

Accuracy of different Machine Learning techniques at

predicting students' study path selection

Adrien Ruegger

Bachelor’s Thesis

Degree Programme in Business Information Technology

2021

Abstract

 23 April 2021

Author(s)
Adrien Ruegger

Degree programme
Degree Programme in Business Information Technology (BITe)

Report/thesis title
Accuracy of different Machine learning techniques at predicting
students' study path selection

Number of pages
and appendix pages
40 + 20

Taking the world by storm, machine learning has revolutionized how data is used and
analyzed. Built on pre-existing algorithms, the sheer amount of data collected nowadays
kickstarted this technology as a staple, as pattern recognition and other statistical studies
require large sample size to yield relevant results.

The overarching goal of the thesis was to introduce Machine Learning in an intuitive and
readily comprehensible way, as well as encourage schools to consider machine learning-
driven personalized guidance as a future tool to improve educational offering. It teaches
concepts such as artificial intelligence, statistical analysis and machine learning algorithms.

The study focuses on illustrating this knowledge through a comparison of different machine
learning libraries, namely scikit-learn and TensorFlow, at predicting students’ study path
selection. The data used for this research comes from BITe students at Haaga-Helia in
Finland and HES-SO ARC in Switzerland, as 97 of them responded to a questionnaire.

The questionnaire focused on study level, study path selection, demographic questions, as
well as statements about BITe studies judged using a Likert scale.

Built exclusively using Python, four algorithms were tested using the dataset: logistic
regression, support-vector machine, k-nearest neighbor and decision tree. On top of that, a
deep learning neural network was also used to compete with the other algorithms.

As comparison was the main element of this research, each method was tested 500 times
and the best, worst and mean of each technology were extracted. Each try had a
randomized separation between the training set (75% of the data) and the testing set (25%
of the data), but the proportion of study path was maintained.

The average accuracy was among 36% to 46%, while the best reached 67% to 83% and
the worst 6% to 22%, highlighting the importance of cross-validation and preprocessing,
especially with low sample sizes. It also called attention to the similarities and differences
between the schools’ students and mindset, backed by the survey results.

In line with the thesis’ objectives, this project could be used to showcase how to improve
machine learning results with deeper implementations and iterations. The idea itself could
be developed further and implemented by schools to better guide students towards their
ideal studies.

Keywords
Machine Learning, Deep Learning, Neural Networks, Study Path, scikit-learn, TensorFlow,
Python, AI

Table of contents

Terms and abbreviations ... 3

1 Introduction ... 4

2 Research questions and Research methodology .. 5

2.1 Objectives of the project and research question .. 5

2.2 Scope of the thesis ... 5

2.3 Methodology ... 5

3 Related Research ... 6

3.1 What is AI? ... 6

3.1.1 Symbolic Learning .. 6

3.1.2 Machine Learning... 7

3.1.3 Neural Networks and Deep Learning.. 9

3.2 Statistical Analysis and Data mining .. 10

3.2.1 Bias/variance Tradeoff ... 10

3.2.2 Cross-validation ... 12

3.2.3 Data Mining .. 12

3.3 ML algorithms ... 13

3.3.1 Predictions ... 13

3.3.2 Pattern recognition ... 16

3.4 ML programming language ... 17

3.4.1 Python .. 17

3.4.2 Scikit-learn ... 17

3.4.3 TensorFlow .. 18

4 Empirical study .. 19

4.1 Project background ... 19

4.2 Project methodology ... 19

4.3 Data gathering .. 20

4.3.1 Questionnaire ... 20

4.3.2 Data collection ... 20

4.3.3 Data preparation .. 21

4.4 Machine Learning ... 21

5 Implementation.. 22

5.1 Algorithms ... 22

5.1.1 Setup ... 22

5.1.2 Data Manipulation .. 23

5.1.3 Algorithm loop and pipelines .. 24

5.2 Neural Network ... 27

5.2.1 Setup ... 27

5.2.2 Data Manipulation .. 28

5.2.3 Neural network ... 30

6 Result .. 32

6.1 Algorithms ... 32

6.2 Neural Network ... 32

7 Discussions ... 33

7.1 Answer to research questions ... 33

7.2 Reliability and validity .. 34

8 Conclusion .. 35

8.1 Future works ... 35

Table of Figures ... 36

References .. 38

Appendices .. 41

Appendix 1. Research Survey ... 41

Appendix 2a. Haaga-Helia Respondents by Semester .. 48

Appendix 2b. Haaga-Helia Respondents by Specialization ... 48

Appendix 2c. Haaga-Helia Respondents by Age ... 49

Appendix 2d. Haaga-Helia Respondents by Gender ... 49

Appendix 2e. Haaga-Helia Respondents by Area of Origin ... 50

Appendix 3a. HES-SO HE ARC Respondents by Semester .. 50

Appendix 3b. HES-SO HE ARC Respondents by Specialization 51

Appendix 3c. HES-SO HE ARC Respondents by Age ... 51

Appendix 3d. HES-SO HE ARC Respondents by Gender ... 52

Appendix 3e. HES-SO HE ARC Respondents by Area of Origin 52

Appendix 4. Research permission form ... 53

Appendix 5. Scikit-learn algorithms code ... 55

Appendix 5. TensorFlow deep learning code ... 57

3

Terms and abbreviations

AI Artificial Intelligence

API Application Programming Interface

BITe Business Information Technology

GOFAI Good Old-Fashioned AI

IDE Integrated Development Environment

KNN K-Nearest Neighbor

ML Machine Learning

NN Neural Network

PCA Principal Component Analysis

SVM Support-Vector Machine

4

1 Introduction

The new decade brought with itself numerous challenges as the coronavirus pandemic

radically changed the way we communicate, work and interact. Education shifted to a remote

system for most, allowing students to pursue their education without pauses. However, these

unannounced circumstances proved to be hard to deal with for many as having to navigate

through a major crisis while adapting to a new environment is no easy task(Sahu, 2020).

While not unique to the outbreak, schools now rely more than ever on their internet presence

to encourage future alumni to enroll in their programs, as visits and workshops are less likely

to happen. As such, it is critical to understand the link between a person’s interests and their

studies(Sellami et al., 2017) to be able to advertise interesting and tailored options to

everyone and offer guided counselling on course selection.

Furthermore, student attrition is an ongoing issue in higher education all across the

world(O’Keefe, 2013) and improving both the transparency of faculties and their features as

well as strengthening the bond between institutions and students with better academic

advising could improve students’ perception and thus retention(Roberts & Styron, 2010).

One field of study that could support this vision is Machine Learning (ML). Taking the world

by storm, ML has revolutionized how we use and analyze data. Built on pre-existing

algorithms, it is the sheer amount of data collected nowadays that kickstarted this technology

as a staple, as pattern recognition and other statistical studies require large sample size to

yield relevant results(Marley, 2014). The use of ML to build recommendation tools has proven

to be very successful as giant corporations use them, such as personalized feed on social

media platforms or video suggestions on streaming platforms. However, different use cases

call for different algorithms and methods to provide the best results in terms of efficiency and

accuracy.

Consequently, this thesis explores the aforementioned themes through an initiation to ML and

related studies via a comparison of different machine learning libraries at predicting the study

path selection of students in the Degree Programme in Business Information Technology

(BITe). It is the author’s deep interest in new technologies and education that drives this

research, as well as a deep care for those struggling with their career paths.

5

2 Research questions and Research methodology

2.1 Objectives of the project and research question

The overarching goal of the thesis is to introduce Machine Learning in an intuitive and readily

comprehensible way, as well as encourage schools to consider ML-driven personalized

guidance as a future tool to improve educational offering. For the thesis author, it serves as

an introduction to the topic as well as personal training for writing academic papers and

possibly course material, being interested in teaching later on.

The empirical research will focus on the following questions:

1.) Is there a significant margin in accuracy between the different Machine Learning libraries

at predicting students’ study path selection?

2.) What is the best accuracy the Machine Learning libraries can reach at predicting students’

study path selection?

2.2 Scope of the thesis

This thesis focuses on the explanation of and research around Machine Learning. Ultimately,

this thesis could serve as a stepping stone for both educational purposes and future products

focused on helping students select their study path.

The thesis’ scope does not include any sort of interface, application or website that can be

fed with data to use with the algorithms. It will also not include an exhaustive number of

algorithms and will focus on the most common and used instead.

2.3 Methodology

As a research thesis, the project follows a structure akin to those of academic papers to

facilitate the understanding of the subject for beginners. Indeed, the thesis author’s goal was

to make the project a good entry point to modern machine learning programming for BITe

students and possibly use it for teaching purposes. The thesis is conducted over a period of 4

months, from February to May.

6

3 Related Research

To better understand the mechanics behind our study, it is important to clarify the context and

underlying technologies used in our project. Artificial Intelligence (AI), a broad field of study

that encompasses Machine Learning is presented. Then the more specific themes of

statistical analysis and datamining are brought up before dissecting the functioning of ML

algorithms.

3.1 What is AI?

First coined in 1956, Artificial Intelligence is a field of computer science that focuses on the

creation of systems that can work independently and intelligently, meaning that it can make

decisions informed by parameters and variables to carry out tasks that supposedly require a

human brain. Though the thought of computers or robots being able to surpass humans and

take over the world is often used for fearmongering headlines or science-fiction movies,

general AI, or AI that are capable of doing many different tasks, is nowhere near this sort of

capabilities. The current developed AIs are what is called narrow AIs, they are only good and

trained at doing one specific task where they might outperform humans, but they lack the

ability to do many different tasks like a person can(Sajja, 2021).

3.1.1 Symbolic Learning

Beyond the distinction between narrow and general artificial intelligence, AI is divided into

multiple subsections, starting with one of the two main groups: Symbolic Learning. Symbolic

Learning, sometimes also called Good Old-Fashioned AI (GOFAI), uses symbols to represent

real-world data and solve problems by using logic. It requires hard-coded rules, human

knowledge, to understand how the symbols interact with each other. GOFAI also employs

relations, either expressed as adjective to symbols to describe them, or verb to specify the

dynamics between symbols(Philip, 2019).

Figure 1. Example of Symbolic AI

PLAY(PERSON,VIDEOGAME)

PEPPERONI(PIZZA)

PERSON VIDEOGAME
PIZZA

IS(PIZZA,COOKED)

7

The collection of symbols and relations a GOFAI uses like in Figure 1 is called a knowledge

base and logic appears either as logical connectives (or, and, if/then, …). The rules are

implemented as truth tables, which uses propositional logic to understand the implications of

each equation. GOFAI also learns through inference, which compares propositions and to

draw conclusions(Mira, 2008).

Symbolic Learning was particularly dominant prior to the 1990s but having hard-coded rules

asked both for a lot of time and effort, as it demands people to first understand the

relationships of the symbols before adding them to the knowledge base. Besides, GOFAI is

particularly prone to preconceptions as the knowledge comes from a person which might

have biases and assumptions. However, unlike the other main type of AI, Machine Learning,

GOFAI does not require a lot of data, which is another reason why ML only became

marketable recently with the rise of Big Data. Another one of its perks is that its logic is

comparable to a glass box, whereas ML is more like a black box; because GOFAI uses logic

and reason, while ML uses trial-and-error methods(Garnelo & Shanahan, 2019).

3.1.2 Machine Learning

Machine Learning is the other main type of AI, which saw a rise in popularity and usage with

the rapid growth of data sets and interconnections that social media brought with themselves.

As stated before, ML’s accuracy depends on the quantity of information available as well as

fast computing power, rendering it almost unusable until recently(Al-Jarrah et al., 2015).

Contrary to GOFAI, ML are used to perform specific tasks but without any clear instructions.

By feeding algorithms a large amount of data known as training data, ML-based AI tries to

find recurring patterns and correlations between inputs, called features, and outputs, called

labels(Tu, 2019).

As mentioned earlier, AI is split into many divisions and Machine Learning methods can be

categorized into three groups which all use different algorithms: supervised learning,

unsupervised learning, and reinforcement learning.

Supervised learning is used when the objectives are known, hence the learning being

named task driven. Therefore, human intervention is essential for supervised learning, as it

founds its knowledge on preexisting answers or targets.

8

There are two kinds of supervised ML: classification and regression. Classification is when

data needs to be attributed to specific labels. The output is called nominal or discrete, as

each value are distinct and separate. Regression on the opposite, is employed to predict

unknown elements based on existing observations. In this case, the data is numerical and

continuous(Kotsiantis, 2007).

For example, determining if a flower is part of a certain genus based on the size and number

of its petals, its color and its fruit would be classification, as we assign a category to the

flower. On the other hand, determining the size of a cat according to its race, age and

parents’ size would be regression, as the answer follows a continuous line established by the

training data. Figure 2 represents how each model relates to the data.

Figure 2. Visualization of Supervised ML

On the other hand, unsupervised learning draws on algorithms that do not need defined

goals. Instead, they figure out patterns on their own using either clusters or associations. This

type of learning is called data driven. This approach can lead to discoveries of hidden

patterns that would otherwise be unidentifiable, for example in complex and multidimensional

data models. It can also pick up anomalies and faults like a data point seemingly too different

from the rest, or a value that seems abnormal(Schlegl et al., 2017).

Clustering classifies the data into groups, similarly to classification ML, but this time, classes

are formed by the algorithm itself instead of being explicitly given. Comparatively,

associations work by analyzing possible dependencies between items in a data set.

To put it simply, a clustering algorithm might be able to find new customer profiles for a

supermarket, spotting recurring data like the products they bought, the time and day they do

9

their shopping and the average price of their basket. Meanwhile, an association algorithm

would detect which products are often bought together, like bread and jam or pasta and

sauce. This technology is particularly used in data mining, which will be introduced in the next

chapter.

Finally, reinforcement learning is a type of ML that focuses on training AI to perform

complicated tasks by using a reward system. Basically, an agent is put into an environment

and is asked to perform a specific task or goal for which it will be rewarded. Starting with no

knowledge, it will first effectuate random actions that may or may not be rewarding. However,

through trial and error, it will slowly optimize itself, learning from each previous iteration(Buffet

et al., 2020).

Reinforcement learning is especially sought-after in robotics and game development. A

notable example that played a role in the resurgence of AI is DeepMind, which created a

program called AlphaGo back in 2015 that was taught how to play Go and won against

champions, a breakthrough at the time. They later developed other programs able to

successfully play more complex games like StarCraft, a real-time strategy computer game, at

pro level(Byford, 2016; Hoffman, 2019).

3.1.3 Neural Networks and Deep Learning

Deep Learning is a sub-field of ML that is inspired by the structure of the human brain. Using

what is called an artificial neural network (NN), this type of AI uses multiple layers of neurons

to recognize increasingly more complex features from an input(Cook, 2020).

The neurons of the first layer, called input layer, extract the smallest fragment possible of the

incoming data, for example a pixel for an image. Then, it sends the information it has stored

to the neurons of the next layer via channels. Each neuron of that layer assigns a value to the

incoming channels, based on the relevance of the information for its task. Subsequent layers

are called hidden layers, and all contain neurons with progressively more abstract tasks, from

identifying contrast between pixels to recognizing eyes in a picture(Neapolitan & Neapolitan,

2018). Finally, after any number of hidden layers, the last layer, called output layer, contains

a neuron for all the possible answers, which determine the odds of the final guess as a

percentage. Figure 3 illustrates a NN model with 3 hidden layers, 3 input neurons and 2

output neurons.

10

Figure 3. Example of a neural network structure

An important thing to consider with NNs, is that the number of hidden layers increases the

complexity of the system, making the reasoning behind the end result more complicated to

understand. This can be problematic when deep learning is used in medical or financial fields,

as it is essential for patients or customers to understand the motives behind certain decisions,

such as why a certain insurance or grant has been refused(Balasubramanian et al., 2018).

3.2 Statistical Analysis and Data mining

Statistics are the foundations which ML is built upon. Therefore, it is decisive to understand

key concepts that are recurrent in ML algorithms. This chapter will also touch upon what data

mining is and its applications in today’s society.

3.2.1 Bias/variance Tradeoff

One of the most important statistical concepts that plagues machine learning is the

bias/variance tradeoff. When using statistical analysis and ML, data is split into two separate

sets, one for creating prediction models and teach ML algorithms called the training set and

one for testing how well it handles new data called the testing set. The bias/variance tradeoff

is a dilemma between how faithful the model is to its training data and the fidelity of the model

when testing data is introduced to it(Neal et al., 2018).

11

Because of the separation of the data into subsets or simply the nature of the information,

statistical models are incapable of replicating the perfect relationship between responses and

variables. This is the bias. Note, that bias can also be inherent to the model used, as for

example a linear regression will never be able to replicate a curved relationship, as it is a

linear model. The amount of bias varies depending on how close to the testing data points the

predictions are. Variance on the other hand, describes how vulnerable the model is to

fluctuations in the training set(Belkin et al., 2019).

Figure 4. Comparison between two statistical models with training data set (green) to

illustrate bias and variance (Starmer, 2020)

As shown on Figure 4, high variance models are technically more accurate than high bias

models. However, Figure 5 highlights that too much variance is detrimental to the model as it

ends up lowering the reliability of the model past the training phase. This phenomenon is

called overfitting, because the model has become too dependent of its training set.

Figure 5. Same model comparison as Figure 4 but this time with testing data set (orange)

(Starmer, 2020)

In conclusion, the ideal model aims to find the right compromise between variance and bias,

as it needs to accurately represent all relevant relations in the dataset while also being able to

produce consistent predictions across datasets(Yang et al., 2020).

12

3.2.2 Cross-validation

Data has to be separated into two sets to both train and test models, as using the same data

for both tasks is a bad idea, since the algorithm might simply regurgitate the information that

has been fed to it instead of making estimations(Berrar, 2018). However, simply dividing the

data into two sets would be prone to an arbitrary choice, so the best way to ensure that this

separation leads to a model with the optimum reliability is to use cross-validation.

The concept of cross-validation is to separate the data into multiple blocks and then test the

accuracy of each different combinations to find the most accurate. The most common

practice is the ten-fold cross validation, which separates the data into 10 blocks. A special

case of cross validation is the “leave one out cross validation” which reduce the size of the

testing dataset to an individual sample(Brownlee, 2019; Raschka, 2018).

Cross-validation is also used to find which method should be used for a problem, by

comparing how well each algorithm perform. This also means that each algorithm will go

through the training and testing data separation process, but while it can be time and

resource consuming, cross-validation is very beneficial and guarantees that a model is

fulfilling its goal to the best of its ability(Vanwinckelen & Blockeel, 2012).

3.2.3 Data Mining

A process that has seen a stark development recently is data mining. While often used as a

blanket term for any form of information processing with huge amount of data or anything

remotely close to AI or BI, data mining specifically refers to the discovery of hidden patterns

or valuable structures from available data. It is crucial to understand that it does not concern

the search of data like the name would suggest, but the search of knowledge within the

data(Bramer, 2016). Analysis of the data is only a part of data mining, as other tasks such as

data loading, data transformation, data modeling and data visualization are also part of the

data mining process.

Compared to other data analysis methods, data mining uses ML to uncover information that

cannot be found through traditional means like queries, giving an edge to those who employ

this technology(Rahman, 2018).

13

3.3 ML algorithms

When using ML technologies, it is vital to grasp the importance of a well-chosen algorithms,

as the algorithms dictate the perception and understanding we have of the data(Almustafa,

2020). As such, many algorithms have been created and tested in order to achieve the best

accuracy for any given problem. This chapter presents the most commonly employed and

available algorithms used in supervised and unsupervised learning approaches.

3.3.1 Predictions

Prediction algorithms are all used in supervised learning, whether for classification or

regression. They use features and their relations to each other to define the key variable.

Some are very similar from each other, as sometimes the only difference between

classification and regression is the use of bounds to create categories. Some of the most

popular techniques are linear regression, logistic regression, decision tree, support-vector

machine (SVM) and k-nearest neighbor (KNN)(Brownlee J., 2019).

Linear regression is one of the most basic prediction models. It lies on the principle of

independent and dependent variables, meaning that there is a clear relationship between the

response and the features. Using training data as a basis, a linear equation is created to fit

the observations as closely as possible by applying the least squares method, where the aim

is to minimize the sum of the errors, which are the differences between the estimations and

their projections on the line as shown on Figure 6.

Figure 6. Visualization of linear regression terminology (Starmer, 2020)

14

Logistic regression is similar to linear regression but is used when the outcome variable is

categorical. It is often used when the output is in binary form, such as “qualify” or “does not

qualify”; this is called a binomial logistic regression. However, it is still possible to use logistic

regression with more than two categories, for example with image classification of clothes; in

this case, it is multinomial.

To predict data classes, logistic regression models use a logistic sigmoid function which

establishes boundaries due to its asymptotic nature. Logistic regressions are often used

when the amount of data is scarce, but also in large data sets as regression is quick and easy

to implement(Connelly, 2020).

Decision tree is a classification model that functions using series of binary choices to

categorize an input based on their path. A decision tree begins with a root node that points to

internal nodes which can split as well, and this until the process is over when a leaf node is

reached. Also, final classifications can be repeated, meaning that two different paths can

point towards the same answers on different nodes. It is also possible that similar decision

nodes appear in the tree with different values for example, as decision trees support both

numeric and categorical classifications.

When building a decision tree, choosing the right root node is key(Bulac & Bulac, 2016). To

determine which attribute should be the root node, impurity is calculated, which represent

how decisive the trait is in the final outcome. The lesser the impurity, the more the variable is

determining and the closer it should be to the root node, with the least impure characteristic

being the root node itself.

Support-vector machine is a complex classification and regression method for supervised

learning which uses thresholds called margins to separate data that belongs in the same

group. To support outliers, SVM uses soft margins which allows data to be considered

misclassified in order to create a model that has a better overall performance compared to a

standard maximal margin classifier that simply split the space between the closest

observation of each type at an equal distance. As soft margins and misclassifications

influence bias and variance, cross-validation is used in SVM to determine the best soft

margin classifier by checking the number of misclassifications and correctly classified data for

each soft margin.

15

SVMs can support hugely varied data both in term of dimension and representation, because

soft margin classifiers also called support vector classifiers adapt to the number of

dimensions. The number of dimensions of the support vector classifier hyperplane is always 1

less than the dataset’s, meaning that the support vector classifier is a point for a one-

dimensional dataset, a line for a two-dimensional dataset, a plane for a three-dimensional

dataset and so on. Furthermore, SVMs can transpose data to n-dimension using what is

called a kernel function. This allows separation of data that would be otherwise impossible to

divide using classifiers like presented in Figure 7.

Figure 7.Example of solving classification problems with extra dimensions (Starmer, 2020)

K-Nearest Neighbor is a simple but powerful algorithm often seen used in most classification

problems. KNN models assign a category to a new input by comparing it to the categories of

the nearest data points on a graph(Larose & Larose, 2014). The number of data points used

for the comparison, or nearest neighbors, is determined manually by the K parameter. For

example, if K=3, the algorithm will only use the 3 closest points to determine which category

the unknown fits the best, assigning it to the category represented the most among the

nearest neighbors.

Finding the best value for K is invaluable but complicated, as there is no default setting that is

suitable for all circumstances. Furthermore, low K values tend to be subject to outliers and

noise, while high K values can completely overlook categories with low population. It is also

important to avoid ties, as such results often end up being unclassified, so K values tend to

be odd(Seidl, 2016).

16

3.3.2 Pattern recognition

Pattern recognition belongs to unsupervised learning, as the patterns are not yet known.

These algorithms focus on closeness or similarities to find patterns or groups among the

data. As this thesis focuses mainly on supervised learning, only one of the most used

algorithms is explained, as it has both similitude and relevance with the topic and previous

techniques(Mittal et al., 2019).

K-Means Clustering is a classification algorithm that draws similarities with KNN. Using a

given K value to determine the number of clusters it has to find, K-means clustering picks a

number of random data points equals to K and attribute all the other data points to groups

based on the closest random point. Then, it calculates the mean of each group and reclassify

data points using proximity again. If any cluster changes, the mean is assessed again, and

classification goes on until there are no more changes. After that, the variations of all clusters

are summed together and stored to be compared with the results given by other random data

points. The goal is to find the random points that give the least amount of final variation to

determine the best groupings(Sinaga & Yang, 2020).

As K-means clustering is used for unsupervised learning, it can be hard to find the best K

value when using this algorithm, as the exact number of clusters necessary might not be

known. A method used to find this variable is the elbow method like Figure 8. This showcases

that the preferable K value is the one before an efficiency dip(SAPUTRA et al., 2020).

Figure 8. Illustration of an elbow plot used to determine K value

17

3.4 ML programming language

As ML relies heavily on algorithms, many programming languages can support this

technology, making the creation of commercial ML tools possible for a lot of different

scenarios. However, there are many factors that weigh in language selection. For example, in

infrastructures and projects, using the same language for every application can make for a

more robust environment and does not require as many skills, and therefore people, to

maintain. Certain domains also favor a certain language, like video games who are often

coded in C or C++. Yet, Python is currently considered the n°1 programming language for AI

and ML (Raschka et al., 2020), but this could change as new technologies are being

released, such as brainJS, a JavaScript library that brings NNs to an already very popular

language.

3.4.1 Python

While first released in 1991, Python’s popularity has been exponentially growing since it’s 3.0

release in 2008. There are many reasons to this and the first one is its simplicity and

readability. Indeed, Python is both beginner-friendly and very compact, able to do a lot of

operations with as little code as possible, while also taking care of complex tasks as a high-

level programming language (Kadriu et al., 2020). This amplifies a virtuous cycle that Python

benefits from between users, libraries and fields of application, as its ease of use attracts

more users and programmers, which develop open source tools thanks to the language’s

high extensibility design. As such, there are libraries available for almost all use cases with an

enormous community behind them to get help from or interact with. It also benefits from being

cross-platform, being able to be built and run on Windows, Mac and Linux operating systems.

Multiple machine learning and deep learning libraries are available on Python, the most

noteworthy being TensorFlow, Keras, OpenCV and PyTorch.

3.4.2 Scikit-learn

Originally developed by David Cournapeau, scikit-learn is a library offering various kinds of

ML algorithms such as SVMs, KNN and Decision Tree. It also provides multiples tools like

dimensionality reduction, model selection and preprocessing to prepare and tune data for

algorithms(Buitinck, 2013).

18

3.4.3 TensorFlow

Developed at Google, TensorFlow is a deep learning platform that provides application

programming interfaces (APIs), allowing beginners and experts alike to create machine

learning models. Free and open source, it is principally a Python extension, but models can

be imported and deployed to other platforms, such as JavaScript and Edge devices (Android,

iOS, Raspberry Pi). A first version was released on 2017 before leading to the release of

TensorFlow 2.0 in 2019 to compete with the Facebook ML library PyTorch (Sayantini, 2019).

TensorFlow excels in abstraction, able to provide complex ML models through simplified

interfaces, allowing the creation of graphs without having to worry about the implementation

of algorithms and thus enabling developers to focus on the logic of the application (Tutorials

Point, 2019).

One of TensorFlow’s most fundamental aspect is the tensor. Tensors are generalizations of

vectors and matrices to potentially higher dimensions, containing n-dimensional arrays of

base datatypes. As demonstrated in Figure 9, they are defined by a rank, which is the

number of dimensions a tensor has, and a shape, which represents the length of each axes

of the tensor.

Figure 9. Representation of a rank-4 tensor

One of the most used tools of TensorFlow is Keras, a deep learning high-level API that is

integrated with TensorFlow 2, offering approachable methods and functions to build robust

machine learning applications, focused mostly on deep learning and neural networks.

19

4 Empirical study

This chapter focuses on the context and the preparation done for the study of the thesis. The

project consists of a basic implementation of machine learning algorithms and neural network

model to illustrate them and emphasize the importance of good practices.

4.1 Project background

The first inklings of a machine learning based thesis came to be in an email exchange

between the thesis author and the thesis supervisor. The researcher initially proposed

multiple subjects all dealing with various machine learning implementations such as an

application for computer games recommendations or a small game using reinforcement

learning, but ended up choosing Dr. Amir Dirin’s suggestion, eager to work on a project linked

to education and agreeing that the workload would better fit the time restriction of the thesis.

The topic itself is linked to previous research led by the thesis supervisor, focusing on trying

out multiple ML libraries and using programming rather than data mining software. The data

would also be gathered anew to better reflect the current world situation as the coronavirus

pandemic severely affected students and education alike.

Soon after, a kickoff meeting was organized between both parties to discuss the project’s

structure as well as guidelines.

4.2 Project methodology

As working with Machine Learning requires good data, understanding the research and the

metrics used is paramount to ensure that the results yielded by the experiment are both

useful and viable. This chapter focuses on explaining what went into the experimentation

before implementing the final design.

The first step was to create and conduct a questionnaire for our empirical study. The goal

was to reach a sample size of at least a hundred BITe students, though the use of mock data

could have been relevant in case that number wasn’t met. Then research on related fields

and the applicable methods of Machine Learning, as well as suitable algorithms were studied

and documented in the thesis, adopting a zooming-in approach to introduce complicated

concepts in an approachable way.

20

Lastly, the actual experiment, which entailed testing the accuracy of each machine learning

technique over 500 tries, each time with a shuffled dataset, completed with reports and

analysis of the results, such as examples, accuracies, to reflect upon the work that has been

done.

4.3 Data gathering

Data gathering was among the first objectives of the project, as the whole process can take a

long time to be completed.

4.3.1 Questionnaire

To collect information regarding study path, a questionnaire was made using the Google

Forms tool. The design and questions of the survey were based both on previous works on

the subject(Niemivirta, 2002) as well as another thesis Dr. Dirin worked on as an

advisor(Saballe, 2019). A copy of the questionnaire can be found in Appendix 1.

The specialization paths, which were going to be the label of our AIs, were divided into four

main ones: Software Development, Digital Service Design, Business and ICT, and ICT

structure.

4.3.2 Data collection

Once the questionnaire was finished, it needed to be shared with as many students as

possible, as a good sample size was crucial for the project to come to fruition. At first, only

Haaga-Helia students were considered for the study, but then, the thesis advisor and the

researcher agreed on collecting data from the HES-SO ARC University as well, the thesis

author’s school.

In order to officially reach BITe students at Haaga-Helia, a research permission form needed

to be filled and submitted to Haaga-Helia’s administration. A copy of that form can be found in

Appendix 4.

When the data were extracted, there were a total of 25 respondents from the HE ARC and 72

respondents from Haaga-Helia. Appendix 2 and 3 provides an overview of the results of each

school. Mock data generators such as Mockaroo were considered but ultimately not used, as

enough respondents were found to conduct the experiment and the use of such tools could

have altered the final result.

21

4.3.3 Data preparation

A preliminary step was to transfer the data from Google Forms to Google Sheets thanks to

the automated tools provided by the services. This was chosen over exporting the data

directly as csv as manipulating data in spreadsheets is much easier. Then, the first change to

the data set was to remove the timestamp column that comes with Google Forms datasets,

as it wasn’t needed for the purpose of the machine learning experiment. The column names

were also tweaked as they were primarily labelled as the survey’s questions. Some data were

also simplified such as the semesters were changed to numbers only. Then, the dataset was

transformed into the csv format as it’s one of the most common and lightweight formats with

machine learning libraries.

4.4 Machine Learning

In order to use the multiple libraries needed for the project, they need to be installed in a

Python virtual environment that will serve as the code interpreter. Virtual environments allow

users to install libraries for specific uses rather than installing them in the main environment

which is shared by all projects. As such, it is used to create tidy workplaces where libraries

are only present if they are needed for the projects using the virtual environment. Figure 10

showcases the main steps to set up a virtual environment using Windows PowerShell.

Figure 10. Steps to configure the Python virtual environment

The integrated development environment (IDE) used for the project is PyCharm(JetBrains,

2017). PyCharm, like most modern IDEs, allow the creation and configuration of projects

through user-friendly interfaces. As such, the installation of the virtual environment and the

packages could have also been done through PyCharm.

22

5 Implementation

This section covers the project development and the coding of the different algorithms as well

as the neural network. These two methods are separated in two different PyCharm projects.

The creation of a project on the IDE isn’t documented as it is irrelevant to the experiment

which can be done using any Python tool.

5.1 Algorithms

All algorithms are implemented following their basic implementation found in scikit-learn’s

documentation(Pedregosa, 2011).

5.1.1 Setup

The first thing to do when using libraries is to import them in the main file as shown in Figure

11. The line at the top is not an import but a future statement. Future statement changes how

the interpreter functions and as such has to be the first line of the file. It allows the use of

functionalities that are not yet implemented in the current Python module but will be in future

version, allowing developers to get used to new features. In this project, it is used for multiple

reasons such as divisions that return decimal numbers.

Beyond scikit-learn libraries, we also import numpy and pandas, which are two widespread

data science libraries. Pandas(The pandas development team, 2020) is built on top of numpy

and offers dataframes, which can be seen as similar to spreadsheets. The keyword as

followed by a namespace allows the use of a shorter alias to avoid typing out the full name

each time the module is utilized.

Figure 11. Future and imports for the algorithm project

23

5.1.2 Data Manipulation

In order to use the data which are stored in csv files in the project folder, they need to be

loaded in the code. To do so, the method pandas.read_csv() is used, which transforms a csv

file into a dataframe, as seen on Figure 12.

Figure 12. Loading and preparing the data for the algorithm project

Still on Figure 12, the next step is to transform most of our demographic columns, which are

qualitative rather than quantitative, into data that can be interpreted by the algorithm. As

simply turning each category variable into a number is not quite enough, since there is no

gradual ranking between them, they are instead transformed into indicators. Indicators are

Boolean variables created for each value of a categorical variable. For example, a column

tracking the age category with either child, adult or senior would be transformed into three

true/false indicators: age_child, age_adult and age_senior. This process is done to the

columns age, gender and origins.

Then, the label and features were separated into two variables, named X and y for

convenience purposes. The pop() function removes a column from a dataset and returns it.

Only the values are extracted as scikit-learn mostly uses numpy arrays over pandas

dataframes. Afterwards, the label is transformed into numeric values for standardization. This

process is documented on Figure 13.

Figure 13. Separating label and features for the algorithm project

24

5.1.3 Algorithm loop and pipelines

To illustrate that machine learning tools are not simply some sort of magical technology that

can make sense of data without any effort, the algorithms are tested 500 times, using the

same data but split differently every time. The number of times tested has been chosen as a

compromise between speed and the ability to test as many data arrangement as possible.

First, to be able to collect the data in this loop, an array has to be created for each algorithm,

as shown on Figure 14.

Figure 14. Result arrays declaration to store each loop's results for the algorithm project

Inside the loop, the data are shuffled by using the train_test_split() method, which separates

both the label and the features into two sets, a training set and a testing set. The parameter

test_size dictates the size of the test set, here equals to a fourth of the data. The stratify

parameter, here switched on, keeps the proportion of label occurrences between both sets, to

avoid ending up with certain data not showing up during training, thus being problematic

during the testing phase, as the model would be unfamiliar with this output. Figure 15 sums

up this process.

Figure 15. Splitting data into train and test samples using scikit-learn method for the algorithm

project

As visible on Figure 16, the first algorithm tested is the logistic regression, which uses cross

validation to speed the process by using results used in previous steps. The number of steps

is determined by the max_iter parameter, but the optimization can stop earlier once it

determines that it has reached its goal, and the number of folds used in the cross-validation

process is determined by the cv parameter, here set to 3 as the default 5 is bigger than the

25

number of study paths we have. The random_state parameter shuffles the data but has no

incidence on this particular instance.

Figure 16. Logistic regression pipeline

Pipelines allow multi steps processes to be done when the model is being trained. In these

occurrences, it is used to standardize the data before using it with the algorithms as it is

required for most machine learning estimators. The SVM model used in Figure 17 uses two

parameters, C and gamma, influences the regularization and the Kernel coefficient

respectively. 1 is the default value for C and ‘auto’ for gamma defines the coefficient as 1

divided by the number of features. Similar to the previous algorithms, the model is then

trained by using the fit() function. The ravel() function is used on y_train to reverse its

dimension. In a visual representation, it would become a column instead of a row. Then, the

model is tested using score() which returns the accuracy of the test as a percentage and is

stored in the array corresponding to the algorithm.

Figure 17. SVM pipeline

As KNN models can greatly vary depending on the value chosen for K, this pipeline has been

put into another loop to test the algorithm with K values from 1 to 20, represented by the j

parameter in Figure 18.

Figure 18. KNN pipeline looped for K=1 to K=20

26

The decision tree model shown in Figure 19 is the simplest of all the algorithms, with no

additional parameters, which shows how bare and simple a model can be when created using

scikit-learn.

Figure 19. Decision tree pipeline

Finally, in Figure 20, once out of the loop, the results of each algorithm are printed in the

console. Using the data of each array, the best, worst and mean are extracted using native

min() and max() functions and numpy’s mean() function.

Figure 20. Showing the results at the end of the algorithm experimentation

27

5.2 Neural Network

The deep learning project is built based on the Premade Estimators tutorial on TensorFlow’s

website (TensorFlow, 2021).

5.2.1 Setup

Similarly, to the algorithm project, future is used in the neural network project to use the most

recent python functionalities, as shown on Figure 21. On top of TensorFlow, numpy and

pandas, three modules from scikit-learn are reused, namely train_test_split, LabelEncoder

and StandardScaler, as these functionalities are useful even with TensorFlow, especially for

splitting the data and the preprocessing step.

Figure 21. Future and imports for the deep learning project

The second step when setting up the deep learning project is to create the input function for

the neural network. This is defined early to avoid having to create the function later on, as the

function itself is a parameter of the classifier used further in the code. As seen in Figure 22,

the function creates a dataset from the tensors passed that serves as the input when training

and testing. Notably, when training, the dataset is shuffled, and the function is repeated for a

number of steps defined later on. The function returns a dataset with a number of entries

equals to the batch_size parameter.

Figure 22. Input function needed when using a TensorFlow neural network, defined earlier to

avoid repeated inner functions

28

5.2.2 Data Manipulation

When it comes to data manipulation, most steps are similar to the scikit-learn project’s steps.

First the data are extracted from the csv files into pandas dataframes. Then, Boolean

columns are made from the categorical columns, and label and features are separated into X

and y.

The main difference, highlighted in Figure 23, is that the feature columns’ names are saved.

This is done in order to transform the arrays returned by the train_test_split() function used

later on back into pandas dataframes, as TensorFlow works with dataframes rather than

arrays. Then the data are encoded and standardized, and the results array is created to

gather the data of the loop.

Figure 23. Data preparation for the deep learning project, highlighted is the main difference

with the algorithm project

29

Figure 24 showcases the preparation done inside the loop, where the data is split into training

and testing sets, just like in the algorithm code. This time however, the arrays X_train, X_test,

y_train and y_test are transformed back into dataframes by giving them the previously saved

column names. An additional step necessary for TensorFlow’s neural network to work

properly is to remove any spaces in the columns’ names. This is done by replacing blank

spaces with a common substitute, underscores.

Figure 24. Data transformation to fit TensorFlow's use of dataframe

The final step of data manipulation is shown in Figure 25. It consists of creating an array with

all the feature columns using a loop parsing through all the keys of the training dataset. To do

this, as all columns now use numbers instead of text, the method numeric_column() is used,

using the variable key of the loop as an attribute to find the data that it needs to add to the

array.

Figure 25. Creating an array with the feature columns to use with the neural network

30

5.2.3 Neural network

Now, the NN has to be built. To do this, the TensorFlow premade estimator is used, which is

a high-level complete model, perfect to start working with NNs. In Figure 26, 3 parameters

are shown to be used when creating the classifier. First, the feature columns are passed to

the classifier to give it an understanding of the coming data once training starts. Then, the

hidden_units parameter, which dictates the middle layers of the NN by using an array

representative of each node per layer. In this case, only two hidden layers are created, with

30 and 10 nodes, an arbitrary choice. It is important to note that more layers do not equate

higher accuracy, and that it also muddles the impact of the inputs on the output. Finally,

n_classes simply defines the number of categories the classifier will use. Since there are 4

different specialization paths in our survey, n_classes equals 4.

Figure 26. Creating the neural network for the deep learning project

Figure 27 shows how the classifier use the function that has been previously created to train

the model. The keyword lambda allows to use the function input_fn() as a parameter without

having to create the whole function inside the classifier.train() function which would be messy.

The steps argument defines how many times the model trains itself using data from the input.

This can be modified, but more is not always better, as the model can end up overfitted.

Figure 27. Classifier training for the deep learning project

31

To test the model’s accuracy, Figure 28 shows that the function used is classifier.evaluate(),

which works similarly to the classifier.train() function, using the input_fn() function, this time

without the training setting activated. The function returns a list of metrics that is stored in

eval_result, then the accuracy is fetched from the list and added to the results array.

Figure 28. Classifier testing for the deep learning project

Finally, once out of the loop, the results are printed using the same formatting as the

algorithm project, showing the worst, the best and the mean accuracy of all tries, per Figure

29.

Figure 29. Printing the result at the end of the deep learning project

32

6 Result

This chapter briefly goes over the outcome of the experiment, as details are brought up in the

discussions chapter.

6.1 Algorithms

The results for the different algorithms shown on Figure 30 only took a few minutes of

computing despite the different methods being looped multiple times each.

Figure 30. Accuracy results of all the tested algorithms

6.2 Neural Network

In comparison, the deep learning project took multiple hours to output the results shown on

Figure 31, as creating a neural network 500 times is much more time consuming than simpler

algorithms.

Figure 31. Accuracy results of the neural network

33

7 Discussions

The carried-out research generated five ML models distributed over two libraries, scikit-learn

and TensorFlow, which represented algorithmic classification and deep learning classification

respectively. Focusing on shedding light on the accuracy of these methods, the experiment

brings up interesting questions when compared with other research and leaves room for

experimentation, improvement and finetuning. But despite its simplicity, the study holds an

undeniable value thanks to its teaching purpose as well as originality and specificity. After all,

the thesis is an introduction to machine learning rather than a guide to optimal ML

configurations, and must retain its accessibility to people without prior knowledge of the

subject.

7.1 Answer to research questions

1.) Is there a significant margin in accuracy between the different Machine Learning libraries

at predicting students’ study path selection?

Looking at the three values examined for each technique, a few observations can be made.

The best results gravitate between 67% (TensorFlow NN & Decision Tree algorithm), 72%

(SVM and Logistic Regression algorithms) and 83% (KNN algorithm). This shows a difference

of 16% in best performance between highest and lowest ranking methods, which is quite

significant, as it represents a 1 out of 6 guesses differences. In comparison, other

research(Berhane, 2021) typically show a range of accuracies between 66% and 75% when

using the same tools and data of similar complexity(Allibhai, 2018) which is encouraging. As

for the worst, most techniques reach an accuracy of 11% with two outliers, KNN at 6% and

SVM at 22%. The polarizing results of the KNN model can be explained by the loop for K

values used in the project. Indeed, very high and very low K values will tend to miss more

often, either because of outliers when K is too low, or because of barely populated labels

when K is too high(Zhang et al., 2017).

When it comes to mean accuracy, the models show values between 36% and 46%. While

above the accuracy of blind guesses at 25%, these low scores show the importance of data

quantity, data selection and preprocessing. For example, a KNN model can see an

improvement of 10% in accuracy by using scikit-learn preprocessing methods(Allibhai, 2018).

Indeed, because of the small sample size given by the number of questionnaire respondents,

each training phase used only about 72 samples to create a classifier, which makes them

very sensible to small changes, thus the greatly varying accuracies(Moghaddam et al., 2020).

34

2.) What is the best accuracy the Machine Learning libraries can reach at predicting students’

study path selection?

Looking strictly at the accuracy values of our tests, the best performance of the KNN model

reached 83% of correct guesses, which is very encouraging for a basic implementation of a

ML algorithm. However, with more time, effort and data, and a better understanding of the

more complex functionalities offered by each library, there would be no doubt that the

accuracy could get even higher. For example, if the data contained only Haaga-Helia

respondents, perhaps the accuracy could be higher, as the education and psychology of

students from different schools might be too different to be encompassed into a single model.

As a comparison, research done using KNIME software to classify students’ study paths

between Digital Service Design and Software Development reached up to 94% accuracy

when testing only Haaga-Helia students(Saballe, 2019). Overall, there are so many

parameters that come into the creation of ML models that there is always a possibility to

improve and finetune them(Gambella et al., 2021).

7.2 Reliability and validity

While the mean and lowest accuracy metrics found for both experiments can feel like they

jeopardize the experiment, it is important to remember that each accuracy gathered during

the study represents a fully operational model, meaning that an actual implementation would

only use the most accurate model to fulfil its purpose. Indeed, the other measures are simply

informational and serve the study, proving that data selection is a key process of ML, as it

was the main variable between each try.

Either way, the thesis project itself could also be built upon to try and reach higher accuracies

with more data and use of other functionalities. For example, using Keras functionalities or

other ML libraries such as PyTorch could potentially yield better results(Sayantini, 2019).

35

8 Conclusion

Focusing principally on the study path selection of BITe students at Haaga-Helia and at HES-

SO Arc, this thesis’s objective was to introduce AI, ML and deep learning in an accessible

way through explanations and applications, as well as demonstrating the capabilities of

Python machine learning libraries, both contributing to the betterment of education.

Furthermore, answers to the research questions were found through the experiment which

supported the knowledge previously explained with empirical evidence.

Considering the unpredictability of the school environment due to the coronavirus pandemic,

it was hard to tell what could threaten the project and its schedule. A lack of feedback from

the questionnaire could have impacted the thesis negatively but would have still been

salvageable by using mock data. It was also important that the thesis author worked

diligently, as there wasn’t much time until the end of the semester. Thankfully, the researcher

had the occasion to focus and work diligently on the thesis, free from other obligations.

Overall, this research was positively safe, and thanks to the thesis coordinator, no

predicament barred the thesis author from achieving the goals set and learning valuable

information throughout the project.

8.1 Future works

As this is a research thesis, there isn’t any stakeholders, but the results of the project might

interest schools in the future, especially Haaga-Helia and HES-SO ARC, as the survey was

completed by students from these institutions, thus making the results more meaningful and

tailored to them. An introductory course to AI, ML and NNs could also be created using the

knowledge presented in the earlier chapters as this prominent technology is not yet part of

most school curricula. An interesting project could be to create a frontend application which

would allow students to answer the questionnaire on a website and get the result right away

by using the trained model in the backend. Such a project could be used during Orientation

Day at a school to give new students a suggestion on which courses are available to them

based on their results.

Finally, eager to share his enthusiasm, the thesis author wants to encourage the ethical

exploitation of ML technology in projects of all scopes, believing that this technology is at its

core revolutionary and could benefit everyone if put in the right hands.

36

Table of Figures

Figure 1. Example of Symbolic AI ... 6

Figure 2. Visualization of Supervised ML .. 8

Figure 3. Example of a neural network structure ... 10

Figure 4. Comparison between two statistical models with training data set (green) to

illustrate bias and variance (Starmer, 2020) .. 11

Figure 5. Same model comparison as Figure 4 but this time with testing data set (orange)

(Starmer, 2020) .. 11

Figure 6. Visualization of linear regression terminology (Starmer, 2020) 13

Figure 7.Example of solving classification problems with extra dimensions (Starmer, 2020) . 15

Figure 8. Illustration of an elbow plot used to determine K value ... 16

Figure 9. Representation of a rank-4 tensor .. 18

Figure 10. Steps to configure the Python virtual environment ... 21

Figure 11. Future and imports for the algorithm project ... 22

Figure 12. Loading and preparing the data for the algorithm project 23

Figure 13. Separating label and features for the algorithm project .. 23

Figure 14. Result arrays declaration to store each loop's results for the algorithm project 24

Figure 15. Splitting data into train and test samples using scikit-learn method for the algorithm

project ... 24

Figure 16. Logistic regression pipeline .. 25

Figure 17. SVM pipeline .. 25

Figure 18. KNN pipeline looped for K=1 to K=20 .. 25

Figure 19. Decision tree pipeline ... 26

Figure 20. Showing the results at the end of the algorithm experimentation.......................... 26

Figure 21. Future and imports for the deep learning project .. 27

Figure 22. Input function needed when using a TensorFlow neural network, defined earlier to

avoid repeated inner functions .. 27

Figure 23. Data preparation for the deep learning project, highlighted is the main difference

with the algorithm project .. 28

Figure 24. Data transformation to fit TensorFlow's use of dataframe 29

Figure 25. Creating an array with the feature columns to use with the neural network 29

Figure 26. Creating the neural network for the deep learning project 30

Figure 27. Classifier training for the deep learning project .. 30

Figure 28. Classifier testing for the deep learning project .. 31

Figure 29. Printing the result at the end of the deep learning project..................................... 31

37

Figure 30. Accuracy results of all the tested algorithms .. 32

Figure 31. Accuracy results of the neural network ... 32

38

References

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient Machine
Learning for Big Data: A Review. In Big Data Research.
https://doi.org/10.1016/j.bdr.2015.04.001

Almustafa, K. M. (2020). Classification of epileptic seizure dataset using different machine learning
algorithms. Informatics in Medicine Unlocked. https://doi.org/10.1016/j.imu.2020.100444

Balasubramanian, R., McElhaney, D., & Libarikian, A. (2018). Insurance 2030 – The impact of AI on the
future of insurance. Digital McKinsey & Company.

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences of the
United States of America. https://doi.org/10.1073/pnas.1903070116

Berrar, D. (2018). Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology: ABC
of Bioinformatics. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

Bramer, M. (2016). Introduction to Data Mining. https://doi.org/10.1007/978-1-4471-7307-6_1

Brownlee, J. (2019). A Gentle Introduction to k-fold Cross-Validation. Machinelearningmastery.Com.

Brownlee J. (2019). Supervised and Unsupervised Machine Learning Algorithms. In Machine Learning
Mastery Pty. Ltd.

Buffet, O., Pietquin, O., & Weng, P. (2020). Reinforcement Learning. In arXiv.
https://doi.org/10.4249/scholarpedia.1448

Bulac, C., & Bulac, A. (2016). Decision Trees. In Advanced Solutions in Power Systems: HVDC, FACTS,
and AI Techniques. https://doi.org/10.1002/9781119175391.ch18

Byford, S. (2016). AlphaGo, a project of Google AI subsidiary DeepMind. Quartz.

Connelly, L. (2020). Logistic regression. MEDSURG Nursing. https://doi.org/10.4324/9781351033909-
32

Cook, T. R. (2020). Neural Networks. In Advanced Studies in Theoretical and Applied Econometrics.
https://doi.org/10.1007/978-3-030-31150-6_6

Gambella, C., Ghaddar, B., & Naoum-Sawaya, J. (2021). Optimization problems for machine learning:
A survey. In European Journal of Operational Research.
https://doi.org/10.1016/j.ejor.2020.08.045

Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence:
representing objects and relations. In Current Opinion in Behavioral Sciences.
https://doi.org/10.1016/j.cobeha.2018.12.010

Hoffman, T. (2019). DeepMind’s new AI masters the online game StarCraft II. Nature.
https://doi.org/10.1038/d41586-019-03343-4

Kadriu, A., Abazi-Bexheti, L., Abazi-Alili, H., & Ramadani, V. (2020). Investigating trends in learning
programming using YouTube tutorials. International Journal of Learning and Change.
https://doi.org/10.1504/IJLC.2020.106721

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification techniques. In

39

Informatica (Ljubljana). https://doi.org/10.31449/inf.v31i3.148

Larose, D. T., & Larose, C. D. (2014). k -Nearest Neighbor Algorithm . In Discovering Knowledge in
Data. https://doi.org/10.1002/9781118874059.ch7

Marley, S. (2014). The Importance and Effect of Sample Size. Select Statistical Consultants.

Mira, J. M. (2008). Symbols versus connections: 50 years of artificial intelligence. Neurocomputing.
https://doi.org/10.1016/j.neucom.2007.06.009

Mittal, K., Aggarwal, G., & Mahajan, P. (2019). Performance study of K-nearest neighbor classifier and
K-means clustering for predicting the diagnostic accuracy. International Journal of Information
Technology (Singapore). https://doi.org/10.1007/s41870-018-0233-x

Moghaddam, D. D., Rahmati, O., Panahi, M., Tiefenbacher, J., Darabi, H., Haghizadeh, A., Haghighi, A.
T., Nalivan, O. A., & Tien Bui, D. (2020). The effect of sample size on different machine learning
models for groundwater potential mapping in mountain bedrock aquifers. Catena.
https://doi.org/10.1016/j.catena.2019.104421

Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S., & Mitliagkas, I. (2018). A
modern take on the bias-variance tradeoff in neural networks. In arXiv.

Neapolitan, R. E., & Neapolitan, R. E. (2018). Neural Networks and Deep Learning. In Artificial
Intelligence. https://doi.org/10.1201/b22400-15

O’Keefe, P. (2013). a Sense of Belonging: Improving Student Retention. College Student Journal.

Philip, B. (2019). How artificial intelligence works First wave : Symbolic artificial intelligence. STOA |
Panel for the Future of Science and Technology.

Rahman, N. (2018). Data Mining Techniques and Applications. International Journal of Strategic
Information Technology and Applications. https://doi.org/10.4018/ijsita.2018010104

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. In
arXiv.

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in python: Main developments and
technology trends in data science, machine learning, and artificial intelligence. In Information
(Switzerland). https://doi.org/10.3390/info11040193

Roberts, J., & Styron, R. (2010). Student satisfaction and persistence: factors vital to student
retention. Research in Higher Education Journal.

Sahu, P. (2020). Closure of Universities Due to Coronavirus Disease 2019 (COVID-19): Impact on
Education and Mental Health of Students and Academic Staff. Cureus.
https://doi.org/10.7759/cureus.7541

Sajja, P. S. (2021). Introduction to Artificial Intelligence. In Studies in Computational Intelligence.
https://doi.org/10.1007/978-981-15-9589-9_1

SAPUTRA, D. M., SAPUTRA, D., & OSWARI, L. D. (2020). Effect of Distance Metrics in Determining K-
Value in K-Means Clustering Using Elbow and Silhouette Method.
https://doi.org/10.2991/aisr.k.200424.051

Sayantini. (2019). Keras vs TensorFlow vs PyTorch | Deep Learning Frameworks | Edureka. Edureka.

Schlegl, T., Seeböck, P., Waldstein, S. M., Schmidt-Erfurth, U., & Langs, G. (2017). Unsupervised

40

anomaly detection with generative adversarial networks to guide marker discovery. Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-59050-9_12

Seidl, T. (2016). Nearest Neighbor Classification. In Encyclopedia of Database Systems.
https://doi.org/10.1007/978-1-4899-7993-3_561-2

Sellami, A., El-Kassem, R. C., Al-Qassass, H. B., & Al-Rakeb, N. A. (2017). A path analysis of student
interest in STEM, with specific reference to Qatari students. Eurasia Journal of Mathematics,
Science and Technology Education. https://doi.org/10.12973/eurasia.2017.00999a

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access.
https://doi.org/10.1109/ACCESS.2020.2988796

Tu, Y. (2019). Machine learning. In EEG Signal Processing and Feature Extraction.
https://doi.org/10.1007/978-981-13-9113-2_15

Tutorials Point. (2019). TensorFlow Tutorial. In Tutorials Point (I) Pvt. Ltd.

Vanwinckelen, G., & Blockeel, H. (2012). On estimating model accuracy with repeated cross-
validation. 21st Belgian-Dutch Conference on Machine Learning.

Yang, Z., Yu, Y., You, C., Steinhardt, J., & Ma, Y. (2020). Rethinking bias-variance trade-off for
generalization of neural networks. In arXiv.

Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for kNN Classification. ACM
Transactions on Intelligent Systems and Technology. https://doi.org/10.1145/2990508

 Starmer, J. (2020). Statquest with Josh Starmer.
https://www.youtube.com/c/joshstarmer/videos

TensorFlow (2021). TensorFlow Core, Tutorials, Premade Estimators.
https://www.tensorflow.org/tutorials/estimator/premade

Buitinck et al. (2013). API design for machine learning software: experiences from the scikit-learn
project.
https://scikit-learn.org/0.18/_downloads/scikit-learn-docs.pdf

Niemivirta, M. (2002). Motivation and Performance in Context: the Influence of Goal Orientations and
Instructional Setting on Situational Appraisals and Task Performance. Psychologia - An
International Journal Of Psychology In The Orient.
https://doi.org/10.2117/psysoc.2002.250

Allibhai, E. (2018). Building a k-NN Model with Scikit-Learn. Available at:
https://towardsdatascience.com/building-a-k-nearest-neighbors-k-nn-model-with-scikit-learn-
51209555453a

Berhane, F. (2021). TensorFlow Tutorial. Available at:
 https://datascience-enthusiast.com/DL/Tensorflow_Tutorial.html

JetBrains, (2017). PyCharm. JetBrains. Available at:
 https://www.jetbrains.com/pycharm/

Saballe, C. (2019). Using Machine Learning Models to Predict the Study Path Selection of Business
Information Technology Students.
https://www.theseus.fi/handle/10024/171738

https://doi.org/10.2117/psysoc.2002.250

41

Appendices

Appendix 1. Research Survey

42

43

44

45

46

47

48

Appendix 2a. Haaga-Helia Respondents by Semester

Appendix 2b. Haaga-Helia Respondents by Specialization

49

Appendix 2c. Haaga-Helia Respondents by Age

Appendix 2d. Haaga-Helia Respondents by Gender

50

Appendix 2e. Haaga-Helia Respondents by Area of Origin

Appendix 3a. HES-SO HE ARC Respondents by Semester

51

Appendix 3b. HES-SO HE ARC Respondents by Specialization

Appendix 3c. HES-SO HE ARC Respondents by Age

52

Appendix 3d. HES-SO HE ARC Respondents by Gender

Appendix 3e. HES-SO HE ARC Respondents by Area of Origin

53

Appendix 4. Research permission form

1 Name of Research Project / Thesis

Comparing Machine Learning algorithms' accuracy at predicting students' study path

2 The name(s) of person(s) who conduct research

Adrien Ruegger

Degree Programme and campus

Business Information Technology Double Degree Exchange Student in Pasila Campus

3

Supervisor of research

(name, status/job, telephone number, e-mail address)

Amir Dirin

4 Summary of research plan

Research on study path and student preference

5 Client/sponsor

N/A

6 Target group of research and sample size

At least a 100 BITE students

7 Timetable of research

February-March 2021

8 Description of research method

Questionnaire

54

9 Date, signature and address of the applicant / student

Date 18.02.2021

Name Adrien Ruegger

Signature ___________________________________

Phone XXXXXXXXXXXXXXXX

E-mail XXXXXXXXXXXXXXXXXXXXXXXXXX

Address XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

10 Date and signature of the supervisor

Date XXXXXXXXXX

Name XXXXXXXXXXXXXXXXXX

Signature____________________________________

11 Return the application to the following address

by email: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

or by mail:

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

12 Decision

 Permission for research is given

 Permission for research is denied

Date ___ . ___ 20 __

Application approved by (signature) ____________________________________

Name in block letters _____________________________________

Staff approving the application:

- Surveys to students: Satu Koivisto
- Surveys to Haaga-Helia staff: Teemu Kokko
- Surveys to alumni: Eva Loippo-Sännälä

55

Appendix 5. Scikit-learn algorithms code

from __future__ import absolute_import, division, print_function,

unicode_literals

from sklearn.linear_model import LogisticRegressionCV

from sklearn.svm import SVC

from sklearn import neighbors, datasets

from sklearn.model_selection import train_test_split

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.tree import DecisionTreeClassifier

import numpy as np

import pandas as pd

Loading the two csv Data files

data = pd.read_csv("HH BITe Study Path Survey.csv")

data.update(pd.read_csv("HES-SO BITe Study Path Survey.csv"))

Converting qualitative data into boolean columns

data = pd.get_dummies(data, columns=['Age', 'Gender', 'Origin'])

Separating label from features

y = data.pop('Specialization').values

X = data.values

Encoding label as numeric categories

label_encoder = LabelEncoder()

y = label_encoder.fit_transform(y)

X = StandardScaler().fit_transform(X)

Declaring result arrays

LGRs = []

SVMs = []

KNNs = []

DTCs = []

Looping for a 500 tries

for i in range(1, 501):

 # Separating training data and testing data, Stratify keeps the

proportion of data in both sets

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1 /

4, stratify=y)

 # Pipeline for Logistic Regression with Cross Validation

 clfLGR = make_pipeline(StandardScaler(),

LogisticRegressionCV(random_state=i, max_iter=5000, cv=3))

 clfLGR.fit(X_train, y_train.ravel())

 LGRs.append(clfLGR.score(X_test, y_test))

 # Pipeline for Support-Vector Machine

 clfSVM = make_pipeline(StandardScaler(), SVC(C=1, gamma='auto'))

 clfSVM.fit(X_train, y_train.ravel())

 SVMs.append(clfSVM.score(X_test, y_test))

56

 # Loop to use K value from 1 to 20

 for j in range(1, 21):

 # Pipeline for K-Nearest Neighbor

 clfKNN = make_pipeline(StandardScaler(),

neighbors.KNeighborsClassifier(j))

 clfKNN.fit(X_train, y_train.ravel())

 KNNs.append(clfKNN.score(X_test, y_test))

 # Pipeline for Decision Tree

 clfDTC = make_pipeline(StandardScaler(), DecisionTreeClassifier())

 clfDTC.fit(X_train, y_train.ravel())

 DTCs.append(clfDTC.score(X_test, y_test))

Printing best and worst accuracy results for each algorithm across all

the tries

print('---- Logistic Regression accuracy \n Best: ' +

"{:.0%}".format(max(LGRs))

 + '\n Worst: ' + "{:.0%}".format(min(LGRs))

 + '\n Mean: ' + "{:.0%}".format(np.mean(LGRs)))

print('---- Support-Vector Machine accuracy \n Best: ' +

"{:.0%}".format(max(SVMs))

 + '\n Worst: ' + "{:.0%}".format(min(SVMs))

 + '\n Mean: ' + "{:.0%}".format(np.mean(SVMs)))

print('---- K-Nearest Neighbor \n Best: ' + "{:.0%}".format(max(KNNs))

 + '\n Worst: ' + "{:.0%}".format(min(KNNs))

 + '\n Mean: ' + "{:.0%}".format(np.mean(KNNs)))

print('---- Decision Tree accuracy \n Best: ' + "{:.0%}".format(max(DTCs))

 + '\n Worst: ' + "{:.0%}".format(min(DTCs))

 + '\n Mean: ' + "{:.0%}".format(np.mean(DTCs)))

57

Appendix 5. TensorFlow deep learning code

from __future__ import absolute_import, division, print_function,

unicode_literals

from sklearn.linear_model import LogisticRegressionCV

from sklearn.svm import SVC

from sklearn import neighbors, datasets

from sklearn.model_selection import train_test_split

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.tree import DecisionTreeClassifier

import tensorflow as tf

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

defining a function for the neural network input

def input_fn(features, labels, training=True, batch_size=256):

 # Convert the inputs to a Dataset.

 dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))

 # Shuffle the data and repeat if using training mode.

 if training:

 dataset = dataset.shuffle(1000).repeat()

 return dataset.batch(batch_size)

Loading the two csv Data files

data = pd.read_csv("HH BITe Study Path Survey.csv")

data.update(pd.read_csv("HES-SO BITe Study Path Survey.csv"))

Converting qualitative data into boolean columns

data = pd.get_dummies(data, columns=['Age', 'Gender', 'Origin'])

Separating label from features

y = data.pop('Specialization').values

X = data.values

Saving the column names for conversion later

X_columns = data.keys()

Encoding label as numeric categories

label_encoder = LabelEncoder()

y = label_encoder.fit_transform(y)

X = StandardScaler().fit_transform(X)

results = []

Looping for a 500 tries

for i in range(1, 501):

 # Separating training data and testing data, Stratify keeps the

proportion of data in both sets

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1 /

4, stratify=y)

58

 # Transform the data into pandas dataframes for tensorflow

compatibility

 X_train = pd.DataFrame(X_train, columns=X_columns)

 X_test = pd.DataFrame(X_test, columns=X_columns)

 y_train = pd.DataFrame(y_train, columns=['Specialization'])

 y_test = pd.DataFrame(y_test, columns=['Specialization'])

 # Remove blank spaces in column names to avoid errors later on

 X_train.columns = X_train.columns.str.replace(' ', '_')

 X_test.columns = X_test.columns.str.replace(' ', '_')

 y_train.columns = y_train.columns.str.replace(' ', '_')

 y_test.columns = y_test.columns.str.replace(' ', '_')

 # Feature columns describe how to use the input.

 my_feature_columns = []

 for key in X_train.keys():

my_feature_columns.append(tf.feature_column.numeric_column(key=key))

 print(my_feature_columns)

 # Build a Neural network using 2 hidden layers.

 classifier = tf.estimator.DNNClassifier(

 feature_columns=my_feature_columns,

 # Two hidden layers of 30 and 10 nodes respectively.

 hidden_units=[30, 10],

 # The model must choose between 4 classes/output.

 n_classes=4)

 # Training the model

 classifier.train(

 input_fn=lambda: input_fn(X_train, y_train, training=True),

 steps=4000)

 # We include a lambda to avoid creating an inner function

 # Testing the model's accuracy

 eval_result = classifier.evaluate(

 input_fn=lambda: input_fn(X_test, y_test, training=False))

 results.append(eval_result.get('accuracy'))

Printing the mean, best and worst accuracy results for each algorithm

across all the tries

print('---- Tensorflow Neural Network \n Best: ' +

"{:.0%}".format(max(results))

 + '\n Worst: ' + "{:.0%}".format(min(results))

 + '\n Mean: ' + "{:.0%}".format(np.mean(results)))

