from the categorical columns, and label and features are separated into X 

and y.  

 

The main difference, highlighted in Figure 23, is that the feature columns’ names are saved. 

This is done in order to transform the arrays returned by the train_test_split() function used 

later on back into pandas dataframes, as TensorFlow works with dataframes rather than 

arrays. Then the data are encoded and standardized, and the results array is created to 

gather the data of the loop. 

 

Figure 23. Data preparation for the deep learning project, highlighted is the main difference 

with the algorithm project 
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Figure 24 showcases the preparation done inside the loop, where the data is split into training 

and testing sets, just like in the algorithm code. This time however, the arrays X_train, X_test, 

y_train and y_test are transformed back into dataframes by giving them the previously saved 

column names. An additional step necessary for TensorFlow’s neural network to work 

properly is to remove any spaces in the columns’ names. This is done by replacing blank 

spaces with a common substitute, underscores.  

 

Figure 24. Data transformation to fit TensorFlow's use of dataframe 

 

The final step of data manipulation is shown in Figure 25. It consists of creating an array with 

all the feature columns using a loop parsing through all the keys of the training dataset. To do 

this, as all columns now use numbers instead of text, the method numeric_column() is used, 

using the variable key of the loop as an attribute to find the data that it needs to add to the 

array. 

 

Figure 25. Creating an array with the feature columns to use with the neural network 
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5.2.3 Neural network 

Now, the NN has to be built. To do this, the TensorFlow premade estimator is used, which is 

a high-level complete model, perfect to start working with NNs. In Figure 26, 3 parameters 

are shown to be used when creating the classifier. First, the feature columns are passed to 

the classifier to give it an understanding of the coming data once training starts. Then, the 

hidden_units parameter, which dictates the middle layers of the NN by using an array 

representative of each node per layer. In this case, only two hidden layers are created, with 

30 and 10 nodes, an arbitrary choice. It is important to note that more layers do not equate 

higher accuracy, and that it also muddles the impact of the inputs on the output. Finally, 

n_classes simply defines the number of categories the classifier will use. Since there are 4 

different specialization paths in our survey, n_classes equals 4. 

 

Figure 26. Creating the neural network for the deep learning project 

 

Figure 27 shows how the classifier use the function that has been previously created to train 

the model. The keyword lambda allows to use the function input_fn() as a parameter without 

having to create the whole function inside the classifier.train() function which would be messy. 

The steps argument defines how many times the model trains itself using data from the input. 

This can be modified, but more is not always better, as the model can end up overfitted. 

 

Figure 27. Classifier training for the deep learning project 
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To test the model’s accuracy, Figure 28 shows that the function used is classifier.evaluate(), 

which works similarly to the classifier.train() function, using the input_fn() function, this time 

without the training setting activated. The function returns a list of metrics that is stored in 

eval_result, then the accuracy is fetched from the list and added to the results array. 

 

Figure 28. Classifier testing for the deep learning project 

 

Finally, once out of the loop, the results are printed using the same formatting as the 

algorithm project, showing the worst, the best and the mean accuracy of all tries, per Figure 

29. 

 

Figure 29. Printing the result at the end of the deep learning project 
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6 Result 

This chapter briefly goes over the outcome of the experiment, as details are brought up in the 

discussions chapter. 

6.1 Algorithms 

The results for the different algorithms shown on Figure 30 only took a few minutes of 

computing despite the different methods being looped multiple times each. 

 

Figure 30. Accuracy results of all the tested algorithms 

 

6.2 Neural Network 

In comparison, the deep learning project took multiple hours to output the results shown on 

Figure 31, as creating a neural network 500 times is much more time consuming than simpler 

algorithms. 

 

Figure 31. Accuracy results of the neural network 
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7 Discussions 

The carried-out research generated five ML models distributed over two libraries, scikit-learn 

and TensorFlow, which represented algorithmic classification and deep learning classification 

respectively. Focusing on shedding light on the accuracy of these methods, the experiment 

brings up interesting questions when compared with other research and leaves room for 

experimentation, improvement and finetuning. But despite its simplicity, the study holds an 

undeniable value thanks to its teaching purpose as well as originality and specificity. After all, 

the thesis is an introduction to machine learning rather than a guide to optimal ML 

configurations, and must retain its accessibility to people without prior knowledge of the 

subject. 

7.1 Answer to research questions 

1.) Is there a significant margin in accuracy between the different Machine Learning libraries 

at predicting students’ study path selection? 

 

Looking at the three values examined for each technique, a few observations can be made. 

The best results gravitate between 67% (TensorFlow NN & Decision Tree algorithm), 72% 

(SVM and Logistic Regression algorithms) and 83% (KNN algorithm). This shows a difference 

of 16% in best performance between highest and lowest ranking methods, which is quite 

significant, as it represents a 1 out of 6 guesses differences. In comparison, other 

research(Berhane, 2021) typically show a range of accuracies between 66% and 75% when 

using the same tools and data of similar complexity(Allibhai, 2018) which is encouraging. As 

for the worst, most techniques reach an accuracy of 11% with two outliers, KNN at 6% and 

SVM at 22%. The polarizing results of the KNN model can be explained by the loop for K 

values used in the project. Indeed, very high and very low K values will tend to miss more 

often, either because of outliers when K is too low, or because of barely populated labels 

when K is too high(Zhang et al., 2017). 

 

When it comes to mean accuracy, the models show values between 36% and 46%. While 

above the accuracy of blind guesses at 25%, these low scores show the importance of data 

quantity, data selection and preprocessing. For example, a KNN model can see an 

improvement of 10% in accuracy by using scikit-learn preprocessing methods(Allibhai, 2018). 

Indeed, because of the small sample size given by the number of questionnaire respondents, 

each training phase used only about 72 samples to create a classifier, which makes them 

very sensible to small changes, thus the greatly varying accuracies(Moghaddam et al., 2020). 
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2.) What is the best accuracy the Machine Learning libraries can reach at predicting students’ 

study path selection? 

 

Looking strictly at the accuracy values of our tests, the best performance of the KNN model 

reached 83% of correct guesses, which is very encouraging for a basic implementation of a 

ML algorithm. However, with more time, effort and data, and a better understanding of the 

more complex functionalities offered by each library, there would be no doubt that the 

accuracy could get even higher. For example, if the data contained only Haaga-Helia 

respondents, perhaps the accuracy could be higher, as the education and psychology of 

students from different schools might be too different to be encompassed into a single model. 

As a comparison, research done using KNIME software to classify students’ study paths 

between Digital Service Design and Software Development reached up to 94% accuracy 

when testing only Haaga-Helia students(Saballe, 2019). Overall, there are so many 

parameters that come into the creation of ML models that there is always a possibility to 

improve and finetune them(Gambella et al., 2021). 

7.2 Reliability and validity 

While the mean and lowest accuracy metrics found for both experiments can feel like they 

jeopardize the experiment, it is important to remember that each accuracy gathered during 

the study represents a fully operational model, meaning that an actual implementation would 

only use the most accurate model to fulfil its purpose. Indeed, the other measures are simply 

informational and serve the study, proving that data selection is a key process of ML, as it 

was the main variable between each try. 

 

Either way, the thesis project itself could also be built upon to try and reach higher accuracies 

with more data and use of other functionalities. For example, using Keras functionalities or 

other ML libraries such as PyTorch could potentially yield better results(Sayantini, 2019). 
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8 Conclusion  

Focusing principally on the study path selection of BITe students at Haaga-Helia and at HES-

SO Arc, this thesis’s objective was to introduce AI, ML and deep learning in an accessible 

way through explanations and applications, as well as demonstrating the capabilities of 

Python machine learning libraries, both contributing to the betterment of education. 

Furthermore, answers to the research questions were found through the experiment which 

supported the knowledge previously explained with empirical evidence. 

 

Considering the unpredictability of the school environment due to the coronavirus pandemic, 

it was hard to tell what could threaten the project and its schedule. A lack of feedback from 

the questionnaire could have impacted the thesis negatively but would have still been 

salvageable by using mock data. It was also important that the thesis author worked 

diligently, as there wasn’t much time until the end of the semester. Thankfully, the researcher 

had the occasion to focus and work diligently on the thesis, free from other obligations. 

Overall, this research was positively safe, and thanks to the thesis coordinator, no 

predicament barred the thesis author from achieving the goals set and learning valuable 

information throughout the project. 

8.1 Future works 

As this is a research thesis, there isn’t any stakeholders, but the results of the project might 

interest schools in the future, especially Haaga-Helia and HES-SO ARC, as the survey was 

completed by students from these institutions, thus making the results more meaningful and 

tailored to them. An introductory course to AI, ML and NNs could also be created using the 

knowledge presented in the earlier chapters as this prominent technology is not yet part of 

most school curricula. An interesting project could be to create a frontend application which 

would allow students to answer the questionnaire on a website and get the result right away 

by using the trained model in the backend. Such a project could be used during Orientation 

Day at a school to give new students a suggestion on which courses are available to them 

based on their results. 

 

Finally, eager to share his enthusiasm, the thesis author wants to encourage the ethical 

exploitation of ML technology in projects of all scopes, believing that this technology is at its 

core revolutionary and could benefit everyone if put in the right hands.  
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Appendix 2a. Haaga-Helia Respondents by Semester 

 

Appendix 2b. Haaga-Helia Respondents by Specialization 
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Appendix 2c. Haaga-Helia Respondents by Age 

 

Appendix 2d. Haaga-Helia Respondents by Gender 
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Appendix 2e. Haaga-Helia Respondents by Area of Origin 

 

Appendix 3a. HES-SO HE ARC Respondents by Semester 
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Appendix 3b. HES-SO HE ARC Respondents by Specialization 

 

Appendix 3c. HES-SO HE ARC Respondents by Age 
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Appendix 3d. HES-SO HE ARC Respondents by Gender 

 

Appendix 3e. HES-SO HE ARC Respondents by Area of Origin 
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Appendix 4. Research permission form 

1 Name of Research Project / Thesis 

 
Comparing Machine Learning algorithms' accuracy at predicting students' study path 

2 The name(s) of person(s) who conduct research 

 
Adrien Ruegger 

 

Degree Programme and campus 

 
Business Information Technology Double Degree Exchange Student in Pasila Campus 

 

3 
 

 
 

Supervisor of research  

(name, status/job, telephone number, e-mail address) 
 

Amir Dirin 
 

 

4 Summary of research plan  

 
Research on study path and student preference 

 

 

5 Client/sponsor 

 
N/A 
 

 
6 Target group of research and sample size 

 

At least a 100 BITE students 

 
 

7 Timetable of research   

 

February-March 2021 
 

 

8 Description of research method  

 
Questionnaire 
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9 Date, signature and address of the applicant / student  

 

Date  18.02.2021                           

Name Adrien Ruegger                                       

 

Signature ___________________________________     

 

Phone  XXXXXXXXXXXXXXXX  

E-mail   XXXXXXXXXXXXXXXXXXXXXXXXXX      

Address   XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

10 Date and signature of the supervisor  

 

Date  XXXXXXXXXX                

Name XXXXXXXXXXXXXXXXXX 

               

 

Signature____________________________________ 

 

11 Return the application to the following address 

 
by email: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

 

or by mail: 

XXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXX 

 

12 Decision  

 

  Permission for research is given 
 

  Permission for research is denied  

 
 

 
Date   ___ . ___ 20 __  

 

 
Application approved by (signature)   ____________________________________ 

 
Name in block letters                       _____________________________________ 

 

 
Staff approving the application: 

- Surveys to students: Satu Koivisto 
- Surveys to Haaga-Helia staff: Teemu Kokko 
- Surveys to alumni: Eva Loippo-Sännälä 
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Appendix 5. Scikit-learn algorithms code 

from __future__ import absolute_import, division, print_function, 

unicode_literals 

 

from sklearn.linear_model import LogisticRegressionCV 

from sklearn.svm import SVC 

from sklearn import neighbors, datasets 

from sklearn.model_selection import train_test_split 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import LabelEncoder, StandardScaler 

from sklearn.tree import DecisionTreeClassifier 

import numpy as np 

import pandas as pd 

 

# Loading the two csv Data files 

data = pd.read_csv("HH BITe Study Path Survey.csv") 

data.update(pd.read_csv("HES-SO BITe Study Path Survey.csv")) 

 

# Converting qualitative data into boolean columns 

data = pd.get_dummies(data, columns=['Age', 'Gender', 'Origin']) 

 

# Separating label from features 

y = data.pop('Specialization').values 

X = data.values 

 

# Encoding label as numeric categories 

label_encoder = LabelEncoder() 

y = label_encoder.fit_transform(y) 

X = StandardScaler().fit_transform(X) 

 

# Declaring result arrays 

LGRs = [] 

SVMs = [] 

KNNs = [] 

DTCs = [] 

 

# Looping for a 500 tries 

for i in range(1, 501): 

 

    # Separating training data and testing data, Stratify keeps the 

proportion of data in both sets 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1 / 

4, stratify=y) 

 

    # Pipeline for Logistic Regression with Cross Validation 

    clfLGR = make_pipeline(StandardScaler(), 

LogisticRegressionCV(random_state=i, max_iter=5000, cv=3)) 

    clfLGR.fit(X_train, y_train.ravel()) 

    LGRs.append(clfLGR.score(X_test, y_test)) 

 

    # Pipeline for Support-Vector Machine 

    clfSVM = make_pipeline(StandardScaler(), SVC(C=1, gamma='auto')) 

    clfSVM.fit(X_train, y_train.ravel()) 

    SVMs.append(clfSVM.score(X_test, y_test)) 
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    # Loop to use K value from 1 to 20 

    for j in range(1, 21): 

        # Pipeline for K-Nearest Neighbor 

        clfKNN = make_pipeline(StandardScaler(), 

neighbors.KNeighborsClassifier(j)) 

        clfKNN.fit(X_train, y_train.ravel()) 

        KNNs.append(clfKNN.score(X_test, y_test)) 

 

    # Pipeline for Decision Tree 

    clfDTC = make_pipeline(StandardScaler(), DecisionTreeClassifier()) 

    clfDTC.fit(X_train, y_train.ravel()) 

    DTCs.append(clfDTC.score(X_test, y_test)) 

 

# Printing best and worst accuracy results for each algorithm across all 

the tries 

print('---- Logistic Regression accuracy \n Best: ' + 

"{:.0%}".format(max(LGRs)) 

      + '\n Worst: ' + "{:.0%}".format(min(LGRs)) 

      + '\n Mean: ' + "{:.0%}".format(np.mean(LGRs))) 

 

print('---- Support-Vector Machine accuracy \n Best: ' + 

"{:.0%}".format(max(SVMs)) 

      + '\n Worst: ' + "{:.0%}".format(min(SVMs)) 

      + '\n Mean: ' + "{:.0%}".format(np.mean(SVMs))) 

 

print('---- K-Nearest Neighbor \n Best: ' + "{:.0%}".format(max(KNNs)) 

      + '\n Worst: ' + "{:.0%}".format(min(KNNs)) 

      + '\n Mean: ' + "{:.0%}".format(np.mean(KNNs))) 

 

print('---- Decision Tree accuracy \n Best: ' + "{:.0%}".format(max(DTCs)) 

      + '\n Worst: ' + "{:.0%}".format(min(DTCs)) 

      + '\n Mean: ' + "{:.0%}".format(np.mean(DTCs))) 
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Appendix 5. TensorFlow deep learning code 

from __future__ import absolute_import, division, print_function, 

unicode_literals 

 

from sklearn.linear_model import LogisticRegressionCV 

from sklearn.svm import SVC 

from sklearn import neighbors, datasets 

from sklearn.model_selection import train_test_split 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import LabelEncoder, StandardScaler 

from sklearn.tree import DecisionTreeClassifier 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

 

 

# defining a function for the neural network input 

def input_fn(features, labels, training=True, batch_size=256): 

    # Convert the inputs to a Dataset. 

    dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) 

 

    # Shuffle the data and repeat if using training mode. 

    if training: 

        dataset = dataset.shuffle(1000).repeat() 

 

    return dataset.batch(batch_size) 

 

 

# Loading the two csv Data files 

data = pd.read_csv("HH BITe Study Path Survey.csv") 

data.update(pd.read_csv("HES-SO BITe Study Path Survey.csv")) 

 

# Converting qualitative data into boolean columns 

data = pd.get_dummies(data, columns=['Age', 'Gender', 'Origin']) 

 

# Separating label from features 

y = data.pop('Specialization').values 

X = data.values 

 

# Saving the column names for conversion later 

X_columns = data.keys() 

 

# Encoding label as numeric categories 

label_encoder = LabelEncoder() 

y = label_encoder.fit_transform(y) 

X = StandardScaler().fit_transform(X) 

 

results = [] 

 

# Looping for a 500 tries 

for i in range(1, 501): 

    # Separating training data and testing data, Stratify keeps the 

proportion of data in both sets 

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1 / 

4, stratify=y) 
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    # Transform the data into pandas dataframes for tensorflow 

compatibility 

    X_train = pd.DataFrame(X_train, columns=X_columns) 

    X_test = pd.DataFrame(X_test, columns=X_columns) 

    y_train = pd.DataFrame(y_train, columns=['Specialization']) 

    y_test = pd.DataFrame(y_test, columns=['Specialization']) 

 

    # Remove blank spaces in column names to avoid errors later on 

    X_train.columns = X_train.columns.str.replace(' ', '_') 

    X_test.columns = X_test.columns.str.replace(' ', '_') 

    y_train.columns = y_train.columns.str.replace(' ', '_') 

    y_test.columns = y_test.columns.str.replace(' ', '_') 

 

    # Feature columns describe how to use the input. 

    my_feature_columns = [] 

    for key in X_train.keys(): 

        

my_feature_columns.append(tf.feature_column.numeric_column(key=key)) 

    print(my_feature_columns) 

 

    # Build a Neural network using 2 hidden layers. 

    classifier = tf.estimator.DNNClassifier( 

        feature_columns=my_feature_columns, 

        # Two hidden layers of 30 and 10 nodes respectively. 

        hidden_units=[30, 10], 

        # The model must choose between 4 classes/output. 

        n_classes=4) 

 

    # Training the model 

    classifier.train( 

        input_fn=lambda: input_fn(X_train, y_train, training=True), 

        steps=4000) 

    # We include a lambda to avoid creating an inner function 

 

    # Testing the model's accuracy 

    eval_result = classifier.evaluate( 

        input_fn=lambda: input_fn(X_test, y_test, training=False)) 

    results.append(eval_result.get('accuracy')) 

 

# Printing the mean, best and worst accuracy results for each algorithm 

across all the tries 

print('---- Tensorflow Neural Network \n Best: ' + 

"{:.0%}".format(max(results)) 

      + '\n Worst: ' + "{:.0%}".format(min(results)) 

      + '\n Mean: ' + "{:.0%}".format(np.mean(results))) 


